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Abstract—Unmanned aerial vehicle (UAV) systems are of
increasing interest to academia and industry due to their mobility,
flexibility and maneuverability, and are an effective alternative
to various uses such as surveillance and mobile edge computing
(MEC). However, due to their limited computational and commu-
nications resources, it is difficult to serve all computation tasks
simultaneously. This article tackles this problem by first propos-
ing a scalable aerial computing solution, which is applicable for
computation tasks of multiple quality levels, corresponding to dif-
ferent computation workloads and computation results of distinct
performances. It opens up the possibility to maximally improve
the overall computing performance with limited computational
and communications resources. To meet the demands for timely
video analysis that exceed the computing power of a UAV, we
propose an aerial video streaming enabled cooperative computing
solution, namely, UAVideo, which streams videos from a UAV to
ground servers. As a complement to scalable aerial computing,
UAVideo minimizes the video streaming time under the con-
straints on UAV trajectory, video features, and communications
resources. Simulation results reveal the substantial advantages of
the proposed solutions. Besides, we highlight relevant directions
for future research.

Index Terms—aerial computing, MEC, UAV, drone, video
streaming, scalable computing

I. INTRODUCTION

With the flying, onboard sensing, computational and com-

munication capability, unmanned aerial vehicle (UAV, or

drone) systems have emerged as an effective alternative to

a variety of uses such as surveillance, data transmission,

and mobile edge computing (MEC) [1, 2]. UAV systems are

mobile, flexible, and maneuverable. Therefore, they play an

important role, especially in areas lacking territorial infrastruc-

ture such as disaster area and battlefield. Recently, they have

received increasing attention from academia and industry and

have been widely used. At the same time, the flying ability

and limited battery life and onboard computational capability

distinguish a UAV system from a territorial communication

and computation system and complicate the corresponding

system design.

As low-cost megapixel on-device cameras and high preci-

sion built-in sensors become available in the market, latency-

sensitive and computation-intensive applications are emerging.

MEC is one promising technology to serve these applications
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Fig. 1: Illustration of applications enabled by UAV and its

associated flying, onboard sensing, computational and com-

munication capability.

at the wireless edge and has become a core component of IT

infrastructure. However, when access points or base station-

s are overloaded or unavailable, traditional territorial MEC

cannot function properly, making it impossible to provide

computational capability in a timely manner. At this time,

UAVs can be rapidly deployed to designated areas to meet

ad hoc and/or emergent needs owing to their flying, onboard

computational and communication capability. In addition, air-

to-ground communications typically have a high signal-to-

noise ratio (SNR), benefited from the line-of-sight (LoS)

characteristics of air-to-ground links. Thus, UAV-enabled MEC

(i.e., aerial computing) can provide ad hoc computational

capability and achieve low computation delay and transmission

energy consumption, in comparison to traditional territorial

MEC systems. Efficient aerial computing requires joint opti-

mization of computational and communications resources as

well as UAV flying trajectory [3–5].

Latency-sensitive and computation-intensive tasks may ex-

ceed the limitation of a UAV’s computational and communi-

cation capability. Furthermore, when unexpected events, such

as earthquake and landslide, occur, such challenging tasks

may explode. Therefore, how to accomplish these computation

tasks in a timely manner in resource-limited UAV systems, i.e.,

how to provide robust edge computing in UAV systems has

become a critical problem.

Some applications have tasks of multiple quality levels,

corresponding to different computation workloads and com-

putation results of distinct performances [6, 7]. For example,

in object detection, considering more detection regions (i.e.,

region proposals) involves higher computational complexity

while achieving higher detection accuracy. In service level

agreement (SLA), particular aspects of a service, e.g., quality,
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availability, and responsibility, are agreed between the service

provider and a service user, and the service provider often allo-

cates its resources, e.g., computation power, memory/storage

space and network bandwidth, in order to meet the client’s

SLA [6]. Clearly, there is a tradeoff between user experience

and consumptions of computational and communications re-

sources. However, to the best of our knowledge, this tradeoff

has not yet been fully considered to maximally improve the

overall computing performance of a UAV system with lim-

ited computational and communications resources in existing

studies.

Video is a viable medium for information sharing and info-

tainment owing to its high capacity, consistency, and influence

on human beings. Video analysis [8], such as target detection

and scene recognition, is one of the most important UAV

applications. As video analysis is usually computationally

intensive, it may not be supported solely by a resource-limited

UAV. In this case, a video can be streamed to one or multi-

ple ground servers for timely processing. Considering video

receiver heterogeneity (e.g., channel conditions and quality

requirements) in video streaming, a video is encoded into

multiple representations with different qualities and data rates.

Depending on the channel conditions and quality requirements,

the video at a particular quality will be selected for transmis-

sion, and the quality and quality variation of the received video

influence video analysis performance [9]. To the best of our

knowledge, these unique aspects in video streaming have not

been fully considered in designing transmission schemes for

UAV systems.

To achieve robust edge computing in UAV systems, this

article proposes two solutions, namely, scalable aerial comput-

ing and aerial video streaming enabled cooperative computing,

i.e., UAVideo. By optimizing quality level selection for multi-

quality tasks, transmission resource allocation and offloading

scheduling, scalable aerial computing maximally improves the

overall computing performance of a UAV system with limited

computational and communications resources. Aerial video

streaming enabled cooperative computing further complements

the limited computing capability of a UAV, via offloading

the task to ground servers for cooperative computing. By

optimizing the UAV trajectory, video rate, and transmission

resource allocation, UAVideo minimizes the video streaming

time under the constraints on UAV trajectory, video features

and communications resources. The two proposed solutions

allow a resource-limited UAV system to serve more tasks

simultaneously and are expected to play an important role in

disaster activity, emergency relief and battlefield. Simulation

results reveal the superiority of the proposed solutions and

provide important design insights for robust edge computing

in UAV systems. Finally, we highlight relevant directions for

future research.

The rest of this paper is organized as follows. Section II

explains scalable aerial computing, and Section III introduces

aerial video streaming enabled cooperative computing. Simu-

lation results are provided at the end of each section. Future

work and conclusion are discussed in Section IV and Section

V, respectively.

II. SCALABLE AERIAL COMPUTING

A. Aerial computing overview

When emergency or disaster events occur, network infras-

tructures may fail due to power outages or other reasons,

and territorial computation and communication systems cannot

function as usual. In this case, it is critical to meet the needs of

the latency-sensitive and computation-intensive computation

tasks. UAV-enabled aerial computing provides an information

service environment and cloud computing capability at a UAV

and can serve as an alternative to meet the computation

demands.

We consider an outdoor scenario with multiple ground

nodes that are almost stationary. These nodes have very limited

computational power but need to execute latency-sensitive

and computation-intensive tasks such as video analysis for

surveillance and monitoring. These tasks can be computed

locally or offloaded to a UAV.
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Fig. 2: Illustration of scalable aerial computing. Task 1 has

one quality level, while task 2 and task 3 have three quality

levels. The task at a selected quality level can be computed

locally or offloaded to the UAV over wireless communication

channels. In the latter case, the computation results will be

returned after the computation.

Efficient aerial computing design requires joint optimization

of UAV trajectory and computational and communications

resources under system constraints. The state-of-the-art aerial

computing schemes optimize the offloading scheduling, trans-

mission power allocation, transmission time duration (in TD-

MA systems) and subcarrier (in OFDMA systems) allocation,

and UAV trajectory using optimization or machine learning

techniques [1, 4]. Although these schemes have achieved su-

perior performance, it is still difficult for a UAV to serve

all computation tasks simultaneously due to its limited com-

putational and communications resources. Furthermore, when

unexpected events, such as earthquake and landslide, occur,

challenging tasks may explode.

B. Scalable aerial computing

It is worth noting that the state-of-the-art aerial computing

schemes assume that each computation task has only one

quality level. However, multiple quality levels may exist for

a computation task, associated with different computation



3

workloads and computation results of possibly distinct sizes. A

higher quality level results in a better performance with more

computational and communications resource consumptions.

This opens up the possibility to serve more tasks simulta-

neously when the computing resource is insufficient, which

usually happens in UAV systems.

Scalable aerial computing considers applications with tasks

of multiple quality levels, as shown in Fig. 2. Each task

is characterized by four parameters: the size of the task

before computation (in bits), workload (in the number of CPU

cycles), size of the computation result (in bits), and utility [7].

The utility is a measure of pleasure or satisfaction and can

reflect user experience. Mostly, these four parameters increase

with the quality level of the task. Therefore, a particular task

at a specific quality level can be offloaded to the UAV at an

appropriate time for computation, considering the available

computational and communications resources. The computa-

tion results are returned after the computation. As compared

with traditional non-scalable aerial computing, scalable aerial

computing provides more freedom and is more suitable for

resource-limited UAV systems. The inherent research issues

include optimal task level selection, resource allocation, of-

floading scheduling, and UAV trajectory planning, to maxi-

mally improve the overall computing utility. This optimization

problem introduces more variables (i.e., quality level selection

variables) compared to traditional aerial computing and thus

is more complicated. Its efficient solution remains an open

research issue.

We consider TDD-OFDMA and optimize the quality level

selection, subcarrier allocation, transmission rate, transmission

time duration allocation and offloading decision for a station-

ary UAV. This is a challenging mixed discrete-continuous opti-

mization problem, which includes two types of variables, i.e.,

discrete variables (e.g., quality level selection, subcarrier allo-

cation, and offloading decision) and continuous variables (e.g.,

transmission power and time). By problem transformation and

convex optimization techniques, we obtain an optimal solution

(under a mild condition) and a low-complexity suboptimal

solution. Due to the page limit, we omit the details of the

solution and refer to [7] for an example in a simpler TDMA

system.

C. Performance evaluation

Here we numerically show how scalable edge computing

improves the system utility by properly conducting the tradeoff

between user experience and consumption of both computa-

tional and communications resources with a stationary UAV.

In the simulation, we assume each task has 6 service levels

and the utility function is defined as the sum of the quality

level per task.

Four baseline schemes are used to verify the performance of

the proposed scalable aerial computing. Baseline 1, Baseline

2, and Baseline 3 consider full offloading. Specifically, in

Baseline 1, each subcarrier is assigned to the user with

the largest channel power, and power allocation and service

level selection are obtained using Difference of Convex (DC)

programming; in Baseline 2, the problem is relaxed to a convex

problem, a binary approximation of its optimal solution is

adopted; in Baseline 3, equal power allocation is adopted,

subcarrier allocation for uploading (downloading) is conducted

in a greedy way to minimize the maximum uploading (down-

loading) time, and service level selection is conducted in a

greedy way to minimize the total time duration. Baseline 4

does not consider offloading.

We independently and randomly generate a hundred re-

alizations of channel power and task parameters, and have

obtained the average performance over these realizations. The

numerical results are shown in Fig. 3. We can observe that

the average utility per ground user (i.e., total utility divided

by the number of served ground users) of each scheme with

offloading increases with the CPU frequency and with the

number of subcarriers, which reflects the tradeoff between

user experience and consumption of both computational re-

source and communications resources. The average utility of

Baseline 4 does not change with the CPU frequency or the

number of subcarriers, as only local computing is consid-

ered. Furthermore, we can find that the proposed solutions

based on scalable aerial computing outperform all benchmark

schemes, showing the superiority of the proposed scalable

aerial computing in making better use of computational and

communications resources. Besides, the average utilities of the

optimal solution and suboptimal solution are close to each

other.

Fig. 3: Simulation results with different UAV CPU frequencies

and numbers of subcarriers, where Optimal and Suboptimal

represent the proposed solutions.

III. AERIAL VIDEO STREAMING ENABLED COOPERATIVE

COMPUTING

To meet the demands for timely video analysis that exceed

the computing power of a UAV, we propose an aerial video

streaming enabled cooperative computing solution UAVideo,

that streams videos from a UAV to ground servers to enable

cooperative computing. In this section, we illustrate the chal-

lenges of aerial video streaming and introduce the proposed

solution UAVideo. Note that in addition to video analysis,

UAVideo can also meet the video needs of territorial users for

perception or other purposes. For instance, users in a shelter

can use UAVideo to remotely monitor the situation of their

houses.

A. Overview and challenges of aerial video streaming

Aerial video streaming focuses on fulfilling the video re-

ceivers using a UAV, which has the requested videos (captured
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Fig. 4: Illustration of a typical aerial video streaming enabled cooperative computing system.

by itself or sent from other UAVs, etc.) and acts as a mobile

base station. The technical research issues of aerial video

streaming include how to encode or compress video before

transmission, how to transmit video (i.e., perform resource

allocation and video quality level selection), and how to design

UAV’s trajectory.

In video streaming systems, a video is encoded into multiple

representations corresponding to multiple quality levels. One

quality level is then selected and transmitted to a receiv-

er based on its channel conditions or quality requirements.

The video streaming and video analysis performance highly

depends on the received video quality, quality variation and

rebuffering. Compared to traditional video streaming systems,

aerial video streaming faces the following new challenges.

• Coupling between video streaming and UAV trajecto-

ry:

UAV mobility results in variations of the channel condi-

tions between the UAV and a ground receiver. This means

that a high received video quality is easy to obtain when

the UAV flies close to a ground receiver, as a shorter

distance results in a better channel quality, and vice

versa. On the other hand, when a receiver starts receiving

high-quality video, the video quality variation require-

ment essentially restricts the UAV from straying too far

from the receiver; otherwise, the newly received video

quality at a longer UAV-receiver distance may not meet

the variation requirement. However, the restricted UAV

trajectory makes the receivers far away from the UAV

to keep receiving low-quality video. To avoid restricting

the UAV trajectory, we can lower the level of received

video quality, even when the channel is good. In this case,

the requirement of video quality variation is satisfied at

the expense of video quality reduction. Therefore, there

is a tradeoff between the received video quality and its

variation. Furthermore, in order to provide smooth video

playback, more video data needs to be downloaded and

cached in buffers when channel conditions are favorable.

These buffered video frames will prevent video freezing

when channel conditions are degraded. On the other hand,

the UAV should fly near the receivers with few video

frames cached in the buffer. Therefore, a joint design of

video streaming and UAV trajectory is required. In fact,

the resource allocation of the aerial video streaming is

difficult under quality variation and playback interruption

avoidance constraints.

• Aerial video streaming optimization without instan-

taneous channel conditions: It is challenging for a

UAV to obtain instantaneous channel conditions due to

high implementation cost for channel sounding. However,

statistical channel distribution can be obtained prior to

the UAV flight, as the quality of the air-ground link is

related to the ground elevation angle of the UAV and

the surrounding environment, causing different reflections

and scattering. Therefore, the joint design of aerial video

streaming and UAV trajectory can rely on the statistical

channel information.

B. Framework of UAVideo

Video analysis is usually computationally intensive and

delay sensitive, and may not be satisfied solely by a resource-

limited UAV. In this case, a video can be streamed to one

or multiple ground servers for timely processing. When the

size of the video analysis results is small, the main challenge

for aerial video streaming enabled cooperative computing lies

in how to efficiently stream each video from a UAV to the

corresponding server. We focus on this technical issue and

consider a UAV and multiple ground servers, as shown in

Fig. 4. Each ground server receives a video from the UAV,

performs data analysis, and then transmits the data analysis

results back to the UAV or a control center. In this case, these

ground servers are video receivers. The manager inside the

UAV is the core, managing the flying trajectory of the UAV

and how the videos are delivered to the ground receivers. We

next introduce the major components of UAVideo.

• Ground video receivers: Each ground video receiver

receives a video from the UAV at a desired video rate.
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This desired video rate usually depends on the video

analysis requirements (in terms of accuracy, covering

range, etc.) or the physical capability of the terminals

(e.g., screen size and resolution).

• Video source at the UAV: Considering receiver het-

erogeneity, each source video is encoded into multiple

representations corresponding to multiple quality levels

using state-of-the-art video codecs such as HEVC and

VVC, as in Dynamic Adaptive Streaming over HTTP

(DASH). Thus the video at a proper rate can be selected

and streamed accordingly. This can also be achieved by

using scalable video encoding (SVC), which manages to

provide multiple correlated layers. Different combinations

of the layers lead to different video quality levels.

• Quality evaluation metrics: Videos have unique fea-

tures, such as resolution and quantization levels, that

affect video analysis performance [9]. Different com-

binations of these factors have been considered in the

literature, depending on the scenarios and design objec-

tives. In UAVideo, we consider the demanded video rate,

video quality variation (defined as the squared difference

between the current playback rate and the averaged rate)

and rebuffering (i.e., play interruption) as performance

metrics [10]. Besides, the transmission time (i.e., the

operation time of the UAV) for serving the video receivers

is another primary metric, as fulfilling video requests in

a shorter time brings more benefits.

• Air-ground link: To comply with aerial regulations, a

UAV must fly at a specific range of altitudes and a limited

speed. Besides, it is assumed that a UAV has to return

to its initial position before the battery runs out. In UAV

systems, instantaneous channel state information is diffi-

cult to obtain, and only the statistical channel distribution

is known before the flight. We consider an adaptive rate

transmission scheme for the UAV as in [11], which finally

allows us to calculate the maximum achievable rate at

which the ground video receivers can reliably receive the

transmitted video. In general, the maximal achievable rate

is equivalently expressed as a function with respect to the

three-dimensional UAV trajectory and transmission power

[12]. To ensure a successful transmission, the maximal

achievable rate of the air-ground link should be no less

than the selected encoding rate of a video.

We consider TDMA and minimize the video streaming

time under the constraints on the UAV trajectory (i.e., a UAV

must fly at a specific range of altitudes and a limited speed,

and finally return to its initial position), video features (i.e.,

video quality, video quality variation, and play interruption re-

quirements) and communications resources (i.e., transmission

power and time limits, and successful transmission constraint).

The optimization variables include the UAV trajectory, the

video rate, and the communication time and transmission

power of each time slot. This optimization problem has non-

convex constraints and is therefore difficult to solve. We

can decompose this optimization problem into subproblems,

each of which optimizes one or a set of variables. These

subproblems can be solved iteratively until the objective value

converges, i.e., a feasible suboptimal solution is obtained.

More details of such an optimization problem can be found in

[12].

C. Performance evaluation

In the simulations, we consider 5 video receivers, randomly

and uniformly distributed within a square area of 1600 × 1600

m2. As shown in Fig. 5 (a) and (b), the initial and final points

of the UAV are set to (-600, 0, 50), represented by a triangle.

The minimum and maximum allowable altitude are set as 50 m

and 300 m, respectively. The maximum horizontal and vertical

flying speed are set to 40 m/s and 20 m/s, respectively. It

is assumed that all receivers have the same utility (defined

as a function of received video rate over desired video rate)

requirements, denoted as Ū . The communication bandwidth is

1 MHz, and the carrier frequency is 5 GHz [12].

Four benchmark schemes are considered. They are 2D

(two-dimensional) path optimization, UAV height optimization,

static streaming, and even allocation. These four schemes

optimize different variables of aerial video streaming. For

example, 2D path optimization allows joint optimization of

both the horizontal trajectory and resource allocation of the

UAV, leaving the altitude of the UAV with a minimum altitude

(i.e., 50 m). UAV height optimization optimizes both resource

allocation and altitude without changing the horizontal posi-

tion of the UAV. static streaming optimizes only the resource

allocation of the UAV, while the communications resource is

evenly allocated in even allocation.

Optimized UAV trajectories with various utility and video

quality variation requirements are shown in Figure 5 (a) and

(b), which also include the optimized trajectories for 2D path

optimization and even allocation with Ū = 400 and video

quality variation constraint ζ = 1 Mbps2. We can see that the

UAV’s trajectory shrinks with the decrease in the variation

of video quality. It means that if the UAV is closer to a

particular ground receiver, it will then be far from other ones

who have limited channel quality access. However, it will cost

much more communications resources to meet the requirement

of the video receivers far from the UAV. With the increase

of the utility requirement, the UAV will adjust its flying to

move closer to the receiver or even hover to provide higher

received video quality. As can be seen from Fig. 5 (c), the

UAV communicates with the receiver when getting close. The

received video data will be cached in the playback buffer and

then analyzed without interruption.

Figure 5 (e) and (f) show the operation time of the UAV for

streaming requested videos for different utility requirements

and numbers of ground video receivers. We can observe that

the UAVideo considerably reduces the operation time compared

to other schemes. With a larger Ū and a larger number

of receivers, a more significant performance improvement

can be achieved. The performance gaps over the comparison

schemes are brought by the joint optimization of the three-

dimensional UAV trajectory (vs. 2D path optimization, UAV

height optimization, and static streaming) and communications

resources (vs. even allocation). When the utility requirement

or the number of receivers increases, the UAV operation time

also increases.
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(a) UAV horizontal trajectory. (b) Three-dimensional UAV trajectory. (c) Communication time allocation.

(d) Operation time vs. the utility requirement. (e) Operation time vs. the number of ground video receivers.

Fig. 5: Simulation results for UAVideo.

IV. FUTURE WORK

We envision that UAV systems will play a vital role in

near future by offering enriched sensing, surveillance, data

transmission, and computation services. This area opens up

many exciting and critical future research directions.

A. Cooperative UAV system and UAV coverage

In a multi-UAV system, UAVs can work jointly to pro-

vide better performance with broader coverage and more

powerful computational and communication capabilities [13].

However, the scheduling and resource allocation inherent in

multi-UAV aerial computing becomes more complicated. How

should these UAVs collaborate to efficiently perform sensing,

surveillance, data transmission, and computation requires fur-

ther research. Moreover, multi-UAV systems may operate in

centralized, decentralized, and distributed manners depending

on system requirements. As different operation modes call

for different schemes, flexibly adapting schemes to operation

modes brings new challenges. Besides, where to deploy UAVs

for effective cooperative computing (i.e., UAV coverage) is

also a non-trivial issue. These problems are very involved in

general, and low-complexity and high-performance solutions

are necessary to meet the real-time requirements in specific

scenarios.

B. Artificial intelligence for resource allocation in aerial

computing

Artificial intelligence (AI) has been widely used for op-

timizing communication and computation systems. In par-

ticular, it yields satisfactory performance when conventional

optimization techniques fail, as optimization problems cannot

be explicitly formulated or efficiently solved. UAV systems

have more design variables and higher unpredictability than

territorial communication and computation systems. There

are already some schemes that use AI to optimize resource

allocation for aerial computing [14]. However, there are still

many unresolved issues, such as lack of training data, high

complexity due to large state space, and insufficient character-

ization of complex UAV systems. Besides, federated learning

and split learning provide an alternative to optimizing UAV

systems while protecting users’ privacy.

C. Integrating with emerging technologies

Network Function Visualization (NFV) and Software-

Defined Networking (SDN) can create automated, scalable,

and customizable networks. Caching facilitates popular con-

tent delivery and substantially reduces network load. Intel-

ligent reflecting surface (IRS), consisting of nearly passive,

low-cost, reflecting elements with reconfigurable parameters,

can effectively improve spectrum and energy efficiency. These

emerging technologies have already been used in UAV systems

and enhanced the performance of UAV systems [15]. However,
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to the best of our knowledge, there are still many unresolved

issues for optimal integration of these technologies in the

multi-UAV systems, such as the joint investigation of caching,

task offloading with non-negligible input/output sizes, and

aerial computing constraints.

D. Scaling computation tasks

The concept of scalable aerial computing works particularly

well in situations where computational and communications

resources are limited, allowing a tradeoff between the system

performance and computational and communications resource

consumptions. However, only some of the current programs

support such scalability. Further research efforts are needed to

enable the scalability of computation tasks in more applica-

tions.

V. CONCLUSION

This article focuses on serving all computation tasks si-

multaneously in resource-limited UAV systems. We first in-

troduce a scalable aerial computing solution, which opens up

the possibility to serve more users, and enables the optimal

tradeoff between user experience and consumption of both

computational and communications resources to maximize

the overall performance. We then introduce an aerial video

streaming enabled cooperative computing solution UAVideo,

which jointly investigates the video features and UAV system

constraints, so that the video tasks that exceed UAV’s com-

putational capability can be streamed to the territorial servers

for collaborative and timely analysis. We have also conducted

simulations to verify the performance of the proposed solution-

s, and the simulation results reveal their superiority. Besides,

we have highlighted relevant directions for future research.
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