Robust Emulations of Shared Memory in a
Crash-Recovery Model

Rachid Guerraoui and Ron Levy
Distributed Programming Laboratory
EPFL

Abstract—A shared memory abstraction can be robustly necessary because upon recovery, a process might have lost
emulated over an asynchronous message passing system wherg|| the content of its local volatile memory.
any process can fail by crashing and possibly recover (crash- g nymbper of logs have a direct impact on the performance
recovery model), by having (a) the processes exchange messages]c th |ati | | | twork of Pent
to synchronize their read and write operations and (b) log key 0 e eml‘! ation. n our oca_ area network or Fentium
information on their local stable storage. IV workstations for instance, it takes around 0.1ms for a

This paper extends the existing atomicity consistency criterion message to transit between two processes located at different
defined for multi-writer/multi-reader shared memory in a crash- workstations whereas logging a single byte on a local disk

stop model, by providing two new criteria for the crash-recovery mjgn take twice as long; comparatively it costs almost nothing
model. We introduce lower bounds on thelog-complexity for .
for a process to execute a local operation.

each of the two corresponding types of robust shared memory 2 . - . .
emulations. We demonstrate that our lower bounds are tight by ~ The objective of this paper is to de\/_|se an algorithm
providing algorithms that match them. Besides being optimal, that robustly emulates a shared memory in a crash-recovery
these algorithms have the same message and time complexity asnessage passing model, while minimizing thg-complexity
mggeﬁ“%t efficient counter part we know of in the crash-stop o any read andwrite operation on the memory. In particular,
We analyze the real-world performance of our emulations we seek to FieV|s¢ robust emulathn algorithms with minimal
by looking at a set of measurements obtained using an actual Iog-(.:ompIeX|.ty'Wh|Ie preserving théime- andme§sageeom-
implementation over a network of workstations. plexity of efficient and robust memory emulations we know

Index Terms— asynchronous distributed system, message pass-mc in a crash-stop model.

ing, shared memory, crash-recovery, atomicity, logging, complex-

ity, lower bound, optimality, stable storage. B. Performance Metrics
To illustrate what we mean bipg-complexity consider the
I. INTRODUCTION implementation of awrite operation using the two following

algorithms: A and A’, both emulating a shared memory in a

ISTRIBUTED . ith hared _crash-recovery modél
programming With & shared memory 1S 1) In algorithm A, the writer process firsiogs some

usually considered easier than with message passing.” . .
: . . information, then sends a message to all processes.
Hence, when no hardware shared memory is available, it can
Every process that gets the message #gs some

be very useful to emulate a virtual one at the software level. information, except the writer, before sending back an

In an asynchronous message passing system where pro- acknowledgment (ack). Once the writer gets back all
cesses can fail by crashing and never recowash-stop acks. it terminates thwr.ite (i.. returns an “OK”)
model), such emulation can be achieved through a distributedz) n al,gorithm A’ the writer 'di.rectly sends a méssage
algorithm that implements thead andwrite operations of the to all processe,s Every process that gets the message

distributedshared memory, using underlying message passing . ; . . 7
. including the writer, logs some information before send-
channels between the processes. The emulation can be made . . .
ing back an ack. Once the writer gets back all acks, it

robust(fault-tolerant) provided that a majority of the processes . .
terminates thewrite.
do not crash [1]-[4]robustnesg1] means here that amgad ; _ _) _
In both algorithms, avrite operation require3 communica-

or write operation invoked by a procegs which does not | ;) :
subsequently crash, eventually returns. tion steps, i.e., one round-trip between thg writer and thg rest of
In an asynchronous message passing system where processes. How many logs are used in each algorithm? At
irst glance, it might appear that both algorithms use the same

process can fail by crashing and possibly recovaagh- £l ; h I :
recovery, a shared memory can be robustly emulated provid@fmper of logs. Indeed, in both cases all processes must log to
rminate thewrite. However, a closer look at the algorithms

that eventually a majority of the processes are permanen s that | d4in th oA Ith
(long enough for an operation to terminate) not crashed. Tf?é’eisr: at 0gs are nl(l)t use Ic? the iamle mafnr;] ' he
processes exchange messages to synchronizertsarand '09 Of the Wrgercau.jf{t yhprec_e ef] t ﬁ o9 OI the Otd er
write operations (as in therash-stopmodel), as well as log processes, whereas Hi, there Is no such causal precedence:
key information to the'r. l_ocal Stabl? storage (unlike in th? INone of these emulations are robust, but this is irrelevant for explaining
crash-stop model). Intuitively, logging to stable storage ise notion of log-complexity

A. Motivation

all logs can be performed in parallel. We say thatvéte at least one causal log. Otherwise there might be no
operation cost® causal logs in algorithm and1 causal log way for a written value to persist in the system and be
in algorithm A’. In practice, even if shared memory emulation eventually readffrgotten-valug
algorithms are devised in an asynchronous model, the mosR) But do we need two causal logs? For instance, does
frequent case for which they need to be optimized is when the the writer need to log the timestamp it associates with a
message transmission delay is within a reasonable time period value, before asking a majority of the processes to adopt
(0.1 ms in our network). If we define the communication delay the value with this timestamp? This seems desirable
asé and the log delay ag, a write with A costs2§ + 2, to prevent the case where the writer crashes and a
whereas awrite with A’ only costs2d + A. single process adopts the new value and timestamp.
Using this metric, we address in this paper the following Upon recovery, the writer might otherwise use the very
guestion: how mangausal logsare needed to robustly emulate same timestamp to write a different value, leading to
awrite and aread operation of a shared memory over a crash- two different values with the same timestaneprifused-
recovery message passing system? values.

3) Furthermore, does the writer need to log the very fact
that it is about to start writing some valu@ Again, this
seems desirable because, if the writer crashes during a
write and recovers, it might start a new operation without

C. Atomic Memory

Several kinds of shared memory have been defined in the
literature. The strongest is tretomic one [6], also so-called finishing the previousvrite (orphan-valug.

linearizable[6]. It provides the processes with the illusion that Einding out which logs are really needed goes through
they access the memory one at a time. Processes are sequentia . . L
and each of their operations on the shared memory appe%al,gefully defining the very notion of atomicity in a crash-
to be executed instantaneously, at some instant in the tinfe OVery model.
interval between the invocation and reply events, despite actual
concurrent accesses by the processes. D. Contributions

In this paper we mainly focus on this kind of memory since We extend the notion of atomicity to the crash-recovery
it is the most useful to the programmer. By default, we assumebdel by defining two new forms of atomicity:
thatread andwrite operations on this memory can be invoked , The first one guarantees atomicity to persist through
by any process in the system (multi-writer/multi-reader). To crashes: we call ipersistent atomicity
get an idea of the ramifications underlying the problem of , The second one is weaker and only guarantees atomicity
devising a robust and log optimal atomic shared memory emu- petween crashes: we calltiansient atomicity

lation over a crash-recovery message passing system, considqrransient atomic memory provides exactly the same se-

the robust atomic memory emulation algorithm ovesrash- \ntics as persistent atomic memory, except that it does not
stopmessage passing system described in [2]. (This algorithfp et the issue afrphan valuesnentioned above. An unfin-

is itself an extension for multiple writers of the single-writefcp .\ rite (due to the crash of a writer) can appear to “over-
algorithm of [1].) Processes that crash never recover andld " with a consecutivavrite at the same process (the writer).

IS as_sumed that a major_lty of _the processes never crash. v%ry operation still appears to be executed instantaneously
algorithm uses monotonically increasing timestamps to or some instant in its time interval, but a process that crashes

the written values: every process holds a value, presumably ile writing might temporarily not appear to be sequential

:categt writien \r/1alue, Wl'th, an a;ssoluated tlmgstan;p. COES' on recovery (until its nextrite terminates). We believe this
or instance the emulation of write operation. First, the situation to be sufficiently exceptional. Therefore, studying the

writer process requests the highest timestamp from a majorilyion of transient atomicity is practically meaningful in a

of processes. The writer then increments this timestamp a&%sh-recovery model

broadcasts it together with the value to be written. EVery \ye snow that robustly emulating a persistent atomic shared
process that receives this message updates its variable -

writer. Once the writer receives a majority of acks, it retum&tomicity requiresl causal log for each. These lower bounds

from thewrite operation. hold even for a single-writer/single-reader memory, no matter

We can easily adapt this algorithm to a crash-recovepy,;, many messages or communication steps are used among
model by having every process log each of its steps in stal lreocesses

storage, but the resulting algorithm would be very expensiveOur bounds ardight. We give an algorithm that robustly

(cllearly not ',09 o'p'glmall). Below Ivve' discuss some of the ISSUBMulates a multi-writer/multi-reader persistent atomic memory
related to minimizing log-complexity. o with 1 causal log for aead and?2 causal logs for avrite, and
1) Before awrite completes, at least a majority of thean algorithm that robustly emulates a multi-writer/multi-reader
processes must have logged the new value and {fgnsient atomic memory with causal log for avrite and 1
associated timestamp: in other wordswaite needs cgysal log for aead
, _ _ _ _Our algorithms assume that eventually a majority of pro-
Note that timestamps are sequence numbers (integers) associated with
es are permanently non-crashed (long enough for an

process ids, and these ids help order timestamps with the same sequé&caS >))) !
number. operation to terminate). This assumption is needed for any

robust emulation and does not exclude scenarios where @ibcessp; receives some message, then some process

the processes crash, possibly at the same time, as long dm®sentn.

majority eventually recovers. We assume a correct majority of processes, which is clearly
We present our log-optimal emulation algorithms as exteneeded for robust emulations of the kinds of memory we

sions of the algorithm of [2], which is the most efficient robustonsider. (In fact, this is needed for the robust emulation of any

atomic memory emulation we know of in a crash-stop modeiseful form of memory where written values do not disappear).

Our algorithms use the same number of communication steps

as [2], namely for any operation. In other words, this means

that minimizing the number of logs does not increase thelll. AToOMIC MEMORY IN A CRASH-RECOVERY MODEL

number of messages, or communication steps, with respect

to the most efficient robust emulation algorithms we know of 1N€ notion of atomic single-writer/multi-reader memory
in a crash-stop model. was introduced in the form of a shareegister abstraction

in [6]. This notion was generalized to any type of object

(queues, counters, stacks, etc.), where any process can invoke
E. Road-Map any object’s operation, through a general correctness criteria

Section Il describes the crash-recovery model. Section élled linearizability [9]. Roughly speaking, linearizability

defines our two notions of memory atomicity in such @rovides the illusion that the shared object appears to be
model: persistent and atomic memory. Section IV preseriscessed in a sequential way. Emulating an atomic memory
tight bounds on the log-complexity of each form of memorgomes down to implementing a linearizable object accessed
Section V analyzes the performance of a practical implemetiwrough two operationstead and write, such that, despite

tation of the emulations using various configurations. concurrency and failures, theead provides the illusion to
return the last written value.
I[l. MODEL We are interested in robust emulations where a process that

Our crash-recovery model follows the one introduced in [7vokes aread or write operation and does not crash, after that
We consider an asynchronous message passing model, witdBygcation, eventually terminates the operation.
any assumptions on communication delay or relative messagén the following section, we extend the traditional notion
speeds. To simplify the presentation of our algorithms w@ atomic memory in the crash-stop model to encompass the
assume the existence of a global clock. This clock howeverdgash-recovery model. We first give an intuitive idea before
a fictional device outside of the control of the processes. Wwe define this notion more precisely. Ideally, to the user

The set of processes is static and every process execut® an atomic memory, it should make no difference if the
deterministic algorithm assigned to it, unlessiashes The underlying model is crash-stop or crash-recovery. This means
process does not behave maliciously. If it crashes, the proc#¥f atomicity should persist through crashes, hence the notion
simply stops executing any computation, unless it possib®j Persistent atomicityBut in the crash-recovery model, it
recovers in which case the process resumes the executittnpossible to define a different consistency criterion that is
of the algorithm assigned to it. Note that in this case wa&eaker than persistent atomicity but does guarantee atomicity
assume that the process is aware that it had crashed Bh&etween crashes. This is why we refer to it teensient
recovered. Upon recovery, a process is allowed to exec@@micity
a recovery procedure: there is no limitation on the numberRoughly speaking, persistent atomicity always provides the
of communication steps or messages used in this recovélysion that the memory is accessed in a sequential and
procedure. failure-free way. Transient atomicity provides almost the same

Every process has a volatile and a stable storage. If it craslyggrantees as persistent atomicity, the only exception being
and recovers, the process loses the content of its volatift the full illusion of atomicity can be temporarily broken
storage but not the content of its stable storage. By defawithen a process recovers after a failure. More precisely: when a
whenever a process updates one of its variables, it does soatiter p,, crashes in the middle of executingwiite operation,
its volatile storage. The process can decide to store informatikggovers and invokes a newrite operation, other processes
in its stable storage using a specific primitismre we also might have the impression that the two operations are invoked
say that the procesdsgsthe information. The process retrievesoncurrently: the presemtrite, as well as thewrite p,, had
the information logged using the primitivetrieve invoked but not terminated prior to its last crash.

All processes can crash, even all at the same time. ADepicted in Figure 1 are two runs: one of a memory that
process that never crashes, or that eventually recovers andures persistent atomicity and one that ensures transient
never crashes again, is said to t@rect It is important to atomicity. The run of the transient atomic memory exhibits
notice that, when we say that a procemsver crashes, this the overlapping write behavior. What happens is that, during
concretely means never crashes during the lifetime of thee third write (W(v3)) of the writer p;, the other processes
algorithm the process is supposed to be executing. do not know if the secondrite (W(v3)) was successful or not

We assume fair-lossy channels [8], which are defined amd can still return the value written by the fisstite. The
follows: if a proces®,; sends a message to a correct process main problem is that the end of the secomdte can in fact
p; an infinite number of times, ang; does not crash, thenbe delayed until the end of a consecutiweite. The writer
p; receivesm an infinite number of times. Furthermore, if atself would not be affected by the “overlapping” writes.

W(v) — W(vy) W(us) W(vi) — W(wy) V;/(va)

n—t—3+ = +—= 3+ E +=
RO wi RO v RO v RO ws
P2 F—F—+—3—— F—F——F+—F3F——
P3 — >
Transent Atomicity Persistent Atomicity
Fig. 1. Runs of a persistent and transient atomic memory emulations
A. Histories A sequential history is said to bkegal if each of its

We recall below some elements underlying the definitigigStrictions to any object involved in the history belongs to
of linearizability from [9] in order to define our notions ofthe sequential specification of that object. A histéfyis said
persistent and transient atomicity more precisely. to be persistent atomidf it can be completedsuch that it

Linearizability defines correctness in terms of histories. | €quivalent to some legal sequential history that preserves
history is a sequence of events of four kindsvocations, the operation precedence of H. We say that an algorithm
replies, crashesand recoveries Crash and recovery events€Mmulates persistent atomic memory if every history generated
are associated with exactly one process. Every invocation Angthe algorithm is linearizable. We are interested in robust
every reply is associated with exactly one process and ddf@ulations where any procegshat involves areador awrite
object. A reply is said tomatchan invocation if they are operation eventually terminates, unless the process crashes.
associated with the same process and the same object: such
a pair defines an operation execution (sometimes we simfly Transient Atomicity

say operation when there is no ambiguity). In our context, \we define transient atomicity similarly to how we define
operations are eitheread or write. An invocation with no persistent atomicity, with one exception: the way histories can
matching reply in a history is said to lpendingin that history. pe completed is now slightly extended. Given any well-formed
An operatiornop is said toprecedean operatiorp’ in a history history H;, we say thatH, weakly completesd;, if H, is
if the reply ofop precedes the invocation op’ in that history. made of exactly the same ordered object events @& iwith

Two historiesH and H' are said to beequivalentif for one exception: any pending invocationfii is either absent in
every procesg, the historyH atp is equal to the historyd” 7, or has a matching reply that appears before the subsequent
atp. write reply of the same process. A histo#y is said to be

A local historyis a sequence of events associated with ORgnsient atomicif H can beweakly completedby a legal
process. A local history is said to beell-formedif: (a) its sequential history that preserves the operation precedence of

first event is either an invocation or a crash, (b) a crash cans. By definition, every persistent memory emulation is also
only be followed by a matching recovery event, and (c) & transient memory emulation.

invocation can only be followed by a crash or a reply event.
A history is said to be well-formed if all its local histories are IV. LoG OPTIMAL ATOMICITY
well-formed.

To define linearizability, we reason about histories that a(r)?lrr]otgtljsstsl ecg?nnul\g:nglve;s“ig?etntt)ogtnodm?g trzzrlr?gr Cor\T/]\/F;le;?rz
complete these are histories made only of invocation-repl y 9p -

pairs, i.e. operations without pending invocations and withoé{ve a lower bound on emulating single-writer/single-reader

. . persistent atomic memory and then a matching algorithm that
crash or recovery events. Given any well-formed histfiry .))

. ! even tolerates multiple writers and readers. This means that
we say thati, completest; if Hs is made of the very same

. . . . no extra cost in terms of the number of causal logs is incurred
object events in the same order asti, with one exception: by going from single-writer/single-reader memory to multiple
any pending invocation irf{; is either absent irf-, or has y going 9 9 y P

a matching reply that appears i, before the Subsequentwnters and readers. Furthermore, our algorithms use the same
. . number of messages as the currently most efficient robust
invocation of the same process.

algorithm in the crash-stop model we know of [2].

B. Persistent Atomicity

))] o A. Lower Bound
A history is said to besequentialf it is complete and every Clearly. i b . lati L
invocation is followed by a matching reply. Every object has a ea%/l, in-any ro uslt atomrl]c mlemo.ry emul?tlgn, |t'd|s
sequential specification, defined by a set of sequential historlg¥0Ss! he to wnte_a value without ogglfngl]l at at. Lonsi ?r
involving only events associated with that object. Rough@ f“T‘hW ere a writer plrocgss shqccesis Uiy wn:)els a value
speaking, the sequential specification captures the acceptéﬁblg‘"t out any process logging this value to stable storage.
behavior of the object in the absence of concurrency a sume that all processes had initialized their local values to
failures. In our context, we are concerned with memory objec't8 at the beginning of the run. If after the completion of the

(registers) whose sequential Sp?c'f'cat'on simply stipulates tha‘tNote that the definition of persistent atomicity applies to any object while
a read returns the last value written. transient atomicity applies only to shared memory objects (read-write objects).

write, all processes crash at the same time, it is obvious thaf,
once the processes recover, no subsegeaatcould possibly
returnv;. At least one causal log is obviously needed. The next
theorem states that in fact at least two causal logs are actually?
needed tawrite to a persistent atomic memory.

Theorem 1:Any algorithm 4, robustly emulating a single- "~
writer/single-reader persistent atomic memory has a run in
which somewrite uses two causal logs.

Proof (Sketch): We consider the case af processes
wheren > 3. We construct a run that violates persistent
atomicity and is inevitable if only one causal log perite
is allowed. Figure 2 displays this run, denoted along with
the instants when processes log. Proggss the writer and
po is the reader.

Assume by contradiction that one causal log is enough for
every run, i.e., logs of different processes are not causally
related and every process performs at most one log. Now
consider rurp;: the writer successfuly writes the value (all
processes log) but crashes while writing. It is important
to note that the writer did not log before crashing. After the
crash, the writer recovers and starts a nevite operation.
There are two readsRhj and R) by p, that are concurrent
with the third write.

The history H; associated with rurp; is not complete,
because the invocation W) has no matching reply. We can
complete H; and obtain H; by removing W¢-) from the
history or by completing thewrite by adding a matching
response event té/;. Since the completed history must be
equivalent to some sequential history, this response event must
be placedbeforethe invocation event W) at proces®;. A
complete history is sequential only if each invocation event
is immediately followed by the matching response event, i.e.
locally “overlapping” operations are not allowed. In order for
H, to satisfy persistent atomicity/; must be equivalent to
some legal sequential histo In other terms this means that
in S every read must return the last written value and this
implies thatR; and R, cannot arbitrarily return any value. In
fact, H] must be equivalent to one of the following sequential
histories:

] W(’Ul).W(’UQ).R(’UQ).R(’UQ).W('Ug)

o W(v1).W(v3).R(2).W(v3).Rws)
W(v1).W(v2). W(v3).R(vs).R(vs)

. W(Ul).R(Ul).R(Ul).W(Ug)

(] W(Ul).R(Ul).W(’Ug).R(’Ug)

. W(Ul).W(’Ug).R(’Ug).R(’Ug)

In more general terms, in order to guarantee persistent atqbrﬂ
icity, the algorithm.A must ensure that the following property
is satisfied beforg, starts a newnwrite after recovering:

P1 : If a readinvoked after the invocation of W§) returns
v1, then no subsequengéad returnswvs.

Pn

W(v1) W(v2) W(v3)
r 0 - r |
[R I = o=
Ri() Rs()
r | r |
4 — T =
L 4 —
Fig. 2. Runp; (Proof of Theorem 1)

« “Cancel’vq: no subsequemeadcan returrv;. Con-
sider aread R; that is invoked after the invocation
of W(v3). Since W(-) was not completediz; may
not returnv,. BecauseR; is concurrent with Wis),
it may not returrws. This implies thatR, can return
an old value, written before W(). This violates
persistent atomicity because W] is a complete
write: A cannot cancel;.

« Completewvs: a subsequentead will only return
ve OF vz. This is not possible because the writer
did not log during the previous write and since
there is no causal relation between logs at different
processes none of the process might have logged. It
is therefore impossible fadl to complete Wi5).

2) No read returnswvy after the start of WK(3). The only

way to do this is to canceb, so that all subsequent
reads only return; or v3. But vy can only be cancelled

if vo has not yet been read. Upon recovery, the writer
process (i.ep;) must initiate a recovery phase that first
tests ifv, has been read (say this phase is initiated at
time 7T7) and if not the recovery phase ensures that
will never be read (from timély). If T} is not equal

to 75, then the reader could stilbad v, in betweenT;

and T>. Since aread initiated after7, can returnvy,
persistent atomicity can be violated. Our model asumes
a completely asynchronous system and since the writer
process must contact other processes to knowy ifias
been read; cannot be equal t@s.

Given that it is impossible fod to satisfyP,, is impossible
to emulate persistent atomic memory by using only one log
per write for any run.]

Theorem 2:No algorithm robustly emulating single-reader
transient atomic memory in a crash-recovery model can per-
form aread without logs.

Proof (Sketch): We prove our result using indistinguisha-
ity arguments among three runs displayed in Figure 3. Let
p1 be the writer andp, be the reader with a total of > 3
processes in the system.

Suppose by contradiction that there exists such an algorithm,
i.e. which never logs during aead Consider the runp,

In our model, a recovering process can initiate a recovesyd the associated histofy,. The writerp; writes valueuv;
phase that is not limited by the number of commmunicatiqg|iowed by v. The reader process crashes and readafter
steps, messages or logs it is allowed to perform. There are tw@overing. This run satisfies persistent atomicity because the

cases to consider:

read returns before the end of the secowdte. In run ps,

1) No readreturnsv, after the start of Wi3). This leaves processp, reads before crashing and retumns this run also

two possibilities for the recovery phase:

satisfies persistent atomicity.

V,\—/(vl) Wiez) second round, the writer broadcasts the new value together

L JL 3 with the highest timestamp collected in the previous round,
R0 vy incremented by one. The other processes only update their
D2 - | local value and timestamp if the received timestamp is higher
than the local one. The writer appends its process id to
the sequence number so that other processes can distinguish
P3 = Pn between two simultaneous writes when both writers use the
Run p, same sequence numbers. These timestamps are then compared
V,_/(Ul) W(v2) - lexicographically.
[JL | The writer logs the timestamp and incremented value after
the first round before starting the second one.

In the second round, all processes log the new value and
timestamp before returning the ack. The first log enables the
writer to “remember to finish the write in case it crashed.
P3—Pn At recovery, all processes systematically finish their previous

Run ps write by running the second round of therite operation.

T Even if there are no previously unfinished writes, writing an
old value with an old timestamp will not replace any newer
values. This mechanism adds one log each time a process
5 RO o recovers. Note that this log is outside the acteald andwrite
e Bl operations.

: |

P

e

P2 -
L

W(v1) W(v2)
c

L

L&

P2 =
= Thereadis also divided in two rounds: a first round, which
gueries a majority of processes for their value-timestamp pairs
and a second round, where the reader broadcasts the value
with the highest timestamp collected in the previous round.
Run py The processes will only update and log their local value if the
received timestamp is higher than the local one. This means
that in the absence of concurrencytead will not log, since
all processes will have already logged the latest value during

Now consider rurp, where the reader reads before and aftdf€ Previouswrite.
recovering. For process,, this run is indistinguishable with W& now sketch the proof for the correctness of our log-
run ps up to timeT'. From timeT’, the run is indistinguishable OPtimal persistent atomic memory emulation. Remember that
with run ps for p, because of the initial hypothesis that no logSUr émulation is robust provided a majority of correct pro-
are allowed. Procesg, cannot “remember” anything about®®SS€s
its previous state after it recovers from a crash if it doesS in the proof of Theorem 4.1 of [2], we use Lemma
not log. The fact thatp, is indistinguishable fromp, and 13:16 of [8] to prove the persistent atomicity of the memory.
ps contradicts the assumption that the emulation guarantde @ Well-formed historyt7, the lemma lists four conditions
transient atomicity, since there is no legal sequential histd&/olvmg_ a partial orde_r on operations . It states that
which is equivalent toH, (the history associated with run' the_re_ is an ordef sansfy_mg these four conditions then the
ps) and respects its operation precedence. Therefore it atomicity property is satisfied. Although the lemma has been

impossible to emulate transient atomic memory that does AtsPVen correct in the crash-stop model, it can be applied to the
log during aread m Crash-recovery model because it only considers well-formed

The lower bound of one log peead for transient atomic @nd complete histories. _ _ _
memory holds for persistent atomic memory because persisterk®t O be the set of operations in the complete history
atomicity is stronger than transient atomicity. Intuitively, thd?, and = the timestamp associated with the value written
previous bound makes sense considering that, in the crash-&bpetumned by each possibly completed operation. We define
model, Theorem 10.4 of [10] states that every reader md8¢ Partial order”O = (O, <) on the operations by letting:

“write” to emulate a single-writer/multi-reader memory. op1 < opy for opy,ops € O, if (@) T(0p1) <iew T(0p2), oF if
(b) opy is a write,op» is a read, and (op1) =jex 7(0p2).

B. Log Obtimal Persi Atornic M Emulati The following lemmas are sufficient to show th&O
. Log Optimal Persistent Atomic Memory Emulation satisfies the required conditions:

We now describe an algorithm that robustly emulates
a multi-writer/multi-reader persistent atomic memory whil?_
matching our lower bound on the number of logs for tead)
and thewrite operations.

As in [2], the algorithm requires two round-trips perite Proof: (i) ops is aread thereforer(opy) is obtained by
(4 communication steps): the first communication round-trihe reader process by gathering timestamps from a majority of
gueries a majority of processes for their timestamp. In thocesses and computing the maximum timestamp. We must

P3 — Pn

Fig. 3. Runspz, p3 and p4 (Proof of Theorem 2)

Lemma 1:If op; precedesp,, then
if opy is aread, thent(op1) <jex T(0p2), and
(i) if ops is awrite, then7(op1) <jex T(0p2).

1. procedure Initialize
2 sn:=0,v:=1 {Initialize sequence number and vajue
3: store(writing,0,1)

4 store(written 0,3, 1)
5: end

. function Write(v;) at p;
: repeat

sendSN) to all
until receive(SN_acksn) from [%1] processes {Wait for a majority of sequence numbgrs
10: select highestn
11: sn:=sn+1

12: store(writing,sn,v;) {Store the sequence number and value that is going to be wkitten
13: repeat

14: sendW, [sn,i], v) to all

15: until receive(W_ack) from [2$1] processes {Wait for a majority of acknowledgments

16: return

17: Message listeners for all processes {All processes have a separate thread that listens for incoming megsages
18: when receivéSN) from p;

19: sendSN.ack, sn) to p; {Send back sequence numper

20: end when
21: when receivéW, [sn;,], v;) from p;
22: if [sng, 4] >iex [sn, pid] then

23: V=4, SN = SNy, pid :=1 {Update value and timestamp because received timestamp is pigger
24: store(written sn,pid,v) {Store the new value and thq
25: end if

26: sendW_ack) top;

27: end when

28: when receivéR) from p;
29: sendR.ack, [sn, pid], v) to p; {Send back timestamp and vajue
30: end when

31: function Read() atp;

32: repeat

33: sendR) to all

34: until receive(R_ack, [sn;, pid], v;) from [%1] processes {Wait for a majority of value - timestamp pajr$
35:. selectv with highest[sn;, pid]

36: repeat

3r: sendW, [sn;, pid], v;) to all {Write value with highest timestarhp
38: until receive(W_ack) from [21] processes {Wait for a majority of acknowledgments

39: return v

40: procedure Recover
41: retrieve(written, sn;, i, v;)

42: v :=w;, sn = sn;, pid =1 {Restore local value and timestainp
43: retrieve(writing, sn., vw)

44: repeat

45: sendW, [snw,], vy) to all {Write last written value before cragh
46: until receive(W_ack) from [241] processes

47: end

Fig. 4. Persistent atomic memory emulation algorithm

consider several cases: writer finishes thatvrite and ensures that no majority contains
. . _ 7 smaller thanr(op1).
If op, is a successfulvrite, the algorithm ensures that the f op, is a successfuread the algorithm ensures that

value together withr(op1) has been logged at a majority, he value that is returned by thead has been logged at a
before returning. Because of intersecting majorities, clear:]X

< Wi tal er th ibility of ajority during the second round of thead, this implies
7(0p1) Siea 7(0p2). We must also consider the possibility ofa " ")) Also, op, cannot be a completed read,

process crashing and recovering in the midst of executing because incomplete reads are removed fiém
in this caseop; is acompleted writgthe return event obp,

does not really exist, i.e. the application layer of the process(il) op2 is awrite:

executingop; will not receive such an event, it is merely an If op; is awrite (successful or completed), as explained in
artifact resulting from the use of complete histories). Whefi), 7(op1) is stored at a majority. Since in a subsequerite
the writer crashes in the middle ofverite, upon recovery the the writer process obtains(op2) by gathering timestamps

from a majority of processes, computing the maximum timedifferent value using the same timestamp as before. To solve
tamp and incrementing it by one, we hav@p;) <. 7(op2). this problem, an additional variable calledc is added when

If op; is a successfuread again as shown in (i), noincrementing the sequence number at the writer (line 11). This
majority contains a value smaller tharfop,). Because the variable counts the number of times the process recovered,
writer increments the timestamp before sending it to all othétus adding one extra log during the recovery round. We can
processes, we havgop1) <ie. 7(0p2). B now guarantee that the sequence numbers will always increase
monotonically.

The correctness proof is similar to that of the algorithm in

Figure 4 and is omitted.
Proof: Because the writer appends its process id to the

sequence number, other processes can distinguish between two
simultaneous writes when both writers use the same sequence
numbers. These timestamps are compared lexicographicallyn order to analyze the real-world performance of the

thus ensuring that two concurrent writes do not have the saR{gorithms described in the previous section, a version of each
timestamp. m memory emulation algorithm was implemented and several

experiments were run. The goal of these experiments was to

precisely measure the cost of logging in a real atomic memory

emulation. How much more expensive is it to support crash-

recovery in the first place? How much more expensive is it

that 7(op;) =iex mazicqi,k)(7(opi))- to guarantee persistent atomicity, rather than just transient
Proof: Every completedwrite op; stores the value- atomicity?

timestamp pair at a majority/; of processes. Any consecutive

read op contacts a majority and therefore receives at leagt Implementation and Setup

one timestamp from a proceps= 1W;. Because of Lemma 1 .]) .

we know that timestamps impose a partial ordering on the OUr @lgorithms are written in C, using low level network

writes such that the lastrite according to< has the highest abstractions such as IP-multi-cast and UDP. Initially we de-

timestamp. Therefore thead op returns the value written by VEloped a version in Java, but since the performance of the
op; SUCh thatr (op;) =jex mazicpy) ((0p;))- m C-based implementation is a lot better, we will only present

measurements based on that version.
C. Log Optimal Transient Atomic Memory Emulation The storage abstractions are implemented using files_ written
] to disk synchronously so that the operating system writes the

The bound which stated that two causal logs are needed ggfa to disk immediately instead of buffering several writes
write to emulate persistent atomic memory (Theorem 1) doﬁi]ether (which would violate even transient atomicity).
not hold for transient atqmicity. The proof for' the bou.nd IS The experiments were run on a 100Mbps local area network
based on the fact that histoll{; associated with rup, in yging up to nine Pentium IV workstations equipped with
Figure 2 can not be always be guaranteed to be persistgpindard IDE hard disks. The installed operating system is
atomic if only one log per causal log is allowed; i.e. iRed Hat Linux 8 with the 2.4.18-14 kernel. Each workstation
cannot be completed in such a way that it is equivalent fns the same executable. The only parameter that needs to
some sequential history. Butf, can beweakly completed: pe set initially is the number of nodes participating in the
the response tovrite invocation W) can be placedfter emy|ation. Every workstation runs one process participating in
the write invocation W(3) (but before its response) so thathe emulation and consists of two threads: one that listens for
it is equivalent to the following legal sequential histok, anq executes read and write commands, and one that responds
ordering the operations as follows: Wj, R(v1), W(v2), {0 broad-casted messages. This means that when a process

R(U2)_’ W(US_)-) waits for a majority of responses, it does not necessarily
This section presents an algorithm that uses only one caugg{yde itself in the majority.

log perread and write to emulate transient atomic memory.
One log pemwrite is clearly needed and Theorem 2 applies to .
transient atomicity. It has the same structure as the algorittfn EXPerimental Results
of Figure 4 but with a few minor changes. The transient The first experiment consisted of writing a 4 byte integer
atomic memory emulation algorithm is presented in Figurevalue and measuring the time that the operation took to
and contains only the procedures that are different from themplete, repeating therite fifty times and finally averaging
algorithm of Figure 4. the write times. These measurements were performed on a
Because of transient atomicity there is no need to finishvarying number of workstations for three different algorithms:
write after recovering from a crash. This means that the secoamic crash-stop, transient atomic crash-recovery and persis-
round after recovering can be safely removed and that ttemt atomic crash-recovery. The results of the experiment are
writer does not need to log the timestamp before broadcaststypwn in the top graph of Figure 6. The reason why the graph
a new value-timestamp pair. However, if this were the onlgnly shows the averagerite times is that in a run without
change to the algorithm, transient atomicity could be violatedny crashes aead does not log, meaning that the execution
a writer can begin avrite, crash, and start a newrite with a times would be the same for each algorithm.

Lemma 2:1f op; andops are concurrent, then ifp, is a
write, eitherop; < ops Or ops < op1.

V. PERFORMANCEANALYSIS

Lemma 3:For aread op, let the PO imposed onH give
the set of write operation§ops, opa, ..., opx} such thatvi €
[1, klop; < op. Thenop returns the value written byp; such

. procedure Initialize
sn:=0,v:=1L,rec:=0

store(written 0,3, 1)
. end

6: function Write(v;) at p;
7. repeat
8: sendSN) to all

16: procedure Recover
17: retrieve(sni, i, v;)

1
2:
3: store(recovered) {Set the number of recoveries to zg
4
5

18: v :=w;, sn = sn;, pid :=1 {Restore local value and timestagn
19: retrieve(recovered)

20: recovered := recovered + 1 {Increment variable counting number of times the process recoye
21: store(recoveredyec) {Store variablé
22: end

9: until receive(SN,sn) from [241] processes {Wait for a majority of sequence numbgrs

10: select highestn

11: sn:=sn+rec+1 {Increment the sequence number by one plus the number of times the process récovered
12: repeat

13: sendW, [sn,], v) to all

14: until receive(W_ack) from [”T'H] processes {Wait for a majority of acknowledgments

15: return

P

2red

Fig. 5. Transient atomic memory emulation algorithm

From the graph it is easy to distinguish between the three
different algorithms: there is a clear performance impact due
to logging. If we take the case of N=5 workstations, the
averagewrite time without logging is 500s, for transient Lo
atomicity it's 70Qus and for persistent atomicity it's 908. 0_4
Thus the performance impact due to logging is 28@or the
transient atomicity and double that for the persistent atomicity.
This illustrates why counting the number cdusallogs is so
important: transient atomicity needs a single causal log for
memory emulation and persistent atomicity two, reflecting the
doubling of the performance hit due to logging. " DEERGET,
The second experiment was designed to study the perfor-
mance impact of increasing the size of the data stored in the
memory. The size of the data that can be written by wriee ’ Number of Nodes ’
is limited by the fact that a UDP packet cannot contain more
than 64KB of data; cutting up the data into chunks would
completely change the algorithm by requiring more messages
per write. The bottom graph of Figure 6 plots the average

o
o

|

Avg write duration (ms)
o o ¢
o o
1Y !r
[

write times with respect to the data size for five workstations. 75
We can conclude from looking at the graph that, for relatively e
small data sizes, the time it takes to log and the time it takes so

£ 55

to send a message over the network increases linearly. This is < s,
. . (=}
of course only true for systems where network congestion is &

not an issue. S
ER
VI. CONCLUDING REMARKS S S
The log complexity results studied in this paper focus on o5 T
atomic (persistent and transient) memory emulations in a % 12500 25000 37500
crash-recovery model. Interestingly, a lot can be learned from Data size (bytes)
these results about weaker memory emulations in the same
model.
In the crash-stop model, the notions sdife and regular Fig. 6. Atomic Memory Emulation Performance

memory were introduced by [6] for the single-writer case, as
weaker forms of memory than the atomic one. The weakest

of the two is thesafe one which, roughly speaking, only
guarantees to return correct values fead operations that are
not concurrent withwrite operations. Theegular one guaran-
tees, in addition, that eead operation returns any previously
written value if it is concurrent with a write operation. The
extension of safety to the multi-writer case is trivial and several
new consistency criteria were defined in [11] for multi-writer
regularity in the crash-stop model.

We have shown that robustly emulating transient atomicity
requires one causal log perrite and it is easy to see that any
meaningful memory emulation in the crash-recovery model
also requires such a log. Even though we have not studied
the extension of safe and regular consistency criteria to the
crash-recovery model, we can however imply that clearly, any
robust emulation of a reasonable safe or regular memory will
also need one causal log per write.

Although atomicity implies a lower bound of one causal log
perread, this bound will not hold for safe and regular memory
emulations. But as we pointed out, during most atomic reads,
no log is needed at all: in the absence of concurrency an atomic
read does not log, while a write will always log, even in the
absence of concurrency.

Therefore, in a system where logging is very expensive and
where the cost of sending and receiving messages is negligible,

it does not make sense to emulate safe or even regular memory.

Transient atomic memory emulations need only one causal
log per write and do not need to log for most reads while
still guaranteeing atomicity most of the time. Only when a
process crashes in the middle ofvaite and executes write
directly after recovery, atomicity is not guaranteed. But in most
systems such a sequence of events will be sufficiently rare and
even when such a sequence does occur, atomicity is only lost
temporarily.

REFERENCES

[1] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in a
message passing systerddurnal of the ACMvol. 42, no. 1, pp. 124—
142, 1995.

[2] N. Lynch and A. Shvartsman, “Robust emulation of shared memory
using dynamic quorum-acknowledged broadcad®sgceedings of the
IEEE Symposium on Fault-Tolerant Computing Systems (FTI2S).

[3] H. Attiya, “Efficient and robust sharing of memory in message-passing
systems,”Journal of Algorithmsvol. 34, no. 1, pp. 109-127, 2000.

[4] N. Lynch and A. Shvartsman, “Rambo: A reconfigurable atomic mem-
ory service for dynamic networksProceedings of the International
Symposium on Distributed Computing (DIS@P02.

[5] L. Lamport, “Time, clocks and the ordering of events in a distributed
system,"Communications of the ACMol. 21, no. 7, pp. 558-565, 1978.

[6] ——, “On interprocess communication - part i: Basic formalism, part
i Algorithms,” DEC SRC Reportvol. 8, 1985, also in Distributed
Computing, 1, 1986, 77-101.

[7] M. Aguilera, W. Chen, and S. Toueg, “Failure detection and consensus
in the crash-recovery model,” international Symposium on Distributed
Computing 1998, pp. 231-245.

[8] N. Lynch, Distributed Algorithms Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

[9] M. Herlihy and J. Wing, “Linearizability: A correctness condition for
concurrent objects ACM Transactions on Programming Languages and
Systemsvol. 12, no. 3, pp. 463-492, 1990.

[10] H. Attiya and J. WelchPistributed Computing, Fundamentals, Simula-
tions and Advanced Topics McGraw-Hill International (UK), 1998.

[11] C. Shao, E. Pierce, and J. Welch, “Multi-writer consistency conditions
for shared memory objects,” ih7th International Symposium on Dis-
tributed Computing (DISG)2003.

10

