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Abstract. We provide a provable-security treatment of “robust” en-
cryption. Robustness means it is hard to produce a ciphertext that is
valid for two different users. Robustness makes explicit a property that
has been implicitly assumed in the past. We argue that it is an essential
conjunct of anonymous encryption. We show that natural anonymity-
preserving ways to achieve it, such as adding recipient identification in-
formation before encrypting, fail. We provide transforms that do achieve
it, efficiently and provably. We assess the robustness of specific encryp-
tion schemes in the literature, providing simple patches for some that
lack the property. We present various applications. Our work enables
safer and simpler use of encryption.

1 Introduction

This paper provides a provable-security treatment of encryption “robustness.”
Robustness reflects the difficulty of producing a ciphertext valid under two differ-
ent encryption keys. The value of robustness is conceptual, “naming” something
that has been undefined yet at times implicitly (and incorrectly) assumed. Ro-
bustness helps make encryption more mis-use resistant. We provide formal def-
initions of several variants of the goal; consider and dismiss natural approaches
to achieve it; provide two general robustness-adding transforms; test robustness
of existing schemes and patch the ones that fail; and discuss some applications.

The definitions. Both the PKE and the IBE settings are of interest and the
explication is simplified by unifying them as follows. Associate to each identity
an encryption key, defined as the identity itself in the IBE case and its (honestly
generated) public key in the PKE case. The adversary outputs a pair id0, id1
of distinct identities. For strong robustness it also outputs a ciphertext C∗; for
weak, it outputs a message M∗, and C∗ is defined as the encryption of M∗

under the encryption key ek1 of id1. The adversary wins if the decryptions of
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C∗ under the decryption keys dk0, dk1 corresponding to ek0, ek1 are both non-⊥.
Both weak and strong robustness can be considered under chosen plaintext or
chosen ciphertext attacks, resulting in four notions (for each of PKE and IBE)
that we denote WROB-CPA, WROB-CCA, SROB-CPA, SROB-CCA.

Why robustness? The primary security requirement for encryption is data-
privacy, as captured by notions IND-CPA or IND-CCA [18,21,16,5,11]. In-
creasingly, we are also seeing a market for anonymity, as captured by notions
ANO-CPA and ANO-CCA [4,1]. Anonymity asks that a ciphertext does not
reveal the encryption key under which it was created.

Where you need anonymity, there is a good chance you need robustness too.
Indeed, we would go so far as to say that robustness is an essential companion
of anonymous encryption. The reason is that without it we would have secu-
rity without basic communication correctness, likely upsetting our application.
This is best illustrated by the following canonical application of anonymous en-
cryption, but shows up also, in less direct but no less important ways, in other
applications. A sender wants to send a message to a particular target recipient,
but, to hide the identity of this target recipient, anonymously encrypts it under
her key and broadcasts the ciphertext to a larger group. But as a member of
this group I need, upon receiving a ciphertext, to know whether or not I am the
target recipient. (The latter typically needs to act on the message.) Of course
I can’t tell whether the ciphertext is for me just by looking at it since the en-
cryption is anonymous, but decryption should divulge this information. It does,
unambiguously, if the encryption is robust (the ciphertext is for me iff my de-
cryption of it is not ⊥) but otherwise I might accept a ciphertext (and some
resulting message) of which I am not the target, creating mis-communication.
Natural “solutions,” such as including the encryption key or identity of the tar-
get recipient in the plaintext before encryption and checking it upon decryption,
are, in hindsight, just attempts to add robustness without violating anonymity
and, as we will see, don’t work.

We were lead to formulate robustness upon revisiting Public key Encryption
with Keyword Search (PEKS) [9]. In a clever usage of anonymity, Boneh, Di
Crescenzo, Ostrovsky and Persiano (BDOP) [9] showed how this property in an
IBE scheme allowed it to be turned into a privacy-respecting communications
filter. But Abdalla et. al [1] noted that the BDOP filter could lack consistency,
meaning turn up false positives. Their solution was to modify the construction.
What we observed instead was that consistency would in fact be provided by the
original construct if the IBE scheme was robust. PEKS consistency turns out to
correspond exactly to communication correctness of the anonymous IBE scheme
in the sense discussed above. (Because the PEKS messages in the BDOP scheme
are the recipients identities from the IBE perspective.) Besides resurrecting the
BDOP construct, the robustness approach allows us to obtain the first consistent
IND-CCA secure PEKS without random oracles.

Sako’s auction protocol [23] is important because it was the first truly practical
one to hide the bids of losers. It makes clever use of anonymous encryption for
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privacy. But we present an attack on fairness whose cause is ultimately a lack of
robustness in the anonymous encryption scheme (cf. [2]).

All this underscores a number of the claims we are making about robust-
ness: that it is of conceptual value; that it makes encryption more resistant to
mis-use; that it has been implicitly (and incorrectly) assumed; and that there is
value to making it explicit, formally defining and provably achieving it.

Weak versus strong. The above-mentioned auction protocol fails because
an adversary can create a ciphertext that decrypts correctly under any decryp-
tion key. Strong robustness is needed to prevent this. Weak robustness (of the
underlying IBE) will yield PEKS consistency for honestly-encrypted messages
but may allow spammers to bypass all filters with a single ciphertext, something
prevented by strong robustness. Strong robustness trumps weak for applications
and goes farther towards making encryption mis-use resistant. We have defined
and considered the weaker version because it can be more efficiently achieved,
because some existing schemes achieve it and because attaining it is a crucial
first step in our method for attaining strong robustness.

Achieving robustness. As the reader has surely already noted, robustness
(even strong) is trivially achieved by appending the encryption key to the ci-
phertext and checking for it upon decryption. The problem is that the resulting
scheme is not anonymous and, as we have seen above, it is exactly for anonymous
schemes that robustness is important. Of course, data privacy is important too.
Letting AI-ATK = ANO-ATK + IND-ATK for ATK ∈ {CPA, CCA}, our goal
is to achieve AI-ATK + XROB-ATK, ideally for both ATK ∈ {CPA, CCA} and
X ∈ {W, S}. This is harder.

Transforms. It is natural to begin by seeking a general transform that takes
an arbitrary AI-ATK scheme and returns a AI-ATK + XROB-ATK one. This
allows us to exploit known constructions of AI-ATK schemes, supports modular
protocol design and also helps understand robustness divorced from the algebra
of specific schemes. Furthermore, there is a natural and promising transform to
consider. Namely, before encrypting, append to the message some redundancy,
such as the recipient encryption key, a constant, or even a hash of the message,
and check for its presence upon decryption. (Adding the redundancy before en-
crypting rather than after preserves AI-ATK.) Intuitively this should provide
robustness because decryption with the “wrong” key will result, if not in re-
jection, then in recovery of a garbled plaintext, unlikely to possess the correct
redundancy.

The truth is more complex. We consider two versions of the paradigm and
summarize our findings in Fig. 1. In encryption with unkeyed redundancy, the
redundancy is a function RC of the message and encryption key alone. In this case
we show that the method fails spectacularly, not providing even weak robustness
regardless of the choice of the function RC. In encryption with keyed redundancy,
we allow RC to depend on a key K that is placed in the public parameters of the
transformed scheme, out of direct reach of the algorithms of the original scheme.
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In this form, the method can easily provide weak robustness, and that too with
a very simple redundancy function, namely the one that simply returns K.

But we show that even encryption with keyed redundancy fails to provide
strong robustness. To achieve the latter we have to step outside the encryption
with redundancy paradigm. We present a strong robustness conferring transform
that uses a (non-interactive) commitment scheme. For subtle reasons, for this
transform to work the starting scheme needs to already be weakly robust. If it
isn’t already, we can make it so via our weak robustness transform.

In summary, on the positive side we provide a transform conferring weak
robustness and another conferring strong robustness. Given any AI-ATK scheme
the first transform returns a WROB-ATK + AI-ATK one. Given any AI-ATK +
WROB-ATK scheme the second transform returns a SROB-ATK+AI-ATK one.
In both cases it is for both ATK = CPA and ATK = CCA and in both cases
the transform applies to what we call general encryption schemes, of which both
PKE and IBE are special cases, so both are covered.

Robustness of specific schemes. The robustness of existing schemes is im-
portant because they might be in use. We ask which specific existing schemes
are robust, and, for those that are not, whether they can be made so at a cost
lower than that of applying one of our general transforms. There is no reason
to expect schemes that are only AI-CPA to be robust since the decryption algo-
rithm may never reject, so we focus on schemes that are known to be AI-CCA.
This narrows the field quite a bit. Our findings and results are summarized in
Fig. 1.

Canonical AI-CCA schemes in the PKE setting are Cramer-Shoup (CS) in the
standard model [15,4] and DHIES in the random oracle (RO) model [3,4]. We
show that both are WROB-CCA but neither is SROB-CCA, the latter because
encryption with 0 randomness yields a ciphertext valid under any encryption
key. We present modified versions CS∗,DHIES∗ of the schemes that we show
are SROB-CCA. Our proof that CS∗ is SROB-CCA builds on the information-
theoretic part of the proof of [15]. The result does not need to assume hardness of
DDH. It relies instead on pre-image security of the underlying hash function for
random range points, something not implied by collision-resistance but seemingly
possessed by candidate functions.

In the IBE setting, the CCA version BF of the RO model Boneh-Franklin
scheme is AI-CCA [10,1], and we show it is SROB-CCA. The standard model
Boyen-Waters schemeBW is AI-CCA [13], and we show it is neither WROB-CCA
nor SROB-CCA. It can be made either via our transforms but we don’t know of
any more direct way to do this.
BF is obtained via the Fujisaki-Okamoto (FO) transform [17] and BW via the

Canetti-Halevi-Katz (CHK) transform [14,8]. We can show that neither trans-
form generically provides strong robustness. This doesn’t say whether they do
or not when applied to specific schemes, and indeed the first does for BF and
the second does not for BW .

Summary. Protocol design suggests that designers have the intuition that ro-
bustness is naturally present. This seems to be more often right than wrong



484 M. Abdalla, M. Bellare, and G. Neven

Transform WROB-ATK SROB-ATK
Encryption with unkeyed redundancy (EuR) No No
Encryption with keyed redundancy (EkR) Yes No

Scheme setting AI-CCA WROB-CCA SROB-CCA RO model

CS PKE Yes [15,4] Yes No No
CS∗ PKE Yes Yes Yes No
DHIES PKE Yes [3] Yes No Yes
DHIES∗ PKE Yes Yes Yes Yes
BF IBE Yes [10,1] Yes Yes Yes
BW IBE Yes [13] No No No

Fig. 1. Achieving Robustness. The first table summarizes our findings on the en-
cryption with redundancy transform. “No” means the method fails to achieve the
indicated robustness for all redundancy functions, while “yes” means there exists a re-
dundancy function for which it works. The second table summarizes robustness results
about some specific AI-CCA schemes.

when considering weak robustness of specific AI-CCA schemes. Prevailing intu-
ition about generic ways to add even weak robustness is wrong, yet we show it
can be done by an appropriate tweak of these ideas. Strong robustness is more
likely to be absent than present in specific schemes, but important schemes can
be patched. Strong robustness can also be added generically, but with more work.

Related work. There is growing recognition that robustness is important in
applications and worth defining explicitly, supporting our own claims to this end.
In particular the correctness requirement for predicate encryption [20] includes
a form of weak robustness and, in recent work concurrent to, and independent
of, ours, Hofheinz and Weinreb [19] introduced a notion of well-addressedness
of IBE schemes that is just like weak robustness except that the adversary gets
the IBE master secret key. Neither work considers or achieves strong robustness,
and neither treats PKE.

2 Definitions

Notation and conventions. If x is a string then |x| denotes its length, and if
S is a set then |S| denotes its size. The empty string is denoted ε. By a1‖ . . . ‖an,
we denote a string encoding of a1, . . . , an from which a1, . . . , an are uniquely re-
coverable. (Usually, concatenation suffices.) By a1‖ . . . ‖an ← a, we mean that
a is parsed into its constituents a1, . . . , an. Similarly, if a = (a1, . . . , an) then
(a1, . . . , an) ← a means we parse a as shown. Unless otherwise indicated, an
algorithm may be randomized. By y

$← A(x1, x2, . . .) we denote the operation
of running A on inputs x1, x2, . . . and fresh coins and letting y denote the out-
put. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on inputs
x1, x2, . . .. We assume that an algorithm returns ⊥ if any of its inputs is ⊥.
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proc Initialize

(pars ,msk) $← PG ; b
$← {0, 1}

S, T, U, V ← ∅
Return pars

proc GetEK(id)
U ← U ∪ {id}
(EK[id ],DK[id ]) $← KG(pars ,msk , id)
Return EK[id ]

proc GetDK(id)
If id �∈ U then return ⊥
If id ∈ S then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)
If id �∈ U then return ⊥
If (id , C) ∈ T then return ⊥
M ← Dec(pars ,EK[id ],DK[id ], C)
Return M

proc LR(id∗
0, id

∗
1, M

∗
0 , M∗

1 )
If (id∗

0 �∈ U) ∨ (id∗
1 �∈ U) then return ⊥

If (id∗
0 ∈ V ) ∨ (id∗

1 ∈ V ) then return ⊥
If |M∗

0 | �= |M∗
1 | then return ⊥

C∗ $← Enc(pars ,EK[idb], M∗
b )

S ← S ∪ {id∗
0, id

∗
1}

T ← T ∪ {(id∗
0, C

∗), (id∗
1, C

∗)}
Return C∗

proc Finalize(b′)
Return (b′ = b)

Fig. 2. Game AIGE defining AI-ATK security of general encryption scheme GE =
(PG,KG,Enc,Dec)

Games. Our definitions and proofs use code-based game-playing [6]. Recall that
a game —look at Fig. 2 for an example— has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. A game G
is executed with an adversary A as follows. First, Initialize executes and its
outputs are the inputs to A. Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter, denoted GA, is
called the output of the game, and we let “GA” denote the event that this game
output takes value true. Boolean flags are assumed initialized to false. Games
Gi, Gj are identical until bad if their code differs only in statements that follow
the setting of bad to true. Our proofs will use the following.

Lemma 1 [6] Let Gi, Gj be identical until bad games, and A an adversary.
Then ∣∣Pr

[
GA

i

]
− Pr

[
GA

j

]∣∣ ≤ Pr
[
GA

j sets bad
]

.

The running time of an adversary is the worst case time of the execution of the
adversary with the game defining its security, so that the execution time of the
called game procedures is included.

General encryption. We introduce and use general encryption schemes, of
which both PKE and IBE are special cases. This allows us to avoid repeating
similar definitions and proofs. A general encryption (GE) scheme is a tuple
GE = (PG,KG,Enc,Dec) of algorithms. The parameter generation algorithm PG
takes no input and returns common parameter pars and a master secret key msk .
On input pars ,msk , id , the key generation algorithm KG produces an encryption
key ek and decryption key dk . On inputs pars , ek ,M , the encryption algorithm
Enc produces a ciphertext C encrypting plaintext M . On input pars , ek , dk ,C ,
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proc Initialize

(pars ,msk) $← PG ; U, V ← ∅
Return pars

proc GetEK(id)
U ← U ∪ {id}
(EK[id ],DK[id ]) $← KG(pars , msk , id)
Return EK[id ]

proc GetDK(id)
If id �∈ U then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)
If id �∈ U then return ⊥
M ← Dec(pars ,EK[id ],DK[id ], C)
Return M

proc Finalize(M, id0, id1) // WROBGE

If (id0 �∈ U) ∨ (id1 �∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false

M0 ← M ; C
$← Enc(pars ,EK[id0], M0)

M1 ← Dec(pars ,EK[id1],DK[id1], C)
Return (M0 �= ⊥) ∧ (M1 �= ⊥)

proc Finalize(C, id0, id1) // SROBGE

If (id0 �∈ U) ∨ (id1 �∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false
M0 ← Dec(pars ,EK[id0],DK[id0], C)
M1 ← Dec(pars ,EK[id1],DK[id1], C)
Return (M0 �= ⊥) ∧ (M1 �= ⊥)

Fig. 3. Games WROBGE and SROBGE defining WROB-ATK and SROB-ATK security
(respectively) of general encryption scheme GE = (PG,KG,Enc,Dec). The procedures
on the left are common to both games, which differ only in their Finalize procedures.

the deterministic decryption algorithm Dec returns either a plaintext message M
or ⊥ to indicate that it rejects. We say that GE is a public-key encryption (PKE)
scheme if msk = ε and KG ignores its id input. To recover the usual syntax we
may in this case write the output of PG as pars rather than (pars ,msk) and
omit msk , id as inputs to KG. We say that GE is an identity-based encryption
(IBE) scheme if ek = id , meaning the encryption key created by KG on inputs
pars ,msk , id always equals id . To recover the usual syntax we may in this case
write the output of KG as dk rather than (ek , dk). It is easy to see that in this
way we have recovered the usual primitives. But there are general encryption
schemes that are neither PKE nor IBE schemes, meaning the primitive is indeed
more general.

Correctness. Correctness of a general encryption scheme GE = (PG,KG,Enc,
Dec) requires that, for all (pars ,msk) ∈ [PG], all plaintexts M in the underlying
message space associated to pars , all identities id , and all (ek , dk) ∈ [KG(pars ,
msk , id)], we have Dec(pars , ek , dk ,Enc(pars , ek ,M )) = M with probability one,
where the probability is taken over the coins of Enc.

AI-ATK security. Historically, definitions of data privacy (IND) [18,21,16,5,11]
and anonymity (ANON) [4,1] have been separate. We are interested in schemes
that achieve both, so rather than use separate definitions we follow [12] and
capture both simultaneously via game AIGE of Fig. 2. A cpa adversary is one
that makes no Dec queries, and a cca adversary is one that might make such
queries. The ai-advantage of such an adversary, in either case, is

Advai
GE (A) = 2 · Pr

[
AIAGE

]
− 1.
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We will assume an ai-adversary makes only one LR query, since a hybrid argu-
ment shows that making q of them can increase its ai-advantage by a factor of
at most q.

Oracle GetDK represents the IBE key-extraction oracle [11]. In the PKE
case it is superfluous in the sense that removing it results in a definition that is
equivalent up to a factor depending on the number of GetDK queries. That’s
probably why the usual definition has no such oracle. But conceptually, if it is
there for IBE, it ought to be there for PKE, and it does impact concrete security.

Robustness. Associated to general encryption scheme GE = (PG,KG,Enc,Dec)
are games WROB, SROB of Fig. 3. As before, a cpa adversary is one that makes
no Dec queries, and a cca adversary is one that might make such queries. The
wrob and srob advantages of an adversary, in either case, are

Advwrob
GE (A) = Pr

[
WROBA

GE

]
and Advsrob

GE (A) = Pr
[
SROBA

GE

]
.

The difference between WROB and SROB is that in the former the adversary
produces a message M , and C is its encryption under the encryption key of one
of the given identities, while in the latter it produces C directly, and may not
obtain it as an honest encryption. It is worth clarifying that in the PKE case the
adversary does not get to choose the encryption (public) keys of the identities
it is targeting. These are honestly and independently chosen, in real life by the
identities themselves and in our formalization by the games.

3 Robustness Failures of Encryption with Redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an
encryption scheme is to add redundancy before encrypting, and upon decryption
reject if the redundancy is absent. Here we investigate the effectiveness of this
encryption with redundancy approach, justifying the negative results discussed
in Section 1 and summarized in the first table of Fig. 1.

Redundancy codes and the transform. A redundancy code RED = (RKG,
RC,RV) is a triple of algorithms. The redundancy key generation algorithm RKG
generates a key K. On input K and data x the redundancy computation algo-
rithm RC returns redundancy r. Given K, x, and claimed redundancy r, the
deterministic redundancy verification algorithm RV returns 0 or 1. We say that
RED is unkeyed if the key K output by RKG is always equal to ε, and keyed oth-
erwise. The correctness condition is that for all x we have RV(K, x,RC(K, x)) = 1
with probability one, where the probability is taken over the coins of RKG and
RC. (We stress that the latter is allowed to be randomized.)

Given a general encryption scheme GE = (PG,KG,Enc,Dec) and a redun-
dancy code RED = (RKG,RC,RV), the encryption with redundancy transform
associates to them the general encryption scheme GE = (PG,KG,Enc,Dec)
whose algorithms are shown on the left side of Fig. 5. Note that the trans-
form has the first of our desired properties, namely that it preserves AI-ATK.
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RKG RC(K, ek‖M) RV(K, ek‖M, r)
Return K ← ε Return ε Return 1
Return K ← ε Return 0k Return (r = 0k)
Return K ← ε Return ek Return (r = ek)

Return K ← ε L
$← {0, 1}k ;

Return L‖H(L, ek‖M)
L‖h ← r ;
Return (h = H(L, ek‖M))

Return K
$← {0, 1}k Return K Return (r = K)

Return K
$← {0, 1}k Return H(K, ek‖M) Return (r = H(K, ek‖M))

Fig. 4. Examples of redundancy codes, where the data x is of the form ek‖M . The
first four are unkeyed and the last two are keyed.

Also if GE is a PKE scheme then so is GE , and if GE is an IBE scheme then so
is GE , which means the results we obtain here apply to both settings.

Fig. 4 shows example redundancy codes for the transform. With the first, GE
is identical to GE , so that the counterexample below shows that AI-CCA does
not imply WROB-CPA. The second and third rows show redundancy equal to
a constant or the encryption key as examples of (unkeyed) redundancy codes.
The fourth row shows a code that is randomized but still unkeyed. The hash
function H could be a MAC or a collision resistant function. The last two are
keyed redundancy codes, the first the simple one that just always returns the key,
and the second using a hash function. Obviously, there are many other examples.

SROB failure. We show that encryption with redundancy fails to provide
strong robustness for all redundancy codes, whether keyed or not. More precisely,
we show that for any redundancy code RED and both ATK ∈ {CPA, CCA},
there is an AI-ATK encryption scheme GE such that the scheme GE result-
ing from the encryption-with-redundancy transform applied to GE ,RED is not
SROB-CPA. We build GE by modifying a given AI-ATK encryption scheme
GE∗ = (PG,KG,Enc∗,Dec∗). Let l be the number of coins used by RC, and let
RC(x; ω) denote the result of executing RC on input x with coins ω ∈ {0, 1}l. Let
M∗ be a function that given pars returns a point in the message space associated
to pars in GE∗. Then GE = (PG,KG,Enc,Dec) where the new algorithms are
shown on the bottom right side of Fig. 5. The reason we used 0l as coins for RC
here is that Dec is required to be deterministic.

Our first claim is that the assumption that GE∗ is AI-ATK implies that
GE is too. Our second claim, that GE is not SROB-CPA, is demonstrated
by the following attack. For a pair id0, id1 of distinct identities of its choice,
the adversary A, on input (pars , K), begins with queries ek0

$← GetEK(id0)
and ek1

$← GetEK(id1). It then creates ciphertext C ← 0 ‖K and returns
(id0, id1, C). We claim that Advsrob

GE (A) = 1. Letting dk0, dk1 denote the de-
cryption keys corresponding to ek0, ek1 respectively, the reason is the following.
For both b ∈ {0, 1}, the output of Dec(pars , ek b, dk b,C ) is M ∗(pars)‖rb(pars)
where rb(pars) = RC(K, ek b‖M ∗(pars); 0l). But the correctness of RED implies
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Algorithm PG

(pars,msk)
$← PG ; K

$← RKG
Return ((pars,K),msk)

Algorithm KG((pars,K),msk , id)

(ek , dk)
$← KG(pars,msk , id)

Return ek

Algorithm Enc((pars,K), ek ,M )

r
$← RC(K, ek‖M )

C
$← Enc(pars, ek ,M ‖r)

Return C

Algorithm Dec((pars,K), ek , dk ,C )

M ‖r ← Dec(pars, ek , dk ,C )
If RV(K, ek‖M, r) = 1 then return M
Else return ⊥

Algorithm Enc(pars, ek ,M )

C
$← Enc∗(pars, ek ,M )

Return C

Algorithm Dec(pars, ek , dk ,C )
M ← Dec∗(pars, ek , dk ,C )
If M = ⊥ then

M ← M ∗(pars)‖RC(ε, ek‖M ∗(pars); 0l)
Return M

Algorithm Enc(pars, ek ,M )

C ∗ $← Enc∗(pars, ek ,M )
Return 1‖C ∗

Algorithm Dec(pars, ek , dk ,C )
b‖C ∗ ← C
If b = 1 then return Dec∗(pars, ek , dk ,C ∗)
Else return M ∗(pars)‖RC(C ∗, ek‖M ∗(pars); 0l)

Fig. 5. Left: Transformed scheme for the encryption with redundancy paradigm. Top
Right: Counterexample for WROB. Bottom Right: Counterexample for SROB.

that RV(K, ek b‖M ∗(pars), rb(pars)) = 1 and hence Dec((pars , K), ek b, dk b,C )
returns M ∗(pars) rather than ⊥.

WROB failure. We show that encryption with redundancy fails to provide
even weak robustness for all unkeyed redundancy codes. This is still a powerful
negative result because many forms of redundancy that might intuitively work,
such the first four of Fig. 4, are included. More precisely, we claim that for
any unkeyed redundancy code RED and both ATK ∈ {CPA, CCA}, there is
an AI-ATK encryption scheme GE such that the scheme GE resulting from the
encryption-with-redundancy transform applied to GE ,RED is not WROB-CPA.
We build GE by modifying a given AI-ATK + WROB-CPA encryption scheme
GE∗ = (PG,KG,Enc∗,Dec∗). With notation as above, the new algorithms for
the scheme GE = (PG,KG,Enc,Dec) are shown on the top right side of Fig. 5.

Our first claim is that the assumption that GE∗ is AI-ATK implies that GE
is too. Our second claim, that GE is not WROB-CPA, is demonstrated by the
following attack. For a pair id0, id1 of distinct identities of its choice, the ad-
versary A, on input (pars , ε), makes queries ek0

$← GetEK(id0) and ek1
$←

GetEK(id1) and returns (id0, id1, M
∗(pars)). We claim that Advwrob

GE (A) is
high. Letting dk1 denote the decryption key for ek1, the reason is the following.
Let r0

$← RC(ε, ek0‖M∗(pars)) and C
$← Enc(pars , ek0, M

∗(pars)‖r0). The as-
sumed WROB-CPA security of GE∗ implies that Dec(pars , ek1, dk1,C ) is most
probably M ∗(pars)‖r1(pars) where r1(pars) = RC(ε, ek1‖M ∗(pars); 0l). But the
correctness of RED implies that RV(ε, ek1‖M ∗(pars), r1(pars)) = 1 and hence
Dec((pars , ε), ek1, dk1,C ) returns M ∗(pars) rather than ⊥.
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4 Transforms That Work

We present a transform that confers weak robustness and another that confers
strong robustness. They preserve privacy and anonymity, work for PKE as well
as IBE, and for CPA as well as CCA. In both cases the security proofs surface
some delicate issues. Besides being useful in its own right, the weak robustness
transform is a crucial step in obtaining strong robustness, so we begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails
to provide even weak robustness if the redundancy code is unkeyed. Here we show
that if the redundancy code is keyed, even in the simplest possible way where
the redundancy is just the key itself, the transform does provide weak robust-
ness, turning any AI-ATK secure general encryption scheme into an AI-ATK +
WROB-ATK one, for both ATK ∈ {CPA, CCA}.

The transformed scheme encrypts with the message a key K placed in the
public parameters. In more detail, the weak robustness transform associates to a
given general encryption scheme GE = (PG,KG,Enc,Dec) and integer parameter
k, representing the length of K, the general encryption scheme GE = (PG,KG,
Enc,Dec) whose algorithms are depicted in Fig. 6. Note that if GE is a PKE
scheme then so is GE and if GE is an IBE scheme then so is GE , so that our
results, captured by Theorem 2 below, cover both settings.

The intuition for the weak robustness of GE is that the GE decryption under
one key, of an encryption of M ‖K created under another key, cannot, by the
assumed AI-ATK security of GE , reveal K, and hence the check will fail. This
is pretty much right for PKE, but the delicate issue is that for IBE, information
about K can enter via the identities, which in this case are the encryption keys
and are chosen by the adversary as a function of K. The AI-ATK security of
GE is no protection against this. We show however that this can be dealt with
by making K sufficiently longer than the identities.

Theorem 2. Let GE = (PG,KG,Enc,Dec) be a general encryption scheme with
identity space {0, 1}n, and let GE = (PG,KG,Enc,Dec) be the general encryption
scheme resulting from applying the weak robustness transform to GE and integer
parameter k. Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is an ai-adversary
B against GE such that Advai

GE (A) = Advai
GE (B). Adversary B inherits

the query profile of A and has the same running time as A. If A is a cpa
adversary then so is B.

2. WROB-ATK: Let A be a wrob adversary against GE with running time t,
and let � = 2n+�log2(t)�. Then there is an ai-adversary B against GE such
that Advwrob

GE (A) ≤ Advai
GE (B) + 2�−k. Adversary B inherits the query

profile of A and has the same running time as A. If A is a cpa adversary
then so is B.

The first part of the theorem implies that if GE is AI-ATK then GE is AI-ATK
as well. The second part of the theorem implies that if GE is AI-ATK and k is
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Algorithm PG

(pars ,msk) $← PG

K
$← {0, 1}k

Return ((pars , K),msk)

Algorithm Enc((pars , K), ek ,M )
C

$← Enc(pars , ek ,M ‖K))
Return C

Algorithm KG((pars , K),msk , id)
(ek , dk) $← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars , K), ek , dk ,C )
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖K∗ ← M

If (K = K∗) then return M
Else Return ⊥

Fig. 6. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying
our weak-robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec)
and integer parameter k

chosen sufficiently larger than 2n + �log2(t)� then GE is WROB-ATK. In both
cases this is for both ATK ∈ {CPA, CCA}. The theorem says it directly for
CCA, and for CPA by the fact that if A is a cpa adversary then so is B. When
we say that B inherits the query profile of A we mean that for every oracle that
B has, if A has an oracle of the same name and makes q queries to it, then
this is also the number B makes. The proof of the first part of the theorem is
straightforward and is omitted. The proof of the second part is given in [2]. It is
well known that collision-resistant hashing of identities preserves AI-ATK and
serves to make them of fixed length [7] so the assumption that the identity space
is {0, 1}n rather than {0, 1}∗ is not really a restriction. In practice we might hash
with SHA256 so that n = 256, and, assuming t ≤ 2128, setting k = 768 would
make 2�−k = 2−128.

Commitment schemes. Our strong robustness transform will use commit-
ments. A commitment scheme is a 3-tuple CMT = (CPG,Com,Ver). The pa-
rameter generation algorithm CPG returns public parameters cpars . The com-
mittal algorithm Com takes cpars and data x as input and returns a commit-
ment com to x along with a decommittal key dec. The deterministic verifica-
tion algorithm Ver takes cpars , x , com, dec as input and returns 1 to indicate
that accepts or 0 to indicate that it rejects. Correctness requires that, for any
x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com , dec) ∈ [Com(cpars , x )], we have
that Ver(cpars , x , com, dec) = 1 with probability one, where the probability is
taken over the coins of Com. We require the scheme to have the uniqueness
property, which means that for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any
(com , dec) ∈ [Com(cpars , x )] it is the case that Ver(cpars , x , com∗, dec) = 0 for
all com∗ �= com . In most schemes the decommittal key is the randomness used
by the committal algorithm and verification is by re-applying the committal
function, which ensures uniqueness. The advantage measures Advhide

CMT (A) and
Advbind

CMT (A), referring to the standard hiding and binding properties, are re-
called in [2]. We refer to the corresponding notions as HIDE and BIND.
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Algorithm PG

(pars ,msk) $← PG

cpars
$← CPG

Return ((pars , cpars),msk)

Algorithm Enc((pars , cpars), ek ,M )
(com, dec) $← Com(cpars , ek)
C

$← Enc(pars , ek , M‖dec))
Return (C , com)

Algorithm KG((pars , cpars),msk , id)
(ek , dk) $← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars , cpars), ek , dk , (C , com))
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖dec ← M

If (Ver(cpars , ek , com, dec) = 1) then return M
Else Return ⊥

Fig. 7. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying
our strong robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec)
and commitment scheme CMT = (CPG,Com,Ver)

The strong robustness transform. The idea is for the ciphertext to include
a commitment to the encryption key. The commitment is not encrypted, but
the decommittal key is. In detail, given a general encryption scheme GE = (PG,
KG,Enc,Dec) and a commitment scheme CMT = (CPG,Com,Ver) the strong
robustness transform associates to them the general encryption scheme GE =
(PG,KG,Enc,Dec) whose algorithms are depicted in Fig. 7. Note that if GE is a
PKE scheme then so is GE and if GE is an IBE scheme then so is GE , so that
our results, captured by the Theorem 3, cover both settings.

In this case the delicate issue is not the robustness but the AI-ATK security of
GE in the CCA case. Intuitively, the hiding security of the commitment scheme
means that a GE ciphertext does not reveal the encryption key. As a result,
we would expect AI-ATK security of GE to follow from the commitment hiding
security and the assumed AI-ATK security of GE . This turns out not to be true,
and demonstrably so, meaning there is a counterexample to this claim. (See
below.) What we show is that the claim is true if GE is additionally WROB-ATK.
This property, if not already present, can be conferred by first applying our weak
robustness transform.

Theorem 3. Let GE = (PG,KG,Enc,Dec) be a general encryption scheme,
and let GE = (PG,KG,Enc,Dec) be the general encryption scheme resulting
from applying the strong robustness transform to GE and commitment scheme
CMT = (CPG,Com,Ver). Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is a wrob ad-
versary W against GE , a hiding adversary H against CMT and an ai-
adversary B against GE such that

Advai
GE (A) ≤ 2 ·Advwrob

GE (W ) + 2 ·Advhide
CMT (H) + 3 ·Advai

GE (B) .

Adversaries W, B inherit the query profile of A, and adversaries W, H, B
have the same running time as A. If A is a cpa adversary then so are W, B.
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2. SROB-ATK: Let A be a srob adversary against GE making q GetEK
queries. Then there is a binding adversary B against CMT such that

Advsrob
GE (A) ≤ Advbind

CMT (B) +
(

q

2

)
·CollGE .

Adversary B has the same running time as A.

The first part of the theorem implies that if GE is AI-ATK and WROB-ATK and
CMT is HIDE then GE is AI-ATK, and the second part of the theorem implies
that if CMT is BIND secure and GE has low encryption key collision probability
then GE is SROB-ATK. In both cases this is for both ATK ∈ {CPA, CCA}. We
remark that the proof shows that in the CPA case the WROB-ATK assumption
on GE in the first part is actually not needed. The encryption key collision
probability CollGE of GE is defined as the maximum probability that ek0 = ek1

in the experiment where we let (pars ,msk) $← PG and then let (ek0, dk0)
$←

KG(pars ,msk , id0) and (ek1, dk1)
$← KG(pars ,msk , id1), where the maximum is

over all distinct identities id0, id1. The collision probability is zero in the IBE
case since ek0 = id0 �= id1 = ek1. It is easy to see that GE being AI implies
CollGE is negligible, so asking for low encryption key collision probability is in
fact not an extra assumption. (For a general encryption scheme the adversary
needs to have hardwired the identities that achieve the maximum, but this is
not necessary for PKE because here the probability being maximized is the
same for all pairs of distinct identities.) The reason we made the encryption key
collision probability explicit is that for most schemes it is unconditionally low.
For example, when GE is the ElGamal PKE scheme, it is 1/|G| where G is the
group being used. Proofs of both parts of the theorem are in [2].

The need for weak-robustness. As we said above, the AI-ATK security
of GE won’t be implied merely by that of GE . (We had to additionally as-
sume that GE is WROB-ATK.) Here we justify this somewhat counter-intuitive
claim. This discussion is informal but can be turned into a formal counterex-
ample. Imagine that the decryption algorithm of GE returns a fixed string
of the form (M̂ , ˆdec) whenever the wrong key is used to decrypt. Moreover,
imagine CMT is such that it is easy, given cpars , x , dec, to find com so that
Ver(cpars , x , com, dec) = 1. (This is true for any commitment scheme where
dec is the coins used by the Com algorithm.) Consider then the AI-ATK adver-
sary A against the transformed scheme that that receives a challenge ciphertext
(C∗, com∗) where C∗ ← Enc(pars ,EK[idb],M ∗‖dec∗) for hidden bit b ∈ {0, 1}.
It then creates a commitment ˆcom of EK[id1] with opening information ˆdec, and
queries (C∗, ˆcom) to be decrypted under DK[id0]. If b = 0 this query will prob-
ably return ⊥ because Ver(cpars ,EK[id0], ˆcom, dec∗) is unlikely to be 1, but if
b = 1 it returns M̂ , allowing A to determine the value of b. The weak robustness
of GE rules out such anomalies.
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Algorithm PG

K
$← Keys(H) ; g1

$← G∗ ; w
$← Z∗

p ; g2 ← gw
1 ; Return (g1, g2, K)

Algorithm KG(g1, g2, K)
x1, x2, y1, y2, z1, z2

$← Zp ; e ← gx1
1 gx2

2 ; f ← gy1
1 gy2

2 ; h ← gz1
1 gz2

2

Return ((e, f, h), (x1, x2, y1, y2, z1, z2))

Algorithm Enc((g1, g2, K), (e, f, h),M )

u
$← Z*

p ; a1 ← gu
1 ; a2 ← gu

2 ; b ← hu ; c ← b · M ; v ← H(K, (a1, a2, c)) ; d ← eufuv

Return (a1, a2, c, d)

Algorithm Dec((g1, g2, K), (e, f, h), (x1, x2, y1, y2, z1, z2),C )
(a1, a2, c, d) ← C ; v ← H(K, (a1, a2, c)) ; M ← c · a−z1

1 a−z2
2

If d �= ax1+y1v
1 ax2+y2v

2 Then M ← ⊥
If a1 = 1 Then M ← ⊥
Return M

Fig. 8. The original CS scheme [15] does not contain the boxed code while the variant
CS∗ does. Although not shown above, the decryption algorithm in both versions always
checks to ensure that the ciphertext C ∈ G4. The message space is G.

5 A SROB-CCA Version of Cramer-Shoup

Let G be a group of prime order p, and H : Keys(H) × G3 → G a family of
functions. We assume G, p, H are fixed and known to all parties. Fig. 8 shows
the Cramer-Shoup (CS) scheme and the variant CS∗ scheme where 1 denotes the
identity element of G. The differences are boxed. Recall that the CS scheme was
shown to be IND-CCA in [15] and ANO-CCA in [4]. However, for any message
M ∈ G the ciphertext (1,1,M ,1) in the CS scheme decrypts to M under any
pars , pk , and sk , meaning in particular that the scheme is not even SROB-CPA.
The modified scheme CS∗ —which continues to be IND-CCA and ANO-CCA—
removes this pathological case by having Enc choose the randomness u to be
non-zero —Enc draws u from Z∗

p while the CS scheme draws it from Zp— and
then having Dec reject (a1, a2, c, d) if a1 = 1. This thwarts the attack, but
is there any other attack? We show that there is not by proving that CS∗ is
actually SROB-CCA. Our proof of robustness relies only on the security —
specifically, pre-image resistance— of the hash family H : it does not make the
DDH assumption. Our proof uses ideas from the information-theoretic part of
the proof of [15].

We say that a family H : Keys(H) × Dom(H) → Rng(H) of functions is pre-
image resistant if, given a key K and a random range element v∗, it is com-
putationally infeasible to find a pre-image of v∗ under H(K, ·). The notion is
captured formally by the following advantage measure for an adversary I:

Advpre-img
H (I)

= Pr
[

H(K, x) = v∗ : K
$← Keys(H) ; v∗ $← Rng(H) ; x

$← I(K, v∗)
]

.
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Pre-image resistance is not implied by the standard notion of one-wayness, since
in the latter the target v∗ is the image under H(K, ·) of a random domain point,
which may not be a random range point. However, it seems like a fairly mild
assumption on a practical cryptographic hash function and is implied by the
notion of “everywhere pre-image resistance” of [22], the difference being that,
for the latter, the advantage is the maximum probability over all v∗ ∈ Rng(H).
We now claim the following.

Theorem 4. Let B be an adversary making two GetEK queries, no GetDK
queries and at most q− 1 Dec queries, and having running time t. Then we can
construct an adversary I such that

Advsrob
CS∗ (A) ≤ Advpre-img

H (I) +
2q + 1

p
. (1)

Furthermore, the running time of I is t + q ·O(texp) where texp denotes the time
for one exponentiation in G.

Since CS∗ is a PKE scheme, the above automatically implies security even in the
presence of multiple GetEK and GetDK queries as required by game SROBCS∗ .
Thus the theorem implies that CS∗ is SROB-CCA if H is pre-image resistant.
A detailed proof of Theorem 4 is in [2]. Here we sketch some intuition.

We begin by conveniently modifying the game interface. We replace B with an
adversary A that gets input (g1, g2, K), (e0, f0, h0), (e1, f1, h1) representing the
parameters that would be input to B and the public keys returned in response
to B’s two GetEK queries. Let (x01, x02, y01, y02, z01, z02) and (x11, x12, y11, y12,
z11, z12) be the corresponding secret keys. The decryption oracle takes (only) a
ciphertext and returns its decryption under both secret keys, setting a Win flag
if these are both non-⊥. Adversary A no longer needs an output, since it can
win via a Dec query.

Suppose A makes a Dec query (a1, a2, c, d). Then the code of the decryption
algorithm Dec from Fig. 8 tells us that, for this to be a winning query, it must
be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2

where v = H(K, (a1, a2, c)). Letting u1 = logg1
(a1), u2 = logg2

(a2) and s =
logg1

(d), we have

s = u1(x01 + y01v)+wu2(x02 + y02v) = u1(x11 + y11v)+wu2(x12 + y12v) (2)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈
{0, 1}) through its Dec queries, it is unclear why Equation (2) is prevented by
pre-image resistance —or in fact any property short of being a random oracle—
of the hash function H . In particular, there seems no way to “plant” a target v∗

as the value v of Equation (2) since the adversary controls u1 and u2. However,
suppose now that a2 = aw

1 . (We will discuss later why we can assume this.) This
implies wu2 = wu1 or u2 = u1 since w �= 0. Now from Equation (2) we have

u1(x01 + y01v) + wu1(x02 + y02v) − u1(x11 + y11v) − wu1(x12 + y12v) = 0 .
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We now see the value of enforcing a1 �= 1, since this implies u1 �= 0. After
canceling u1 and re-arranging terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (3)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at
most one solution v (modulo p) to Equation (3). We would like now to design I so
that on input K, v∗ it chooses xb1, xb2, yb1, yb2 (b ∈ {0, 1}) so that the solution v to
Equation (3) is v∗. Then (a1, a2, c) will be a pre-image of v∗ which I can output.

To make all this work, we need to resolve two problems. The first is why
we may assume a2 = aw

1 —which is what enables Equation (3)— given that
a1, a2 are chosen by A. The second is to properly design I and show that it can
simulate A correctly with high probability. To solve these problems, we consider,
as in [15], a modified check under which decryption, rather than rejecting when
d �= ax1+y1v

1 ax2+y2v
2 , rejects when a2 �= aw

1 or d �= ax+yv
1 , where x = x1 + wx2,

y = y1 + wy2, v = H(K, (a1, a2, c)) and (a1, a2, c, d) is the ciphertext being
decrypted. See [2].
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