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for Real-Time Speech and Speaker Recognition
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Abstract—When automatic speech recognition (ASR) and
speaker verification (SV) are applied in adverse acoustic envi-
ronments, endpoint detection and energy normalization can be
crucial to the functioning of both systems. In low signal-to-noise
ratio (SNR) and nonstationary environments, conventional ap-
proaches to endpoint detection and energy normalization often
fail and ASR performances usually degrade dramatically. The
purpose of this paper is to address the endpoint problem. For
ASR, we propose a real-time approach. It uses an optimal filter
plus a three-state transition diagram for endpoint detection. The
filter is designed utilizing several criteria to ensure accuracy
and robustness. It has almost invariant response at various
background noise levels. The detected endpoints are then applied
to energy normalization sequentially. Evaluation results show that
the proposed algorithm significantly reduces the string error rates
in low SNR situations. The reduction rates even exceed 50% in
several evaluated databases. For SV, we propose a batch-mode
approach. It uses the optimal filter plus a two-mixture energy
model for endpoint detection. The experiments show that the
batch-mode algorithm can detect endpoints as accurately as using
HMM forced alignment while the proposed one has much less
computational complexity.

Index Terms—Change-point detection, edge detection, endpoint
detection, optimal filter, robust speech recognition, speaker verifi-
cation, speech activity detection, speech detection.

I. INTRODUCTION

I
N SPEECH and speaker recognition, we need to process the
signal in utterances consisting of speech, silence, and other

background noise. The detection of the presence of speech em-
bedded in various types of nonspeech events and background
noise is called endpoint detection, speech detection, or speech
activity detection. In this paper, we address endpoint detection
by sequential and batch-mode processes to support real-time
recognition (in which the recognition response is the same as
or faster than recording an utterance). The sequential process
is often used in automatic speech recognition (ASR) [1] while
the batch-mode process is often allowed in speaker recognition
[2], name dialing [3], command control and embedded systems,
where utterances are usually as short as a few seconds and the
delay in response is usually small.

Endpoint detection has been studied for several decades. The
first application was in a telephone transmission and switching
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system developed in Bell Labs, for time assignment of commu-
nication channels [4]. The principle was to use the free channel
time to interpolate additional speakers by speech activity de-
tection. Since then, various speech detection algorithms have
been developed for ASR, speaker verification, echo cancella-
tion, speech coding and other applications. In general, different
applications need different algorithms to meet their specific re-
quirements in terms of computational accuracy, complexity, ro-
bustness, sensitivity, response time, etc. The approaches include
those based on energy threshold (e.g., [5]), pitch detection (e.g.,
[6]), spectrum analysis, cepstral analysis [7], zero-crossing rate
[8], [9], periodicity measure, hybrid detection [10], fusion [11]
and many other methods. Furthermore, similar issues have also
been studied in other research areas, such as edge detection in
image processing [12], [13] and change-point detection in the-
oretical statistics [14]–[18].

As is well-known, endpoint detection is crucial to both ASR
and speaker recognition because it often affects a system’s per-
formance in terms of accuracy and speed for several reasons.
First, cepstral mean subtraction (CMS) [19]–[21], a popular al-
gorithm for robust speaker and speech recognition, needs accu-
rate endpoints to compute the mean of speech frames precisely
in order to improve recognition accuracy. Second, if silence
frames can be removed prior to recognition, the accumulated ut-
terance likelihood scores will focus more on the speech portion
of an utterance instead of on both noise and speech. Therefore,
it has the potential to increase recognition accuracy. Third, it
is hard to model noise and silence accurately in changing envi-
ronments. This effect can be limited by removing background
noise frames in advance. Fourth, removing nonspeech frames
when the number of nonspeech frames is large can significantly
reduce the computation time. Finally, for open speech recog-
nition systems, such as open-microphone desktop applications
and audio transcription of broadcast news, it is necessary to seg-
ment utterances from continuous audio input.

In applications of speech and speaker recognition, nonspeech
events and background noise complicate the endpoint detection
problem considerably. For example, the endpoints of speech are
often obscured by speaker-generated artifacts such as clicks,
pops, heavy breathing, or by dial tones. Long-distance telephone
transmission channels also introduce similar types of artifacts
and background noise. In recent years, as wireless, hands-free
and Internet Protocol (IP) phones get more and more popular,
the endpoint detection problem becomes even more difficult
since the signal-to-noise ratios (SNR) of these kinds of commu-
nication devices are usually lower and the noise is nonstationary
than those in traditional telephone lines and handsets. The noise
may come from the background, such as car noise, room reflec-
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tion, street noise, background talking, etc., or from communica-
tion systems, such as coding, transmission, packet loss, etc. In
these cases, the ASR or speaker recognition performance often
degrades dramatically due to unreliable endpoint detection.

Another problem related to endpoint detection is real-time en-
ergy normalization. In both ASR and speaker recognition, we
usually normalize the energy feature such that the largest energy
level in a given utterance is close to or slightly below a constant
of zero or one. This is not a problem in batch-mode processing,
but it can be a crucial problem in real-time processing since it
is difficult to estimate the maximal energy in an utterance with
just a short-time data buffer while the acoustic environment is
changing. It becomes especially hard in adverse acoustic envi-
ronments. A look-ahead approach to energy normalization can
be found in [6]. Actually, as we will point out later in this study,
real-time energy normalization and endpoint detection are two
related problems. The more accurately we can detect endpoints,
the better we can do on real-time energy normalization.

In this paper, we propose two endpoint-detection algorithms
for real-time ASR and speaker recognition. Generally speaking,
both algorithms must meet the following requirements: accu-
rate location of detected endpoints; robust detection at various
noise levels; low computational complexity; fast response time;
and simple implementation. The real-time energy normalization
problem is addressed together with endpoint detection.

The rest of the paper is organized as follows. In Section II,
we will introduce a filter for endpoint detection. In Section III,
we will propose a sequential algorithm of combined endpoint
detection and energy normalization for ASR in adverse environ-
ments and provide experimental results in large database evalu-
ations. In Section IV, we will propose an accurate endpoint-de-
tection algorithm for batch-mode applications and compare the
detected endpoints with manually-detected as well as HMM
forced-alignment detected endpoints. Finally, we will summa-
rize our findings in Section V.

II. A FILTER FOR ENDPOINT DETECTION

To ensure the low-complexity requirement, we borrow the
one-dimensional (1-D) short-term energy in the cepstral feature
to be the feature for endpoint detection

(1)

where
data sample;
frame number;
frame energy in decibels;
window length;
number of the first data sample in the window.

Thus, the detected endpoints can be aligned to the ASR feature
vector automatically and the computation can be reduced from
the speech-sampling rate to the frame rate.

For accurate and robust endpoint detection, we need a de-
tector that can detect all possible endpoints from the energy fea-
ture. Since the output of the detector contains false acceptances,

a decision module is then needed to make final decisions based
on the detector’s output.

Here, we assume that one utterance may have several speech
segments separated by possible pauses. Each of the segments
can be determined by detecting a pair of endpoints named seg-
ment beginning and ending points. On the energy contours of
utterances, there is always a raising edge following a beginning
point and a descending edge preceding an ending point. We
call them beginning and ending edges, respectively, as shown
in Fig. 4(a). Since endpoints always come with the edges, our
approach is first to detect the edges and then to find the corre-
sponding endpoints.

The foundation of the theory of the optimal edge detector was
first established by Canny [12]. He derived an optimal step-edge
detector. Spacek [22], on the other hand formed a performance
measure combining all three quantities derived by Canny and
provided the solution of the optimal filter for step edge. Petrou
and Kittler then extended the work to ramp-edge detection [13].
Since the edges corresponding to endpoints in the energy feature
are closer to the ramp edge than the ideal step edge, Li and Tsai
applied Petrou and Kittler’s filter to the endpoint detection for
speaker verification in [2].

In summary, we need a detector that meets the following gen-
eral requirements:

1) invariant outputs at various background energy levels;
2) capability of detecting both beginning and ending points;
3) short time delay or look-ahead;
4) limited response level;
5) maximum output signal-to-noise ratio (SNR) at end-

points;
6) accurate location of detected endpoints;
7) maximum suppression of false detection.
We then need to convert the above criteria to a mathematic

representation. As we have discussed, it is reasonable to assume
that the beginning edge in the energy contour is a ramp edge that
can be modeled by the following function:

for

for
(2)

where represents the frame number of the feature and is
some positive constant which can be adjusted for different kinds
of edges, such as beginning or ending edges and for different
sampling rates.

The detector is a 1-D filter which can be operated as
a moving-average filter in the energy feature. From the above
requirements, the filter should have the following properties
which are similar to those in [13].

P1) It must be antisymmetrical, i.e., and
thus . This follows from the fact that we want
it to detect an antisymmetrical features [12], i.e., sen-
sitive to both beginning and ending edges according to
the request in 2); and to have near-zero response to back-
ground noise at any level, i.e., invariant to background
noise according to the request in 1).

P2) According to the requirement in 3), it must be of finite
extent going smoothly to zero at its ends: ,
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and for , where is the
half width of the filter.

P3) According to the requirement in 4), it must have a given
maximum amplitude : where is de-
fined by and is in the interval ( , 0).

If we further represent requirements 5), 6), and 7), as
, and , respectively, the combined

objective function is

(3)

Subject to properties P1), P2), and P3)

It aims at finding the filter function, , such that the value
of the objective function is maximal subject to properties
P1)–P3). Fortunately, the object function is very similar to op-
timal edge detection in image processing and the details of the
object function have been derived by Petrou and Kittler [13] fol-
lowing Canny [12], as well as in Appendix A.

After applying the method of Lagrange multipliers, the solu-
tion for the filter function is [13]

(4)

where and are filter parameters. Since is only half of
the filter, when , the actual filter coefficients are

(5)

where is an integer. The filter can then be operated as a moving-
average filter in

(6)

where is the energy feature and is the current frame
number. An example of the designed optimal filter is shown
in Fig. 1. Intuitively, the shape of the filter indicates that the
filter must have positive response to a beginning edge, negative
response to an ending edge and a near zero response to silence.
Its response is basically invariant to different background noise
levels since they all have near zero responses.

III. REAL-TIME ENDPOINT DETECTION AND ENERGY

NORMALIZATION FOR ASR

The approach of using endpoint detection for real-time ASR
is illustrated in Fig. 2 [23]. We use an optimal filter, as discussed
in the last section, to detect all possible endpoints, following
by a three-state logic as a decision module to decide real end-
points. The information of detected endpoints is also utilized
for real-time energy normalization. Finally, all silence frames
are removed and only the speech frames including cepstrum and
the normalized energy are sent to the recognizer.

Fig. 1. Shape of the designed optimal filter.

Fig. 2. Endpoint detection and energy normalization for real-time ASR.

A. Filter for Both Beginning- and Ending-Edge Detection

After evaluating the shapes of both beginning and ending
edges, we choose the filter size to be to meet require-
ments 2) and 3).

For and , the filter parameters have
been provided in [13] as ,

For
in our application, we just need to rescale
and while ’s are as shown previously.

The shape of the designed filter is shown in Fig. 1 with a
simple normalization, . For real-time detection, let

; then the filter has 25 points in total with a 24-frame
look-ahead since both and are zeros. The filter
operates as a moving-average filter

(7)

where is the energy feature and is the current frame
number. The output is then evaluated in a three-state
transition diagram for final endpoint decisions.

B. State Transition Diagram

Endpoint decision needs to be made by comparing the value
of with some pre-determined thresholds. Due to the se-
quential nature of the detector and the complexity of the deci-
sion procedure, we use a three-state transition diagram to make
final decisions.

As shown in Fig. 3, the three states are: silence, in-speech, and
leaving-speech. Either the silence or the in-speech state can be a
starting state and any state can be a final state. In the following
discussion, we assume that the silence state is the starting state.
The input is and the output is the detected frame numbers
of beginning and ending points. The transition conditions are
labeled on the edges between states and the actions are listed
in parentheses. “Count” is a frame counter, and are two
thresholds with and “Gap” is an integer indicating
the required number of frames from a detected endpoint to the
actual end of speech.

We use Fig. 4 as an example to illustrate the state transition.
The energy for a spoken digit “4” is plotted in Fig. 4(a) and the
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Fig. 3. State transition diagram for endpoint decision.

Fig. 4. Example: (a) energy contour of digit “4” and (b) filter outputs and state
transitions.

filter output is shown in Fig. 4(b). The state diagram stays in
the silence state until reaches point in Fig. 4(b), where

means that a beginning point is detected. The actions
are to output a beginning point [corresponding to the left vertical
solid line in Fig. 4(a)] and to move to the in-speech state. It
stays in the in-speech state until reaching point in Fig. 4(b),
where . The diagram then moves to the leaving-
speech state and sets Count . The counter resets several
times until reaching point . At point , Counter Gap .
An actual endpoint is detected as the left vertical dashed line
in Fig. 4(b). The diagram then moves back to the silence state.
During the stay in the leaving-speech state, if , this
means that a beginning edge is coming and we should move
back to the in-speech state. The 30-frame gap corresponds to
the period of descending energy before reaching a real ending
point.

We note that the thresholds, such as and , are set in the
filter outputs instead of absolute energy. Since the filter output

is stable to the noise levels, the detected endpoints are more reli-
able. Those constants, Gap, , and , can be determined em-
pirically by plotting several utterances and corresponding filter
outputs. As we will show in the database evaluation, the algo-
rithm is not very sensitive to the values of and since the
same values were used in different databases. Also, in some ap-
plications, two separate filters can be designed for beginning
and ending point detection. The size of the beginning filter can
be smaller than 25 points while the ending filter can be larger
than 25 points. This approach may further improve accuracy;
however, it will have a longer delay and use more computation.
The 25-point filter used in this section was designed for both be-
ginning and ending point detection in an 8 KHz sampling rate.
Also, in the case that an utterance is started from an unvoiced
phoneme, it is practical to step back about ten frames from the
detected beginning points.

C. Real-Time Energy Normalization

Suppose that the maximal energy value in an utterance is
. The purpose of energy normalization is to normalize the

utterance energy , such that the largest value of energy is
close to zero by performing . In a real-time
mode, we have to estimate the maximal energy sequen-
tially while the data are being collected. Here, the estimated
maximum energy becomes a variable and is denoted as .
Nevertheless, we can use the detected endpoints to obtain a
better estimate.

We first initialize the maximal energy to a constant , which
is selected empirically and use it for normalization until we de-
tect the first beginning point at as in Fig. 4, i.e.,

. If the average energy

(8)

where is a pre-selected threshold to ensure that new is
not from a single click, we then estimate the maximal energy as

(9)

where is the length of the filter and the length
of the look-ahead window. At point , the look-ahead window
is from to as shown in Fig. 4. From now on, we update

as

(10)

Parameter may need to be adjusted for different system. For
example, the value of could be different between telephone
and desktop systems. Parameter is relatively easy to deter-
mine.

For the example in Fig. 5, the energy features of two ut-
terances with 20 dB SNR (bottom) and 5 dB SNR (top) are
plotted in Fig. 5(a). The 5-dB utterance is generated by artifi-
cially adding car noise to the 20 dB one. The filter outputs are
shown in Fig. 5(b) for 20 dB (solid line) and 5 dB (dashed line)
SNRs, respectively. The detected endpoints and normalized en-
ergy for 20 and 5 dB SNRs are plotted in Fig. 5(c) and 5(d), re-
spectively. We note that the filter outputs for 20 and 5 dB cases



150 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 3, MARCH 2002

Fig. 5. (a) Energy contours of “4-327-631-Z214” from original utterance
(bottom, 20 dB SNR) and after adding car noise (top, 5 dB SNR). (b) Filter
outputs for 5 dB (dashed line) and 20 dB (solid line) SNR cases. (c) Detected
endpoints and normalized energy for the 20 dB SNR case and (d) for the 5 dB
SNR case.

are almost invariant around and , although their back-
ground energy levels have a difference of 15 dB. This ensures
the robustness in endpoint detection. We also note that the nor-
malized energy profiles are almost the same as the original one,
although the normalization is done in a real-time mode.

D. Database Evaluation

The proposed algorithm was compared with a baseline end-
point detection algorithm on one noisy database and several tele-
phone databases.

1) Baseline Endpoint Detection: The baseline system is a
real-time, energy contour based adaptive detector developed
based on the algorithm introduced in [1], [5]. It has been used
for years in research and commercial speech recognizers. In
the baseline system, a six-state transition diagram is used to
detect endpoints. Those states are named as initializing, silence,
rising, energy, fell-rising, and fell states. In total, eight counters
and 24 hard-limit thresholds are used for the decisions of state
transition. Two adaptive threshold values were used in most of
the thresholds. We note that all the thresholds are compared
with raw energy values directly.

Energy normalization in the baseline system is done sepa-
rately by estimating the maximal and minimal energy values,
then comparing their difference to a fixed threshold for decision.
Since the energy values change with acoustic environments, the
baseline approach leads to unreliable endpoint detection and en-
ergy normalization, especially in low SNR and nonstationary
environments.

2) Noisy Database Evaluation: In this experiment, a data-
base was first recorded from a desktop computer at 16 KHz sam-
pling rate, then down-sampled to 8 KHz sampling rate. Later, car
andotherbackgroundnoiseswereartificiallyaddedtotheoriginal
database at the SNR levels of 5, 10, 15, and 20 dB. The original
databasehas39utterancesand1738digits in total.Eachutterance
has 3, 7, or 11 digits. LPC feature and the short-term energy were
used and the hidden Markov model (HMM) in a head-body-tail

Fig. 6. Comparisons on real-time connected digit recognition with various
SNRs. From 5- to 20-dB SNRs, the proposed algorithm provided word error
rate reductions of 90.2%, 93.4%, 57.1%, and 57.1%, respectively.

Fig. 7. (a) Energy contour of the 523th utterance in DB5: “1 Z 4 O 5 8 2.”
(b) Endpoints and normalized energy from the baseline system. The utterance
was recognized as “1 Z 4 O 5 8.” (c) Endpoints and normalized energy from the
proposed system. The utterance was recognized correctly as “1 Z 4 O 5 8 2.”
(d) The filter output.

(HBT) structure was employed to model each of the digits [24],
[25]. The HBT structure assumes that context dependent digit
models can be built by concatenating a left-context dependent
unit (head) with a context independent unit (body) followed by
a right-context dependent unit (tail). We used three HMM states
to representeach “head”and“tail”andfour state to represent each
“body.” Sixteen mixtures were used for each body state and four
mixtures were used for each head or tail state.

The real-time recognition performances on various SNRs are
showninFig.6.Comparedtothebaselinealgorithm,theproposed
onesignificantlyreducedworderrorrates.Thebaselinealgorithm
failed to work in low SNR cases because it uses raw energy values
directly to detect endpoints and to perform energy normalization.
The proposed algorithm makes decision on the filter output in-
stead of raw energy values; therefore, it provided more robust re-
sults. An example of error analysis is shown in Fig. 7.
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TABLE I
DATABASE EVALUATION RESULTS (%)

3) Telephone Database Evaluation: The proposed algo-
rithm was further evaluated in 11 databases collected from
the telephone networks with 8 kHz sampling rates in various
acoustic environments. LPC parameters and short-term energy
were used. The acoustic model consists of one silence model,
41 mono-phone models and 275 head-body-tail units for digit
recognition. It has a total of 79 phoneme symbols, 33 of which
are for digit units. Eleven databases, DB1 to DB11, were used
for the evaluation. DB1 to DB5 contain digits, alphabet and
word strings. Finite-state grammars were used to specify the
valid forms of recognized strings. DB6 to DB11 contain pure
digit strings. In all the evaluations, both endpoint detection and
energy normalization were performed in real-time mode and
only the detected speech portions of an utterance were sent to
the recognition back-end.

In the proposed system, we set the parameters as ,
, , and Gap . These

parameters were unchanged throughout the evaluation in all 11
databases to show the robustness of the algorithm, although the
parameters can be adjusted according to signal conditions in dif-
ferent applications. The evaluation results are listed in Table I.
It shows that the proposed algorithm works very well in regular
telephone data as well. It provided word error reduction in most
of the databases. The word error reductions even exceed 30% in
DB2, DB6, and DB9.

To analyze the improvement, the original energy feature of an
utterance, “1 Z 4 O 5 8 2,” in DB6 is plotted in Fig. 7(a). The de-
tected endpoints and normalized energy using the conventional
approach are shown in Fig. 7(b) while the results of the proposed
algorithm are shown in Fig. 7(c). The filter output is plotted in
Fig. 7(d). From Fig. 7(b), we can observe that the normalized
maximal energy of the conventional approach is about 10 dB
below zero, which causes a wrong recognition result: “1 Z 4 O
5 8.” On the other hand, the proposed algorithm normalized the
maximal energy to zero approximately and the utterance was
recognized correctly as “1 Z 4 O 5 8 2.”

IV. ACCURATE BATCH-MODE ENDPOINT DETECTION FOR

SPEAKER VERIFICATION

So far, we have focused on real-time endpoint detection,
which is mainly for ASR applications where silence or garbage
models are usually used to further determine accurate endpoints

Fig. 8. Shape of the optimal filter for beginning edge detection, plotted as
h (t), with W = 7 and s = 1.

Fig. 9. Shape of the optimal filter for ending edge detection, plotted as h (t),
with W = 35 and s = 0:2.

in decoding. In another category of applications, real-time
processing is not so crucial. Speech data can be processed
in a batch-mode, i.e., after data recording is finished. The
applications include speaker verification, name dialing, speech
control, etc., where the utterances are usually short (e.g., less
than 2 s) and the verification or recognition can be done within
1 s. Since many of these kinds of applications are offered
in embedded systems, such as wireless phones or portable
devices; or in multi-user systems, such as a speaker verification
server for millions of users [3], they normally require low
computational complexity for low cost or for a fast response.
For these cases, one solution is to use an accurate end-point
detector to remove all silence; therefore, we not only can
reduce the number of decoding frames significantly, but also
eliminate the silence model in decoding, which usually takes a
lot of space and computation. Batch-mode processing enables
this class of operations.

A. Batch-Mode Algorithm

To obtain accurate endpoints, we designed two filters, one
for beginning-edge and another for ending-edge detection, using
the algorithm in Section II. The first filter is shown in Fig. 8 with
seven points, while the second one is shown in Fig. 9 with 35
points. This is because the ending edge is usually longer than
the beginning edge. We note that the ending filter gives positive
response at a detected ending edge. To help in accurately deter-
mining energy thresholds, we use a Gaussian mixture model to
model the energy distribution. The final endpoints are detected
by combining the information from the filter outputs and the es-
timated thresholds.

1) Energy Distribution Model: We assume that a Gaussian
mixture model can approximately represent the distribution of
energy in an utterance with two mixtures representing speech
and background energy, respectively

(11)
where is a weighting parameter, is a normal distribution
given by

(12)
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and and are the mean and standard deviation, respec-
tively. The means for speech and background noise are

and with the corresponding
standard deviations, and . The thresholds for speech and
background noise are and , re-
spectively. When the energy value is above , we consider it
as speech; when the energy value is below , we consider it as
background noise. To obtain fast and explicit parameter estima-
tion, we applied a moment algorithm instead of the popular EM
algorithm which needs iterations. The fast estimation algorithm
is listed in Appendix B.

2) Summary of the Algorithm: We now summarize the pro-
posed algorithm for batch-mode endpoint detection [2]. The pa-
rameters in the following algorithm are for the energy feature
computed from 30 ms energy windows shifting every 10 ms.
The data sampling rate is 8 KHz.

1) Compute log energy of the given utterance, and nor-
malize it by subtracting to get . We as-
sume that the speech is surrounded by silence and various
kinds of noise.

2) Remove the dial tone from . The dial tone can be
detected when

and

These two parameters are determined based on the min-
imal length and minimal energy level of dial tones.

3) Estimate , , and using (22) to (29), then de-
termine two thresholds

and

for speech and background energy, respectively. Speech
energy should be above the value of threshold and si-
lence/background noise energy should be below . This
is based on the assumption that noise and speech can be
represented as two separated Gaussian mixtures.

4) Compute the output of the beginning-edge filter

(13)

then search for the locations of all peaks , from the
filter output . A peak associated with a beginning
point should meet the following properties:

and

The actual beginning point is

where is the th beginning edge. The shift is due to
the offset between the center of a beginning edge and the
actual beginning point.

Fig. 10. Normalized log energy of “Call office” with heavy breath in the end.
Lines A, B, C, and D indicate the estimated values of � , � , � and � ,
respectively.

5) From a detected beginning point , search for the
corresponding ending point , which should satisfy
the following conditions:

i) and ;
ii) ;

iii) when , 60% frames of ,
should have the values above ; and

iv) .
Here, ii) and iii) are to ensure that the segmentation is
speech instead of a click or breath noise. The segment that
cannot meet the above conditions is not a speech segment.

6) Determine the actual last ending point . Compute
the response of the ending-edge filter in the last segment,

, by

(14)

Search for the last peak of , where and
. Then, shift the peak point lo-

cated at the center of the ending edge to the last ending
point. The offset should be about half the filter size. We
choose 16 frames. Thus, if at frame , the energy
level is still higher than threshold , the ending point is
at frame ; otherwise, the ending point is the last
point before the energy crosses the threshold

if
and .

(15)

3) Illustrative Examples: We use the example in Fig. 10 to
illustrate the concept of the proposed algorithm. The utterance
“call office” is first converted to log energy and normalized
to have the largest value be zero. For this example, the speech
signal is about 2 s concatenated by another 2 s of heavy breath.
We estimate the means and standard deviations of the speech
and the background energy using the equations in Appendix B.
The results are shown in Fig. 10, where lines A, B, C, and D
indicate the estimated values of , , and , respectively.
Then we computer using (13). We note that the operation
differs slightly from the real-time one. The result is shown in
Fig. 11 as a solid line. After evaluating the values of the peaks
that are above threshold , for this case, the locations of begin-
ning points are first located at the centers of the highest peaks.
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Fig. 11. Output of the beginning-edge filter (solid line) and ending-edge filter
(dashed line).

Fig. 12. Lines E, F, G, and H indicate the locations of two pairs of beginning
and ending points.

Actual beginning points can then be located by shifting the cor-
responding locations of the peaks to the left by half the filter
size.

From the first beginning point, we search for the location of
the corresponding ending point, where the energy level is lower
than . For this example, we get two pairs of endpoints cor-
responding to two speech segments, as shown in Fig. 12, from
line E to F and from line G to H, respectively. The clicks in
the beginning of the utterances were not detected as speech be-
cause the filter responses at these locations were lower than the
threshold value. As we can see from Fig. 12, the last segment
between lines G and H includes the heavy breath.

The energy data in the segments are then fed into the
ending-edge filter and compute (14). The filter output is shown
in Fig. 11 as the dashed line. The ending point of the last
segment is located by shifting the frame index of the largest
peak to the right by about half the size of the ending edge filter.
If the energy value is lower than at the shifted location, the
ending point should be the last point where the energy level is
greater than as described in (15). The final speech segments
are from line E to line F and from line G to line I, as shown in
Fig. 13.

More examples are shown in Figs. 14 and 15. Fig. 14 is the
energy contour of utterance “Call Candice at her home phone”
with breath in the beginning. The horizontal solid and dashed
lines represent the means and thresholds for speech and noise.
The detected beginning and ending points are shown as the ver-
tical solid line and dashed lines, respectively. The breath signal
is excluded from the speech segmentation successfully. Fig. 15
is an example of an utterance with a dial tone in the end. The

Fig. 13. Last ending point was adjusted from Line H to I by applying the
ending-edge filter.

Fig. 14. Normalized log energy of “call Candice at her home” with breath in
the beginning. The detected endpoints are the vertical solid line and dashed line.

Fig. 15. Normalized log energy of “I pledge allegiance to the flag,” with a dial
tone at the end. The vertical lines indicate the beginning point and the ending
points.

first and the last vertical lines are the beginning and the ending
points, respectively. Other vertical lines indicate the detected si-
lence between words. The dial tone in the end of the utterance
was detected and excluded from the speech segment.

B. Comparisons With HMM Forced-Alignment Approach

The database used for the comparison was collected for
speaker verification with a common phrase “I pledge allegiance
to the flag.” It has 100 speakers and 4741 utterances in total.
The utterances were collected over long distance telephone
networks. The speakers were instructed to make the phone calls
at different locations and using different telephone handsets.
The collected utterances are with various kinds of noise. A
pair of beginning and ending points was detected manually
for every utterance. We use the manually detected endpoints
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Fig. 16. Dashed line is the histogram of the differences between manually-
and HMM-detected beginning points. Solid line is between manually and
batch-mode detected beginning points.

as references to compare with the endpoints detected by the
proposed approach and by HMM approach. Here, the HMM
approach means endpoint detection by forced alignment as-
suming both the models and lexicons are available. The HMM
approach uses 41 speaker-independent phoneme models. Each
phone model has 3 states and each state has 32 Gaussian
mixtures. The feature vector is composed of 12 cepstral and
12 delta cepstral coefficients. The cepstrum is derived from a
tenth-order LPC analysis over a 30 ms window and the feature
vectors are updated at 10 ms intervals.

The histogram of the differences between the manually de-
tected beginning points and HMM detected beginning points is
shown in Fig. 16 as a dashed line. The histogram of the differ-
ences between the manually-detected beginning points and the
beginning points detected by the proposed approach is shown in
Fig. 16 as a solid line. The statistics are listed in Table II. The
accuracy of the proposed approach is very close to the HMM ap-
proach. The shift between those two histograms can be resolved
by adjusting the thresholds in determining beginning points;
however, it is not necessary since the overall difference between
the two approaches is about the same.

The histogram of the differences between the manually de-
tected ending points and HMM detected ending points is shown
in Fig. 17 as a dashed line. The histogram of the differences
between manually detected ending points and the ending points
detected by the proposed approach is shown in Fig. 17 as a solid
line. These two histograms are very close. We note that both of
the histograms shift from the manually detected ending-points.
This is due to the different interpretations on ending-points be-
tween human and algorithms.

The histograms and table indicate that the endpoints detected
by the proposed algorithm have the same accuracy as the
HMM detected endpoints. Comparing with HMM approach,
the proposed one does not need any language-dependent
models and lexicon information; therefore, it can support
language-independent applications. Also, the proposed algo-
rithm is much faster. It only needs about 130 Kflops (floating

TABLE II
STATISTICS OF THE DIFFERENCES ON DETECTED BEGINNING POINTS

Fig. 17. Dashed line is the histogram of the differences between manually- and
HMM-detected ending points. Solid line is between manually- and batch-mode
detected ending points.

point operations) for endpoint detection, while the HMM
approach needs over 200 Mflops for forced alignment using a
set of speaker-independent phoneme models. Furthermore, the
proposed algorithm can detect the silence between words easily
while it needs to involve much more computation when using
the HMM approach.

C. Application to Language-Independent Speaker Verification

Since the proposed algorithm can detect endpoints at accu-
racy similar to the HMM approach, we apply the proposed al-
gorithm to the front-end of a speaker verification system [2].
After LPC cepstral extraction, the proposed algorithm detects
endpoints on the energy. Silence, breath, dial tone and other non-
speech signals are then removed from the feature set. Given the
original feature observation of , after silence removal, the fea-
ture set becomes which is a subset of , i.e., . Cepstral
mean subtraction (CMS) is then performed on .

This approach was evaluated on a database consisting of 38
speakers—18 male and 20 female for speaker verification (see
[26] for the database descriptions). The common pass-phrase
for all speakers is “call Janice at her office phone.” Each true
speaker was tested with the same pass-phrase from all impos-
tors. In the language-independent configuration, the equal error
rates (EERs) are 3.6% and 4.4% for male and female groups, re-
spectively. In the language-dependent configuration where the
background model is applied, the EERs are 2% and 3.5% for
male and female groups, respectively. The average individual
EER is 2.8%. The accuracy is in the same level as the speaker
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verification system where HMMs were applied to endpoint de-
tection [27], [28].

The proposed algorithm has also been implemented in a real
speech controller with embedded speaker verification. Readers
are referred to [3] for detail.

V. CONCLUSIONS

In this paper, we propose two algorithms for real-time and
batch-mode endpoint detection. Both algorithms apply filters to
detect possible endpoints and then make final decisions based
on the filter outputs. Since the filter is designed to be invariant
to various levels of background noise, the proposed algorithms
are reliable and robust, even in very low SNR situations.

In the real-time algorithm, a filter with a 24-frame look-ahead
detects all possible endpoints. A three-state transition diagram
then evaluates the output from the filter for final decisions. The
detected endpoints are then applied to real-time energy nor-
malization. Since the entire algorithm only uses a 1-D energy
feature, it has low complexity and is very fast in computation.
The evaluation in a noisy database has showed significant string
error reduction, over 50% on all 5- to 20-dB SNR situations.
The evaluations in telephone databases have showed over 30%
reductions in four out of 12 databases. The proposed algorithm
has been implemented in real-time ASR systems. The contribu-
tions are not only to improve the recognition accuracy but also
the robustness of entire system in low SNR environments.

In the batch-mode algorithm, the peaks of the filter output
are used to detect endpoints with thresholds estimated from a
two-mixture energy distribution model, where the model param-
eters can be solved through closed-form equations. Using man-
ually detected endpoints as references, we have compared the
proposed algorithm with the forced-alignment approach using
HMM. The experiments showed that the proposed algorithm
has similar accuracy to the HMM approach while it needs much
less computations. The algorithm has also been implemented in
a real recognition system for language-independent speech con-
trol including embedded speaker verification [3].

APPENDIX A
OBJECTIVE FUNCTION FOR THE OPTIMAL FILTER DESIGN

Assume that the beginning or ending edge in log energy is
a ramp edge as defined in (2). And, assume that the edges are
emerged with white Gaussian noise. Following Canny’s criteria,
Petrou and Kittler [13] derived the SNR for this filter as
being proportional to

d

d
(16)

where is a half width of the actual filter. They consider a good
locality measure to be inversely proportional to the standard de-
viation of the distribution of endpoint where the edge is sup-
posed to be. It was defined as

d

d
(17)

Finally, the measure for the suppression of false edges is propor-
tional to the mean distance between the neighboring maxima of
the response of the filter to white Gaussian noise

d

d
(18)

Therefore, the combined objective function of the filter is

d d

d d

(19)

APPENDIX B
ENERGY MODEL ESTIMATION

Instead of the popular EM algorithm, we applied the moment
algorithm [29] for a faster parameter estimation for the model
in (11). Let represent sample values. By
equating the observed moments given by

(20)

where is the sample mean to the theoretical moments given by

d (21)

where , we can obtain five nonlinear simultaneous
equations and the solution has been summarized in [29]. To es-
timate the five parameters, we first find the real negative root of

(22)

where

and where and are the fourth
and fifth sample cumulates, respectively.

Let be a real negative root of (22), then parameters and
are obtained as roots of

(23)
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where

(24)

Now, the estimates of the five model parameters may be de-
rived as the following explicit forms:

(25)

(26)

(27)

(28)

(29)

We note that in the application. In the case that the
solution of (22) does not exist, a histogram can be constructed
to estimate the mixture model parameters approximately.
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