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Robust Energy Management for Microgrids
With High-Penetration Renewables

Yu Zhang,Student Member, IEEE,Nikolaos Gatsis,Member, IEEE,and Georgios B. Giannakis,Fellow, IEEE

Abstract—Due to its reduced communication overhead and
robustness to failures, distributed energy management is of
paramount importance in smart grids, especially in microgrids,
which feature distributed generation (DG) and distributed stor-
age (DS). Distributed economic dispatch for a microgrid with high
renewable energy penetration and demand-side management
operating in grid-connected mode is considered in this paper.
To address the intrinsically stochastic availability of renewable
energy sources (RES), a novel power scheduling approach is
introduced. The approach involves the actual renewable energy as
well as the energy traded with the main grid, so that the supply-
demand balance is maintained. The optimal scheduling strategy
minimizes the microgrid net cost, which includes DG and DS
costs, utility of dispatchable loads, and worst-case transaction
cost stemming from the uncertainty in RES. Leveraging the dual
decomposition, the optimization problem formulated is solved
in a distributed fashion by the local controllers of DG, DS, and
dispatchable loads. Numerical results are reported to corroborate
the effectiveness of the novel approach.

Index Terms—Demand side management, distributed algo-
rithms, distributed energy resources, economic dispatch,energy
management, microgrids, renewable energy, robust optimization.

NOMENCLATURE

A. Indices, numbers, and sets

T , t Number of scheduling periods, period index.
M , m Number of conventional distributed generation

(DG) units, and their index.
N , n Number of dispatchable (class-1) loads, load in-

dex.
Q, q Number of energy (class-2) loads, load index.
J , j Number of distributed storage (DS) units, and their

index.
I, i Number of power production facilities with renew-

able energy source (RES), and facility index.
S, s Number of sub-horizons, and sub-horizon index.
k Algorithm iteration index.
T Set of time periods in the scheduling horizon.
Ts Sub-horizons for all RES facilities.
Ti,s Sub-horizons for RES facility i.
M Set of conventional DG units.
N Set of dispatchable loads.
Q Set of energy loads.
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J Set of DS units.
W Power output uncertainty set for all RES facilities.
Wi Power output uncertainty set of RES facilityi.

B. Constants

Pmin
Gm

, Pmax
Gm

Minimum and maximum power output of
conventional DG unitm.

Rm,up, Rm,down Ramp-up and ramp-down limits of con-
ventional DG unitm.

SR
t Spinning reserve for conventional DG.

Lt Fixed power demand of critical loads in
periodt.

Pmin
Dn

, Pmax
Dn

Minimum and maximum power consump-
tion of loadn.

Pmin,t
Eq

, Pmax,t
Eq

Minimum and maximum power consump-
tion of loadq in periodt.

Sq, Tq Power consumption start and stop times
of load q.

Emax
q Total energy consumption of loadq from

start timeSq to termination timeTq.
Pmin
Bj

, Pmax
Bj

Minimum and maximum (dis)charging
power of DS unitj.

Bmin
j Minimum stored energy of DS unitj in

periodT .
Bmax

j Capacity of DS unitj.
ηj Efficiency of DS unitj.
Pmin
R , Pmax

R Lower and upper bounds forP t
R.

W t
i, W

t

i Minimum and maximum forecasted
power output of RES facilityi in t.

Wmin
i,s , Wmax

i,s Minimum and maximum forecasted total
wind power of wind farmi across sub-
horizonTi,s.

Wmin
s , Wmax

s Minimum and maximum forecasted total
wind power of all wind farms across sub-
horizonTs.

αt, βt; γt, δt Purchase and selling prices; and functions
thereof.

πt
q Parameter of utility function of loadq.

DODj ; ψt
j Depth of discharge specification of DS

unit j; and parameters of storage cost.

C. Uncertain quantities

W t
i Power output from RES facilityi in periodt.

D. Decision variables

P t
Gm

Power output of DG unitm in periodt.
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P t
Dn

Power consumption of loadn in periodt.
P t
Eq

Power consumption of loadq in periodt.
P t
Bj

(Dis)charging power of DS unitj in period
t.

Bt
j Stored energy of DS unitj at the end of the

periodt.
P t
R Net power delivered to the microgrid from

the RES and storage in periodt.
P̃ t
R Auxiliary variable.

x Vector collecting all decision variables.
λt, µt, νt Lagrange multipliers.
z Vector collecting all Lagrange multipliers.
W t

worst Power production from all RES facilities int
yielding the worst-case transaction cost.

E. Functions

Ct
m(·) Cost of conventional DG unitm in periodt.

U t
Dn

(·) Utility of load n in periodt.
U t
Eq

(·) Utility of load q in periodt.
Ht

j(·) Cost of DS unitj in periodt.
G(·, ·) Worst transaction cost across entire horizon.
G(·), G̃(·) Modified worst-case transaction cost.
L(x, z) Lagrangian function.
D(z) Dual function.

I. I NTRODUCTION

Microgrids are power systems comprising distributed energy
resources (DERs) and electricity end-users, possibly withcon-
trollable elastic loads, all deployed across a limited geographic
area [1]. Depending on their origin, DERs can come either
from distributed generation (DG) or from distributed storage
(DS). DG refers to small-scale power generators such as diesel
generators, fuel cells, and renewable energy sources (RES),
as in wind or photovoltaic (PV) generation. DS paradigms
include batteries, flywheels, and pumped storage. Specifically,
DG brings power closer to the point it is consumed, thereby
incurring fewer thermal losses and bypassing limitations im-
posed by a congested transmission network. Moreover, the
increasing tendency towards high penetration of RES stems
from their environment-friendly and price-competitive advan-
tages over conventional generation. Typical microgrid loads
include critical non-dispatchable types and elastic controllable
ones.

Microgrids operate in grid-connected or island mode, and
may entail distribution networks with residential or commer-
cial end-users, in rural or urban areas. A typical configuration
is depicted in Fig. 1; see also [1]. The microgrid energy
manager (MGEM) coordinates the DERs and the controllable
loads. Each of the DERs and loads has a local controller (LC),
which coordinates with the MGEM the scheduling of resources
through the communications infrastructure in a distributed
fashion. The main challenge in energy scheduling is to account
for the random and nondispatchable nature of the RES.

Optimal energy management for microgrids including eco-
nomic dispatch (ED), unit commitment (UC), and demand-
side management (DSM) is addressed in [2], but without
pursuing a robust formulation against RES uncertainty. Based

House

LC

Fuel Gen.

MGEM

Grid

PHEV

LC

Elastic

Loads

Inelastic

Loads

Smart

Appliances

Hospital

Solar Wind

LC

Energy

Storage

LC

Fig. 1. Distributed control and computation architecture of a microgrid.

on the Weibull distribution for wind speed and the wind-speed-
to-power-output mappings, an ED problem is formulated to
minimize the risk of overestimation and underestimation of
available wind power [3]. Stochastic programming is also used
to cope with the variability of RES. Single-period chance-
constrained ED problems for RES have been studied in [4],
yielding probabilistic guarantees that the load will be served.
Considering the uncertainties of demand profiles and PV
generation, a stochastic program is formulated to minimizethe
overall cost of electricity and natural gas for a building in[5].
Without DSM, robust scheduling problems with penalty-based
costs for uncertain supply and demand have been investigated
in [6]. Recent works explore energy scheduling with DSM and
RES using only centralized algorithms [7], [8]. An energy
source control and DS planning problem for a microgrid is
formulated and solved using model predictive control in [9].
Distributed algorithms are developed in [10], but they onlyco-
ordinate DERs to supply a given load without considering the
stochastic nature of RES. Recently, a worst-case transaction
cost based energy scheduling scheme has been proposed to ad-
dress the variability of RESs through robust optimization that
can also afford distributed implementation [11]. However,[11]
considers only a single wind farm and no DS, and its approach
cannot be readily extended to include multiple RESs and DS.

The present paper deals with optimal energy management
for both supply and demand of a grid-connected microgrid
incorporating RES. The objective of minimizing the microgrid
net cost accounts for conventional DG cost, utility of elastic
loads, penalized cost of DS, and a worst-case transaction cost.
The latter stems from the ability of the microgrid to sell
excess energy to the main grid, or to import energy in case
of shortage. Arobust formulation accounting for the worst-
case amount of harvested RES is developed. A novel model
is introduced in order to maintain the supply-demand balance
arising from the intermittent RES. Moreover, a transaction-
price-based condition is established to ensure convexity of
the overall problem (Section II). The separable structure
and strong duality of the resultant problem are leveraged to
develop a low-overheaddistributed algorithm based on dual
decomposition, which is computationally efficient and resilient
to communication outages or attacks. For faster convergence,
the proximal bundle method is employed for the non-smooth
subproblem handled by the LC of RES (Section III). Nu-
merical results corroborate the merits of the novel designs
(Section IV), and the paper is wrapped up with a concluding
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summary (Section V).
Compared to [11], the contribution of the paper is threefold,

and of critical importance for microgrids with high-penetration
renewables. First, a detailed model for DS is included, and
different design choices for storage cost functions are given to
accommodate, for example, depth-of-discharge specifications.
Second, with the envisioned tide of high-penetration renewable
energy, multiple wind farms are considered alongside two
pertinent uncertainty models. Finally, a new class of control-
lable loads is added, with each load having a requirement of
total energy over the scheduling horizon, as is the case with
charging of plug-in hybrid electric vehicles (PHEVs). Detailed
numerical tests are presented to illustrate the merits of the
scheduling decisions for the DG, DS, and controllable loads.
Notation. Boldface lower case letters represent vectors;R

n

and R stand for spaces ofn × 1 vectors and real numbers,
respectively;Rn

+ is the n-dimensional non-negative orthant;
x′ transpose, and‖x‖ the Euclidean norm ofx.

II. ROBUST ENERGY MANAGEMENT FORMULATION

Consider a microgrid comprisingM conventional (fossil
fuel) generators,I RES facilities, andJ DS units (see also
Fig. 1). The scheduling horizon isT := {1, 2, . . . , T } (e.g.,
one-day ahead). The particulars of the optimal scheduling
problem are explained in the next subsections.

A. Load Demand Model

Loads are classified in two categories. The first comprises
inelastic loads, whose power demand should be satisfied at
all times. Examples are power requirements of hospitals or
illumination demand from residential areas.

The second category consists of elastic loads, which are
dispatchable, in the sense that their power consumption is
adjustable, and can be scheduled. These loads can be further
divided in two classes, each having the following characteris-
tics:

i) The first class contains loads with power consumption
P t
Dn

∈ [Pmin
Dn

, Pmax
Dn

], where n ∈ N := {1, . . . , N},
and t ∈ T . Higher power consumption yields higher
utility for the end user. The utility function of thenth
dispatchable load,U t

Dn
(P t

Dn
), is selected to be increasing

and concave, with typical choices being piecewise linear
or smooth quadratic; see also [12]. An example from this
class is an A/C.

ii) The second class includes loads indexed byq ∈ Q :=
{1, . . . , Q} with power consumption limitsPmin

Eq
and

Pmax
Eq

, and prescribed total energy requirementsEq which
have to be achieved from the start timeSq to termi-
nation timeTq; see e.g., [13]. This type of loads can
be the plug-in hybrid electric vehicles (PHEVs). Power
demand variables{P t

Eq
}Tt=1 therefore are constrained as

∑Tq

t=Sq
P t
Eq

= Eq andP t
Eq

∈ [Pmin,t
Eq

, Pmax,t
Eq

], t ∈ T ,

while Pmin,t
Eq

= Pmax,t
Eq

= 0 for t /∈ {Sq, . . . , Tq}.
Higher power consumption in earlier slots as opposed
to later slots may be desirable for a certain load, so
that the associated task finishes earlier. This behavior

can be encouraged by adopting for theqth load an
appropriately designed time-varying concave utility func-
tion U t

Eq
(P t

Eq
). An example isU t

Eq
(P t

Eq
) := πt

qP
t
Eq

,
with weights{πt

q} decreasing int from slotsSq to Tq.
Naturally,U t

Eq
(P t

Eq
) ≡ 0 can be selected if the consumer

is indifferent to how power is consumed across slots.

B. Distributed Storage Model

Let Bt
j denote the stored energy of thejth battery at the

end of the slott, with initial available energyB0
j while Bmax

j

denotes the battery capacity, so that0 ≤ Bt
j ≤ Bmax

j , j ∈
J := {1, . . . , J}. Let P t

Bj
be the power delivered to (drawn

from) the jth storage device at slott, which amounts to
charging (P t

Bj
≥ 0) or discharging (P t

Bj
≤ 0) of the battery.

Clearly, the stored energy obeys the dynamic equation

Bt
j = Bt−1

j + P t
Bj
, j ∈ J , t ∈ T . (1)

VariablesP t
Bj

are constrained in the following ways:

i) The amount of (dis)charging is bounded, that is

Pmin
Bj

≤P t
Bj

≤ Pmax
Bj

(2)

−ηjB
t−1

j ≤P t
Bj

(3)

with boundsPmin
Bj

< 0 andPmax
Bj

> 0, while ηj ∈ (0, 1]
is the efficiency of DS unitj [14], [15]. The constraint
in (3) means that a fractionηj of the stored energyBt−1

j

is available for discharge.
ii) Final stored energy is also bounded for the sake of future

scheduling horizons, that isBT
j ≥ Bmin

j .

To maximize DS lifetime, a storage costHt
j(B

t
j) can be

employed to encourage the stored energy to remain above a
specified depth of discharge, denoted asDODj ∈ [0, 1], where
100% (0%) depth of discharge means the battery is empty
(full) [15]. Such a cost is defined asHt

j(B
t
j) := ψt

j [(1 −
DODj)B

max
j − Bt

j ]. Note that the storage costHt
j(B

t
j) can

be interpreted as imposing a soft constraint preventing large
variations of the stored energy. Clearly, higher weights{ψt

j}
encourage smaller variation. If high power exchange is to be
allowed, these weights can be chosen very small, or one can
even selectHt

j(B
t
j) ≡ 0 altogether.

C. Worst-case Transaction Cost

LetW t
i denote theactualrenewable energy harvested by the

ith RES facility at time slott, and also letw collect allW t
i ,

i.e., w := [W 1
1 , . . . ,W

T
1 , . . . ,W

1
I , . . . ,W

T
I ]. To capture the

intrinsically stochastic and time-varying availability of RES,
it is postulated thatw is unknown, but lies in a polyhedral
uncertainty setW . The following are two practical examples.

i) The first example postulates a separate uncertainty setWi

for each RES facility in the form

Wi :=

{

{W t
i }

T
t=1|W

t
i ≤W t

i ≤W
t

i,

Wmin
i,s ≤

∑

t∈Ti,s

W t
i ≤Wmax

i,s , T =

S
⋃

s=1

Ti,s

}

(4)
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whereW t
i (W

t

i) denotes a lower (upper) bound onW t
i ; T

is partitioned into consecutive but non-overlapping sub-
horizonsTi,s for i = 1, . . . , I, s = 1, 2, . . . , S; the total
renewable energy for theith RES facility over thesth
sub-horizon is assumed bounded byWmin

i,s andWmax
i,s .

In this example,W takes the form of Cartesian product

W = W1 × . . .×WI . (5)

ii) The second example assumes a joint uncertainty model
across all the RES facilities as

W :=

{

w|W t
i ≤W t

i ≤W
t

i,

Wmin
s ≤

∑

t∈Ts

I
∑

i=1

W t
i ≤Wmax

s , T =

S
⋃

s=1

Ts

}

(6)

whereW t
i (W

t

i) denotes a lower (upper) bound onW t
i ;

T is partitioned into consecutive but non-overlapping
sub-horizonsTs for s = 1, 2, . . . , S; the total renewable
energy harvested by all the RES facilities over thesth
sub-horizon is bounded byWmin

s andWmax
s ; see also [8].

The previous two RES uncertainty models are quite gen-
eral and can take into account different geographical and
meteorological factors. The only information required is the
deterministic lower and upper bounds, namelyW t

i,W
t

i,W
min
i,s ,

Wmax
i,s , Wmin

s , Wmax
s , which can be determined via inference

schemes based on historical data [16].
Supposing the microgrid operates in a grid-connected mode,

a transaction mechanism between the microgrid and the main
grid is present, whereby the microgrid can buy/sell energy
from/to the spot market. LetP t

R be an auxiliary variable
denoting the net power delivered to the microgrid from the
renewable energy sources and the distributed storage in order
to maintain the supply-demand balance at slott. The shortage

energy per slott is given by
[

P t
R −

∑I
i=1

W t
i +

∑J
j=1

P t
Bj

]+

,

while the surplus energy is
[

P t
R −

∑I
i=1

W t
i +

∑J
j=1

P t
Bj

]−

,

where[a]+ := max{a, 0}, and [a]− := max{−a, 0}.
The amount of shortage energy is bought with known

purchase priceαt, while the surplus energy is sold to the
main grid with known selling priceβt. The worst-case net
transaction cost is thus given by

G({P t
R}, {P

t
Bj

}) := max
w∈W

T
∑

t=1

(

αt

[

P t
R −

I
∑

i=1

W t
i +

J
∑

j=1

P t
Bj

]+

− βt

[

P t
R −

I
∑

i=1

W t
i +

J
∑

j=1

P t
Bj

]−)

(7)

where {P t
R} collects P t

R for t = 1, 2, . . . , T and {P t
Bj

}
collectsP t

Bj
for j = 1, 2, . . . , J, t = 1, 2, . . . , T .

Remark 1. (Worst-case model versus stochastic model). The
worst-case robust model advocated here is particularly attrac-
tive when the probability distribution of the renewable power
production is unavailable. This is for instance the case formul-
tiple wind farms, where the spatio-temporal joint distribution

of the wind power generation is intractable (see detailed dis-
cussions in [17] and [18]). If an accurate probabilistic model
is available, an expectation-based stochastic program canbe
formulated to bypass the conservatism of worst-case optimiza-
tion. In the case of wind generation, suppose that wind power
W t

i is a function of the random wind velocityvti , for which
different models are available, and the wind-speed-to-power-
output mappingsW t

i (v
t
i) are known [19]. Then, the worst-case

transaction cost can be replaced by theexpectedtransaction
costG({P t

R}, {P
t
Bj

}) := Ev

(

∑T

t=1
αt[P t

R−
∑I

i=1
W t

i (v
t
i)+

∑J
j=1

P t
Bj

]+−βt[P t
R−

∑I
i=1

W t
i (v

t
i)+

∑J
j=1

P t
Bj

]−
)

, where

v collectsvti for all i and t.

D. Microgrid Energy Management Problem

Apart from RES, microgrids typically entail also conven-
tional DG. Let P t

Gm
be the power produced by themth

conventional generator, wherem ∈ M := {1, . . . ,M} and
t ∈ T . The cost of themth generator is given by an increasing
convex functionCt

m(P t
Gm

), which typically is either piecewise
linear or smooth quadratic.

The energy management problem amounts to minimizing
the microgrid social net cost; that is, the cost of conventional
generation, storage, and the worst-case transaction cost (due to
the volatility of RES) minus the utility of dispatchable loads:

(P1) min
{P t

Gm
,P t

Dn
,

P t
Eq

,Bt
j ,P

t
Bj

,P t
R}

T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
Dn

(P t
Dn

)

−

Q
∑

q=1

U t
Eq

(P t
Eq

) +

J
∑

j=1

Ht
j(B

t
j)

)

+G({P t
R}, {P

t
Bj

}) (8a)

subject to:

Pmin
Gm

≤ P t
Gm

≤ Pmax
Gm

, m ∈ M, t ∈ T (8b)

P t
Gm

− P t−1

Gm
≤ Rm,up, m ∈ M, t ∈ T (8c)

P t−1

Gm
− P t

Gm
≤ Rm,down, m ∈ M, t ∈ T (8d)

M
∑

m=1

(Pmax
Gm

− P t
Gm

) ≥ SR
t, t ∈ T (8e)

Pmin
Dn

≤ P t
Dn

≤ Pmax
Dn

, n ∈ N , t ∈ T (8f)

Pmin,t
Eq

≤ P t
Eq

≤ Pmax,t
Eq

, q ∈ Q, t ∈ T (8g)
Tq
∑

t=Sq

P t
Eq

= Eq, q ∈ Q (8h)

0 ≤ Bt
j ≤ Bmax

j , BT
j ≥ Bmin

j , j ∈ J , t ∈ T (8i)

Pmin
Bj

≤ P t
Bj

≤ Pmax
Bj

, j ∈ J , t ∈ T (8j)

− ηjB
t−1

j ≤ P t
Bj
, j ∈ J , t ∈ T (8k)

Bt
j = Bt−1

j + P t
Bj
, j ∈ J , t ∈ T (8l)

Pmin
R ≤ P t

R ≤ Pmax
R , t ∈ T (8m)

M
∑

m=1

P t
Gm

+ P t
R = Lt +

N
∑

n=1

P t
Dn

+

Q
∑

q=1

P t
Eq
, t ∈ T . (8n)

Constraints (8b)–(8e) stand for the minimum/maximum
power output, ramping up/down limits, and spinning reserves,
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respectively, which capture the typical physical requirements
of a power generation system. Constraints (8f) and (8m)
correspond to the minimum/maximum power of the flexible
load demand and committed renewable energy. Constraint (8n)
is the power supply-demandbalance equationensuring the
total demand is satisfied by the power generation at any time.

Note that constraints (8b)–(8n) are linear, whileCt
m(·),

−U t
Dn

(·), −U t
Eq

(·), and Ht
j(·) are convex (possibly non-

differentiable or non-strictly convex) functions. Consequently,
the convexity of (P1) depends on that ofG({P t

R}, {P
t
Bj

}),
which is established in the following proposition.

Proposition 1. If the selling priceβt does not exceed the pur-
chase priceαt for any t ∈ T , then the worst-case transaction
costG({P t

R}, {P
t
Bj

}) is convex in{P t
R} and {P t

Bj
}.

Proof: Using that[a]++[a]− = |a|, and[a]+− [a]− = a,
G({P t

R}, {P
t
Bj

}) can be re-written as

G({P t
R}, {P

t
Bj

}) = max
w∈W

T
∑

t=1

(

δt

∣

∣

∣

∣

∣

P t
R −

I
∑

i=1

W t
i +

J
∑

j=1

P t
Bj

∣

∣

∣

∣

∣

+ γt

(

P t
R −

I
∑

i=1

W t
i +

J
∑

j=1

P t
Bj

))

(9)

with δt := (αt − βt)/2, and γt := (αt + βt)/2. Since
the absolute value function is convex, and the operations
of nonnegative weighted summation and pointwise maximum
(over an infinite set) preserve convexity [20, Sec. 3.2], the
claim follows readily.

An immediate corollary of Proposition 1 is that the energy
management problem (P1) is convex ifβt ≤ αt for all t.
The next section focuses on this case, and designs an efficient
decentralized solver for (P1).

III. D ISTRIBUTED ALGORITHM

In order to facilitate a distributed algorithm for (P1), a vari-
able transformation is useful. Specifically, upon introducing
P̃ t
R := P t

R +
∑J

j=1
P t
Bj

, (P1) can be re-written as

(P2) min
x

T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
Dn

(P t
Dn

)

−

Q
∑

q=1

U t
Eq

(P t
Eq

) +
J
∑

j=1

Ht
j(B

t
j)

)

+G({P̃ t
R}) (10a)

subject to: (8b)− (8n)

P̃ t
R = P t

R +

J
∑

j=1

P t
Bj
, t ∈ T (10b)

where x collects all the primal variables
{P t

Gm
, P t

Dn
, P t

Eq
, P t

Bj
, Bt

j , P
t
R, P̃

t
R}; {P̃ t

R} collects P̃ t
R

for t = 1, . . . , T ; and

G({P̃ t
R}) := max

w∈W

T
∑

t=1

(

δ
t

∣

∣

∣

∣

∣

P̃
t
R −

I
∑

i=1

W
t
i

∣

∣

∣

∣

∣

+ γ
t

(

P̃
t
R −

I
∑

i=1

W
t
i

))

.

(11)

The following proposition extends the result of Proposition 1
to the transformed problem, and asserts its strong duality.

Proposition 2. If (P2) is feasible, and the selling priceβt

does not exceed the purchase priceαt for any t ∈ T , then
there is no duality gap.

Proof: Due to the strong duality theorem for the optimiza-
tion problems with linear constraints (cf. [21, Prop. 5.2.1]),
it suffices to show that the cost function is convex over the
entire space and its optimal value is finite. First, using the
same argument, convexity ofG({P̃ t

R}) in {P̃ t
R} is immediate

under the transaction price condition. The finiteness of the
optimal value is guaranteed by the fact that the continuous
convex cost (10a) is minimized over a nonempty compact set
specified by (8b)–(8n), and (10b).

The strong duality asserted by Proposition 2 motivates the
use of Lagrangian relaxation techniques in order to solve the
scheduling problem. Moreover, problem (P2) is clearly sepa-
rable, meaning that its cost and constraints are sums of terms,
with each term dependent on different optimization variables.
The features of strong duality and separability imply that
Lagrangian relaxation and dual decomposition are applicable
to yield a decentralized algorithm; see also related techniques
in power systems [22] and communication networks [23], [24].
Coordinated by dual variables, the dual approach decomposes
the original problem into several separate subproblems that
can be solved by the LCs in parallel. The development of the
distributed algorithm is undertaken next.

A. Dual Decomposition

Constraints (8e), (8n), and (10b) couple variables across
generators, loads, and the RES. Letz collect dual variables
{µt}, {λt}, and {νt}, which denote the corresponding La-
grange multipliers. Keeping the remaining constraints implicit,
the partial Lagrangian is given by

L(x, z) =
T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
Dn

(P t
Dn

)

−

Q
∑

q=1

U t
Eq

(P t
Eq

) +

J
∑

j=1

Ht
j(B

t
j)

)

+G({P̃ t
R})

+
T
∑

t=1

{

µt

(

SR
t −

M
∑

m=1

(Pmax
Gm

− P t
Gm

)

)

− λt

(

M
∑

m=1

P t
Gm

+ P t
R −

N
∑

n=1

P t
Dn

−

Q
∑

q=1

P t
Eq

− Lt

)

− νt

(

P̃ t
R − P t

R −
J
∑

j=1

P t
Bj

)}

. (12)

Then, the dual function can be written as

D(z) =min
x

L(x, z)

s.t. (8b)− (8d), (8f) − (8m)

and the dual problem is given by

max D({µt}, {λt}, {νt}) (13a)

s.t. µt ≥ 0, λt, νt ∈ R, t ∈ T . (13b)
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The subgradient method will be employed to obtain the
optimal multipliers and power schedules. The iterative process
is described next, followed by its distributed implementation.

1) Subgradient Iterations: The subgradient method
amounts to running the recursions [25, Sec. 6.3]

µt(k + 1) = [µt(k) + agµt(k)]+ (14a)

λt(k + 1) = λt(k) + agλt(k) (14b)

νt(k + 1) = νt(k) + agνt(k) (14c)

wherek is the iteration index;a > 0 is a constant stepsize;
while gµt(k), gλt(k), and gνt(k) denote the subgradients of
the dual function with respect toµt(k), λt(k), and νt(k),
respectively. These subgradients can be expressed in the fol-
lowing simple forms

gµt(k) = SR
t −

M
∑

m=1

(Pmax
Gm

− P t
Gm

(k)) (15a)

gλt(k) = Lt +

N
∑

n=1

P t
Dn

(k) +

Q
∑

q=1

P t
Eq

(k)

−
M
∑

m=1

P t
Gm

(k)− P t
R(k) (15b)

gνt(k) = P t
R(k) +

J
∑

j=1

P t
Bj

(k)− P̃ t
R(k) (15c)

whereP t
Gm

(k), P t
Dn

(k), P t
Eq

(k), P t
Bj

(k), P t
R(k), andP̃ t

R(k)
are given by (16)–(20).

Iterations are initialized with arbitraryλt(0), νt(0) ∈ R,
andµt(0) ≥ 0. The iterates are guaranteed to converge to a
neighborhood of the optimal multipliers [25, Sec. 6.3]. The
size of the neighborhood is proportional to the stepsize, and
can therefore be controlled by the stepsize.

When the primal objective isnot strictly convex, a primal
averaging procedure is necessary to obtain the optimal power

schedules, which are then given by

x̄(k) =
1

k

k−1
∑

j=0

x(j) =
1

k
x(k − 1) +

k − 1

k
x̄(k − 1). (21)

The running averages can be recursively computed as in (21),
and are also guaranteed to converge to a neighborhood of the
optimal solution [26]. Note that other convergence-guaranteed
stepsize rules and primal averaging methods can also be
utilized; see [27] for detailed discussions.

2) Distributed Implementation:The form of the subgradi-
ent iterations easily lends itself to a distributed implementation
utilizing the control and communication capabilities of a
typical microgrid.

Specifically, the MGEM maintains and updates the La-
grange multipliers via (14). The LCs of conventional gen-
eration, dispatchable loads, storage units, and RES solve
subproblems (16)–(20), respectively. These subproblems can
be solved if the MGEM sends the current multiplier iterates
µt(k), λt(k), and νt(k) to the LCs. The LCs send back
to the MGEM the quantities

∑M

m=1
P t
Gm

(k),
∑N

n=1
P t
Dn

(k),
∑Q

q=1
P t
Eq

(k),
∑J

j=1
P t
Bj

(k), P t
R(k), and P̃ t

R(k) which are
in turn used to form the subgradients according to (15). The
distributed algorithm using dual decomposition is tabulated as
Algorithm 1, and the interactive process of message passing
is illustrated in Fig. 2.

MGEM

LC of

RES

LC of

DS

j

t

Bj
På

,
t tn l

,
t t

R R
P P
t t

R R
P P
t tt t

R R

LC of

2
nd
Class

Loads
tl

LC of

1
st
Class

Loads

n

t

Dn
På

q

t

Eq
På

LC of

Fuel

Gen.

m

t

Gm
På ,

t tl m

Fig. 2. Decomposition and message exchange.

{P t
Gm

(k)}Tt=1 ∈ argmin
{P t

Gm
}

s.t. (8b)−(8d)

{

T
∑

t=1

(

Ct
m(P t

Gm
) +

(

µt(k)− λt(k)
)

P t
Gm

)

}

(16)

{P t
Dn

(k)}Tt=1 ∈ argmin
{P t

Dn
}

s.t. (8f)

{

T
∑

t=1

(

λt(k)P t
Dn

− U t
Dn

(P t
Dn

)

)

}

(17)

{P t
Eq

(k)}Tt=1 ∈ argmin
{P t

Eq
}

s.t. (8g)−(8h)

{

T
∑

t=1

(

λt(k)P t
Eq

− U t
Eq

(P t
Eq

)

)

}

(18)

{P t
Bj

(k)}Tt=1 ∈ argmin
{P t

Bj
,Bt

j}

s.t. (8i)−(8l)

{

T
∑

t=1

(

νt(k)P t
Bj

+Ht
j(B

t
j)

)

}

(19)

{P t
R(k), P̃

t
R(k)}

T
t=1 ∈ argmin

{P t
R,P̃ t

R}
s.t. (8m)

{

T
∑

t=1

(

(

νt(k)− λt(k)
)

P t
R

)

+G({P̃ t
R})−

T
∑

t=1

νt(k)P̃ t
R

}

(20)
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Algorithm 1 Distributed Energy Management

1: Initialize Lagrange multipliersλt = µt = νt = 0
2: repeat (k = 0, 1, 2, . . .)
3: for t = 1, 2, . . . , T do
4: Broadcastλt(k), µt(k), andνt(k) to LCs of con-

vectional generators, controllable loads, storage units,and
RES facilities

5: Update power schedulingP t
Gm

(k), P t
Dn

(k),
P t
Eq

(k), P t
Bj

(k), P t
R(k), andP̃ t

R(k) by solving (16)–(20)
6: Updateλt(k), µt(k), andνt(k) via (14)
7: end for
8: Running averages of primal variables via (21)
9: until Convergence

Algorithm 2 Enumerate all the vertices of a polytopeA

1: Initialize vertex setV = ∅
2: Generate set̃A := {ã ∈ R

n|ãi = ai or ai, i = 1, . . . , n};
check the feasibility of all the points in set̃A, i.e., if
amin ≤ 1′ã ≤ amax}, thenV = V ∪ {ã}

3: Generate setÂ := {â ∈ R
n|âi = amin −

∑

j 6=i âj or amax −
∑

j 6=i âj , âj = aj or aj , i, j =
1, . . . , n, j 6= i}; check the feasibility of all the points
in set Â, i.e., if a � â � a, thenV = V ∪ {â}

B. Solving the LC Subproblems

This subsection shows how to solve each subproblem (16)–
(20). Specifically,Ct

m(·), −U t
Dn

(·), −U t
Eq

(·), andHt
j(·) are

chosen either convex piece-wise linear or smooth convex
quadratic. Correspondingly, the first four subproblems (16)–
(19) are essentially linear programs (LPs) or quadratic pro-
grams (QPs), which can be solved efficiently. Therefore, the
main focus is on solving (20).

The optimal solution ofP t
R(k) in (20) is easy to obtain as

P t
R(k) =

{

Pmin
R , if νt(k) ≥ λt(k)

Pmax
R , if νt(k) < λt(k).

(22)

However, due to the absolute value operator and the maximiza-
tion overw in the definition ofG({P̃ t

R}), subproblem (20)
is a convex nondifferentiable problem in{P̃ t

R}, which can
be challenging to solve. As a state-of-the-art technique for
convex nondifferentiable optimization problems [25, Ch. 6],
the bundle method is employed to obtain{P̃ t

R(k)}.
Upon defining

G̃({P̃ t
R}) := G({P̃ t

R})−
T
∑

t=1

νt(k)P̃ t
R (23)

the subgradient of̃G({P̃ t
R}) with respect toP̃ t

R needed for
the bundle method can be obtained by the generalization of
Danskin’s Theorem [25, Sec. 6.3] as

∂G̃({P̃ t
R}) =















αt − νt(k), if P̃ t
R ≥

I
∑

i=1

(W t
i )

∗

βt − νt(k), if P̃ t
R <

I
∑

i=1

(W t
i )

∗

(24)

Algorithm 3 Enumerate all the vertices of a polytopeB
1: for i = 1, 2, . . . , S do
2: Obtain vertex setVs by applying Algorithm 2 toBs

3: end for
4: Generate verticesbv for B by concatenating all the indi-

vidual verticesbs asbv = [(bv
1)

′, . . . , (bv
S)

′]′, bs ∈ Vs

where for given{P̃ t
R} it holds that

w
∗ ∈ argmax

w∈W

{

T
∑

t=1

(

δ
t

∣

∣

∣

∣

∣

P̃
t
R −

I
∑

i=1

W
t
i

∣

∣

∣

∣

∣

+ γ
t

(

P̃
t
R −

I
∑

i=1

W
t
i

))}

.

(25)

With p := [P̃ 1
R, . . . , P̃

T
R ], the bundle method generates a

sequence{pℓ} with guaranteed convergence to the optimal
{P̃ t

R(k)}; see e.g., [28], [25, Ch. 6]. The iteratepℓ+1 is
obtained by minimizing a polyhedral approximation ofG̃(p)
with a quadratic proximal regularization as follows

pℓ+1 := argmin
p∈RT

{

Ĝℓ(p) +
ρℓ
2
‖p− yℓ‖

2

}

(26)

where Ĝℓ(p) := max{G̃(p0) + g′
0(p − p0), . . . , G̃(pℓ) +

g′
ℓ(p − pℓ)}; gℓ is the subgradient of̃G(p) evaluated at the

pointp = pℓ, which is calculated according to (24); proximity
weightρℓ is to control stability of the iterates; and the proximal
centeryℓ is updated according to a query for descent

yℓ+1 =

{

pℓ+1, if G̃(yℓ)− G̃(pℓ+1) ≥ θηℓ
yℓ, otherwise

(27)

where ηℓ = G̃(yℓ) −
(

Ĝℓ(pℓ+1) +
ρℓ

2
‖pℓ+1 − yℓ‖2

)

, θ ∈

(0, 1).
It is worth mentioning that (26) is essentially a QP over

a simplex in the dual space, which is efficiently solvable by
practical optimization algorithms. The corresponding transfor-
mation is shown in Appendix I for the interested readers.

Algorithms for solving (25) depend on the form of the
uncertainty setW , and are elaborated next.

C. Vertex Enumerating Algorithms

In order to obtainw∗, the convex nondifferentiable function
in (25) should be maximized overW . This is generally an NP-
hard convex maximization problem. However, for the specific
problem here, the special structure of the problem can be
utilized to obtain a computationally efficient approach.

Specifically, the global solution is attained at the extreme
points of the polytope [25, Sec. 2.4]. Therefore, the objective
in (25) can be evaluated at all vertices ofW to obtain
the global solution. Since there are only finitely many ver-
tices, (25) can be solved in afinite number of steps.

For the polytopesW with special structure [cf. (4), (6)],
characterizations of vertices are established in Propositions 3
and 4. Capitalizing on these propositions, vertex enumerating
procedures are designed consequently, and are tabulated as
Algorithms 2 and 3.

Proposition 3. For a polytopeA := {a ∈ R
n|a � a �

a, amin ≤ 1′a ≤ amax}, av ∈ A is a vertex (extreme point)
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TABLE I
GENERATING CAPACITIES, RAMPING LIMITS , AND COST COEFFICIENTS.
THE UNITS OFam AND bm ARE $/(KWH)2 AND $/KWH, RESPECTIVELY.

Unit Pmin

Gm
Pmax

Gm
Rm,up(down) am bm

1 10 50 30 0.006 0.5
2 8 45 25 0.003 0.25
3 15 70 40 0.004 0.3

TABLE II
CLASS-1 DISPATCHABLE LOADS PARAMETERS. THE UNITS OFcn AND dn

ARE $/(KWH)2 AND $/KWH, RESPECTIVELY.

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6

Pmin

Dn
0.5 4 2 5.5 1 7

Pmax

Dn
10 16 15 20 27 32

cn -0.002 -0.0017 -0.003 -0.0024 -0.0015 -0.0037
dn 0.2 0.17 0.3 0.24 0.15 0.37

of A if and only if it has one of the following forms: i)av
i =

ai or ai for i = 1, . . . , n; or ii) av
i = amin−

∑

j 6=i a
v
j or amax−

∑

j 6=i a
v
j , a

v
j = aj or aj , for i, j = 1, . . . , n, j 6= i.

Proof: See Appendix II-A.
Essentially, Proposition 3 verifies the geometric character-

ization of vertices. SinceW is the part of a hyperrectangle
(orthotope) between two parallel hyperplanes, its vertices can
only either be the hyperrectangle’s vertices which are not cut
away, or, the vertices of the intersections of the hyperrectangle
and the hyperplanes, which must appear in some edges of the
hyperrectangle.

Next, the vertex characterization of a polytope in a Cartesian
product formed by many lower-dimensional polytopes likeA
is established, which is needed for the uncertainty set (4).

Proposition 4. Assumeb ∈ R
n is divided intoS consecutive

and non-overlapping blocks asb = [b′
1, . . . ,b

′
S ]

′, wherebs ∈
R

ns and
∑S

s=1
ns = n. Consider a polytopeB := {b ∈

R
n|b � b � b, bmin

s ≤ 1′
ns
bs ≤ bmax

s , s = 1, . . . , S}. Then
bv = [(bv

1)
′, . . . , (bv

S)
′]′ is a vertex ofB if and only if for

s = 1, . . . , S, bv
s is the vertex of a lower-dimensional polytope

Bs := {bs ∈ R
ns |bs � bs � bs, b

min
s ≤ 1′

ns
bs ≤ bmax

s }.

Proof: See Appendix II-B.
Algorithms 2 and 3 can be used to to generate the vertices

of uncertainty sets (4) and (6) as described next.

i) For uncertainty set (4), first use Algorithm 2 to obtain
the vertices corresponding to each sub-horizonTi,s for
all the RES facilities. Then, concatenate the obtained
vertices to get the ones for each RES facility by Step 4
in Algorithm 3. Finally, run this step again to form the
vertices of (4) by concatenating the vertices of eachWi.

ii) For uncertainty sets (6), use Algorithm 2 to obtain the
vertices for each sub-horizonTs. Note that concatenating
step in Algorithm 3 is not needed in this case because
problem (25) is decomposable across sub-horizonsTs,
s = 1, . . . , S, and can be independently solved accord-
ingly.

After the detailed description of vertex enumerating proce-
dures for RES uncertainty sets, a discussion on the complexity
of solving (25) follows.

TABLE III
CLASS-2 DISPATCHABLE LOADS PARAMETERS

Load 1 Load 2 Load 3 Load 4

Pmin

Eq
0 0 0 0

Pmax

Eq
1.2 1.55 1.3 1.7

Emax
q 5 5.5 4 8
Sq 6PM 7PM 6PM 6PM
Tq 12AM 11PM 12AM 12AM

TABLE IV
L IMITS OF FORECASTED WIND POWER

Slot 1 2 3 4 5 6 7 8

W t
1

2.47 2.27 2.18 1.97 2.28 2.66 3.1 3.38

W
t
1 24.7 22.7 21.8 19.7 22.8 26.6 31 33.8

W t
2

2.57 1.88 2.16 1.56 1.95 3.07 3.44 3.11

W
t
2 25.7 18.8 21.6 15.6 19.5 30.7 34.4 31.1

Remark 2. (Complexity of solving(25)). Vertex enumeration
incurs exponential complexity because the number of vertices
can increase exponentially with the number of variables and
constraints [29, Ch. 2]. However, if the cardinality of each
sub-horizonTs is not very large (e.g., when24 hours are parti-
tioned into4 sub-horizons each comprising6 time slots), then
the complexity is affordable. Most importantly, the vertices of
W need only be listed once, before optimization.

IV. N UMERICAL TESTS

In this section, numerical results are presented to verify the
performance of the robust and distributed energy scheduler.
The Matlab-based modeling packageCVX [30] along with
the solverMOSEK [31] are used to specify and solve the
proposed robust energy management problem. The considered
microgrid consists ofM = 3 conventional generators,N = 6
class-1 dispatchable loads,Q = 4 class-2 dispatchable loads,
J = 3 storage units, andI = 2 renewable energy facilities
(wind farms). The time horizon spansT = 8 hours, corre-
sponding to the interval4PM–12AM. The generation costs
Cm(PGm

) = amP
2
Gm

+ bmPGm
and the utilities of class-

1 elastic loadsUn(PDn
) = cnP

2
Dn

+ dnPDn
are set to be

quadratic and time-invariant. Generator parameters are given in
Table I, whileSRt = 10kWh. The relevant parameters of two
classes of dispatchable loads are listed in Tables II and III(see
also [27]). The utility of class-2 loads isU t

Eq
(P t

Eq
) := πt

qP
t
Eq

with weightsπt
q = 4, 3.5, . . . , 1, 0.5 for t = 4PM, . . . , 11PM

andq ∈ Q.
Three batteries have capacityBmax

j = 30kWh (similar
to [5]). The remaining parameters arePmin

Bj
= −10kWh,

Pmax
Bj

= 10kWh, B0
j = Bmin

j = 5kWh, andηj = 0.95, for all
j ∈ J . The battery costsHt

j(B
t
j) are set to zero. The joint

uncertainty model withS = 1 is considered forW [cf. (6)],
whereWmin

1 = 40kWh, andWmax
1 = 360kWh. In order

to obtainW t
i andW

t

i listed in Table IV, MISO day-ahead
wind forecast data [32] are rescaled to the order of1 kWh
to 40 kWh, which is a typical wind power generation for a
microgrid [33].

Similarly, the fixed loadLt in Table V is a rescaled version
of the cleared load provided by MISO’s daily report [34]. For
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TABLE V
FIXED LOADS DEMAND AND TRANSACTION PRICES. THE UNITS OFαt

AND βt ARE ¢/KWH.

Slot 1 2 3 4 5 6 7 8

Lt 57.8 58.4 64 65.1 61.5 58.8 55.5 51
(Case A)
αt 2.01 2.2 3.62 6.6 5.83 3.99 2.53 2.34
βt 1.81 1.98 3.26 5.94 5.25 3.59 2.28 2.11
(Case B)
αt 40.2 44 72.4 132 116.6 79.8 50.6 46.8
βt 36.18 39.6 65.16 118.8 104.94 71.82 45.54 42.12
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Fig. 3. Optimal power schedules: Case A.

the transaction prices, two different cases are studied as given
in Table V, where{αt} in Case A are real-time prices of the
Minnesota hub in MISO’s daily report. To evaluate the effect
of high transaction prices,{αt} in Case B is set as20 times
of that in Case A. For both cases,βt = 0.9αt, which satisfies
the convexity condition for (P1) given in Proposition 1.

The optimal microgrid power schedules of two cases are
shown in Figs. 3 and 4. The stairstep curves includeP t

G :=
∑

m P t
Gm

, P t
D :=

∑

n P
t
Dn

, and P t
E :=

∑

q P
t
Eq

denoting
the total conventional power generation, and total elastic
demand for classes 1 and 2, respectively, which are the optimal
solutions of (P2). QuantityW t

worst denotes the total worst-case
wind energy at slott, which is the optimal solution of (25)
with optimal P̃ t

R.
A common observation from Figs. 3 and 4 is that the total

conventional power generationP t
G varies with the same trend

acrosst as the fixed load demandLt, while the class-1 elastic
load exhibits the opposite trend. Because the conventional
generation and the power drawn from the main grid are
limited, the optimal scheduling by solving (P2) dispatchesless
power forP t

D whenLt is large (from6PM to 10PM), and vice
versa. This behavior indeed reflects the load shifting ability of
the proposed design for the microgrid energy management.

Furthermore, by comparing two cases in Figs. 3 and 4, it
is interesting to illustrate the effect of the transaction prices.
Remember that the difference betweeñP t

R and W t
worst is

the shortage power needed to purchase (if positive) or the
surplus power to be sold (if negative), Figs. 3 shows that
the microgrid always purchases energy from the main grid
becauseP̃ t

R is more thanW t
worst. This is because for Case

A, the purchase priceαt is much lower than the marginal
cost of the conventional generation (cf. Tables I and V). The
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Fig. 4. Optimal power schedules: Case B.
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Fig. 5. Optimal costs: Case A and B.

economic scheduling decision is thus to reduce conventional
generation while purchasing more power to keep the supply-
demand balance. For Case B, sinceαt is much higher than that
in Case A, less power should be purchased which is reflected
in the relatively small gap betweeñP t

R andW t
worst across time

slots. It can also be seen thatP̃ t
R is smaller thanW t

worst from
7PM to 9PM, meaning that selling activity happens and is
encouraged by the highest selling priceβt in these slots across
the entire time horizon. Moreover, selling activity results in
the peak conventional generation from7PM to 9PM. Fig. 5
compares the optimal costs for the two cases. It can be seen
that the optimal costs of conventional generation and worst-
case transaction of Case B are higher than those of Case A,
which can be explained by the higher transaction prices and
the resultant larger DG output for Case B.

The optimal power scheduling of class-2 elastic load is
depicted in Fig. 6 for Case A. Due to the start timeSq

(cf. Table III), zero power is scheduled for the class-2 load
1, 3, and 4 from4PM to 6PM while from 4PM to 7PM for
the load 2. The decreasing trend for all such loads is due to the
decreasing weights{πt

q} from Sq to Tq, which is established
from the fast charging motivation for the PHEVs, for example.

Figs. 7 depicts the optimal charging or discharging power
of the DSs for Case B. Clearly, all DSs are discharging during
the three slots of7PM, 8PM, and9PM. This results from the
motivation of selling more or purchasing less power because
both purchase and selling prices are very high during these
slots (cf. Table V). The charging (discharging) activity can also
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be reflected by the stored energy of the battery devices shown
in Fig. 8. Note that, starting from the initial energy5kWh
at 4PM, the optimal stored energy of all units are scheduled
to have5kWh at 12AM, which satisfies the minimum stored
energy requirement for the next round of scheduling time
horizons.

Finally, Fig. 9 shows the effect of different selling prices
{βt} on the optimal energy costs, where Case B is studied
with fixed purchase prices{αt}. It can be clearly seen that the
net cost decreases with the increase of the selling-to-purchase-
price ratioβt/αt. When this ratio increases, the microgrid has
a higher margin for revenue from the transaction mechanism,
which yields the reduced worst-case transaction cost.

V. CONCLUSIONS ANDFUTURE WORK

A distributed energy management approach was developed
tailored for microgrids with high penetration of renewable
energy sources. By introducing the notion of committed
renewable energy, a novel model was introduced to deal
with the challenging constraint of the supply-demand balance
raised by the intermittent nature of renewable energy sources.
Not only the conventional generation costs, utilities of the
adjustable loads, and distributed storage costs were accounted
for, but also the worst-case transaction cost was included in
the objective. To schedule power in a distributed fashion, the
dual decomposition method was utilized to decompose the
original problem into smaller subproblems solved by the LCs
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Fig. 9. Optimal costs: Case B.

of conventional generators, dispatchable loads, DS units and
the RES.

A number of interesting research directions open up towards
extending the model and approach proposed in this paper.
Some classical but fundamental problems, such as the optimal
power flow (OPF) and the unit commitment (UC) problems
are worth re-investigating with the envisaged growth of RES
usage in microgrids.

APPENDIX I
ENHANCING THE BUNDLE METHOD

Using an auxiliary variabler, (26) can be re-written as

min
p,r

r +
ρℓ
2
‖p− yℓ‖

2 (28a)

s.t. G̃(pi) + g′
i(p− pi) ≤ r, i = 0, 1, . . . , ℓ. (28b)

Introducing multipliersξ ∈ R
ℓ+1
+ , the Lagrangian is given as

L(r,p, ξ) =

(

1−
ℓ+1
∑

i=0

ξi

)

r +
ρℓ
2
‖p− yℓ‖

2

+

ℓ+1
∑

i=0

ξi
(

G̃(pi) + g′
i(p− pi)

)

. (29)

Optimality condition onp, i.e.,∇pL(r,p, ξ) = 0 , yields

p∗ = yℓ −
1

ρℓ

ℓ+1
∑

i=0

ξigi. (30)
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Substituting (30) into (29), the dual of (28) is

max
ξ

−
1

2ρℓ

∥

∥

∥

∥

∥

ℓ+1
∑

i=0

ξigi

∥

∥

∥

∥

∥

2

+

ℓ+1
∑

i=0

ξi
(

G̃(pi) + g′
i(yℓ − pi)

)

(31a)

s.t. ξ � 0, 1′ξ = 1 (31b)

where1 is the all-ones vector.
Note that (31) is essentially a QP over the simplex inR

ℓ+1,
which can be solved very efficiently.

APPENDIX II
PROOFS OFPROPOSITIONS

To prove Propositions 3 and 4, the following lemma is
needed, which shows sufficient and necessary conditions for
a point to be a vertex of a polytope represented as a linear
system [35, Sec. 3.5].

Lemma 1. For a polytopeP := {x ∈ R
n|Ax � c}, a point

v ∈ P is a vertex if and only if there exists a subsystem
Ãx � c̃ of Ax � c so that rank(Ã) = n andv is the unique
(feasible) solution of̃Av = c̃.

A. Proof of Proposition 3

The polytopeA := {a ∈ R
n|a � a � a, amin ≤ 1′a ≤

amax} can be re-written asA := {a ∈ R
n|Aa � c}, where

A := [In×n,−In×n,1,−1]′ andc := [a′,−a′, amax,−amin]′.
By Lemma 1, enumerating vertices ofA is equivalent to
finding all feasible solutions of the linear subsystemsÃa = c̃,
such that rank-n matrix Ã is constructed by extracting rows
of A. It can be seen that such full column-rank matrixÃ can
only have two forms (with row permutation if necessary): i)
Ã1 = diag(d) with di ∈ {−1, 1}, i = 1, . . . , n; ii) Ã2(i, :) =
±1′, i = 1, . . . , n, andÃ2(j, :) = Ã1(j, :), ∀j 6= i. Basically,
Ã1 is constructed by choosingn vectors as a basis ofRn from
the first2n rows ofA. Substituting any row of̃A1 with ±1′,
forms Ã2. Finally, by solving all the linear subsystems of the
form Ãka = c̃k, for k = 1, 2, Proposition 3 follows readily.

B. Proof of Proposition 4

The polytopeB := {b ∈ R
n|b � b � b, bmin

s ≤ 1′
ns
bs ≤

bmax
s , s = 1, . . . , S} can be re-written asB := {b ∈ R

n|Bb �
c}, whereB := diag(B1, . . . ,BS), c := [c′1, . . . , c

′
S ]

′, Bs :=
[Ins×ns

,−Ins×ns
,1,−1]′, andcs := [a′s,−a′s, b

max
s ,−bmin

s ]′

for s = 1, . . . , S.
Similarly by Lemma 1, all the vertices ofB can be enumer-

ated by solving̃Bb = c̃, where the rank-n matrix B̃ is formed
by extracting rows ofB. Due to the block diagonal structure
of B, it can be seen that the only way to find itsn linear
independent rows is to findns linear independent vectors from
the rows corresponding toBs for s = 1, . . . , S. In other
words, the verticesbv can be obtained by concatenating all
the individual verticesbs as stated in Proposition 4.
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