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Robust Energy Management for Microgrids
With High-Penetration Renewables

Yu Zhang,Student Member, IEER\ikolaos GatsisMember, IEEEand Georgios B. Giannakisellow, IEEE

Abstract—Due to its reduced communication overhead and J
robustness to failures, distributed energy management is fo w
paramount importance in smart grids, especially in microgids, Wi
which feature distributed generation (DG) and distributed stor- ¢
age (DS). Distributed economic dispatch for a microgrid wih high
renewable energy penetration and demand-side managementB. Constants
operating in grid-connected mode is considered in this pape . )
To address the intrinsically stochastic availability of renewable Pg‘;‘l, Pg‘lix
energy sources (RES), a novel power scheduling approach is
introduced. The approach involves the actual renewable emgy as
well as the energy traded with the main grid, so that the suppl-
demand balance is maintained. The optimal scheduling stragy SR
minimizes the microgrid net cost, which includes DG and DS :
costs, utility of dispatchable loads, and worst-case traration L
cost stemming from the uncertainty in RES. Leveraging the dal
decomposition, the optimization problem formulated is sofed
in a distributed fashion by the local controllers of DG, DS, ad
dispatchable loads. Numerical results are reported to comborate
the effectiveness of the novel approach.

Rm,upa Rm,down

min max
PDn ' PDn

min,t max,t
PEq ' PEq

Index Terms—Demand side management, distributed algo-

. o P Sq, T,
rithms, distributed energy resources, economic dispatchenergy =
management, microgrids, renewable energy, robust optimation. gmax
q

Pmin pmax
NOMENCLATURE Bj 7 Bi

A. Indices, numbers, and sets B;niﬂ

Tt Number of scheduling periods, period index.

M, m Number of conventional distributed generation Bj"**
(DG) units, and their index. M

N,n  Number of dispatchable (class-1) loads, load in- Pr™, Pr™
dex. wtw,

Q, q Number of energy (class-2) loads, load index. '

J, J Number of distributed storage (DS) units, and their W; ", W
index.

1,1 Number of power production facilities with renew- _
able energy source (RES), and facility index. wmn, Y nax

S, s Number of sub-horizons, and sub-horizon index.

k Algorithm iteration index.

T Set of time periods in the scheduling horizon. af, Bt At ot

Ts Sub-horizons for all RES facilities.

Tis Sub-horizons for RES facility i. i

M Set of conventional DG units. DOD;; ¢}

N Set of dispatchable loads.

Q Set of energy loads.
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Set of DS units.
Power output uncertainty set for all RES facilities.
Power output uncertainty set of RES facility

Minimum and maximum power output of
conventional DG unitn.

Ramp-up and ramp-down limits of con-
ventional DG unitm.

Spinning reserve for conventional DG.
Fixed power demand of critical loads in
periodt.

Minimum and maximum power consump-
tion of loadn.

Minimum and maximum power consump-
tion of load¢ in periodt.

Power consumption start and stop times
of load q.

Total energy consumption of loadfrom
start time S, to termination timeT7,.
Minimum and maximum (dis)charging
power of DS unitj.

Minimum stored energy of DS unijt in
periodT'.

Capacity of DS unitj.

Efficiency of DS unitj.

Lower and upper bounds fdP},.

Minimum and maximum forecasted
power output of RES facilityi in ¢.
Minimum and maximum forecasted total
wind power of wind farmi across sub-
horizon7; .

Minimum and maximum forecasted total
wind power of all wind farms across sub-
horizon 7.

Purchase and selling prices; and functions
thereof.

Parameter of utility function of load.
Depth of discharge specification of DS
unit j; and parameters of storage cost.

C. Uncertain quantities
Power output from RES facility in periodt.

D. Decision variables
Power output of DG unitn in periodtz.
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Pp Power consumption of load in periodt. Storage

P,gq Power consumption of loadl in period. MGEM

Pfgj (Dis)charging power of DS unij in period g LC? ?LC LLCE
t . | |

B§ Stored energy of DS unijt at the end of the ‘
periodt. 1 ond
P}, Net power delivered to the microgrid from iy
) the R_ES anq storage in peried Erastic | Inelastic
P, Aucxiliary variable. Loads | Loads

X Vector collecting all decision variables.

AL pt, vt Lagrange multipliers.

z Vector collecting all Lagrange multipliers. Fig. 1. Distributed control and computation architectufeaanicrogrid.

Wi Power production from all RES facilities in

yielding the worst-case transaction cost. ~ on the Weibull distribution for wind speed and the wind-spee
to-power-output mappings, an ED problem is formulated to
minimize the risk of overestimation and underestimation of
available wind powef[3]. Stochastic programming is alsedus

worst

E. Functions

Oin(') Cost of conventional DG unitu in periodt.  y, cone with the variability of RES. Single-period chance-
U?n() Utility of load » in periodt. constrained ED problems for RES have been studiedlin [4],
Ufgq(') Utility of load ¢ in period. yielding probabilistic guarantees that the load will bevsel
Hi() Cost of DS unitj in periodt. _ _ Considering the uncertainties of demand profiles and PV
G() Worst transaction cost across entire norizon generation, a stochastic program is formulated to minirtiiee
G(-), G(-) Modified worst-case transaction cost. overall cost of electricity and natural gas for a buildingdBih
L(x,z) Lagrangian function. Without DSM, robust scheduling problems with penalty-lshse
D(z) Dual function. costs for uncertain supply and demand have been invedligate
in [6]. Recent works explore energy scheduling with DSM and
|. INTRODUCTION RES using only centralized algorithms] [7[.] [8]. An energy

Microgrids are power systems comprising distributed epergource control and DS planning problem for a microgrid is
resources (DERSs) and electricity end-users, possibly edgti  formulated and solved using model predictive controllin [9]
trollable elastic loads, all deployed across a limited gaphic Distributed algorithms are developed in[10], but they ocdy
area [1]. Depending on their origin, DERs can come eitherdinate DERs to supply a given load without considering the
from distributed generation (DG) or from distributed stgga stochastic nature of RES. Recently, a worst-case traosacti
(DS). DG refers to small-scale power generators such asldiesost based energy scheduling scheme has been proposed to ad-
generators, fuel cells, and renewable energy sources (REBgss the variability of RESs through robust optimizatioatt
as in wind or photovoltaic (PV) generation. DS paradigmzan also afford distributed implementation[11]. Howey&f]
include batteries, flywheels, and pumped storage. Spdbificaconsiders only a single wind farm and no DS, and its approach
DG brings power closer to the point it is consumed, therelmannot be readily extended to include multiple RESs and DS.
incurring fewer thermal losses and bypassing limitatiaons i  The present paper deals with optimal energy management
posed by a congested transmission network. Moreover, fioe both supply and demand of a grid-connected microgrid
increasing tendency towards high penetration of RES stemsorporating RES. The objective of minimizing the micriogr
from their environment-friendly and price-competitivevad- net cost accounts for conventional DG cost, utility of etast
tages over conventional generation. Typical microgriddaloads, penalized cost of DS, and a worst-case transacti&in co
include critical non-dispatchable types and elastic ailaible The latter stems from the ability of the microgrid to sell
ones. excess energy to the main grid, or to import energy in case

Microgrids operate in grid-connected or island mode, araf shortage. Arobust formulation accounting for the worst-
may entail distribution networks with residential or conrme case amount of harvested RES is developed. A novel model
cial end-users, in rural or urban areas. A typical configamat is introduced in order to maintain the supply-demand baanc
is depicted in Fig[dl; see alsd1[1]. The microgrid energgrising from the intermittent RES. Moreover, a transaction
manager (MGEM) coordinates the DERs and the controllakpeice-based condition is established to ensure conveXity o
loads. Each of the DERs and loads has a local controller (L&)e overall problem (Sectiofi]ll). The separable structure
which coordinates with the MGEM the scheduling of resourcesid strong duality of the resultant problem are leveraged to
through the communications infrastructure in a distridutedevelop a low-overheadistributed algorithm based on dual
fashion. The main challenge in energy scheduling is to aticoecomposition, which is computationally efficient and liest
for the random and nondispatchable nature of the RES. to communication outages or attacks. For faster convesgenc

Optimal energy management for microgrids including ecehe proximal bundle method is employed for the non-smooth
nomic dispatch (ED), unit commitment (UC), and demandubproblem handled by the LC of RES (Sectlod Ill). Nu-
side management (DSM) is addressed [ih [2], but withouterical results corroborate the merits of the novel designs
pursuing a robust formulation against RES uncertaintyeBas(Section 1V), and the paper is wrapped up with a concluding



summary (SectiofA V). can be encouraged by adopting for thth load an
Compared to[[11], the contribution of the paper is threefold  appropriately designed time-varying concave utility func

and of critical importance for microgrids with high-peragton tion Uy, (P, ). An example isUyg, (Pg ) = mPp
renewables. First, a detailed model for DS is included, and with weights {r/} decreasing irt from slots S, to T,.
different design choices for storage cost functions arergto Naturally, U, (P, ) = 0 can be selected if the consumer
accommodate, for example, depth-of-discharge specditsiti is indifferent to how power is consumed across slots.

Second, with the envisioned tide of high-penetration rexises
energy, multiple wind farms are considered alongside two

. . . . Distributed Storage Model
pertinent uncertainty models. Finally, a new class of aantr . _
lable loads is added, with each load having a requirement of-€t B; denote the stored energy of then battery at the

total energy over the scheduling horizon, as is the case witAd of the slot, with initial available energy3? while Bjh*
charging of plug-in hybrid electric vehicles (PHEVs). Dietd ~ denotes the battery capacity, so that< Bj < B, j €
numerical tests are presented to illustrate the merits ef tf = {1,---,J}. Let P, be the power delivered to (drawn
scheduling decisions for the DG, DS, and controllable load&®m) the jth storage device at slat, which amounts to
Notation Boldface lower case letters represent vectds; charging Py, = 0) or discharging L5 < 0) of the battery.
and R stand for spaces of x 1 vectors and real numbers,C€@rly, the stored energy obeys the dynamic equation
respectively;R" is the n-dimensional non-negative orthant; B§ =Bl 4 PL jeg teT. (1)
x’ transpose, anglx| the Euclidean norm ok. ! !

VariablestBj are constrained in the following ways:

II. ROBUST ENERGY MANAGEMENT FORMULATION i) The amount of (dis)charging is bounded, that is

Consider a microgrid comprising/ conventional (fossil Pg;“ ngBj < ngax 2
fuel) generators/ RES facilities, and/ DS units (see also Bl <pt ©)
Fig. ). The scheduling horizon i := {1,2,...,T} (e.g., iy =
one-day ahead). The particulars of the optimal scheduling with boundsP2i" < 0 and P2a* > 0, while n; € (0,1]

problem are explained in the next subsections. is the efficienc§/ of DS unitj [@] [15]. The constraint
in (3) means that a fraction; of the stored energgz?;*1
A. Load Demand Model is available for discharge.

Load lassified | ‘ ies. The first _ i) Final stored energy is also bounded for the sake of future
oads are classified in two categories. The first comprises ; : A min
9 P scheduling horizons, that B; > B,

inelastic loads, whose power demand should be satisfied a.ﬁ_o

: : . maximize DS lifetime, a storage cost!(B!) can be
all times. Examples are power requirements of hospitals grrn loved to encourace the stored ener go rémain above a
illumination demand from residential areas. bloy 9 9y

The second category consists of elastic loads, which Specified depth of discharge, denoteddsD; € [0, 1], where
di . . ' " q50% (0%) depth of discharge means the battery is empty
ispatchable, in the sense that their power consumption S [15]. Such a cost is defined al*(B!) = ![(1 —
adjustable, and can be scheduled. These loads can be fur 5 -)Bm.ax _BI]. Note that the storajge Jcoéft.(BJ?) can
d_ivided in two classes, each having the following charém{erbe injterp;reted ajs.imposing 2 soft constraint p?evejnting;elar
tIC.S. ) ) ) _ variations of the stored energy. Clearly, higher weightg}

) The first class contains loads with power consumptioghcoyrage smaller variation. If high power exchange is to be

Pp, € [Pp, Ppi], wheren € N := {L,....N},  gowed, these weights can be chosen very small, or one can
andt € 7. Higher power consumption yields higher,

- - : even select/{(B!) = 0 altogether.
utility for the end user. The utility function of theth I
dispatchable load/}, (P}, ), is selected to be increasing _
and concave, with typical choices being piecewise line&r Worst-case Transaction Cost
or smooth quadratic; see al$o [12]. An example from this Let W/ denote theactualrenewable energy harvested by the

class is an A/C. ith RES facility at time slot, and also letw collect all W/,
i) The second class includes loads indexedgoy Q := ie,w = [Wl, ..., Wl ... . W} ...,Wk]. To capture the
{1,...,Q} with power consumption Iimitfgﬁ“ and intrinsically stochastic and time-varying availability BES,

PR, and prescribed total energy requiremeijsvhich it is postulated thatv is unknown, but lies in a polyhedral
have to be achieved from the start tin%g to termi- uncertainty se?V. The following are two practical examples.
nation time7,; see e.g.[[13]. This type of loads can j) The first example postulates a separate uncertainfpset
be the plug-in hybrid electric vehicles (PHEVs). Power  for each RES facility in the form

demand variable$PJ€;q}tT:1 therefore are constrained as

Yits, Pk, = Eq and P € [PR™, PE™] 1 € T, Wi = {{Wf}%ilm <Wi<W,,

while szi“’t = Pp™t = 0fort ¢ {S,....,Ty,}.

Higher power consumption in earlier slots as opposed _ &

to later slots may be desirable for a certain load, so Wit < Z W< Wi T = U 72,3} (4)
that the associated task finishes earlier. This behavior teTi s s=1



wherelV! (Wf-) denotes a lower (upper) bound 8y; 7 of the wind power generation is intractable (see detailed di
is partitioned into consecutive but non-overlapping sulzussions in[[1l7] and_[18]). If an accurate probabilistic relod
horizons7; s fori =1,...,1, s =1,2,...,5; the total is available, an expectation-based stochastic programbean
renewable energy for thith RES facility over thesth formulated to bypass the conservatism of worst-case opdimi
sub-horizon is assumed bounded ﬁy‘““ and W2, tion. In the case of wind generation, suppose that wind power
In this example)V takes the form of Cartesian productWt is a function of the random wind velocity!, for which
different models are available, and the wind-speed-togrow
W=Wix...xWr. () output mapping$V/ (v!) are known[[19]. Then, the worst-case

i) The second example assumes a joint uncertainty modginsaction cost can be replaced by Empectedtransactlon
across all the RES facilities as costG({Pg}, {Pg,}) :=Ey (Zt Ll [Ph =Y W) +

—t Zj:l Pg I* _Bt[Pf%_Zi:l Wit(vi)‘FZj:l Pp. |7 ), where
W= {W|E§ S Wi Wi v coIIectévﬁ for all i andt. J )
pymin < Z Z Wi < Wmax T = U 7—} (6) D. Microgrid Energy Management Problem
te T, i=1 Apart from RES, microgrids typically entail also conven-
P . tional DG. Let P, be the power produced by theth
whereW; (V;) denotes a lower (upper) bound O  conyentional generator where € M := {1,...,M} and
T is partitioned into consecutive but non- overlappmge 7T . The cost of thenth generator is given by an increasing

sub-horizonsT, for s = 1,2,...,5; the total renewable ¢onyex functiort, (PL ), which typically is either piecewise
energy harvested by all the RES facilities over #18  |inear or smooth quad?atic.

sub-horizon is bounded By’ andW;"**; see also[8].  The energy management problem amounts to minimizing
The previous two RES uncertainty models are quite gethe microgrid social net cost; that is, the cost of converalio
eral and can take into account different geographical agéneration, storage, and the worst-case transactiondsta
meteorological factors. The only information required fie t the volatility of RES) minus the utility of dlspatchable b

deterministic lower and upper bounds, namigfy, W W;gm, .
Wi, Wminpymax which can be determined via inference (P1) min ct(PL ) — Ut (Ph )
schemes based on historical datal [16]. (PL, Ph ; mz::l m\LaG,, nz::l D, \'D,,

Supposing the microgrid operates in a grid-connected mode, ~ Fr,:Bi-F5, P}
a transaction mechanism between the microgrid and the main @
grid is present, whereby the microgrid can buy/sell energy— ZUEq PE —i—ZHt B} ) +G({P§},{P}§j}) (8a)
from/to the spot market. Lef’, be an auxiliary variable q=1 j=1
denoting the net power delivered to the microgrid from the subject to:
renewable energy sources and the distributed storage er ord min t max
to maintain the supply-demand balance at sldthe shortage Fe,' < g, <Fg,’ meM, teT (8b)

o + Py — P < Ry me M, teT 8c
energy per slot is given by[Pf% N ijl Pg} , f’“l Gt"”‘ = gy T (8c)
7 _ PG; —PGm SRm,dOWI']v mEM, tGT (8d)
while the surplus energy i%P}% - Zle Wi+ E‘j]:l ng] , M
where[a]* := max{a, 0}, and[a]” := max{—a,0}. Z (PE™ —PL )>SR', teT (8e)
The amount of shortage energy is bought with known m=1
purchase pricex, while the surplus energy is sold to the PR < PL <PR™ neN,teT (8f)
main grid with known selling price3’. The worst-case net Pmmt <P, < Pmaxt gcQ, teT (89)
transaction cost is thus given by Ba ’
I J Z qu =FE;, q€Q (8h)

Jr
Pl — _Z;Wf +_2;ng
1= Jj=

T
G({Ph}, {Ph,}) 1= max > <of
t=1

0< B! <BM, Bl >BM, jeJ, teT  (8i)

I J \ ) .
8| Ph= oW Y P, ) @ PBUSPh <PE jed.teT @)
i=1 j=1 — njB§_1 < PBj, jed, teT (8k)

where {P},} collects P, for ¢ = 1,2,...,T and {P} } Bj=B '+ Py, jeJd, teT (8l)
collectsPt forj=1,2,...,J, t=1,2,. T pmin < Ph < PRex teT (8m)
Remark 1. (Worst-case model versus stochastic madEte M . N
worst-case robust model advocated here is particulangcatt Z PGm + PR =L+ Z PDn + ZPE , teT. (8n)
tive when the probability distribution of the renewable gow ™=! n=1 a=1
production is unavailable. This is for instance the caserfok Constraints [(8b)E(8e) stand for the minimum/maximum

tiple wind farms, where the spatio-temporal joint disttibn  power output, ramping up/down limits, and spinning resgrve



respectively, which capture the typical physical requieats Proposition 2. If (P2) is feasible, and the selling pricg!

of a power generation system. Constrairts| (8f) and] (8mipes not exceed the purchase prigefor anyt € 7T, then
correspond to the minimum/maximum power of the flexiblthere is no duality gap.

load demand and committed renewable energy. Constrait (8n Proof: Due to the strong duality theorem for the optimiza-

is the power supply-demanialance equatiorensuring the . o ,
total demand is satisfied by the power generation at any tir‘rt1'é).n problems with linear constraints (ct.[21, Prop. 5]F.1

Note that constraintsC(BbJ=(BN) are linear, whité (-), it sgﬁlces to show. that t_he cost fun.ctlo.n.|s convex over the
. . f . entire space and its optimal value is finite. First, using the
~Up, (), ~Ug,(), and H;(-) are convex (possibly non- oo ment, convexit 6l({PL}) in {P%} is immediate
differentiable or non-strictly convex) functions. Consgeqtly, 9 ' y i R

. + " under the transaction price condition. The finiteness of the
the_ convexity c.)f (Pl). depends on that Gf({.P.R}’{PBJ})’ optimal value is guaranteed by the fact that the continuous
which is established in the following proposition.

convex cost[(10a) is minimized over a nonempty compact set
Proposition 1. If the selling price3! does not exceed the pur-specified by[(8b)£(@n), and (10b). [ |
chase pricen! for anyt¢ € T, then the worst-case transaction The strong duality asserted by Propositidn 2 motivates the
costG({ Py}, {Ph,}) is convex in{ P} and {Pf_}. use of Lagrangian relaxation techniques in order to solee th
scheduling problem. Moreover, problem (P2) is clearly sepa
rable, meaning that its cost and constraints are sums okterm
with each term dependent on different optimization vagabl
The features of strong duality and separability imply that
Lagrangian relaxation and dual decomposition are apgécab
to yield a decentralized algorithm; see also related tephes
I J in power systems [22] and communication netwolrks [23]} [24]
+ <P§ - Z W} + Z P}éj.)) (9) Coordinated by dual variables, the dual approach decorspose
i=1 j=1 the original problem into several separate subproblems tha
with 8¢ := (af — £%)/2, and~! = (at + B)/2. Since can be solved by the LCs in parallel. The development of the

the absolute value function is convex, and the operatiof§tributed algorithm is undertaken next.
of nonnegative weighted summation and pointwise maximum

(over an infinite set) preserve convexify [20, Sec. 3.2], the Dual Decomposition
claim follows readily. ] . .
; - . - Constraints [(8e),[(8n), and_(I0b) couple variables across
An immediate corollary of Prop03|t|dﬂ lis trzat the energéenerators Ioggs) aurﬁj )the RES Izétollerc):t dual variables
management.problem (P1) |s_convexﬂf <« .for all ¢. ) {)\t},and {;t} which dencte the corresponding La-
The next section focuses on this case, and designs an elfflcf{e“t‘ﬁ ’ ’ '

decentralized solver for (P1) grange multipliers. Keeping the remaining constraintsliaitp
' the partial Lagrangian is given by

Proof: Using that[a] " + [a]~ = |a|, and[a]T —[a]™ = a,
G({PL}, {Pfgj}) can be re-written as

I J

T
G({PR}. (P, ) = max 3 <6t L ED
eV i=1 j=1

In order to facilitate a distributed algorithm for (P1), aiva Llx,z) =)

IIl. DISTRIBUTED ALGORITHM T <
t=1

M N
Y Cn(PE,) = Up,(Ph,)
n=1

m=1

P = Ph + Z}-]:1 Pg ., (P1) can be re-written as _ Z
T M N

e w3 (3 chir) -3 th )
t=1 =1 n=1

Q J
-3 b (Ph)+ i) ) + P (om
q=1 7j=1
subject to: [(8b)- (Bn)
J

J
Ug, (PE)+ Hj-(Bé)) +G({Ph})

J=1

=

able transformation is useful. Specifically, upon intradgc o
q:
T

M
s Fm )

t=1 m=1

M N Q
—At<ZPgM+P§—ZP5n -> P, —Lf>
m=1 n=1 g=1

J
~ t Dt t t
Ph=Ph+> Ph, teT (10b) —v (PR_PR_ZPBj>}' (12)
j=1 =1
where x collects all the primal variables Then, the dual function can be written as
P, PL . PL PL B! PL PLY: {Pt! collects Pt .
%{orctm: 1]?.”. . ,E; arf}(jj o Pl PRk APR) " D(z) =min L(x,2)

I
Py— S wi

i=1

L st. (8)- €3). @) - @)
+4° (P]t‘( — Z Wf))
a

T
G({P}}) :== s ,
L "Iglea"}‘(’; ( = and the dual problem is given by
t t t
The following proposition extends the result of Proposifiib fax Dt({ﬂ b E)\ i’ ) (132)
to the transformed problem, and asserts its strong duality. st w=20N v eR, teT. (13b)



The subgradient method will be employed to obtain thechedules, which are then given by
optimal multipliers and power schedules. The iterativecpss
is described next, followed by its distributed implemeiatat %(k) = 1
1) Subgradient Iterations: The subgradient method ok
amounts to running the recursions 25, Sec. 6.3]

T

—1
‘ x(j) = %x(k -1+ %i(k —1). (21)

Il
=]

J

The running averages can be recursively computed dsn (21),

ph(k+1) = [ (k) + ag,: (k)T (14a) and are also guaranteed to converge to a neighborhood of the
Ak +1) = M (k) + agxe (k) (14b) optimal solution[26]. Note that other convergence-gusred
(k4 1) = v (k) + agoe (k) (14c) stepsize rules and primal averaging methods can also be

utilized; seel[2l7] for detailed discussions.
wherek is the iteration indexz > 0 is a constant stepsize; 2) Distributed ImplementationThe form of the subgradi-

while g,,:(k), g (k), and g, (k) denote the subgradients ofént iterations easily lends itself to a distributed impletagion
the dugl function with respect tat(k), At(k), and v*(k) utilizing the control and communication capabilities of a

respectively. These subgradients can be expressed in fthe fgPical microgrid. o
lowing simple forms Specifically, the MGEM maintains and updates the La-

grange multipliers via[{14). The LCs of conventional gen-

. M eration, dispatchable loads, storage units, and RES solve
gt (k) = SR* = > (P> — P, (k) (15a) subproblems[{16)E(20), respectively. These subprobleams ¢
m=1 be solved if the MGEM sends the current multiplier iterates
N Q t t t
ut(k), A'(k), and v*(k) to the LCs. The LCs send back
gxe(k) = L'+ Zl Pp,, (k) + 2; P, (k) to the MGEM the quantitie™)_, PL (k), S0, Ph (k),
n= q=

S, P (k), Yo7y Ph (k), Ph(k), and P} (k) which are

B Z PL (k) — Phk) (15b) in turn used to form the subgradients according(fd (15). The
— Gm R distributed algorithm using dual decomposition is tatedaas

- Algorithm 1, and the interactive process of message passing

J s o
gt (k) = Ph(k) + prgj (k) — PL(k) (15¢c) IS illustrated in Fig[P.
j=1

M

WhergP@m(k), pp, (), Py, (k), Pg,(k), Pg(k), and P (k)
are given by[(16)£(20).

Iterations are initialized with arbitrarp’(0),2%(0) € R,
and /(0) > 0. The iterates are guaranteed to converge to a
neighborhood of the optimal multipliers [25, Sec. 6.3]. The
size of the neighborhood is proportional to the stepsizd, an
can therefore be controlled by the stepsize.

When the primal objective isot strictly convex, a primal Fig. 2. Decomposition and message exchange.
averaging procedure is necessary to obtain the optimal powe

(C&(Pég () - Af(k))Pém) } (16)

(P (WY, € argmin

{Ps,,}
s.t. [8D)-(€d)

—N—
-

T
(Ph (k)}L, € argmin { 3 (Af(k)Pz)n b, (Pz)n)) } 17)
{rh, v =1
st [8)
T
{Pg, (k)}, € argmin {Z (A%k)Pqu - Up, (Pé))} (18)
{Pg,} t=1
s.t. [B9)-(BH)
T
{Pp,(k)}{_, € argmin {Z <ut(k)ng + H;(B;.))} (19)
{P5,.Bj} | =1
st B8
T
{Ph(k), Bh(k)YL, € argmin { 3 ((u%k) - A%k))P;»,) ALY u%kﬂ%} (20)
t=1 t=1

Pt ,Pt
L)



Algorithm 1 Distributed Energy Management Algorithm 3 Enumerate all the vertices of a polytofse

1: Initialize Lagrange multipliers\! = ! =v* =0 1: fori=1,2,...,5 do

2: repeat (k=0,1,2,..)) 2 Obtain vertex seV, by applying Algorithm2 toB3,

3 fort=1,2,...,7 do 3: end for

4: Broadcast\!(k), u!(k), andv!(k) to LCs of con-  4: Generate verticeb’ for B by concatenating all the indi-
vectional generators, controllable loads, storage uaitd, vidual verticesb, asb" = [(bY)',..., (b%)"], bs € V;
RES facilities

5: Update power schedulingP, (k), Pp (k)

P, (k), Pg (k), Ph(k), and P (k) by solving [I6)-2D) where for given{ P4} it holds that
UpdateX!(k), u'(k), andv!(k) via (I4) ,
T gs)

6 T
7 end er . . W* € arg max {Z <6t 5
8: Running averages of primal variables vial(21) wew (i3
9: until Convergence
With p := [P},..., PL], the bundle method generates a
Algorithm 2 Enumerate all the vertices of a polytope sequence{p,} with guaranteed convergence to the optimal
1: Initialize vertex sefy = () {Pr(k)}; see e.g.,[[28],[]25, Ch. 6]. The iterais.; is
2. Generate sefl := (aeRa;=a, Ord, i=1,...,n); obtained by minimizing a polyhedral approximation@fp)
check the feasibility of all the_points in sel, ie., if with a quadratic proximal regularization as follows
a™n < 1'a < @™}, thenV =V U {a} — wdd Pl — w12 26
3 Generate setA = {4 € R"a = a™" — AT al;gengm{ e(p) + 2 Ip =il } (26)
Z';ﬁidj or amax_z_;ﬁidj’ a; = a; or aj, 1,] = . ~ ~
17 n it check the feasibility of all the points W/here Ge(p) = max{G(po) + go(P_— Po),---,G(pe) +
in setA, ie. ifa<a=a, thenV =V U {a) g,(p — pe)}; g is the subgradient of/(p) evaluated at the
—— pointp = py, which is calculated according 0 24); proximity

weightp, is to control stability of the iterates; and the proximal
centery, is updated according to a query for descent

pei1, it G(ye) — G(pes1) > One 27)
Ye, otherwise

B. Solving the LC Subproblems

This subsection shows how to solve each subproblein (16)— Ye+1 =
(29). Specifically,Cy,(-), =Up, (), =Ug,(-), and Hj(-) are
chosen either convex piece-wise linear or smooth conv@herern, = G(y,) — (@E(le)er_;Hle —yeIIQ), 0 ¢
quadratic. Correspondingly, the first four subproblemg-16 0,1)
(19) are essentially linear programs (LPs) or quadratic prs) e
grams (QPs), which can be solved efficiently. Therefore, tI&e
main focus is on solvind (20).

The optimal solution ofP}, (k) in (20) is easy to obtain as

It is worth mentioning that[{26) is essentially a QP over

simplex in the dual space, which is efficiently solvable by

practical optimization algorithms. The correspondingéfar-

mation is shown in AppendiX | for the interested readers.
min  if ot t Algorithms for solvin depend on the form of the

Pp(k) = { Pﬁa)J ! g (k) = )\t (k) (22) uncegrtainty seW, and a?e%)borart)ed next.

PRaxif v (k) < X(k). '

However, due to the absolute value operator and the maximiga \jortex Enumerating Algorithms
tion overw in the definition of G({P}}), subproblem[{20) _ ) . .
5 In order to obtainw*, the convex nondifferentiable function

is a convex nondifferentiable problem i}, which can . " __ P I
be challenging to solve. As a state-of-the-art technique (23) should be maximized ovéw. This is generally an NP-

convex nondifferentiable optimization problenis |[25, Ch. 6hard convex maximization problem. However, for the specific
the bundle method is employed to obtdif ()} problem here, the special structure of the problem can be
Upon defining R ' utilized to obtain a computationally efficient approach.

Specifically, the global solution is attained at the extreme
o ~ ~ points of the polytope [25, Sec. 2.4]. Therefore, the olject
G{Ph}) == G({PRY) = > _v' (k)P (23) in @H) can be evaluated at all vertices P to obtain

t=1 the global solution. Since there are only finitely many ver-
tices, [2%) can be solved infaite number of steps.

for the polytopes/VV with special structure [cf.[{4)[16)],
c%aracterizations of vertices are established in Prapasi3
and[4. Capitalizing on these propositions, vertex enurimegyat

the subgradient ofi({P4}) with respect toP}, needed for
the bundle method can be obtained by the generalization
Danskin's Theorem [25, Sec. 6.3] as

- I rocedures are designed consequently, and are tabulated as
of —v(k), it B> Y (W) oo, 9 ey !
M r By P gorithms[2 and B.
OG({Pg}) = . I (24) y
Bt — k), if Ph< S (WhH* Proposition 3. For a polytopeAd := {a € R"|a < a <
i=1 a, ™" < 1'a < g™}, a¥ € A is a vertex (extreme point)



TABLE | TABLE Il
GENERATING CAPACITIES RAMPING LIMITS, AND COST COEFFICIENTS CLASS-2 DISPATCHABLE LOADS PARAMETERS
THE UNITS OF @, AND by, ARE $/(KWH)2 AND $/KWH, RESPECTIVELY

[ Load 1] Load 2 | Load 3 | Load 4

Unit Pmln Pmax Rm,up(down) am bm Pmm 0 0 0 0
1 10 50 30 0.006 | 0.5 Pmax 1.2 1.55 1.3 1.7
2 8 45 25 0.003 | 0.25
Emax 5 55 4 8
3 15 | 70 40 0.004] 03 5, 6PM | 7PM | 6PM | 6PM
Ty 12AM 11PM 12AM 12AM
TABLE I
CLASS-1 DISPATCHABLE LOADS PARAMETERS THE UNITS OFc¢,, AND dj, TABLE IV
ARE $/(KWH)2 AND $/KWH, RESPECTIVELY LIMITS OF FORECASTED WIND POWER
[ Coad 1] Load 2 [ Load 3 | Load 4 [ Load 5 | Load 6 Sot] 1 [ 2 [ 3] 4] 5] 6] 7]s
11:’; (1-53 146 125 253 217 372 wt [ 247]227]218]197] 228 266 | 3.1 | 3.38
—t
w 247 | 22.7 | 21.8 | 19.7 | 22.8 | 26.6 31 33.8
¢n || 0.002 [ -0.0017 | -0.003 | -0.0024 | -0.0015 | -0.0037 wt | 257 | 188 | 216 | 186 | 195 | 3.07 | 3.44 | 311
dn 0.2 0.17 0.3 0.24 0.15 0.37 :% i i } ’ ' ' ' '
W 257|188 | 216 | 156 | 195 | 30.7 | 344 | 31.1

of A if and only if it has one of the following forms: & = Remark 2. (Complexity of solving25)). Vertex enumeration

=. ;o . i V _ min max __ . . ” .
&; o azvfor %, B L. T ofr ) i -~ Cll Z#l aﬂ ora incurs exponential complexity because the number of \estic
i 0y @y =8 00T, ford,j=1,....,n,5#. can increase exponentially with the number of variables and
Proof: See AppendifI=A. m constraints [[29, Ch. 2]. However, if the cardinality of each

Essentially, Propositiof] 3 verifies the geometric charactéub-horizorf; is not very large (e.g., whed hours are parti-
ization of vertices. Sinc@V is the part of a hyperrectangletioned into4 sub-horizons each comprisiiigtime slots), then
(orthotope) between two para||e| hyperp|aneS, its vestican the CompleXity is affordable. Most importantly, the veescof
only either be the hyperrectangle’s vertices which are mot ¢V need only be listed once, before optimization.
away, or, the vertices of the intersections of the hypearege
and the hyperplanes, which must appear in some edges of the IV. NUMERICAL TESTS
hyperrectangle.

Next, the vertex characterization of a polytope in a Caatesi
product formed by many lower-dimensional polytopes like
is established, which is needed for the uncertainty[det (4).

In this section, numerical results are presented to vehnify t
performance of the robust and distributed energy scheduler
The Matlab-based modeling packa@¥X [30] along with
the solver MOSEK [31] are used to specify and solve the
Proposition 4. Assumeb € R™ is divided intoS consecutive proposed robust energy management problem. The considered

and non- overlapping blocks ds= [b}, ..., b%]’, whereb, € microgrid consists of\/ = 3 conventional generatorsy = 6
R™s and Zs _, ns = n. Consider a pontopdS’ ={b e class-1 dispatchable loadg, = 4 class-2 dispatchable loads,
R"b < b < b,pin < 1, b, < b s =1,...,5}. Then J = 3 storage units, and = 2 renewable energy facilities
bY = [(bY),. (bV) ] is a vertex ofB if and onIy if for (wind farms). The time horizon spar’s = 8 hours, corre-
s=1,...,8, b" is the vertex of a lower-dimensional polytopgponding to the intervalPM-12AM. The generation costs
B, = {b €R"|b, < b, < b,,b™" <1/ b, < pmax}, Cm(Pg,,) = amP3% + bnPg, and the utilities of class-
) : 1 elastic loadsU,,(Pp, ) = cnP2 + d,Pp, are set to be
Proof: See AppendixII-B. quadratic and time-invariant. Generator parameters aengn
Algorithms[2 and B can be used to to generate the vertlcp§o|e|:| whileSR® = 10kWh. The relevant parameters of two
of uncertainty setd {4) andll(6) as described next. classes of dispatchable loads are listed in Tdbles I[ah@ek

i) For uncertainty set[{4), first use Algorithid 2 to obtairalso [27]). The utility of class-2 loads ng (Pﬁ;q) = wngq
the vertices corresponding to each sub-horiZgn for  with weightsﬁ =4,35,...,1,0.5 for t = 4PM,... 11PM
all the RES facilities. Then, concatenate the obtainethdq € Q.
vertices to get the ones for each RES facility by Step 4 Three batteries have capacify;*** = 30kWh (similar
in Algorithm [3. Finally, run this step again to form theto [5]). The remaining parameters arié‘B“m = —10kWh,
vertices of [4) by concatenating the vertices of edh pmax = 10kWh, BO Bmm = 5kWh, andnj = 0.95, for all
||) For Uncertalnty SetﬂG) use Algorlthm 2 to obtain th? c J. The battery COStﬂt(Bt) are set to zero. The Jomt
vertices for each sub-horizoh. Note that concatenating yncertainty model withs =1 is considered fowV [cf. @)],
step in Algorithm[B is not needed in this case becauggere Wwpin — 40kWh and W@ = 360kWh. In order
problem m) is decomposable across sub-horizéns g gptain Wt and W, listed in Table[T¥, MISO day-ahead
s=1,...,5, and can be independently solved accordying forecast dataEBZ] are rescaled to the order déWh
ingly. to 40 kWh, which is a typical wind power generation for a
After the detailed description of vertex enumerating procenicrogrid [33].
dures for RES uncertainty sets, a discussion on the contyplexi Similarly, the fixed loadL? in Table[M is a rescaled version
of solving [25) follows. of the cleared load provided by MISQO's daily repadrt|[34]. For



TABLE V
FIXED LOADS DEMAND AND TRANSACTION PRICES THE UNITS OF o 120
AND A3 ARE ¢/KWH.

1001

Sot [ 1 _J2 |3 J4 [5 6 |7 |8 g I —

It 578 | 584 ] 64 | 651] 615 | 588] 555 51 < ' o,

(Case A) g 60—_._lm:|:—}______i:
2.01| 22 | 36266 | 583 | 399| 253|234 3 :

ﬁt 181 ] 1.98| 326 | 5.94 | 525 | 359 | 2.28 | 2.11 I S S S

(Case B) g orooimes S T S eirke-e |
402 | 44 | 72.4 | 132 | 1166 | 79.8 | 50.6 | 46.8 ¢ ! i

ﬁt 36.18 39.6 | 65.16| 118.8| 104.94| 71.82 45.54 42.12 ommmm s T —— -

1

-20 i i i i i i
4PM  5PM  6PM  7PM 8PM 9PM 10PM 11PM 12AM

120 T T T T T T T Time slot
G
== P
100r -- ﬁ’ N Fig. 4. Optimal power schedules: Case B.
—
80 == Wi H

250

I Conventional generation cost
[ Negative utility of class—1 loads
2001 [Negative utility of class—2 loads|
[ Worst-case transaction cost
I Vicrogrid net cost

Power scheduling (kwh)

150

20— -

1001

0
4PM  5PM GPM 7PM 8PM 9PM lOPM 11PM 12AM
Time slot

Optimal costs ($)

50

Fig. 3. Optimal power schedules: Case A.

Case A Case B

the transaction prices, two different cases are studiedvas g
in Table[M, where{a'} in Case A are real-time prices of therig. 5. Optimal costs: Case A and B.
Minnesota hub in MISO'’s daily report. To evaluate the effect
of high transaction priceg,a’} in Case B is set ag0 times
of that in Case A. For both case$’, = 0.9a", which satisfies economic scheduling decision is thus to reduce converitiona
the convexity condition for (P1) given in Propositioh 1. generation while purchasing more power to keep the supply-

The optimal microgrid power schedules of two cases ademand balance. For Case B, sin¢ds much higher than that
shown in FigsEB anfll4. The stairstep curves inclije:= in Case A, less power should be purchased which is reflected
>, P = >, Pp,, and P, := > Pj, denoting in the relatively small gap betwedl?’gEz and W/, across time
the total convenuonal power generation, and total elassitots. It can also be seen thay, is smaller thariVy,, from
demand for classes 1 and 2, respectively, which are the aptifiPM to 9PM, meaning that selling activity happens and is
solutions of (P2). QuantityV. denotes the total worst-caseencouraged by the highest selling prigein these slots across
wind energy at slot, which is the optimal solution of(25) the entire time horizon. Moreover, selling activity resuit
with optimal Py,. the peak conventional generation fréaf®M to 9PM. Fig.[B

A common observation from Figgl 3 afhtl 4 is that the totabmpares the optimal costs for the two cases. It can be seen
conventional power generatidpf, varies with the same trendthat the optimal costs of conventional generation and worst
acrosst as the fixed load demantf, while the class-1 elastic case transaction of Case B are higher than those of Case A,
load exhibits the opposite trend. Because the conventiomdlich can be explained by the higher transaction prices and
generation and the power drawn from the main grid atbe resultant larger DG output for Case B.
limited, the optimal scheduling by solving (P2) dispatcless The optimal power scheduling of class-2 elastic load is
power for P}, whenL! is large (from6PM to 10PM), and vice depicted in Fig[®6 for Case A. Due to the start tinSe
versa. This behavior indeed reflects the load shiftingtghilf  (cf. Table[dl), zero power is scheduled for the class-2 load
the proposed design for the microgrid energy managementl, 3, and 4 fromdPM to 6PM while from 4PM to 7PM for

Furthermore, by comparing two cases in Figs. 3 @hd 4,tite load 2. The decreasing trend for all such loads is dueeto th
is interesting to illustrate the effect of the transactioitgs. decreasing Welght$7rq} from S, to T}, which is established
Remember that the difference betweéti and W, is from the fast charging mot|vat|on for the PHEVs, for example
the shortage power needed to purchase (if positive) or theFigs.[1 depicts the optimal charging or discharging power
surplus power to be sold (if negative), Fidsd. 3 shows thaf the DSs for Case B. Clearly, all DSs are discharging during
the microgrid always purchases energy from the main gride three slots ofPM, 8PM, and9PM. This results from the
becauseP}, is more thanWW/,. This is because for Casemotivation of selling more or purchasing less power because
A, the purchase prices! is much lower than the marginalboth purchase and selling prices are very high during these
cost of the conventional generation (cf. Talles | Bdd V). Thsdots (cf. Tabl€V). The charging (discharging) activitp@dso
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I Conventional generation cost

3001 I Negative utility of class-1 loads

["INegative utility of class-2 loads

250} I Worst-case transaction cost
I Vicrogrid net cost

Optimal costs ($)

P}, scheduling (kwh)

-15

4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM 0 0.3 0.6 0.9

Time slot Ratio: pYa
Fig. 7. Optimal power schedule fdng: Case B. Fig. 9. Optimal costs: Case B.

be reflected by the stored energy of the battery devices sh of conventlonal generators, dispatchable loads, DS umnits a

€ RES.
in Fig. [8. Note that, starting from the initial energkWh . . N
at 4PM, the optimal stored energy of all units are scheduledA number of interesting research directions open up towards

to have5kWh at 12AM, which satisfies the minimum stored extending the model and approach proposed in this paper.
energy requirement for the next round of scheduling tin Some classical but fundamental problems, such as the dptima

horizons. power flow (OPF) and the unit commitment (UC) problems
Finally, Fig.[9 shows the effect of different selling prices are worth re-investigating with the envisaged growth of RES

{B'} on the optimal energy costs, where Case B is studieqd 3¢ in microgrids.

with fixed purchase pricegx!}. It can be clearly seen that the

net cost decreases with the increase of the selling-tohpises APPENDIXI

price ratio3’ /a’. When this ratio increases, the microgrid has ENH'?*.NC'NG THE BUNDLE METHOD .

a higher margin for revenue from the transaction mechanismUsing an auxiliary variable, (26) can be re-written as

which yields the reduced worst-case transaction cost. . )
y min r+p—||p—yg|\2 (28a)

p,r 2

V. CONCLUSIONS ANDFUTURE WORK st. Gpi)+gp—-pi)<r,i=0,1,...,0. (28b)

A distributed energy management approach was developagtoducing multipliers¢ € R, the Lagrangian is given as
tailored for microgrids with high penetration of renewable o
energy sources. By introducing the notion of committed Lirp.€) = (1- ZE 4P pe H — v
renewable energy, a novel model was introduced to deal " b or Py
with the challenging constraint of the supply-demand badan 011
raised by the intermittent nature of renewable energy ssurc i Zfz
Not only the conventional generation costs, utilities oé th
adjustable loads, and distributed storage costs were atambu L . .
for, but also the worst-case transaction cost was included(?ptlmallty condition onp, i.e., VpL(r,p,£) = 0, yields
the objective. To schedule power in a distributed fashiba, t 241
dual decomposition method was utilized to decompose the =yr— — Z&gz (30)
original problem into smaller subproblems solved by the LCs

(pi)+gp—pi)). (29



Substituting [(3D) into[(29), the dual di(28) is

1
£+1 £+1 g

mgax —% Zfigi + Zfz‘ (G(Pz) + g;()’z - Pz‘)) (31a)
Pe |0 i=0

@31 @

st. £€=0, 1¢=1

where1 is the all-ones vector. (31

Note that[[31l) is essentially a QP over the simpleRir!,
which can be solved very efficiently. [4]

(5]
APPENDIXII

PROOFS OFPROPOSITIONS [6]
To prove Proposition§]3 and 4, the following lemma is
needed, which shows sufficient and necessary conditions for
a point to be a vertex of a polytope represented as a line
system[[35, Sec. 3.5].

Lemma 1. For a polytopeP := {x € R"|Ax =< c}, a point  [g]
v € P is a vertex if and only if there exists a subsystem
Ax < ¢ of Ax < c so that rankA) = n andv is the unique

(feasible) solution oAv = ¢. 9]

[10]

A. Proof of Propositiof 13

The polytoped := {a € R"|a < a < a,a™" < 1'a <
a™**} can be re-written asl := {a € R"|Aa < c}, where [t
A = [Lyxn, —Lixn,1,—1]) andc := [@, —a’, a™>*, —a™]',
By Lemmall, enumerating vertices of is equivalent to [12]
finding all feasible solutions of the linear subsystefs = ¢,
such that rank: matrix A is constructed by extracting rows|13]
of A. It can be seen that such full column-rank matfixcan
only have two forms (with row permutation if necessary): i)
A, =diagd) with d; € {-1,1}, i =1,...,n; i) Ax(i,:) = [14]
+1,i=1,...,n,andAy(j,:) = Ai(j,:), Vj # i. Basically,
A, is constructed by choosingvectors as a basis & from
the first2n rows of A. Substituting any row ofA; with 1/, [15]
forms A,. Finally, by solving all the linear subsystems of the
form Aia = &, for k = 1,2, Propositior B follows readily. [16]

B. Proof of Proposition 4 17

The polytopeB := {b € R"|b < b < b,b™" <1/ b, < [1g]

pmax g =1,...,5} can be re-written a8 := {b € R"|Bb =<

c}, whereB :=diagB1, ..., Bs), c:=[c},...,c4], By == [19]
L. xn. —In.xn,, 1, —1], andc, := [a}, —al, bax, —pmin)
fors=1,...,5.

Similarly by LemmélL, all the vertices & can be enumer- g
ated by solvingBb = ¢, where the rank: matrix B is formed
by extracting rows ofB. Due to the block diagonal structurel21]
of B, it can be seen that the only way to find itslinear [y
independent rows is to finad, linear independent vectors from
the rows corresponding t@B, for s = 1,...,S. In other
words, the verticeb’ can be obtained by concatenating a|[|23]
the individual verticed, as stated in Propositidd 4.

11
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