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Abstract In this paper, the equivalence relation between a semi-infinite quadrati-
cally constrained convex quadratic programming problem and a combined semi-
definite and semi-infinite programming problem is considered. Then, an efficient
and reliable discretization algorithm for solving a general class of combined semi-
definite and semi-infinite programming problems is developed. Both the continuous-
time envelope-constrained optimal equalization filter and the corresponding robust
envelope-constrained filter for a communication channel are solved by using the pro-
posed algorithm.
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1 Introduction

In signal processing, the response of a filter with a linear time invariant finite impulse
response u(t) to a given input signal s(t) can be corrupted by random noise. The filter
output response should consist of two components ψ(t) and ζ(t) that are due to the
signal and noise, respectively. The continuous-time envelope-constrained (EC) filter
design problem is to design a filter which minimizes the output noise power (Evans
et al. 1977) while the noiseless output response ψ(t) fits into an output pulse shape
envelope defined by the lower and upper boundaries ξ−(t) and ξ+(t), respectively.
Due to the fact that the output noise power is proportional to the squared L2 norm
of the filter when the input noise is white, the EC filter problem is to design a filter
such that its squared L2 norm is minimized, whereas ψ(t) fits into an output pulse
shape envelope. The EC filter problem was first posed in the early 1970s (see Evans
et al. 1977, Fortmann and Evans 1974). Since then, it has become an active field. This
filter design problem can be cast as a semi-infinite optimization problem involving a
strictly quadratic cost and continuous linear constraints. Various methods for solving
this problem have been obtained in the literature (see, for example, Evans et al. 1977,
Tseng et al. 1999 and Vo et al. 1995). In Tseng et al. (1999), it is shown by using
Carathéodory’s dimensional theorem that the continuous-time EC filtering problem
is equivalent to a finite optimization problem. The optimal solution obtained using
these methods are such that the noiseless output response of the optimum filter to the
prescribed input signal touches the output boundaries at some points. Thus, any per-
turbation of the prescribed input signal or error in the implementation of the optimal
filter will result in the envelope constraints being violated. Clearly, it is of practical
importance to improve the tolerance of the optimal filter to perturbations on the input
signal and implementation errors. One approach is to maximize the minimum dis-
tance between the output response and the output envelope constraints, subject to a
specified allowable increase in the optimal noise power gain. This formulation was
called a robust envelope-constrained filter problem. It was first proposed in (Can-
toni 1998) and (Zang et al. 1996) as a semi-infinite constrained optimization prob-
lem involving a linear cost, continuous linear constraints and a quadratic constraint.
In Tseng et al. (2000), the robust EC filter problem is converted into an equivalent
strictly convex constrained optimization problem with integral cost. Its solution can
be obtained by solving a sequence of strictly convex optimization problems. This
method is computationally rather expensive. There are the following two reasons.
The first reason is the requirement of the numerical integration of the cost function.
To explain the second reason, we need to point out that the solution method used
in solving the sequence of strictly convex optimization problems with integral cost
is the sequential quadratic programming technique with active set strategy (see, for
example, Chap. 3 of Teo 1991 for details), where the search direction at each iter-
ation is determined by the solution of a quadratic programming problem involving
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a quadratic cost and a set of linear constraints. The quadratic cost is obtained by
taking the quadratic approximation of the cost function, while the linear constraints
are from the linear approximation of the constraints. Thus, the sequential quadratic
programming technique may not be computationally efficient for problems involv-
ing quadratic constraint such as the case of the robust EC filtering problem. In this
paper, we aim to develop a more efficient method. For this, we first show that both
the continuous-time EC filter and robust EC filter problems can be converted into
respective equivalent combined semi-definite and semi-infinite programming prob-
lems. Then, an efficient and practical method is developed for solving a general com-
bined semi-definite and semi-infinite programming (SDSIP) problem, which includes
those mentioned above as special cases. The algorithm obtained is allowed to have
an infeasible starting point. It is then used to solve the continuous-time EC filter and
robust EC filter problems. Numerical results obtained in Sect. 5 clearly indicate the
effectiveness of the proposed algorithm.

The rest of the paper is organized as follows. In Sect. 2, the continuous-time EC
filtering problem and robust EC filtering problem are formulated. In Sect. 3, the rela-
tionship between a general semi-infinite quadratically constrained convex quadratic
programming problem and a (SDSIP) problem is established. In Sect. 4, the La-
grangian dual problem is introduced for the (SDSIP) problem. An efficient and prac-
tical algorithm allowing an infeasible starting point is developed for solving the (SD-
SIP) problem. General convergence of the algorithm is established in the paper. In
Sect. 5, the continuous-time EC filter and the robust envelope-constrained filter prob-
lems are solved by the proposed algorithm.

2 Problem formulations

In this section, we shall first review the formulations of the continuous-time EC
filter and robust EC filter problems with orthonormal basis (Zang et al. 1996;
Tseng et al. 2000). These problems can be written as respective semi-infinite con-
strained convex quadratic programming problems. Then, a general semi-infinite
quadratically constrained convex quadratic programming problem, including those
mentioned above as special cases, is introduced.

2.1 EC filter with orthonormal basis of L2([0,∞))

Let L2([0,∞)) denote the Hilbert space consisting of all real-valued Lebesgue mea-
surable and square integrable functions on the semi-infinite interval [0,∞) with inner
product

〈f,g〉 =
∫ ∞

0
f (t)g(t)dt, ∀f,g ∈ L2([0,∞)).

The norm of f ∈ L2([0,∞)) is defined by

‖f ‖ = √〈f,f 〉 =
√∫ ∞

0
f (t)2dt.
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Let {ϕj }∞j=0 be a complete orthonormal basis of L2([0,∞)) space. Then, any f ∈
L2([0,∞)) can be expressed as

f (t) =
∞∑

j=0

xjϕj (t) and xj = 〈f,ϕj 〉, j = 0,1, . . . ,

where

〈ϕi,ϕj 〉 =
{

1, if i = j

0, if i �= j.

Let u(t) ∈ L2([0,∞]) be the impulse response of a linear-invariant filter and ψ(t)

be the continuous noiseless output response with support in [0,∞). Then, the output
response ψ(t) can be expressed as

ψ(t) =
∫ ∞

0
u(τ)s(t − τ)dτ,

where s(t) is the continuous input signal with support in [0,∞). It follows from
(Evans et al. 1977; Tseng et al. 1999; Tseng et al. 2000; Vo et al. 1995) that the
continuous-time EC filtering problem may be posed as follows:

min ‖u‖2 = uT u, x ∈ RN

s.t. ξ−(t) ≤ ψ(x, t) ≤ ξ+(t), ∀t ∈ [0,∞),
(1)

where ξ+(t) and ξ−(t) denote the continuous upper and lower mask boundaries,
Since the function u(t) ∈ L2([0,∞)), u(t) can be expressed as

u(t) =
∞∑

j=0

xjϕj (t), (2)

where xj = 〈u,ϕj 〉, j = 0,1, . . . are the filter coefficients.
Consider only those filters uN(t) whose impulse responses are represented by a

finite expansion on the orthonormal basis:

uN(t) =
N−1∑
j=0

xjϕj (t). (3)

The corresponding output response is

ψN(t) =
∫ T

0
uN(τ)s(t − τ)dτ = ΘT (t)x, (4)

where the vector of filter coefficients x = [x0, x1, . . . , xN−1]T ∈ RN, and the input
signal Θ(t) = [θ0(t), θ1(t), . . . , θN−1]T with

θj (t) =
∫ T

0
ϕj (τ )s(t − τ)dτ, j = 0, . . . ,N − 1, (5)
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where θj ∈ C([0, T ]), j = 0,1, . . . ,N − 1, and C([0, T ]) denotes the Banach space
of all real-valued continuous functions on [0, T ] with the norm defined by

‖θ‖C[0,T ] = max
0≤t≤T

|θ(t)|.

The norm ‖uN‖ of the filter can be written as:

‖uN‖ =
(

N−1∑
i=0

N−1∑
j=0

xixj 〈ϕi,ϕj 〉
) 1

2

= (xT x)
1
2 = ‖x‖. (6)

From (3–6), the continuous-time EC filter problem with orthonormal basis can be
written as the following semi-infinite programming problem (P ):

min ‖x‖2 = xT x, ∈RN

s.t. ξ−(t) ≤ ψN(x, t) ≤ ξ+(t), ∀t ∈ [0, T ]. (7)

2.2 Robust EC filter formulation

For a given filter coefficient x, we define

[φ+(x)](t) = ξ+(t) − ψN(x, t),

[φ−(x)](t) = ψN(x, t) − ξ−(t).

To quantify the notion of robustness, we define the constraint robustness margin as

σ(x) = min
{

min
t

[φ+(x)](t),min
t

[φ−(x)](t)
}
.

In practice, it may be required to have a larger constraint robustness margin over
certain intervals. In this case, a weighting function β can be used to achieve the
purpose. More specifically, we define the weighted constraint robustness margin as
follows:

σβ(x) = min

{
min

t

[φ+(x)](t)
β(t)

,min
t

[φ−(x)](t)
β(t)

}
, (8)

where β is a positive continuous weighting function that is normalized so that it
attains a minimum of unity. Note that if x∗ is the optimal solution of problem (P )

and at least one of the constraints is active at the solution x∗, then σβ(x∗) = 0.
The EC filtering problem with the constraint robustness is formulated (see Tseng

et al. 2000) as the following semi-infinite programming problem (Q):

max σβ

s.t. ξ−(t) + β(t)σβ ≤ ψN(x, t) ≤ ξ+(t) − β(t)σβ, ∀t ∈ [0, T ],
‖x‖2 ≤ (1 + δ)‖x∗‖2,

(9)

where δ > 0 is a constant that specifies the allowable amount of increase of the output
noise power gain and x∗ is the prior solution of (7).

The problem (Q) is much more expensive to solve than the problem (P ) because
of the additional quadratic constraint.
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2.3 Semi-infinite quadratically constrained convex quadratic programming

Let

B(t) =
[

ΘT (t)

−ΘT (t)

]
2×N

, b(t) =
[
ξ+(t)

ξ−(t)

]
2×1

, C =
⎡
⎢⎣

1 0
. . .

0 1

⎤
⎥⎦

N×N

.

The EC filtering problem (P ) can be cast as the following programming problem.

min xT Cx

s.t. B(t)x − b(t) ≤ 02, ∀t ∈ [0, T ]. (10)

On the other hand, by letting

B1(t) =
[

ΘT (t) β(t)

−ΘT (t) β(t)

]
2×(N+1)

, b(t) =
[
ξ+(t)

ξ−(t)

]
2×1

,

B2 =

⎡
⎢⎢⎢⎣

1 0
. . .

1
0 0

⎤
⎥⎥⎥⎦

(N+1)×(N+1)

,

where B3 = c = (0, . . . ,0,−1)T and y = (xT , σβ)T are N + 1 dimensional vectors,
the robust EC filtering problem (Q) can be written as the following programming
problem.

min cT y

s.t. B1(t)y − b(t) ≤ 02, t ∈ [0, T ],
yT B2y − (1 + δ)‖x∗‖2 ≤ 01,

BT
3 y ≤ 01.

(11)

Let us now consider a general semi-infinite quadratically constrained convex
quadratic programming problem (Q2P):

min xT Q0x + bT
0 x + c0

s.t. xT Q(t)x + b(t)T x + c(t) ≤ 0, t ∈ B.
(12)

Here B is a compact set, Q0 and Q(t), t ∈ B, are positive semi-definite matrices
and x is an n dimensional vector in Rn. Clearly, the problems (10) and (11) are two
special cases of the problem (Q2P).

When the parameter set B is finite, the corresponding version of the problem
(Q2P) reduces to a special case considered in (Wolkowicz et al. 2000).

To avoid the trivial solution uN(t) = 0, i.e., x = 0N , we impose the following
assumption.
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Assumption 1 There exists at least one point in the output mask at which the upper
and lower mask boundaries have the same sign, i.e., there exists at least one t0 ∈ [0, T ]
such that ξ+(t0)ξ

−(t0) > 0.

3 Property of the optimal solution

In this section, we shall show that the problem (Q2P) can be transformed into a
combined semi-definite and semi-infinite programming (SDSIP) problem such that
the solution of (Q2P) can be obtained by solving a corresponding (SDSIP) problem
to be defined in this section.

From Sect. 2, we see that the EC filtering problem and the robust EC filtering prob-
lem are special cases of the semi-infinite quadratically constrained convex quadratic
programming problem (Q2P). Thus, by virtue of the relationship between the prob-
lem (Q2P) and the (SDSIP) problem, we can obtain the solutions to the EC filtering
and robust filtering problems by solving their corresponding (SDSIP) problems.

Let Sn denote the set of real symmetric n×n matrices. The standard inner product
on Sn is

A • B = tr{AB} =
∑
i,j

aij bij .

By X � 0, where X ∈ Sn, we mean that the matrix X is positive semidefinite. Sn+
denotes the set of all positive semidefinite matrices in Sn.

Consider the problem (Q2P). Suppose that

P0 =
(

c0 bT
0 /2

b0/2 Q0

)
, P (t) =

(
c(t) b(t)T /2
b(t)/2 Q(t)

)
, t ∈ B,

and

y = (y0, x
T )T ∈ Rn+1.

Then, the problem (Q2P) can be re-formulated equivalently as (Q2P)y given below.

min yT P0y

s.t. y ∈ F,
(13)

where

F = {y ∈ Rn+1 | yT P (t)y ≤ 0, ∀t ∈ B,y0 = 1}.
Define

Φ = {Y ∈ Sn+1+ | Y00 = 1, P (t) • Y ≤ 0, ∀t ∈ B}, (14)

where Y00 denotes the element of the first row and the first column of the matrix Y .
We introduce a combined semi-definite and semi-infinite programming problem:

min P0 • Y

s.t. Y ∈ Φ.
(15)
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Let

F̂ = {Ye1 | Y ∈ Φ},
where e1 is an (n + 1)-dimensional unit vector with its first component being 1 and
other components zero.

We introduce another quadratic programming problem

min yT P0y

s.t. y ∈ F̂ .
(16)

It follows readily that Φ and F̂ are convex subsets in Sn+1 and Rn+1, respectively.

Lemma 3.1 Suppose that Q(t), t ∈ B , is a positive semi-definite matrix. Then,

yT P (t)y ≤ 0, t ∈ B and y0 = 1, ∀y ∈ F̂ .

Proof Take any y ∈ F̂ . Then, there exists a Y ∈ Φ such that

y = Ye1.

It follows from Y ∈ Φ and y = Ye1 that

y0 = 1 and P(t) • Y ≤ 0, t ∈ B.

Let

Y =
(

1 xT

x X

)
.

Then,

y = Ye1 =
(

1
x

)
,

and, for any t ∈ B,

yT P (t)y = xT Q(t)x + bT (t)x + c(t)

= Q(t) • X + bT (t)x + c(t) − Q(t) • (X − xxT )

≤ −Q(t) • (X − xxT ).

Since Y is a positive semi-definite matrix, we have

X − xxT ∈ Sn+.

It follows from Q(t) ∈ Sn+, t ∈ B, that

Q(t) • (X − xxT ) ≥ 0, t ∈ B.

Thus,

yT P (t)y ≤ 0, t ∈ B.

This completes the proof. �
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The following result shows that the optimal costs of the problem (15) and the
problem (16) are equivalent.

Theorem 3.1 Suppose that Q0 and Q(t), t ∈ B , are positive semi-definite matrices.
Then,

(i) y is a feasible solution of the problem (16) if and only if y = Ye1, where Y is
some feasible solution of the problem (15).

(ii) inf{P0 • Y | Y ∈ Φ} = inf{yT P0y | y ∈ F̂ }.

Proof The assertion (i) holds from the construction of Φ and F̂ . To prove the asser-
tion (ii), take any ȳ ∈ F̂ . By Lemma 3.1, we have

ȳ0 = 1 and ȳT P (t)ȳ ≤ 0, ∀t ∈ B.

Then,

Ȳ = ȳȳT ∈ Φ,

and

inf{P0 • Y | Y ∈ Φ} ≤ P0 • Ȳ = ȳT P0ȳ, ∀ȳ ∈ F̂ .

Thus,

inf{P0 • Y | Y ∈ Φ} ≤ inf{yT P0y | y ∈ F̂ }. (17)

Conversely, taking any Y ∈ Φ , we have y = Ye1 ∈ F̂ and y0 = 1. Suppose that

Y =
(

1 xT

x X

)
.

Then,

y = Ye1 =
(

1
x

)
,

and

P0 • Y = P0 • Y − P0 • (yyT ) + yT P0y

= Q0 • (X − xxT ) + yT P0y. (18)

Since Y and Q0 are positive semi-definite matrices, we have

Q0 • (X − xxT ) ≥ 0.

It follows that

P0 • Y ≥ yT P0y ≥ inf{yT P0y | y ∈ F̂ }.
So,

inf{P0 • Y | Y ∈ Φ} ≥ inf{yT P0y | y ∈ F̂ }. (19)

Thus, by (17) and (19), the assertion (ii) holds. The proof is complete. �
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Corollary 3.1 Suppose that Y ∗ is an optimal solution of the problem (15). Then,
y∗ = Y ∗e1 is an optimal solution of the problem (16).

Proof By examining the proof of Theorem 3.1 given in Appendix, we see that the
result holds. �

Theorem 3.2 If Q(t), t ∈ B, is a positive semi-definite matrix, then,

F = F̂ .

Proof Suppose that y ∈ F . Then,

yT P (t)y ≤ 0, t ∈ B and y0 = 1.

Let Y = yyT . We have Y00 = 1 and

P(t) • Y ≤ 0, t ∈ B.

Thus, y = Ye1 ∈ F̂ , i.e.,

F ⊂ F̂ . (20)

Conversely, suppose that y ∈ F̂ . By Lemma 3.1, we have

F̂ ⊂ F. (21)

Thus, by (20) and (21), the result holds. �

Remark 1 It is well-known that the problem (15) is only a relaxation of the general
semi-infinite quadratically constrained quadratic programming problem. In general,
we cannot obtain the exact solution of the problem (Q2P) from the solution of the
problem (15). In fact, we cannot even get an approximate solution of the problem
(Q2P) satisfying a suitable accuracy from the solution of the problem (15). How-
ever, for the problem consider in this paper, we have shown in Corollary 3.1 and The-
orem 3.2 that an exact solution of the semi-infinite quadratically constrained convex
quadratic programming problem can be constructed from the solution of the prob-
lem (15). More specifically, if Y ∗ is an optimal solution of the problem (15), then,
y∗ = Y ∗e1 is a solution of the problem (Q2P)y .

4 Discretization algorithm

In this section, we shall develop an algorithm for solving a special (SDSIP) problem.
In order to solve problems (10) and (11), consider the following combined semi-
definite and semi-infinite linear programming problem (SDSIP):

inf C • X

s.t. Ai • X = ai, i = 1,2, . . . , l,

Bq(t) • X ≤ bq(t), t ∈ B, q = 1,2, . . . , p,

X � 0.



Robust envelope-constrained filter with orthonormal bases 309

Here, B is a compact set in R, C, Ai , i = 1,2, . . . , l, and Bq(t), t ∈ B , q =
1,2, . . . , p, are all fixed matrices in Sn. Let ai , i = 1,2, . . . , l, and bq(t) ∈ R, t ∈ B ,
q = 1,2, . . . , p, be fixed real numbers, and let X ∈ Sn be a decision matrix to be
optimized upon.

Let us first introduce some notation. For a compact set B , let RB = ∏
B R de-

note the product space equipped with the product topology, which is a locally convex
Hausdorff topological vector space; see (Kelley and Namtoka 1963). Then, the topo-
logical dual space of RB is the generalized finite sequence space consisting of all
functions g : B → R with a finite support. The set RB+ = ∏

B R+ denotes the convex
cone of all nonnegative functions on B . Then, the dual cone of RB+ is defined by

ΛB = {y = {y(t)}t∈B | (∃a finite set F ⊆ B)(∀t ∈ B\F) y(t) = 0

and (∀t ∈ F) y(t) ≥ 0}.

For this result, see (Jeyakumar and Gwinner 1991).
For the combined semi-definite and semi-infinite programming problem (SDSIP),

we introduce the Lagrangian dual problem (DSDSIP) as follows:

sup aT z −
∑
t∈B

b(t)T y(t)

s.t.
l∑

i=1

ziAi −
p∑

q=1

∑
t∈B

Bq(t)yq(t) + Z = C,

Z � 0, yq ∈ ΛB, q = 1,2, . . . , p,

where a = (a1, a2, . . . , al)
T , z = (z1, z2, . . . , zl)

T , b(t) = (b1(t), b2(t), . . . , bp)T

and y(t) = (y1(t), y2(t), . . . , yp(t))T .
We assume that the problem (SDSIP) and its dual problem (DSDSIP) have optimal

solutions and their optimal values are equal.
When the parameter set B is finite, (SDSIP) and (DSDSIP) become a pair

of primal and dual semi-definite programming problems. See (Vandenberghe and
Boyd 1996) and (Wolkowicz et al. 2000) for relevant references. For detailed dis-
cussion, see (Jeyakumar and Wolkowicz 1990; Reemtsen 1994; Teo et al. 2000;
Yang and Teo 2001).

Assume that B = [T1, T2]. We obtain a special class of combined semi-definite
and semi-infinite programming problems (SDSIP) as follows:

(P0) inf C • X

s.t. Ai • X = ai, i = 1,2, . . . , l,

Bq(t) • X ≤ bq(t), t ∈ [T1, T2], q = 1,2, . . . , p,

X � 0.
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The Lagrangian dual problem of the problem (P0) is:

(D0) sup aT z −
∑

t∈[T1,T2]
b(t)T y(t)

s.t.
l∑

i=1

ziAi −
p∑

q=1

∑
t∈[T1,T2]

Bq(t)yq(t) + Z = C,

Z � 0, yq ∈ Λ[T1,T2], q = 1,2, . . . , p.

In this section, we develop a discretization method with an adaptive scheme for
solving the problem (P0). A sequence of discretized subproblems is obtained, and
each (SDP) subproblem is solved by an infeasible interior point method (Potra and
Sheng 1998).

The feasible set of the problem (P0) is denoted by

F = {X ∈ Sn+ : Ai • X = ai, i = 1,2, . . . , l,

Bq(t) • X ≤ bq(t), t ∈ [T1, T2], q = 1,2, . . . , p}.
We consider the following discretization scheme: given an integer N̄ > 0, let

ΩN̄ =
{
ti = T1 + i(T2 − T1)

2N̄
: i = 0,1, . . . ,2N̄

}
.

We introduce the following discretized problem (P̄N̄ ):

inf C • X

s.t. Ai • X = ai, i = 1,2, . . . , l,

Bq(tj ) • X ≤ bq(tj ), tj ∈ ΩN̄, q = 1,2, . . . , p,

X � 0.

The feasible set of (P̄N̄ ) is denoted by

FN̄ = {X ∈ Sn+ : Ai • X = ai, i = 1,2, . . . , l,

Bq(tj ) • X ≤ bq(tj ), tj ∈ ΩN̄, q = 1,2, . . . , p}.
We have the following lemma.

Lemma 4.1 Consider the problems (P0) and (P̄N̄ ). Then,

F ⊂ FN̄ .

A direct method for solving the problem (P0) is to solve a sequence of discretized
problems (P̄N ). The solution XN of (P̄N ) is used as an approximate solution of the
problem (P0). However, the discretized problem (P̄N ) is a good approximation of the
original (P0) only if the integer N is large enough. Obviously, such a simple approx-
imation of [T1, T2] by the discretized subset ΩN with a large number N leads to the
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problem (P̄N ) with a large number of inequality constraints. In order to overcome
the problem of solving discretized problem (P̄N ) with a large number of inequal-
ity constraints, we introduce an adaptive scheme strategy. More specifically, at each
iteration, we add only an additional constraint.

Discretization algorithm

Let {Nm} be a strictly monotone increasing integer sequence with Nm → ∞ (as
m → ∞). Given the integer N̄ > 0.

Step 1. E1 = Ω1,M1 = F1, k = k̄ = 1,m = 1.

Step 2. Find a solution Xk ∈ Mk of the following semi-definite programming prob-
lem:

(Pk) : sup C • X

s.t. X ∈ Mk.

Increase k̄ to k̄ + 1 and construct Ωk̄+1. Go to Step 3.
Step 3. If Nm > N̄ , stop the algorithm. Otherwise, go to Step 4.
Step 4. Find a tk and 1 ≤ qk ≤ p such that

Bqk
(tk) • Xk − bqk

(tk) = max
t∈Ωk̄+1
q=1,...,p

(Bq(t) • Xk − bq(t)).

If Bqk
(tk) • Xk − bqk

(tk) > 0, go to Step 6.
If Bqk

(tk) • Xk − bqk
(tk) ≤ 0 and k̄ < Nm, go to Step 5.

If Bqk
(tk) • Xk − bqk

(tk) ≤ 0 and k̄ ≥ Nm, increase m to m + 1 and give
Nm+1. Go to Step 8.

Step 5. Set k̄ =: k̄ + 1. Increase k̄ to k̄ + 1 and construct Ωk̄+1. Go to Step 4.
Step 6. Set

Mk+1 = {X ∈ Sn+ | Ai • X = ai, i = 1,2, . . . , l,

Bq(t) • X ≤ bq(t), q = 1, . . . , p, t ∈ Ek+1},
where Ek+1 = Ek

⋃{tk}.
Increase m to m + 1 and give Nm+1. Go to Step 7.

Step 7. Set k =: k + 1, k̄ =: k̄ + 1,m =: m + 1 and go to Step 2.
Step 8. Set k =: k + 1, k̄ =: k̄ + 1,m =: m + 1. Increase k̄ to k̄ + 1 and construct

Ωk̄+1. Go to Step 3.

For practical implementation, we will include a stopping criterion: we choose an
integer N̄ , and we will terminate the algorithm when Nm ≥ N̄ . For example, we can
take N̄ = 11.

Theorem 4.1 Suppose that F1 is a compact set. Then, any accumulation point of the
sequence {Xk} generated by the algorithm is an optimal solution of (P0).
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Proof By the compactness of F1 and Xk ∈ Mk , the sequence {Xk} has at least an
accumulation point. Let X̄ be an accumulation point of the sequence {Xk}. Then,
there exists a subsequence {Xkj

} of {Xk} such that {Xkj
} converges to the point X̄.

Suppose that X∗ is an optimal solution of (P0). It follows that X∗ ∈ Mk . We have,

C • X∗ ≥ C • Xk, ∀k.

Thus,

C • X∗ ≥ C • Xkj
, ∀j.

As j → ∞, we have

C • X∗ ≥ C • X̄. (22)

Now we prove that C • X∗ ≤ C • X̄. There are two cases to be considered.
Case 1: There exists a subsequence {Xklj

} of {Xkj
} such that Bqklj

(tklj
) • Xklj

−
bqklj

(tklj
) > 0, i.e., the algorithm goes to Step 6 from Step 4 in an infinite number

of iterations. Since qk takes an integer between 1 and p, we assume, without loss of
generality, that qklj

= q0, ∀j . Suppose that the algorithm goes to Step 6 at k̄ + 1 =
k̄j (as j → ∞). It follows from the convergence of Ωk̄j

that, for each ξ ∈ B , we can
find an ξk̄j

∈ Ωk̄j
with ξk̄j

→ ξ (as j → ∞). Thus,

Bq0(tklj
) • Xklj

− bq0(tklj
) ≥ Bq(ξk̄j

) • Xklj
− bq(ξk̄j

), q = 1, . . . , p.

By the compactness of B , we can assume, without loss of generality, that the sequence
{tklj

} is a convergent one with the limiting point t̄ . Therefore, we obtain

Bq0(t̄) • X̄ − bq0(t̄) ≥ Bq(ξ) • X̄ − bq(ξ), q = 1, . . . , p.

By the construction of Ekj+1 and Mkj+1 , we have

Bq0(tkj
) • Xkj+1 − bq0(tkj

) ≤ 0.

So

Bq0(t̄) • X̄ − bq0(t̄) ≤ 0,

and

Bq(ξ) • X̄ − bq(ξ) ≤ 0, q = 1, . . . , p.

By Xkj
∈ Mkj

, we have

Ai • Xkj
= ai, for i = 1,2, . . . , l.

It follows that

Ai • X̄ = ai, for i = 1,2, . . . , l,

X̄ ∈ F ,
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and

C • X∗ ≤ C • X̄. (23)

Case 2: There does not exist any subsequence {Xklj
} of {Xkj

} such that

Bqklj
(tklj

) • Xklj
− bqklj

(tklj
) > 0.

Then, by the algorithm and the convergence of Xkj
, there exists a subsequence {Xkrj

}
such that Bqkrj

(tkrj
) • Xkrj

− bqkrj
(tkrj

) ≤ 0, i.e., the algorithm goes to Step 8 from

Step 4 in an infinite number of iterations. Since qk takes an integer between 1 and p,
we assume, without loss of generality, that qkrj

= q0, ∀j . Suppose that the algorithm

goes to Step 8 at k̄ + 1 = k̄j . It follows from the convergence of Ωk̄j
that, for each

ξ ∈ B , we can find ξk̄j
∈ Ωk̄j

with ξk̄j
→ ξ (as j → ∞). Thus,

Bq0(tkrj
) • Xkrj

− bq0(tkrj
) ≥ Bq(ξk̄j

) • Xkrj
− bq(ξk̄j

), q = 1, . . . , p.

By the compactness of B , we can assume, without loss of generality, that the sequence
{tkrj

} is a convergent one with the limiting point t̃ . Therefore, we obtain

Bq0(t̄) • X̄ − bq0(t̄) ≥ Bq(ξ) • X̄ − bq(ξ), q = 1, . . . , p.

By the condition of Case 2, we have

Bq0(tkrj
) • Xkrj

− bq0(tkrj
) ≤ 0

So

Bq0(t̄) • X̄ − bq0(t̄) ≤ 0,

and

Bq(ξ) • X̄ − bq(ξ) ≤ 0, q = 1, . . . , p.

Similarly, we have

X̄ ∈ F , C • X∗ ≤ C • X̄. (24)

It follows from (22), (23) and (24) that

C • X∗ = C • X̄.

Thus, the proof is complete. �

In the algorithm, for each subproblem (Pk), we shall use the infeasible predictor
corrector method (Potra and Sheng 1998) to solve for the exact solution Xk of (Pk).

Remark 2 It follows from (Lobo et al. 1998) that second-order-cone (SOC) prob-
lem is much simpler to solve than its SDP counterpart. Thus, one normally converts
the convex quadratically constrained quadratic programming (QCQP) problem into
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an equivalent (SOC) problem, but not a SDP problem, and then apply any publicly
available software like SDPT3 and SeDuMi for solving the resulted (SOC) prob-
lem. Therefore, we may use this method to solve the (Q2P) problem. We believe,
as shown in (Lobo et al. 1998), that this method should be better than our algorithm,
which uses an equivalent SDSIP reformulation. The aim of this paper is to give an
alternative method for solving the continuous-time EC filter and robust EC filter prob-
lems, which is shown to be more efficient than the methods used in (Tseng et al. 1999)
and (Tseng et al. 2000) for solving these classes of problems respectively.

5 Numerical results with Laguerre basis

To illustrate the performance of the proposed algorithm derived in the previous sec-
tion, we consider the Laguerre basis functions. We briefly introduce the orthonormal
Laguerre basis and then apply them to a practical EC filter design example involving
the channel equalization of a data communication (Kautz 1994).

5.1 Laguerre orthonormal basis of L2([0,∞))

Let L
p
j (t) be the time-domain Laguerre function with an adjustable pole p > 0 de-

fined by

L
p
j (t) = √

2pe−pt�j (2pt), j = 0,1, . . . ,

where �j (t) is the classical Laguerre polynomial given by

�j (t) = et

j !
dj

dtj
(e−t t j ) =

j∑
i=0

(
j

j − i

)
(−t)i

i! , j = 0,1, . . . .

It is known that the Laguerre sequence {Lp
j }∞j=0 forms a uniformly bounded ortho-

normal basis for the Hilbert space L2([0,∞)). Thus, any u(t) ∈ L2([0,∞)) can be
represented as

u(t) =
∞∑

j=0

xjL
p
j (t),

where xj = 〈u,L
p
j 〉, j = 0,1, . . . are known as Laguerre Fourier coefficients.

Define

uN(t) =
N−1∑
j=0

xjL
p
j (t)

as a Laguerre filter of order N .
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5.2 Numerical results

In the section, we consider the equalization of a digital transmission channel involv-
ing a coaxial cable operating at the DSX3 rate (44.736 Mb/s)(see G.707 1984). The
design objective is to find an equalizer that takes the impulse response of a coaxial
cable with a loss of 30 dB at 22 MHz and produces an output that lies within the
DSX3 pulse template. The input signal s(t) and the output pulse mask (ξ+(t) and
ξ−(t)) are given in the continuous-time domain (see Tseng et al. 1999).

For continuous-time EC filtering problem (10) with the Laguerre orthonormal ba-
sis, we choose the number of Laguerre coefficients N = 8, the scale factor in Laguerre
filter p = 14 and the length of the interval time T = 32. Then, using our discretiza-
tion algorithm and Corollary 3.1, the optimal cost value obtained is ‖x∗‖2 = 56.08.
The simulation results are depicted in Fig. 1. It is clear that the output response fits
into the output envelope mask.

For the robust envelope-constrained filtering problem (11) with the Laguerre or-
thonormal basis, we choose the weighting function β(t) = (ξ(t)+ − ξ−(t))/2; β(t) is
a tolerance band about the desired pulse shape. For the improved robustness in prob-
lem (11), we are prepared to accept an additional 100% increase in the output noise
power gain, i.e., δ = 1.0. Then, using our discretization algorithm and Corollary 3.1,
the weighted constraint robustness margin obtained is δβ = 0.3950047. The simula-

Fig. 1 DSX3 pulse template superimposed on coaxial cable response and filter output
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Fig. 2 The robust weighted EC filter output response

tion results are depicted in Fig. 2. It is clear that the output response fits into the robust
output envelope mask. Figure 3 shows the comparison between the continuous-time
EC optimal output response and the robust optimal output response. Clearly, the ro-
bust optimal output response is further away from the boundary of the output mask
when compared with the continuous-time EC optimal output response.

In Tseng et al. (1999), the continuous-time EC filtering problem (10) was solved
by a dual approach (cf. Algorithm 4.2 reported in Tseng et al. 1999). Now we present
a comparison between our algorithm and the dual approach proposed in (Tseng et al.
1999) in Table 1:

• Computing time (seconds)—the required time in second to compute the contin-
uous-time EC filtering problem (10).

• The optimal value—the optimal cost value ‖x∗‖2 of the continuous-time EC filter-
ing problem (10).

In view of Table 1, we see that our algorithm and the dual approach are all efficient
methods for solving the continuous-time EC filtering problem. The optimal values
‖x∗‖2 obtained by the two methods are almost the same. However, the dual approach
of (Tseng et al. 1999) cannot be used to solve the robust envelope-constrained filtering
problem (11). Moreover, the computing speed of our algorithm is a little faster than
that of the dual approach proposed in (Tseng et al. 1999).
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Fig. 3 Comparison between the normal EC optimal output response and the robust EC optimal output
response while increasing an additional 100% noise power gain

Table 1 A comparison between our algorithm and the algorithm of (Tseng et al. 1999)

Our algorithm The dual approach given in (Tseng et al. 1999)

Computing time (seconds) 47.78 165.22

The optimal value 56.08 56.33

In Tseng et al. (2000), the solution of the robust envelope-constrained filtering
problem (11) was obtained by solving a sequence of strictly convex optimization
problems with integral cost (cf. Algorithm 3.2 given in (Tseng et al. 2000)). Now we
present a comparison between our algorithm and the approach proposed in (Tseng et
al. 2000) in Table 2:

• Computing time (seconds)—the required time in second to compute the robust EC
filtering problem (11).

• δβ—the weighted constraint robustness margin of the robust EC filtering prob-
lem (11).

From Table 2, we see that the weighted constraint robustness margins δβ of the
robust EC filtering problem (11) obtained by our algorithm and Algorithm 3.2 pro-



318 S.J. Li et al.

Table 2 A comparison between our algorithm and the algorithm of (Tseng et al. 2000)

Our algorithm The algorithm given in (Tseng et al. 2000)

Computing time (seconds) 57.12 1134.71

δβ 0.3947 0.3957

posed in (Tseng et al. 2000) are almost the same. However, the computing speed of
our algorithm is much faster than that of Algorithm 3.2 given in (Tseng et al. 2000).

6 Conclusion

In this paper, we have developed an algorithm for solving the continuous-time EC
filtering and robust EC filtering problems. The numerical examples presented show
that the algorithm is effective and highly efficient.
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