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ABSTRACT

Much of seismic stratigraphy is based on the morphology

of seismic textures. The identification of reflector termina-

tions and subtle changes in dip and azimuth allows us to infer

coherent progradational and transgressive packages as well

as more chaotic slumps, fans, and braided-stream complexes;

infill of karsted terrains; gas seeps; and, of course, faults and

angular unconformities. A major difficulty in estimating re-

flector dip and azimuth arises at discrete lateral and vertical

discontinuities across which reflector dip and azimuth

change. The smearing across these boundaries produced by

traditional dip and azimuth estimations is avoided by using

temporally and spatially shifted multiple windows that con-

tain each analysis point. This more robust estimation of dip

and azimuth leads to increased resolution of well-established

algorithms such as coherence, coherent amplitude gradients,

and structurally oriented filtering. More promising still is the

analysis of high-resolution dip and azimuth through volu-

metric estimates of reflector curvature and angular unconfor-

mities. This new technique is demonstrated using two land

data volumes, one from the Louisiana salt province and the

other from the fractured Fort Worth basin.

INTRODUCTION

After time-structure and amplitude-extraction maps, dip and azi-

muth maps of interpreted seismic reflectors are arguably the next

most important product in interpretating 3D seismic data. Originally

described by Dalley et al. �1989�, dip and azimuth maps, along with

closely related dip and azimuth shaded relief projections �Barnes,

2003�, can highlight subtle faults having throws of less than 10 ms as

well as stratigraphic features that manifest themselves through dif-

ferential compaction or subtle changes in the seismic waveform.

Lisle �1994� and Hart et al. �2002� show the relationship between re-

flector curvature and fracture density. Unfortunately, variability in

reflector waveform and seismic noise can cause difficulties with at-

tribute extractions made along picked horizons �Hesthammer and

Fossen, 1997�.

With recent advances in algorithm development, we can now cal-

culate 3D cubes of reflector dip and azimuth without explicitly pick-

ing a given horizon. An early published work estimating dip directly

from seismic data for interpretation purposes is by Picou and Utz-

mann �1962�, who use a 2D unnormalized crosscorrelation scan over

candidate dips on 2D seismic lines. Marfurt et al. �1998� generalize a

later semblance-based scan by Finn �1986� to a true 3D scan. Barnes

�1996, 2000a�, presents an alternative approach based on 3D com-

plex trace analysis originally applied to velocity analysis by Scheuer

and Oldenberg �1988�, while Bakker et al. �1999� present an esti-

mate based on the gradient structure tensor.

No matter how we calculate dip and azimuth cubes, they can be a

valuable interpretation tool. Currently, their most important use is to

define a local reflector surface upon which we estimate some mea-

sure of discontinuity or, conversely, filter the data to extract its con-

tinuous component. Examples of the former include coherence and

edge-detection measures �e.g., Luo et al., 1996; Marfurt et al., 1998;

Gersztenkorn and Marfurt, 1999; Marfurt et al., 1999; Marfurt and

Kirlin, 2000; Luo et al., 2001�. Examples of the latter include con-

ventional f-x-y deconvolution and structurally ordered filtering �Ho-

ecker and Fehmers, 2002�, also called edge-preserving smoothing

�Bakker et al., 1999; Luo et al., 2002�.

As a result of velocity distortions, estimates of reflector dip and

azimuth from time-migrated seismic cubes are only loosely related

to true dip and azimuth in depth. Even estimates calculated from

prestack depth-migrated data suffer from errors in the background

velocity model. Nevertheless, since dip and azimuth maps are differ-

ential rather than absolute measures of changes in reflector depth,

they are less sensitive to long-wavelength errors in the velocity mod-

el than are reflector-depth measurements. Furthermore, most inter-

pretations of dip and azimuth calculations are done on changes in dip

and azimuth — either through color display �Marfurt et al., 1998;

Lin et al., 2003�, through visualization tools such as shaded relief

projections �Barnes, 2003�, or through explicit calculation of higher-

order derivatives �Luo et al., 2001; Marfurt and Kirlin, 2000; al-Dos-

sary and Marfurt, 2003� sensitive to reflector curvature or rotation.
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Barnes �2000b� has developed a suite of computer-generated tex-

tures similar to those used in traditional interpreter-driven seismic

stratigraphy that measure reflector convergence, divergence, paral-

lelism, and disorder — all based on an underlying estimate of dip and

azimuth. For all of these reasons — for improved edge detection and

structural filtering, as input to volumetric estimates of curvature, and

as an interpretation attribute of value in its own right — improving

our estimates of 3D reflector dip and azimuth is a worthwhile en-

deavor.

I begin my technical discussion by defining reflector vector dip in

mathematical, geologic, and signal-analysis frameworks and review

how estimates of reflector dip are made. I then present a way to im-

prove these estimates by comparatively analyzing seismic reflector

character in multiple temporally and spatially offset analysis win-

dows, including each analysis point. Next, I present a new edge-pre-

serving smoothing �EPS� algorithm obtained by projecting the data

onto the principal-component eigenvector in the chosen window.

Then I show how these improved estimates of vector dip and EPS

significantly improve estimating coherence and coherent-amplitude

gradients to highlight waveform and amplitude discontinuities. Fi-

nally, I show how these revised estimates of dip and azimuth im-

prove estimates of reflector curvature, allowing interpreters to better

visualize faults and unconformities, to visualize the interplay of

faults and flexures, and to see subtle stratigraphic and diagenetic fea-

tures.

BACKGROUND AND DEFINITIONS

Although geologists define the orientation of a geologic forma-

tion by its strike and dip, geophysicists prefer defining the orienta-

tion of seismic reflectors in terms of the inline and crossline apparent

dips oriented along the axes of the seismic survey. In this section, we

review these definitions along with the three most popular means of

estimating vector dip of a seismic reflector: complex trace analysis,

discrete vector dip scan, and gradient structure tensor.

Definition of reflector dip and azimuth

Mathematically, a planar element of a seismic reflector can be de-

fined uniquely by a point in space, x = �x,y,z�, and a unit normal to

the surface, n = �nx,ny,nz�, where nx, ny, and nz denote the compo-

nents along the x-, y-, and z-axes, respectively, chosen such that nz

� 0 �Figure 1�.

Geologically, we define a planar interface such as a formation top

or internal bedding surface by means of the apparent dips �x and �y

or, more commonly, by its true dip � and its strike � �Figure 1�. The

apparent dip �x is the angle measured in the vertical �x,z� plane from

the horizontal x-axis to the interface. Similarly, the apparent dip �y is

the angle measured in the vertical �y,z� plane from the horizontal

y-axis to the interface. The strike � is the angle between north �the

y-axis in the SEG-Y trace header convention� and the intersection

between the reflector and the horizontal �x,y� plane. The true dip � is

always greater than or equal to �x and �y and is the angle measured in

a vertical plane perpendicular to the strike between the horizontal

and the interface. Geologic dips are unsigned and are always mea-

sured downward from the horizontal to the surface. Since the strike

defines a line �e.g., northeast-southwest� rather than a vector, we

need to state, or more commonly post on a map, the direction of

downward dip �e.g., northwest or southeast�.

In reflection seismology, we avoid this mathematical ambiguity

and commonly define a reflector by its dip and azimuth. The dip �

�more precisely called dip magnitude� is identical to that of the dip

used in the geologic definition above. The azimuth � �more precise-

ly called dip azimuth� is measured either from the north or, for con-

venience, from the inline seismic survey axis. The azimuth is per-

pendicular to the geologic strike and is measured in the direction of

maximum downward dip. In this paper, I use the reflection seismolo-

gy notation of dip and azimuth, as well as apparent dips along the

survey axes �x and �y, to define the reflector dip unit vector a, where

ax = cos � cos � , �1a�

ay = cos � sin � , �1b�

and
az = sin � . �1c�

Planar measurements — normal n, dip �, strike �, apparent dips �x

and �y, azimuth �, vector dip a — are equivalent theoretically, but

they can differ when stored with finite accuracy in an interpretation

workstation. In particular, azimuth and strike are undefined for a hor-

izontal reflector. In contrast, the reflector unit normal and its compo-

nents are always defined. In the absence of knowing the velocity of

the earth, it is often convenient to measure the apparent seismic

�two-way� time dips p and q, where p is the apparent dip measured in

s/m �or s/ft� in the inline or x-direction and q is the apparent dip mea-

sured in the same units in the crossline or y-direction. If the earth can

be approximated by a constant velocity v, then the relationships be-

tween the apparent time dips p and q and the apparent angle dips �x

and �y are

p =
2 tan �x

v

, �2a�

q =
2 tan �y

v

. �2b�

Calculation of vector dip using complex trace analysis

Luo et al. �1996� and Barnes �1996� describe a method of estimat-

ing vector dip based on a 3D extension of the analytic trace �or com-

Figure 1. Mathematical, geological, and seismic nomenclature used
in defining reflector dip: n is unit vector normal to the reflector, a is
unit vector dip along the reflector, � is dip magnitude, � is dip azi-
muth, � is strike, �x is apparent dip in the xz plane, and �y is apparent
dip in the yz plane.
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plex trace� attributes described by Taner et al. �1979�. They begin

with Taner et al.’s �1979� instantaneous frequency �:

��t,x,y� =
��

� t
=

�

� t
ATAN2�uH,u� =

u
�uH

� t
− uH

�u

� t

�u�2 + �uH�2 ,

�3�

where � denotes the instantaneous phase, u�t,x,y� denotes the input

seismic data, uH�t,x,y� denotes its Hilbert transform with respect to

time t, and ATAN2 denotes the arctangent function whose output

varies between −	 and +	. The derivatives of u and uH are obtained

either by using finite differences or via a Fourier transform, with the

Fourier transform approach being particularly convenient since this

is the domain in which the Hilbert transform typically is calculated.

The next step is to calculate the instantaneous wavenumbers kx

and ky:

kx�t,x,y� =
��

�x
=

u
�uH

�x
− uH

�u

�x

�u�2 + �uH�2

�4a�

and

ky�t,x,y� =
��

� y
=

u
�uH

� y
− uH

�u

� y

�u�2 + �uH�2 .

�4b�

The Hilbert transform can be calculated in any

direction we choose. It may appear to be more

consistent to apply the Hilbert transform along

the x-axis for computating kx and along the y-axis

for ky. However, since there is only one Hilbert

transform for the data, we estimate it along the

more densely sampled vertical time axis, or

t-axis, where we encounter fewer artifacts from

aliasing. For very large 3D input seismic data

cubes, it is more convenient to estimate the spatial

derivatives �u/�x, �uH/�x, �u/�y, and �uH/�y,

using either central differences or a relatively

short Fourier transform. This circumvents the

need for keeping the entire data cube in memory

or, alternatively, for transposing the cube prior to

calculating the derivatives given in equation 4.

The instantaneous time dip �p,q� is then obtained

by calculating the ratio of kx and ky to �:

p = kx/� , �5a�

q = ky /� . �5b�

The azimuth �, measured from the y-axis, and

true time dip s are given by

� = ATAN2�q,p� �6a�

and

s = �p2 + q2�1/2. �6b�

If the input data are in the depth domain rather than in the time do-

main, we calculate kz rather than �:

kz�z,x,y� =
��

� z
=

u
�uH

� z
− uH

�u

� z

�u�2 + �uH�2 , �7�

where uH is now the Hilbert transform with respect to depth z, allow-

ing us to estimate angular dips �x and �y:

�x = tan−1�kx/kz� , �8a�

�y = tan−1�ky /kz� , �8b�

� = tan−1��kx
2 + ky

2�1/2/kz� , �8c�

� = ATAN2�ky,kx� . �8d�

Figures 2a and 3a illustrate the seismic data, and Figures 2b and 3b

Figure 2. �a� Vertical slices along line AA� through the seismic data from a survey over
Vinton Dome, Louisiana. The slices are through �a� the original seismic volume and
through the east-west components. The apparent dip p, calculated using �b� the instanta-
neous dip estimation �equations 3, 4a, and 5a�, �c� smoothed values of kx and � over a
five-trace 
 five-trace 
 five-sample window, and �d� incorporating the multiwindow
dip scan. Note the inconsistent estimate of interleaved positive and negative dips in �b�,
indicated by the white arrow, probably the result of singularities in the frequency and
wavenumber calculations �Liner et al., 2004�. This inconsistency is avoided by smooth-
ing in �c� but at the cost of lateral resolution. The multiwindow dip scan is less sensitive to
aliasing and honors the abrupt changes in dip seen along the faults. Data courtesy of
OPEX.
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exhibit the east-west component of instantaneous time dip p through

a salt dome near Vinton, Louisiana.

Taner et al. �1979� warn that the estimate of instantaneous fre-

quency given by equation 3 suffers from singularities when reflector

events interfere with each other. Indeed, such singularities form the

basis of the SPICE algorithm �Liner et al., 2004�. To remedy this in-

accuracy, Taner et al. �1979� suggest replacing equation 3 with an en-

velope-weighted average. Barnes �2000a� generalizes this concept

to smoothing the calculation of �, kx, and ky over 25 or more adjacent

traces prior to estimating dip and azimuth, thereby improving stabil-

ity with only minor loss of lateral resolution �Figures 2c and 3c�.

Even with such smoothing, the singularities in calculating �, kx, and

ky produce artifacts on the flanks of the dome.

Calculation of vector dip by discrete scans

Marfurt et al. �1998� generalize Finn’s �1986� semblance scan-

ning method to 3D data to generate a more robust means of estimat-

ing reflector dip �Figure 4�:

s��x,�y�

=

�
k=KS

KE �� 1

J�
j=1

J

u�k�t − px j − qy j��2

+ � 1

J�
j=1

J

uH�k�t − px j − qy j��2	
�
k=KS

KE � 1

J�
j=1

J

�u�k�t − px j − qy j��
2 +

1

J�
j=1

J

�uH�k�t − px j − qy j��
2	
�9�

where p and q are given by equation 2, x j and y j denote the local coor-

dinates of the jth trace measured from an origin at the analysis point,

J denotes the total number of traces in the analysis window, and Ks

and Ke denote the first and last temporal sample in the analysis win-

dow. Other amplitude-normalized measures include principal-com-

ponent coherence �Gersztenkorn and Marfurt, 1999�, lateral vari-

ance normalized by the energy, and least-squares fitting a plane to

the data �Claerbout, 1992; Bednar, 1998�. A disadvantage of dip-

scan approaches is that they discretely sample �x and �y such that one

may miss subtle features that might be discerned by the continuous

complex trace analysis method given by equations 3–5 and 7.

Calculation of vector dip by the
gradient structure tensor

The third method of estimating vector dip based on the gradient

structure tensor is used by Bakker et al. �1999� and by Hoecker and

Fehmers �2002� in their structure-oriented filtering work. They be-

gin constructing their gradient structure tensor by computing the

outer product of the gradient with itself �giving a symmetric 3 
 3

tensor of rank 1�. The elements of this tensor are then smoothed indi-

vidually by a low-pass spatial filter �typically by convolution in the

spatial domain�. This generates a positive �semi�definite 3 
 3 ten-

sor with three eigenvectors. The eigenvector corresponding to the

largest eigenvalue will by definition best represent the variability of

the seismic data and therefore will be aligned with the vector normal

to the structure �Bakker et al., 1999�.

Limitations of centered dip and
azimuth estimations

Regardless of how these estimates of reflector

dip are implemented, they all fail when the analy-

sis window spans a fault, where they provide at

best an estimate of the apparent dip across the

fault rather than true reflector dip �Figure 5a�.

Such estimates of apparent dip across faults are

excellent edge detectors �e.g., Luo et al., 1996�.

Smoothed estimates of the vector components of

dip using mean or median filters can improve esti-

mates of coherence �Marfurt et al., 1999� but at

the expense of eliminating details of interest in

the reflector dip volumes themselves.

METHOD

My improved method is based on a multiwin-

dow dip-search algorithm that avoids smearing

dip estimates across faults and angular unconfor-

mities. I show how these more accurate estimates

of dip and azimuth provide better coherence esti-

mates. We also show how we can apply principal

component filters along these volumetric esti-

mates of dip and azimuth to provide a structure-

oriented filter. Finally, I show how lateral varia-

tions in these principal components provide at-

tribute images that are mathematically indepen-

dent of coherence, dip, and azimuth.

Figure 3. �a� Time slice at 1.0 s through the original seismic volume. Corresponding slice
through the inline �east� components of apparent dip, calculated using �b� the instanta-
neous dip estimation �equations 3, 4a, and 5a�, �c� smoothed values of kx and � over a
five-trace 
 five-trace 
 five-sample window, and �d� incorporating the multiwindow
dip scan. Note the aliasing at steep dips in �b�. This aliasing is averted by smoothing in �c�
but at the cost of decreased lateral resolution. The multiwindow dip scan method is less
sensitive to aliasing and honors the abrupt changes in dip seen along the faults. Line AA�

indicated on this image is shown in Figure 2.
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Robust estimates of 3D vector dip

Equation 9 provides values of semblance on a grid of discretely

sampled angle pairs ��x,�y�. I obtain an improved estimate of dip and

azimuth by passing a 2D paraboloid through the nine discretely sam-

pled points neighboring the point having the maximum semblance:

s��x,�y� = �1�x
2 + �2�x�y + �3�y

2 + �4�x + �5�y + �6,

�10�
solving for the coefficients � j in a least-squares sense. I then calcu-

late an improved estimate of the vector dip by solving

� s��x,�y�

��x

= 2�1�̂x + �2�̂y + �4 = 0,

� s��x,�y�

��y

= �2�̂x + 2�3�̂y + �5 = 0 �11�

for � �̂x, �̂y�, where � �̂x, �̂y� is the apparent dip pair corresponding to

the maximum of the interpolated semblance surface s��x,�y�.
To improve the estimate of vector dip, I exploit the multiple-anal-

ysis-window construct described by Kuwahara et al. �1976� and gen-

eralized to seismic amplitudes by Luo et al. �2002� in their EPS algo-

rithm. Luo et al. �2002� scan a suite of noncentered, overlapping

analysis windows in addition to the centered window, all of which

contain the analysis point of interest �Figure 6a�. They then calculate

the amplitude variance 2 over the J traces that fall within the ith

window:

i
2 =

1

J − 1
�
j=1

J

�u ji − 
ui��
2, �12�

where 
ui� denotes the average value of u ji within the ith analysis

window. The window with the smallest variance is assumed to best

represent a coherent reflector and is used in subsequent EPS steps.

Since I expect the amplitudes themselves to change across a dis-

continuity, I use an energy-normalized coherence estimate �such as

the semblance measure given by equation 9� rather than the nonnor-

malized variance given by equation 12. Although not explicitly stat-

ed by Luo et al. �2002�, I need to search over a suite of candidate dips,

using equations 9 and 10 to choose the window with the maximum

coherence. Finally, I generalize the original concept of Luo et al.

�2002� by also searching over candidate uncentered vertical analysis

windows �Figure 6b� that include the analysis point.

Calculating a coherence measure over 45 overlapping nine-trace

by eleven-sample windows generates the inline dip p shown in Fig-

ures 2d and 3d. Each window was scanned using 11 values of �x and

11 values of �y, or 11 
 11 = 121 dip and azimuth pairs, giving a to-

tal of 11 979 misfit calculations at each analysis point. The vector dip

of the window with the maximum coherence is then assigned to the

analysis point. By exploiting the fact that the overlapping windows

can be reused for adjacent traces and samples, I reduce the total com-

putation by two orders of magnitude. I processed the volume shown

in Figure 2 consisting of 600 inlines, 660 crosslines, and 1500 sam-

ples on eight dual-CPU, 2-MHz nodes using the message passing in-

terface �MPI� construct. Elapsed wall clock time for each iteration

�three iterations of structurally oriented filtering� was 11.3 hours,

the bulk of which �80%� appeared to be waiting on data transfer ei-

ther to or from the master node. While the process may be sped up

significantly with a faster programmer or speedier communication

hardware, the important point is that the U. S. $16,000 hardware in-

Figure 4. �a� Schematic showing a 2D search-based estimate of co-
herence. First, the algorithm estimates coherence using semblance,
variance, principal component, or some other statistical measure
�such as given by equation 9� along a discrete number of candidate
dips shown as colored lines. In this example, the maximum coher-
ence is calculated along the dip indicated by the green line. Next, the
algorithm passes an interpolation curve through the coherence mea-
sures estimated by the peak value �along the green line� and through
coherence measures along two or more neighboring dips �the cyan
lines�. The peak value of this curve estimates coherence, while the
dip value of this peak estimates instantaneous dip. �b� A 3D search-
based estimate of coherence; p indicates the inline and q the
crossline components of vector time dip. The technique is analogous
to that shown in �a� �after Marfurt et al., 1998�.

Figure 5. Schematic of the apparent dip �speckled line� estimated us-
ing the discrete search algorithm shown in Figure 4. �a� In a window
C centered about the analysis point. �b� In windows L and R shifted
to the right and left of the analysis point. Estimate of apparent dip ob-
tained in either of these shifted windows is superior to the smoothed
apparent dip given by the centered window.
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vestment �2004 dollars� places such computation within the reach of

even the smallest technology providers.

Impact of robust reflector dip estimates on

coherence estimates of reflector discontinuities

Bakker et al. �1999� note that the Kuwahara et al. �1976� algo-

rithm can produce patchy images and suggest favoring the centered

analysis window when dealing with noisy data. I do so by modifying

the semblance scent �or other coherence measure� at the centered anal-

ysis window to be

snew
cent = ascent + b , �13�

where a � 1 and b � 1. Values of a = 1 and b = 0 reproduce Ku-

wahara’s et al. �1976� original algorithm, while a value of b = 1.0

will force a centered, single-window algorithm. A value of a = 1.02

and b = 0.1 works well for good-quality land data such as shown in

this paper.

Let’s return to Figure 5, which displays a seismic section consist-

ing of dipping reflectors cut by a fault. For a sample in the fault zone,

the maximum coherence value in a centered window c would give an

erroneous apparent dip across the fault as shown in Figure 5a. In con-

trast, dip estimates using a left-shifted window L or right-shifted

window R accurately project true dip on either side of the fault �Fig-

ure 5b�. Choosing the dip corresponding to the maximum coherence

in the centered analysis window results in an image of reduced con-

trast, with the amount of contrast dependent on the relative displace-

ment and/or realignment with deeper or shallower reflectors across

the fault.

Marfurt et al. �1999� address this problem by calculating coher-

ence along a �mean or median� filtered version of the reflector vector

dip in each time slice. Such smoothing works well when the reflector

dip is similar on either side of the fault. However, if the reflectors are

rotated with respect to each other across the fault, the filtered esti-

mate may be incorrect. The more robust estimate of reflector dip and

azimuth obtained using the multiple-window search algorithm de-

scribed in this paper preserves reflector vector dip in the presence of

faults and thereby circumvents the need to perform additional

smoothing.

Principal-component filtering

Having estimated the reflector dip in the analysis window con-

taining the analysis point of interest which has the maximum coher-

ence, I next estimate a filtered version of the data that avoids smooth-

ing over structural and stratigraphic edges. Luo et al. �2002� replace

the amplitude of the analysis point with the mean value of samples

extracted from the neighboring traces within the selected window

aligned with the dipping reflector. As a variation of this approach, I

could calculate the median or �-trim mean in lieu of the mean. A

problem arises for fractures that often appear as discrete, narrow lin-

eaments having higher or lower amplitude than the neighboring trac-

es. Applying a mean or median filter to such lineaments may elimi-

nate them. Done �1999� describes using principal components to es-

timate and then filter out backscattered ground roll. In my applica-

tion, if m is the analysis point in the laterally shifted Kuwahara

window, the principal-component-filtered data are given by

um
1 �t� = ��

j=1

J

u j�t�v j
1�t��vm

1 �t� , �14�

where v1�t� is the first eigenvector �the vector that best represents the

lateral amplitude variation across the J traces in the analysis win-

dow� corresponding to the covariance matrix C:

Cij�t� = �
k=Ks

Ke

�ui�k�t + pxi − qyi�u j�k�t + px j − qy j�

+ ui
H�k�t + pxi − qyi�u j

H�k�t + px j − qy j�� .

�15�

Here, i and j are trace indices in the laterally shifted Kuwahara win-

dow �Figure 6a�, xi and yi �x j and y j� are the distances along the x- and

y-axes of the ith �jth� trace from the analysis point, and the time sam-

ples between Ks and Ke straddle the analysis point �Figure 6b�. I use

the Hilbert transform of the data as an additional sample vector when

calculating a real-valued covariance matrix rather than form a com-

plex-valued Hermitian symmetric covariance matrix from the ana-

Figure 6. �a� Plan view of a nine-trace, nine-lateral-window search
for dip and azimuth. Solid circles indicate the analysis point; shaded
rectangles indicate alternative analysis windows. �b� Vertical view
of the first �northwest� window shown in �a�, illustrating the search
over five vertical windows containing the analysis point indicated by
the speckled dot �only the three crossline traces and five vertical
samples of the 3D analysis window are displayed�. First, the coher-
ence, dip, and azimuth within each window are calculated and then
interpolated for �see Figure 4�. This process is repeated for the nine
laterally shifted by five temporally shifted analysis windows, result-
ing in 45 overlapping analysis windows — each containing the de-
sired analysis point. The dip and azimuth at the analysis point are de-
fined to be the dip and azimuth of the window encompassing the
analysis point which has the maximum coherence. The use of such
temporally and laterally shifted analysis windows helps preserve an-
gular unconformities and other features of geologic interest. This dip
and azimuth and the traces comprising the most coherent window
are used for the covariance matrix and principal-component data
projection calculations �equations 14 and 15�.
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lytic trace. Using the data and its Hilbert transform avoids unstable

estimates of the covariance matrix for small vertical windows cen-

tered about a trace zero crossing. Using a complex-valued Hermitian

symmetric covariance matrix �and corresponding complex principal

components� provides some extra, uncontrolled phase rotation be-

yond that provided by the dip search and interpolation, and it results

in images that have somewhat lower lateral resolution and noise re-

jection. The covariance matrix calculation given by equation 15 dif-

fers from that used by Gersztenkorn and Marfurt �1999� and Marfurt

et al. �1999� in that I use the Hilbert transform of the input data in ad-

dition to the input data itself and that, in general, the window is tem-

porally and laterally shifted from rather than centered about the anal-

ysis point.

The behavior of Luo et al.’s �2002� EPS filter and the principal-

component projection given by equation 14 are quite different. Both

filters suppress random noise. Both filters also re-

ject coherent noise cutting across the strongest re-

flector in the window, such as backscattered sur-

face waves. Unfortunately, they can also elimi-

nate desirable crosscutting signals, such as mis-

migrated fault-plane reflections. Luo et al. �2002�

show how the edge-preserving mean filter can

suppress the acquisition footprint. If the acquisi-

tion footprint comes from leakage of side-scat-

tered noise, then the principal component filter

reduces the footprint better. However, the acqui-

sition footprint can also be a function of signal

variability from differences in fold, source-re-

ceiver offset, and source-receiver azimuth be-

tween adjacent bins. Such differences are particu-

larly sensitive to errors in velocity-induced NMO

errors �Hill et al., 1999�. In this case where the

footprint pattern is slowly varying in the vertical

direction, the principal-component filter will pre-

serve and even enhance the acquisition footprint,

while a mean or median filter will suppress it.

Fractures that are nearly vertical are nearly indis-

tinguishable from this kind of acquisition foot-

print. Since I am interested in mapping fractures,

I use the principal-component filter and accept

some image contamination from the acquisition

footprint.

Recursive application of
principal-component filtering

Once an edge-preserving filtered version of the

data is generated, I can use it recursively as input

to a second analysis, where I recalculate vector

dip, coherence, amplitude gradients, and a second

pass of filtering, if desired. For particularly noisy

data, such as land data, we can greatly accelerate

the interpretation process by using autopickers on

the smoothed data, as recommended by Hoec-

ker and Fehmers �2002�. These picks on the

smoothed data can then be transferred to the more

difficult-to-pick original data by snapping the

smoothed picks to peaks or troughs of previous

versions of the data. I plot the data corresponding

to line AA� in Figure 2a on the face of a folded im-

age before and after two applications of principal-component EPS in

Figures 7a and b. In Figures 7c and d I plot the corresponding vertical

slice through the coherence volume. In all of Figure 7 I plot the co-

herence slice at 1.0 s folded over at line AA�. While the reflector ter-

minations are clearly preserved and random noise is reduced, the re-

flector terminations interfinger. This interfingering is from an incor-

rect velocity used in the migration and cannot be repaired by any

postmigration image processing algorithms �Duncan et al., 2002�.

Coherent amplitude gradients

Once I have calculated the principal-component eigenvector

v1�t�, I can estimate the reflection energy variation both parallel and

perpendicular to the reflector. I illustrate this concept for an idealized

Figure 7. Foldaway images of the principal-component coherence time slice at t = 1.0 s
and corresponding vertical slice through the seismic data along AA�. �a� The single-win-
dow search method �Marfurt et al., 1998� described in Figure 4. �b� The multiwindow
search of reflector dip and azimuth along with principal-component filtering of the seis-
mic data. The second algorithm sharpens faults, thereby enhancing coherence. The dot-
ted line indicates the top of the Hackberry Formation discussed in Figure 10. �c� and �d�
Foldaway images, the result of the single-window and multiwindow search of reflector
dip and azimuth, with coherence plotted on the vertical slice.
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2D analysis in Figure 8. The principal component of the seismic data

can be interpreted as a single waveform �Figure 8b� that best fits the

input seismic data within an analysis window �Figure 8a�. While the

waveform has a fixed shape, its amplitude in general will vary later-

ally within the analysis window �Figure 8c�. These amplitudes form

the �length = 5� first eigenvector v1�t�, shown in Figure 8d. The ei-

genvector has five elements, one corresponding to each trace.

For 3D data, I interpret the mathematical eigenvector v1�t� as a

discretely sampled map v�x,y� that represents the lateral variation of

the coherent energy about the analysis point �Figure 9�. Since I want

to accentuate both lateral and vertical discontinuities, I use a window

centered about the analysis point but whose dip and azimuth were

calculated from the laterally and temporally shifted window having

the maximum coherence.

Marfurt and Kirlin �2000� calculate such gradients as a byproduct

of using a �lower-resolution� frequency-domain coherence algo-

rithm. There are two variations of the amplitude gradient calcula-

tion. The simpler estimate is applied to the unit length principal-

component eigenvectors themselves, v1. Its derivatives are called ei-

genvector gradients. Unfortunately, such gradients are overly sensi-

tive to noise in low-energy areas of the seismic volume. A more

useful estimate weights these derivatives by the principal-compo-

nent eigenvalue �1. If we recall that

Cv1 = �1v1 �16�

and assume for simplicity that the seismic waveform is completely

coherent �fit by only one eigenvector�, we recognize that each diago-

nal element of C is a measure of energy based on the real and quadra-

ture parts of the seismic traces. Then �1 is a measure of the total ener-

gy within the analysis window, while v1 is a measure of the lateral

variation of amplitude across the analysis window. I therefore call

the spatial derivatives of �1v
1 coherent energy-weighted amplitude

gradients. The coherent energy-weighted amplitude gradients are

large when there is rapidly varying high-amplitude coherent energy

and small when the reflectivity is either smoothly varying, low ener-

gy, or incoherent. These coherent energy-weighted amplitude gradi-

ent images are quite complementary to coherence images and pro-

vide needed detail in reservoirs represented by a strong, consistent

reflection.

Although initially I used a finite-difference approximation along

the inline and crossline axes to calculate these derivatives, I have

found that the images sometimes have a different sensitivity to noise

than those taken using a diagonal �+45°,−45°� finite-difference op-

erator. Furthermore, conventional finite-difference operators do not

appear to use all of the information within the analysis window. So I

define my derivatives of the eigenvector v evaluated at J − 1 points

within an analysis window to be

�v

�x
�x,y� �

2

J − 1
�
j=2

J
x j

2r j
2v j , �17a�

�v

� y
�x,y� =

2

J − 1
�
j=2

J
y j

2r j
2v j , �17b�

where

Figure 8. Schematic summarizing the steps in principal-component
filtering and in computing the coherent energy gradient. �1� Calcu-
late the energy of the input traces within an analysis window. �2� Cal-
culate the single seismic waveform that best approximates the wave-
form of each input trace. �3� Replace each trace by a scaled version
of step 2 that best fits each input trace. The amplitudes of the five
wavelets in step 3 define the components of the five-element-long
principal-component eigenvector v�1�. To calculate coherent-ampli-
tude, energy-weighted gradients, take the derivative of the dotted
curve in step 4 and weigh it by the sum of the coherent energy within
the analysis window in step 3.

Figure 9. Interpretation of the eigenvector v1 corresponding to a
nine-trace analysis window as the representation of a map of coher-
ent amplitude ��x,y�. From this map one can calculate gradients
��/�x�x,y� and ��/�y�x,y�, which indicate lateral changes in coher-
ent amplitude. These gradients are particularly useful in mapping
lateral changes in bed thickness below one-fourth wavelength tun-
ing, where the amplitude is proportional to thickness and the wave-
form is nearly constant.
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r j = �x j
2 + y j

2�1/2. �17c�

The analysis point at the center of the window is

omitted from the calculation. Inspection of these

formulas shows that they can be interpreted as an

unweighted average of x- and y-components of

directional derivatives obtained by pairs of points

straddling the analysis point in the analysis win-

dow.

Although gradients of coherent energy can be

quite effective in mapping faults and fractures, I

have found them to be most useful in delineating

thin channels where they emphasize subtle lateral

changes in tuning. Stratigraphic features are best

examined using horizon slices that better repre-

sent a fixed point in geologic time. Figure 10 dis-

plays slices along the Hackberry horizon through

volumes of the original seismic amplitude and co-

herence, as well as the east-west and north-south

components of the coherent amplitude gradient.

Because of the complex lateral variation in veloc-

ity and the use of prestack time versus prestack

depth migration, the resolution of the coherence

images is inferior to those at the shallower 1-s

level �Figure 7�. However, one can still clearly

identify meandering channels that formed before

and during salt diapirism. Identification of such

channels in a structural setting can offer interest-

ing exploration opportunities.

APPLICATION

Figure 11 displays a vertical seismic line BB�

before and after structurally oriented principal-

component filtering through a merged land sur-

vey acquired in the Fort Worth basin, Texas. Ran-

dom noise, primarily from backscattered surface

waves entering the stack and migration, are sup-

pressed, while lateral and vertical discontinuities

are preserved. Figure 12 displays the time-struc-

Figure 10. �a� Amplitude, �b� coherence, �c� east-west coherent energy-weighted ampli-
tude gradient, and �d� north-south coherent energy-weighted amplitude gradient extrac-
tions along the Hackberry horizon shown in Figure 7. Faults have a wormy appearance
because the data have been poorly migrated, resulting in interfingering of reflectors. In
contrast, the energy-weighted amplitude gradients away from the faults give accurate im-
ages of channels �indicated by arrows� and other stratigraphic features, including areas
where the coherence is very high �white�. �Seismic data courtesy of OPEX�.

Figure 11. Line BB� through a Fort Worth basin survey �a� before and �b� after two passes of principal-component structurally oriented filtering
using equation 14 and the multiwindow approach described in this paper. Nine overlapping nine-trace windows and eleven vertical windows
�±10 ms� were used. Random noise, primarily from backscattered ground roll entering the migration and stack, is suppressed, while lateral dis-
continuities are well preserved. �Seismic data courtesy of Devon Energy.�
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ture and amplitude-extraction maps along the Pennsylvanian-age

Caddo Limestone horizon, chosen because it has the highest S/N

level of any horizon in the survey. We are able to see clearly the dif-

ferent levels of data quality of the three merged surveys in Figure

13b. In Figure 12b, the mean curvature, defined by Roberts �2001�

for nearly horizontal reflectors, is

kmean =
1

2
 �2t

�x2 +
�2t

� y2� , �18a�

while Figure 13b illustrates the calculated mean curvature using

multiwindow estimates of inline and crossline dip using the equiva-

lent formula.

kmean =
1

2
 � p

�x
+

�q

� y
� . �18b�

By using these more robust estimates of dip and azimuth, we can

track lineations �white arrows� and collapse features �black arrows�

into the two surveys of reduced data quality. Note that the lateral res-

olution provided by this robust estimate of reflector dip is equivalent

to that provided by carefully picking reflector times on a reflector

having good S/N ratio.

To demonstrate that these calculations have been performed on a

volume rather than on horizons, I display a time slice at 0.8 s through

the coherence and most negative curvature volumes in Figure 14.

The most positive and most negative curvature �see Roberts �2001�

for a complete definition� are frame-invariant measures of the two

principal radii of curvature that fit a quadratic surface. The coher-

ence and vector dip calculations both used a nine-trace by eleven-

sample �±10 ms� analysis window, with the coherence calculated

along the same reflector dip used in the curvature calculation. We

note considerable detail of fractures and collapse features on the

most negative curvature slice that is not seen on the coherence slice.

The reason for this difference is geologic rather than algorithmic: the

two attributes measure independent features �waveform similarity

versus reflector morphology� of the seismic reflection event. Work

by al-Dossary and Marfurt �2003� provides a more detailed descrip-

tion of volumetric curvature calculations �at different wavelengths

or spectral scales�, and Sullivan et al. �2003� provide a detailed ex-

Figure 12. �a� Time- structure and �b� amplitude-extraction map cor-
responding to the Caddo horizon shown in Figure 11. The survey in-
dicated by the dotted rectangle was acquired in 1993, that by the
dashed rectangle was in 1995, and the remainder was in 1997. The
same contractor reprocessed all three surveys in 1999, such that the
differences in data quality reflected advances in acquisition design
rather than in processing.

Figure 13. �a� Horizon slice along the Caddo horizon of mean curva-
ture kmean from the time picks t�x,y� shown in Figure 12a, using equa-
tion 18a. �b� Estimates of p and q using the multiwindow dip search
technique described and equation 18b. White arrows indicate linea-
ments; black arrows collapse features not readily seen on the con-
ventional curvature calculations shown in �a�. The difference is most
pronounced in the southwest, where we encounter the older surveys
with lower S/N ratios.
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planation of the geologic interpretation of this fractured and karsted

terrain.

CONCLUSIONS

I have introduced a dip and azimuth computation that avoids

smearing across faults, angular unconformities, and other disconti-

nuities through a nonlinear dip search over a suite of overlapping

windows. Through careful implementation and reuse of coherence

calculations within each window used, the cost of the algorithm is

nearly identical to that of commonly used single-window dip search

algorithms. In its current implementation, the cost of recursive use of

the algorithm for EPS is proportional to the number of recursions run

�i.e., a factor of two or three�.

Accurate estimates of reflector dip and azimuth �or vector dip� are

the fundamental building blocks for all geometric attributes as well

as for structurally oriented filtering. Coherence calculations along

accurate estimates of dip have higher lateral resolution and are less

sensitive to structural folding and warping overprints than coher-

ence calculations performed when the vector dip is ignored or some-

how smeared. Short-wavelength spectral components of reflector

curvature �al-Dossary and Marfurt, 2003�, which are derivatives of

vector dip, exhibit improved lateral resolution. Not surprisingly,

long-wavelength spectral components of curvature are less sensitive

to high-resolution estimates of vector dip. These new volumetric

calculations appear to be quite effective in delineating folds, frac-

tures, karsts, slumps, and differential compaction �Blumentritt et al.,

2003; Sullivan et al., 2003�. Although not shown by the examples in

this paper, vertical changes in vector dip and curvature are good can-

didates for mapping unconformities. Coherent-amplitude gradients

calculated along vector dip appear to delineate channels and other

subtle stratigraphic features that are expressed as lateral changes in

thin-bed tuning.

By using vector dip as input for principal-component filtering in

the most coherent window containing each analysis point, we can

enhance lateral resolution and reduce both random and coherent

noise.
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