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We develop two new estimators for a general class of stationary GARCH models with possibly heavy
tailed asymmetrically distributed errors, covering processes with symmetric and asymmetric feedback like
GARCH, Asymmetric GARCH, VGARCH and Quadratic GARCH. The first estimator arises from negli-
gibly trimming QML criterion equations according to error extremes. The second imbeds negligibly trans-
formed errors into QML score equations for a Method of Moments estimator. In this case, we exploit a
sub-class of redescending transforms that includes tail-trimming and functions popular in the robust esti-
mation literature, and we re-center the transformed errors to minimize small sample bias. The negligible
transforms allow both identification of the true parameter and asymptotic normality. We present a consistent
estimator of the covariance matrix that permits classic inference without knowledge of the rate of conver-
gence. A simulation study shows both of our estimators trump existing ones for sharpness and approximate
normality including QML, Log-LAD, and two types of non-Gaussian QML (Laplace and Power-Law).
Finally, we apply the tail-trimmed QML estimator to financial data.
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1. Introduction

It is now widely accepted that log-returns of many macroeconomic and financial time series are
heavy tailed, exhibit clustering of large values, and are asymmetrically distributed. In broader
contexts extremes are encountered in actuarial, meteorological, and telecommunication network
data (e.g., Leadbetter et al. [38], Embrehts et al. [21], Davis [17]), while GARCH-type clustering
alone implies higher moments do not exist due to Pareto-like distribution tails (e.g., Basrak et al.
[4], Liu [42]).

We develop new methods of robust estimation for a general class of GARCH(1,1) models:

yt = σtεt with σ 2
t = g

(
yt−1, σ

2
t−1, θ

0) ≥ 0 a.s., (1)

where g(y,σ 2, θ) is a known mapping g :R× [0,∞) × � → [0,∞) and � is a compact subset
of Rq for some finite q ≥ 1. We assume there exists a unique point θ0 in the interior of � such
that εt = yt/σt is i.i.d. with a non-degenerate absolutely continuous distribution with support
(−∞,∞), E[εt ] = 0 and E[ε2

t ] = 1. Further, {yt , σt } are stationary and geometrically β-mixing.
We avoid well known boundary problems by assuming θ0 lies in the interior of � and σ 2

t has
a non-degenerate distribution, hence (1) is a non-trivial GARCH process. In Bollerslev’s [7]
classic GARCH model σ 2

t = ω0 + α0y2
t−1 + β0σ 2

t−1, with ω0 > 0 and α0, β0 ≥ 0 this requires
α0 + β0 > 0, cf. Andrews [3] and Francq and Zakoïan [24].
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In order to keep technical arguments brief, we assume σ 2
t (θ) := g(yt−1, σ

2
t−1(θ), θ) has prop-

erties similar to a non-trivial classic GARCH model: σ 2
t (θ) is twice continuously differen-

tiable, E[(supθ∈� |σ 2
t /σ 2

t (θ)|)p] < ∞ for any p > 0, and supθ∈N0
‖(∂/∂θ)i ln(σ 2

t (θ))‖ is L2+ι-
bounded for tiny ι > 0 and some compact N0 ⊆ � containing θ0, where ‖ · ‖ is the matrix
norm (cf. Francq and Zakoïan [24]). Similarly, we impose Lipschitz type bounds on g that en-
sure an iterated approximation h2

0(θ) = ω and ht (θ) = g(yt−1, ht−1(θ), θ) for t = 1,2, . . . satis-

fies supθ∈� |ht (θ) − σ 2
t (θ)| p→ 0 as t → ∞, a key property for feasible estimation (see Nelson

[48], Francq and Zakoïan [24], Straumann and Mikosch [60]). The above properties of σ 2
t (θ)

cover at least Threshold GARCH with a known threshold, Asymmetric and Nonlinear Asymmet-
ric GARCH, VGARCH, GJR-GARCH, Smooth Transition GARCH, and Quadratic GARCH.
Consult Engle and Ng [22], Carrasco and Chen [12], Francq and Zakoïan [24,25] and Meitz
and Saikkonen [44,45]. EGARCH evidently is not included here since it is unknown whether

supθ∈� |ht (θ) − σ 2
t (θ)| p→ 0 as t → ∞ (see Straumann and Mikosch [60], Meitz and Saikkonen

[44,45]).
We are interested in heavy tailed errors or innovation outliers, in particular we allow

E[ε4
t ] = ∞, while GARCH feedback itself may also prompt heavy tails in yt due to a stochastic

recurrence structure (Basrak et al. [4], Liu [42]). In this paper, we negligibly transform QML loss
or score equations to obtain asymptotically normal estimators of θ0 allowing for E[ε4

t ] = ∞.
Define εt (θ) := yt/σt (θ) and s2

t (θ) := (∂/∂θ) lnσ 2
t (θ), and let I (·) denote the indicator func-

tion. In Section 2, we tackle the fact that σ 2
t (θ) is not observed for t ≤ 0. The first method trims

QML criterion equations pt(θ) := ln(σ 2
t (θ)) + ε2

t (θ) according to extremes that arise in a first
order expansion and therefore the score

∑n
t=1(ε

2
t (θ) − 1)s2

t (θ). Since s2
t (θ) has an L2-bounded

envelope near θ0 it suffices to minimize
∑n

t=1 pt(θ)I (−l ≤ ε2
t (θ) − 1 ≤ u) for some positive

thresholds {l, u} that increase with the sample size n. Identification of θ0 coupled with asymp-
totic normality are assured if {l, u} are replaced with intermediate order statistics of ε2

t (θ) − 1.
The result is the Quasi-Maximum Tail-Trimmed Estimator (QMTTL), similar to the least tail-
trimmed squares estimator for autoregressions in Hill [31].

The second method imbeds negligibly transformed errors in QML score equations (ε2
t (θ) −

1)s2
t (θ). We then re-center the transformed errors to minimize small sample bias and estimate

θ0 by the Method of Negligibly Weighted Moments (MNWM). By re-centering we may sim-
ply transform εt (θ) itself symmetrically which requires only one threshold, for example in the
simple trimming case we use ε2

t (θ)I (|εt (θ)| ≤ c) for some c > 0. In order to simplify proofs
we focus on simple trimming, and related bounded but smooth weighted redescending trans-
forms ε2

t (θ)�(ε2
t (θ), c)I (|εt (θ)| ≤ c) where �(·, c) is continuously differentiable in c, and

�(ε2
t (θ), c) → 1 a.s. as c → ∞. Weights related to simple indicators include Hampel’s three-

part function, and smooth transforms include Tukey’s bisquare and an exponential version (cf.
Andrews et al. [1], Hampel et al. [27]). See Sections 2 and 3.

We show how trimming and distribution tail parameters impact efficiency, while the negligible
amount of trimming never affects the asymptotic covariance matrix when E[ε4

t ] < ∞. Fixed
quantile trimming or truncation always impact efficiency irrespective of higher moments, and
cause bias due to ε2

t − 1 having an asymmetric distribution in general (Sakata and White [58],
Mancini et al. [43]). Mancini et al. [43] use simulation based methods to solve the bias, but this
requires knowledge of the error distribution (see also Cantoni and Ronchetti [11], Ronchetti and
Trojani [57]).
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The convergence rate of our estimators is o(
√

n) when E[ε4
t ] = ∞, but can be assured to be√

n/gn for any sequence of positive numbers {gn} that satisfies gn → ∞ as slowly as we choose
by following simple rules of thumb for choosing the threshold c. Thus when E[ε4

t ] = ∞ our
estimators converge faster than QML (cf. Hall and Yao [26]) but slower than

√
n-convergent

estimators in Peng and Yao [52], Berkes and Horvath [5] and Zhu and Ling [61], although the
latter two are not for standard GARCH models in which E[ε2

t ] = 1 identifies the volatility pro-
cess. See below for literature details. We do not tackle optimal threshold selection in order to
conserve space. We do, however, show explicitly how threshold selection impacts the conver-
gence rate which suggests simple rules for trimming. We also discuss practical considerations
for trimming in terms of small sample bias control. See Sections 2.3 and 2.4.

In Section 4, we show classic inference applies as long as self-normalization is used, a nice
convenience since tail thickness and the precise rate of convergence need never be known. We
complete the paper with simulation and empirical studies in Sections 5 and 6. In particular, we
give evidently the first comparison of various heavy tail robust estimators for GARCH models,
and show our estimators obtain in general lower bias and are closer to normally distributed in
small samples and therefore lead to better inference.

A complete theory of QML for a variety of strong-GARCH models is presented in Lee and
Hansen [39], Berkes et al. [6], Francq and Zakoïan [24], Straumann and Mikosch [60] and Meitz
and Saikkonen [45] amongst others, while at least a finite fourth moment E[ε4

t ] < ∞ is standard.
The allowance of heavier tails E[ε4

t ] = ∞, with Gaussian asymptotics, evidently only exists
for the classic GARCH model, and in most cases requires a non-Gaussian QML criterion and
non-standard moment conditions to ensure Fischer consistency (i.e., consistency for the true
parameter θ0). Peng and Yao [52] propose

√
n-convergent Log-LAD, requiring ln ε2

t to have a
zero median in order to identify θ0. Berkes and Horvath [5] characterize a general QML criterion
class that potentially allows for Fischer consistency,

√
n-convergence and asymptotic normality

even when E[ε4
t ] = ∞. They treat Gaussian QML, and various non-Gaussian QML like Laplace

QML which requires E|εt | = 1 and E[ε2
t ] < ∞, and Power-Law QML (PQML) with index ϑ > 1

requiring that εt have an infinitessimal moment and E[|εt |/(1 + |εt |)] = 1/ϑ . Student’s t -QML
is Fischer consistent when εt is t -distributed, and otherwise may only be consistent for some
θ̃ 
= θ0 (cf. Newey and Steigerwald [49], Sakata and White [58], Fan et al. [23]).

Zhu and Ling [61] combine Berkes and Horvath [5] Laplace class with Ling’s [41] weighting
method for Weighted Laplace QML (WLQML) under the assumptions εt has a zero median,
E|εt | = 1 and E[ε2

t ] < ∞. The estimator is
√

n-convergent and asymptotically normal when
E[ε4

t ] = ∞, but the suggested weights at time t are based on the infinite past yt−1, yt−2, . . . .
Although the authors use a central order statistic for a threshold and fix yt = 0 for t ≤ 0 in the
weights for the sake of simulations, they do not prove either is valid. Indeed, for a GARCH(1,1)

the restriction yt = 0 for t ≤ 0 in their weight (2.4) does not support asymptotic normality (see
Zhu and Ling [61], Assumption 2.4 and the discussion on weight (2.4)). Thus, the estimator is
not evidently feasible.

Assumptions like E|εt | = 1 or E[|εt |/(1 + |εt |)] = 1/ϑ replace the usual E[ε2
t ] = 1 to

identify θ0. Of course, if E[ε2
t ] 
= 1 then model (1) is not a standard GARCH model since

E[y2
t |yt−1, yt−2, . . .] 
= σ 2

t with positive probability is possible, and Gaussian QML leads to
asymptotic bias. Thus, asymptotic normality and Fischer consistency are assured precisely by
changing the criterion and model assumptions and therefore the model by imposing a non-
standard moment condition. In practice, this may be untenable as many analysts in economics
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and finance first impose a version of (1) with E[ε2
t ] = 1 and then seek a robust estimator. In

order to sidestep such unpleasant moment conditions, Fan et al. [23] introduce a three-step non-
Gaussian QML method. In the first stage, Gaussian QML residuals are generated. In a second
stage, a scale parameter is estimated to ensure identification in the third non-Gaussian QML stage
without imposing non-standard moment conditions. See also Newey and Steigerwald [49]. Our
QMTTL and MNWM estimators are computed in one-step and are asymptotically normal and
Fischer consistent by imposing negligible weighting on extremes couched in a Gaussian QML
criterion.

Evidently simulation experiments demonstrating the robustness properties of Peng and Yao’s
[52] Log-LAD, Berkes and Horvath’s [5] non-Gaussian QML and Zhu and Ling’s [61] WLQML
does not exist, while Fan et al. [23] only inspect the root-mean squared error of their estimator
which masks possible bias. In general, the empirical bias and approximate normality properties
of these estimators, as well as their ability to gain accurate inference in small samples (e.g., Wald
tests), are unknown.

In a simulation experiment, we show QMTTL and MNWM trump QML, Log-LAD, WLQML,
and PQML in all cases in terms of bias, approximate normality and t -test performance, and has
lower mean-squared-error than every estimator except PQML (PQML has higher bias and lower
dispersion). Overall QMTTL performs best. The dominant performance of QMTTL and MNWM
follows since only they directly counter the influence of large errors in small and large samples
by trimming observations with an error extreme. We show this matters even when εt is Gaussian:
negligible trimming always improves QML performance, while untrimmed QML, Log-LAD,
WLQML and PQML are comparatively more sensitive to large errors. Moreover, even PQML,
which we design as in Berkes and Horvath [5] to ensure identification for Paretian errors with
an infinite fourth moment, has greater bias and is farther from normality in small samples than
QMTTL and MNWM. Thus, the advantages of non-Gaussian QML for GARCH processes with
heavy tailed errors are not clear, at least as seen by our controlled experiments. We emphasize this
last point by tail-trimming PQML in a way that removes adverse sample extremes and leaves the
estimator asymptotically unbiased. We show in most cases tail trimming helps PQML in terms
of bias, approximate normality and inference, yet overall QMTTL is still better. Indeed, PQML
is infeasible unless the tail index of εt is known or estimated using some filtration for εt (e.g.,
QML residuals), and is not Fischer consistent if εt has any other distribution.

In the literature on additive outlier robust estimation, negligible trimming is an example of
a redescending transformation ψ :R → R where in general ψ(u) → 0 as |u| → ∞, and typi-
cally ψ(u) = 0 when |u| > c for some c as we use here. See Huber [34] and Hampel et al. [27].
Evidently a complete theory of redescending M-estimators exists only for estimates of loca-
tion for i.i.d. data (Shevlyakov and Shurygin [59]). In this paper, our QML estimator has a
score equation that effectively uses ψ(εt ) = (ε2

t − 1)I (−l ≤ ε2
t − 1 ≤ u) where l, u → ∞ as

n → ∞. Our Method of Moments estimator is more generic since it uses either re-centered
ψ(εt ) = ε2

t I (|εt | ≤ c) with c → ∞ as n → ∞, or related variants like Hampel’s three-part
weight, as well as smooth weights like Tukey’s bisquare. In all cases, the increasing thresholds
ensure bias is eradicated asymptotically.

We ignore additive or isolated outliers, and so-called one-off events in {yt } for the sake of
brevity. In this case, we would observe yt = y∗

t + xt where y∗
t is generated by (1) and, for ex-

ample, xt = 0 in most periods t . The challenge here is controlling the propagation of an aberrant
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observation due to xt 
= 0 through the volatility mechanism. See, for example, Charles and Darné
[14], Muler and Yohai [47], and Boudt et al. [8], and see Mendes [18] for anecdotal evidence of
QML estimator bias. Incorporating additive outliers in (1) with innovation outliers would require
additional robustness techniques like those employed in these and related papers (e.g., Muler
et al. [46]). Some methods, however, are proposed to detect outliers in a GARCH process under
the assumption of thin tailed errors: a few large values are simply assumed to be due to a non-
heavy tailed outlier.1 Other estimators, contrary to claims, do not identify θ0 and/or are not robust
to heavy tailed errors.2 Further, all such robust estimators are proposed for the classic GARCH
model, hence existing theory does not necessarily extend to the broader model class (1).

Finally, our methods can be easily extended to higher order GARCH models, GARCH-in-
Mean, and models of the conditional mean and variance like nonlinear ARMA–GARCH, as well
as other estimators like non-Gaussian QML (Berkes and Horvath [5], Zhu and Ling [61], Fan
et al. [23]), LAD (Peng and Yao [52]), etc. We show trimming matters for PQML in our simu-
lation study, and we expect negligible trimming to improve upon non-Gaussian QML estimators
in general, provided they are Fischer consistent in the first place.

We use the following notation conventions. The indicator function I (·) is I (a) = 1 if a is true,
and otherwise I (a) = 0. The spectral norm of matrix A is ‖A‖ = λmax(A

′A)1/2 with λmax(·) the
maximum eigenvalue. If z is a scalar, we write (z)+ := max{0, z}. K denotes a positive finite

constant whose value may change from line to line; ι > 0 is an arbitrarily tiny constant.
p→ and

d→ denote probability and distribution convergence. xn ∼ an implies xn/an → 1. L(n) is a slowly
varying function that may change with the context.

2. Quasi-maximum tail-trimmed likelihood

The observed sample is {yt }nt=0 with sample size n+ 1 ≥ 1. We start at t = 0 to simplify notation
since we condition on the first observation y0 and a volatility constant defined below. Estimation
requires a volatility function on �,

σ 2
t (θ) = g

(
yt−1, σ

2
t−1(θ), θ

)
,

1Charles and Darné [14] extend ideas developed in [15] to test for, and control, additive and innovation outliers in a
GARCH process with Gaussian errors. These papers do not provide asymptotic theory, hence the Gaussian assumption
can likely be relaxed. The trimming methods used in the present paper can be extended to their test statistics which involve
a residual variance estimator (cf. Hill [31], Hill and Aguilar [33]), but a rigorous theory would need to be developed.
2Muler and Yohai [47] present a robust M-estimator

◦
θn = arg infθ∈�{∑n

t=1 ρ(ln(y2
t /h∗2

t (θ))} where h∗2
t (θ) is a filtered

version of σ 2
t (θ) that restricts the propagation of outliers. They assume ρ is thrice continuously differentiable with

bounded derivatives. Although claimed to be heavy tail robust and identify the true θ0 (see their Theorem 3), they do not
prove any such ρ exists. In their simulations, for example, they use truncated QML with ρ(u) = ψc(exp{u} − u) where
ψc truncates at a fixed threshold c: ψc(x) = K for all x > c. Thus ρ(u) is non-differentiable at exp{u} − u = c, and at
all other points no derivative is bounded which implies non-robustness to heavy tails. The problem is the QML score is
not bounded when ρ(u) is truncated according to its large values. Our approach, however, negligibly trims according to
properties of the QML score and therefore ensures heavy tail robustness and identification of θ0.
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hence σ 2
t = σ 2

t (θ0). It is convenient to assume � is a compact subset of points θ on which σ 2
t (θ)

is stationary:

� ⊆ {
θ ∈ R

q :
{
σ 2

t (θ)
}

has a stationary solution
}
. (2)

In practice σ 2
t (θ) for t ≤ 0 is not observed, so define an iterated volatility approximation

h0(θ) = ω̃ > 0 and ht (θ) = g
(
yt−1, ht−1(θ), θ

)
for t = 1,2, . . . , (3)

where ω̃ is not necessarily an element of θ . We initially develop an infeasible robust estimator
based on the QML equations lnσ 2

t (θ) + y2
t /σ 2

t (θ). We then show a feasible version based on
lnht (θ) + y2

t /ht (θ) has the same limit distribution.

2.1. Tail-trimming

In order to understand when and where trimming should be applied, define the GARCH error
function, and a scaled volatility function and its derivative

εt (θ) := yt

σt (θ)
= yt

g(yt−1, σ
2
t−1(θ), θ)

,

st (θ) = [
si,t (θ)

]q
i=1 := 1

σ 2
t (θ)

∂

∂θ
σ 2

t (θ) and dt (θ) = [
di,j,t (θ)

]q
i,j=1 := ∂

∂θ
st (θ).

Throughout, we drop θ0 and write εt = εt (θ
0), st = st (θ

0), dt = dt (θ
0) and so on. Gaussian

asymptotics for QML are grounded on the score equations mt(θ) and their Jacobian Gt(θ):

mt(θ) := (
ε2
t (θ) − 1

)
st (θ) and

(4)

Gt(θ) := ∂

∂θ
mt (θ) = (

ε2
t (θ) − 1

)
dt (θ) − ε2

t (θ)st (θ)st (θ)′.

We assume st (θ) and dt (θ) have L2+ι-bounded envelopes near θ0 for tiny ι > 0, thus asymp-
totic normality hinges entirely on ε2

t − 1. See below for all assumptions. It therefore suffices to
trim lnσ 2

t (θ)+ ε2
t (θ) negligibly when ε2

t (θ)− 1 surpasses a large negative or positive threshold.
As long as those thresholds represent intermediate order statistics, we can identify θ0 and have
an asymptotically normal estimator. Write

Et (θ) := ε2
t (θ) − 1,

and denote left and right tail observations and their order statistics for Et (θ):

E (−)
t (θ) := Et (θ)I

(
Et (θ) < 0

)
and E (−)

(1)
(θ) ≤ · · · ≤ E (−)

(n)
(θ) ≤ 0,

E (+)
t (θ) := Et (θ)I

(
Et (θ) ≥ 0

)
and E (+)

(1) (θ) ≥ · · · ≥ E (+)
(n) (θ) ≥ 0.
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The determination of the number of trimmed large Et (θ) in a sample of size n is made by inter-
mediate order sequences {k1,n, k2,n}, hence (e.g., Leadbetter et al. [38])

ki,n ∈ {1, . . . , n − 1}, ki,n → ∞ and ki,n/n → 0.

Define an indicator selection function for trimming

Î
(E)
n,t (θ) := I

(
E (−)

(k1,n)(θ) ≤ Et (θ) ≤ E (+)
(k2,n)(θ)

)
.

The QMTTL estimator therefore solves

θ̂n = arg min
θ∈�

{
1

n

n∑
t=1

(
lnσ 2

t (θ) + ε2
t (θ)

) × Î
(E)
n,t (θ)

}
= arg min

θ∈�

{
Q̂n(θ)

}
.

Each ki,n represents the number of trimmed lnσ 2
t (θ) + ε2

t (θ) due to large negative or positive
Et (θ) = ε2

t (θ)−1. We require ki,n → ∞ for asymptotic normality, while negligibility ki,n/n → 0
ensures identification of θ0 asymptotically. Since Et (θ) in general has an asymmetric distribution,
identification of θ0 is assured asymptotically if we negligibly trim asymmetrically by Et (θ).
In a method of moments framework, however, we can re-centered trimmed errors allowing for
symmetric trimming where negative and positive thresholds are the same: see Section 3.

In practical terms, θ̂n can be easily computed using standard iterative optimization routines.
In fact, under distribution continuity arguments developed in Cizek [16], Lemma 2.1, page 29,
apply for almost sure twice differentiability of the otherwise non-differentiable Q̂n(θ). In par-
ticular, we have almost surely (∂/∂θ)Q̂n(θ) = 1/n

∑n
t=1 mt(θ)Î

(E)
n,t (θ) and (∂/∂θ)2Q̂n(θ) =

1/n
∑n

t=1 Gt(θ)Î
(E)
n,t (θ). This implies standard estimation algorithms that exploit the gradient

and Hessian apply.
In order to characterize the limit distribution of θ̂n, we require non-random quantiles which the

order statistics E (−)
(k1,n)(θ) and E (+)

(k2,n)(θ) approximate. Define sequences {Ln(θ),Un(θ)} denoting
the lower k1,n/n and upper k2,n/n quantiles of Et (θ):

P
(
Et (θ) ≤ −Ln(θ)

) = k1,n

n
and P

(
Et (θ) ≥ Un(θ)

) = k2,n

n
. (5)

The selection indicator is then

I
(E)
n,t (θ) := I

(−Ln(θ) ≤ Et (θ) ≤ Un(θ)
)
.

Notice Et (θ) ∈ [−1,∞) and ki,n/n → 0 imply Ln(θ) → 1 and Un(θ) → ∞. The quantiles
{Ln(θ), Un(θ)} exist for each θ and any choice of fractiles {k1,n, k2,n} since εt has a smooth
distribution. By construction the order statistics {E (−)

(k1,n)(θ), E (+)
(k2,n)(θ)} estimate {Ln(θ),Un(θ)},

and are uniformly consistent in view of the β-mixing condition detailed in Assumption 1 below,
for example supθ∈� |E (+)

(k2,n)(θ)/Un(θ)−1| = Op(1/k
1/2
2,n ). See Appendix A.3 for supporting limit

theory.
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Finally, define equation variances �n and Sn, and a scale Vn for standardizing θ̂n:

�n := E
[
E2

t I
(E)
n,t

] × E
[
sts

′
t

]
and Sn := E

[(
1

n1/2

n∑
t=1

mtI
(E)
n,t

)(
1

n1/2

n∑
t=1

mtI
(E)
n,t

)′]
,

Vn = [Vi,j,n]qi,j=1 := nE
[
sts

′
t

]
S−1

n E
[
sts

′
t

] ∼ n

E[E2
t I

(E)
n,t ]

E
[
sts

′
t

]
.

The scale form Vn = nE[sts
′
t ]S−1

n E[sts
′
t ] is standard for M-estimators. In view of identification

Assumption 2 and equation (6), below, and independence it is easily verified that the long-run
variance satisfies Sn = �n(1 + o(1)). Thus Vn ∼ n(E[ε4

t I
(E)
n,t ] − 1)−1E[sts

′
t ], which is positive

definite for our data generating process.

2.2. Main results

We require two assumptions concerning the error distribution, properties of the volatility re-
sponse g, and parameter identification. Let κ denote the moment supremum of εt :

κ := arg sup
{
ξ > 0 :E|εt |ξ < ∞}

> 2.

Assumption 1 (Data generating process).

(a) There exists a unique point θ0 = [ω0, α0, β0]′ in the interior of a compact subset � of Rq

such that εt = yt/σt is i.i.d., E[εt ] = 0 and E[ε2
t ] = 1.

(b) εt has an absolutely continuous, non-degenerate, and uniformly bounded distribution on
(−∞,∞) : supa∈R{(∂/∂a)P (εt ≤ a)} < ∞. If E[ε4

t ] = ∞ then P(|εt | > a) = da−κ(1 +
o(1)), where d > 0 and κ ∈ (2,4].

(c) g(·, ·, θ) is twice continuously differentiable in θ ; (∂/∂θ)ig(·, ·, θ) is for each θ ∈
� and i = 0,1,2 Borel measurable; E[supθ∈� |σ 2

t /σ 2
t (θ)|p] < ∞ for any p > 0;

E[supθ∈N0
‖(∂/∂θ)i ln(σ 2

t (θ))‖2+ι] < ∞ for i = 1,2, tiny ι > 0, and some compact
N0 ⊆ � containing θ0 and having positive Lebesgue measure.

(d) {yt } and {σ 2
t (θ)} for θ ∈ � are stationary and geometrically β-mixing.

Remark 1. The tail index κ in (b) is identically the moment supremum (see Resnick [55]). The
volatility moment bounds in (c) imply only the tails of εt matter for Gaussian asymptotics, and
can be relaxed at the expense of added notation for trimming also according to st . Verification
of (c) for the classic GARCH model is in Francq and Zakoïan [24], and related proofs for asym-
metric models are in Francq and Zakoïan [25].

Remark 2. Geometric β-mixing (d) implies mixing in the ergodic sense, hence ergodicity (see
Petersen [53]). Lipschitz type conditions on the volatility response g combined with a smooth
bounded distribution for εt suffice, covering a large variety of models (Carrasco and Chen [12],
Straumann and Mikosch [60], Meitz and Saikkonen [44], Meitz and Saikkonen [45]). See Theo-
rem 2.3 below for one such set of conditions. In the classic GARCH model yt = σtεt and σ 2

t (θ) =
ω + αy2

t−1 + βσ 2
t−1(θ), for example, where ω > 0, α,β ≥ 0 and E[ln(α0ε2

t + β0)] < 0 ensure
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stationarity and ergodicity, and combined with E[ε2
t ] = 1 this allows for IGARCH and mildly

explosive cases α0 +β0 ≥ 1 (Nelson [48]). If additionally εt has a continuous distribution that is
positive on (−∞,∞) then {yt , σ

2
t (θ)} are geometrically β-mixing (Carrasco and Chen [12]).

In the Appendices, we show θ̂n obtains the expansion V1/2
n (θ̂n − θ0) = n−1/2�

−1/2
n ×∑n

t=1 mtI
(E)
n,t (1 + op(1)), hence n1/2�

−1/2
n E[mtI

(E)
n,t ] → 0 must hold for asymptotic unbiased-

ness of θ̂n. This reduces to assuming n1/2(E[E2
t I

(E)
n,t ])−1/2E[Et I

(E)
n,t ] → 0 since by independence

E[mtI
(E)
n,t ] = E[Et I

(E)
n,t ] × E[st ], while �n = E[E2

t I
(E)
n,t ] × E[sts

′
t ] and ‖E[sts

′
t ]‖ ∈ (0,∞).

Assumption 2 (Identification). The fractile sequences {k1,n, k2,n} satisfy n1/2(E[E2
t I

(E)
n,t ])−1/2 ×

E[Et I
(E)
n,t ] → 0 where Et := ε2

t − 1.

Remark 3. We do not require E[Et I
(E)
n,t ] = 0 for finite n since our results are asymptotic, while

E[Et I
(E)
n,t ] → E[ε2

t − 1] = 0 automatically holds by dominated convergence and negligibility

ki,n/n = o(1). Since n1/2/(E[E2
t I

(E)
n,t ])1/2 → ∞ as verified in Section 2.4 below, we require

E[Et I
(E)
n,t ] → 0 fast enough, else there is asymptotic bias.

Remark 4. There always exists a sequence {k1,n, k2,n} such that E[Et I
(E)
n,t ] is closer to zero than

(E[E2
t I

(E)
n,t ])1/2/n1/2 as n increases. In general Et ∈ [−1,∞) is skewed right hence, counter-

intuitively, asymptotic unbiasedness requires k1,n > k2,n: a few trimmed large positive values
promotes asymptotic normality, but forces us to trim many negative values to ensure identifica-
tion. See Section 2.3 for discussion and examples. In a method of moments framework, however,
identification is assured by re-centering the trimmed errors, hence Assumption 2 is not required.
See Section 3.

Remark 5. Define mn,t := mtI
(E)
n,t . Assumption 2 ensures E[{mn,s − E[mn,s]}{mn,t −

E[mn,t ]}′] = E[mn,sm
′
n,t ] + o(‖�n‖/n) for all s, t , and ‖∑n−1

i=1 E[mn,1m
′
n,i+1]‖ ≤ n ×

o(‖�n‖/n) = o(‖�n‖) by Minkowski and Cauchy–Schwarz inequalities. Hence, �n is asymp-
totically equal to the long-run covariance matrix Sn of n−1/2 ∑n

t=1{mn,t − E[mn,t ]} since

E

[(
1

n1/2

n∑
t=1

{
mn,t − E[mn,t ]

})(
1

n1/2

n∑
t=1

{
mn,t − E[mn,t ]

})′]
(6)

= �n × (
1 + o(1)

) + 2
n−1∑
i=1

(
1 − i

n

)
E

[
mn,1m

′
n,i+1

] = �n × (
1 + o(1)

)
.

We are now ready to state the main results of this section. The expansion V1/2
n (θ̂n − θ0) =

n−1/2�
−1/2
n

∑n
t=1 mtI

(E)
n,t (1+op(1)) requires Jacobian consistency 1/n

∑n
t=1 Gt(θ̂n)Î

(E)
n,t (θ̂n)

p→
−E[sts

′
t ] and therefore consistency θ̂n

p→ θ0 from first principles. Proofs of main results are con-
tained in Appendices A.1 and A.2.
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Theorem 2.1 (QMTTL consistency). Under Assumptions 1 and 2 θ̂n
p→ θ0.

Theorem 2.2 (QMTTL normality). Under Assumptions 1 and 2 V1/2
n (θ̂n − θ0)

d→ N(0, Iq)

where Vn = nE[sts
′
t ]S−1

n E[sts
′
t ] ∼ n(E[E2

t I
(E)
n,t ])−1E[sts

′
t ] and each Vi,i,n → ∞.

Now consider feasible QMTTL. Define ε̃t (θ) := y2
t /ht (θ) based on the iterated process

{ht (θ)} in (3), and Ẽ t (θ) := ε̃2
t (θ) − 1. The feasible estimator is

θ̃n = arg min
θ∈�

{
1

n

n∑
t=1

(
lnht (θ) + ε̃2

t (θ)
) × I

(
Ẽ (−)

(k1,n)(θ) ≤ Ẽ t (θ) ≤ Ẽ (+)

(k2,n)(θ)
)}

.

Under the following Lipschitz bounds for the response g and its derivatives we show θ̃n has
the same limit distribution as the infeasible θ̂n, cf. Meitz and Saikkonen [44]. Related ideas are
contained in Straumann and Mikosch [60].

Drop arguments: g = g(y, s, θ), and let ga and ga,b denote first and second derivatives
for a, b ∈ {y, s, θ}. We say a matrix function ξ(y, s, θ) is Lipschitz in s if ‖ξ(y, s1, θ) −
ξ(y, s2, θ)‖ ≤ K|s1 − s2| ∀s1, s2 ∈ [0,∞) and y, θ ∈R× �.

Assumption 3 (Response bounds).

(a) g ≤ ρs + K(1 + y2) for some ρ ∈ (0,1) and infy∈R,s∈R+,θ∈�{|g|} > 0;
(b) ‖ga‖ and ‖ga,b‖ are bounded by K(1 + y2 + s) for each a, b ∈ {y, θ};
(c) g, ga and ga,b are Lipschitz in s, for each a, b ∈ {y, s, θ}.

Assumption 3 ensures ht (θ), hθ
t (θ) := (∂/∂θ)ht (θ) and h

θ,θ
t (θ) := (∂/∂θ)hθ

t (θ) have station-
ary ergodic solutions {h∗

t (θ), hθ∗
t (θ), h

θ,θ∗
t (θ)} with the geometric property E[(supθ∈� |a∗

t (θ) −
at (θ)|)ι] = o(ρt ) for each at (θ) ∈ {ht (θ), hθ

i,t (θ), h
θ,θ
i,j,t (θ)} and a∗

t (θ) ∈ {h∗
t (θ), hθ∗

i,t (θ),

h
θ,θ∗
i,j,t (θ)} and some ρ ∈ (0,1). See Lemma A.7 in Appendix A.2. This leads to the next result.

Theorem 2.3 (Feasible QMTTL). Under Assumptions 1–3 V1/2
n (θ̃n − θ̂n)

p→ 0.

Remark 6. In the remainder of the paper, we focus on the infeasible θ̂n for notational economy.

As stated above, we need only trim by error extremes since first order asymptotics rests solely
on whether εt has a fourth moment or not. However, in small samples a large yt−1 may cause
st or dt to spike and therefore the score equation to exhibit a sample extreme value. Consider,
for example, that in the linear volatility model σ 2

t (θ) = ω + αy2
t−1 + βσ 2

t−1(θ) the score weight
at the origin st (θ)|α,β=0 = ω−1 × [1, y2

t−1,ω]′ obtains an extreme value if and only if |yt−1|
does. In general st exhibits spikes when |yt−1| does for α0 and β0 near zero. This same properly
applies to a large variety of GARCH models. Thus, although θ̂n is consistent and asymptotically
normal, for improved small sample performance trimming by large values of yt−1 appears to be
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highly useful in practice. This is not surprising since true additive outliers render QML biased
(see Mendes [18], Muler and Yohai [47], cf. Cavaliere and Georgiev [13], Muler et al. [46]).

Let {k̃n} be an intermediate order sequence and define Î
(y)
n,t := I (|yt | ≤ y

(a)

(k̃n)
) where y

(a)
(i) are

order statistics of y
(a)
t := |yt |. The estimator in this case is

θ̂
(y)
n = arg min

θ∈�

{
1

n

n∑
t=1

(
lnσ 2

t (θ) + ε2
t (θ)

) × Î
(E)
n,t (θ)Î

(y)

n,t−1

}
.

Since Î
(y)

n,t−1
p→ 1, the score equations st are square integrable, and εt is i.i.d., asymptotic nor-

mality does not depend on whether yt is heavy tailed. Indeed, it is easy to show θ̂
(y)
n is asymptot-

ically equivalent to θ̂n. The same property extends to feasible QMTTL with trimming by yt−1,
denoted θ̃

(y)
n . We therefore omit the proof of the next result.

Corollary 2.4. Under Assumptions 1 and 2, trimming by yt−1 does not impact the limit dis-

tributions of infeasible and feasible QMTTL estimators: V1/2
n (θ̂

(y)
n − θ̂n)

p→ 0 and V1/2
n (θ̃

(y)
n −

θ̃n)
p→ 0. Moreover, infeasible and feasible estimators are asymptotically equivalent: V1/2

n (θ̃
(y)
n −

θ̂
(y)
n )

p→ 0.

2.3. Verification of identification Assumption 2

We require an explicit model of P(|εt | > c) in order to verify Assumption 2. In our simulation
study, we use distributions with either power law or exponential tail decay.

2.3.1. Paretian tails

In the simulation experiment we use

P
(|εt | > c

) = (1 + c)−κ with κ ∈ (2,4), (7)

hence Et has left and right tails:

P(Et < −c) = P
(
ε2
t < 1 − c

) = 0 if c ≥ 1,

= 1 − P
(
ε2
t > 1 − c

) = 1 − (2 − c)−κ if c ∈ [0,1], (8)

P(Et > c) = P
(
ε2
t > 1 + c

) = (2 + c)−κ/2.

We show below identification n1/2(E[E2
t I

(E)
n,t ])−1/2E[Et I

(E)
n,t ] → 0 holds if k1,n → ∞, k1,n/n →

0 and: (
k2,n

n

)1−2/κ

= κ − 2

2

(
−1 +

(
1

1 − k1,n/n

)2/κ

+ 2

κ − 2

k1,n

n

)
(9)

+ o

((
n

k1,n

)2/κ−1/2 1

n1/2

)
.
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In practice, (9) is greatly simplified asymptotically by noting (n/k1,n)
2/κ−1/2n−1/2 = o(1) and

(1 − k1,n/n)−2/κ − 1 ∼ (2/κ)(k1,n/n), hence identification applies if (k2,n/n)1−2/κ ∼ ((2κ −
2)/κ)(k1,n/n) or

k2,n

k
κ/(κ−2)

1,n

∼ 2

(
1 − 1

κ

)κ/(κ−2) 1

nκ/(κ−2)−1
. (10)

A similar condition applies in the second order power law case P(|εt | > c) = dc−κ(1 + ec−ξ )

with d, e > 0, ξ > 0 and κ ∈ (2,4), while a less sharp result arises under P(|εt | > c) = dc−κ(1+
o(1)).

In order to show (9), we must characterize the moments E[Et I
(E)
n,t ] = E[Et I (−Ln ≤ Et ≤ Un)]

and E[E2
t I

(E)
n,t ]. Use (8) to deduce Un = (n/k2,n)

2/κ − 2 → ∞ and Ln = 2 − (n/(n − k1,n))
2/κ ∈

[0,1] as n → ∞. Therefore,

E
[
Et I (−Ln ≤ Et ≤ Un)

]
= −{

E
[
Et I (Et > Un)

] + E
[
Et I (Et < −Ln)

]}
(11)

= −
{∫ ∞

Un

(2 + u)−κ/2 du −
∫ 1

Ln

(
1 − (2 − u)−κ/2)du

}

= −
{

2

κ − 2

(
k2,n

n

)1−2/κ

+ 1 −
(

n

n − k1,n

)2/κ

− 2

κ − 2

k1,n

n

}
.

Next E[E2
t I

(E)
n,t ] ∼ K(n/k2,n)

4/κ−1 follows from (15) below. Combined with (11) and by rear-

ranging terms, Assumption 2 holds when E[Et I
(E)
n,t ] = o((E[E2

t I
(E)
n,t ])1/2/n1/2), hence when(

k2,n

n

)1−2/κ

= κ − 2

2

(
−1 +

(
1

1 − k1,n/n

)2/κ

+ 2

κ − 2

k1,n

n

)
(12)

+ o

((
n

k2,n

)2/κ−1/2 1

n1/2

)
.

Notice k2,n appears on both sides of the equality. In order to achieve (9), note k2,n/k1,n → 0. This
follows since (n/k2,n)

2/κ−1/2n−1/2 = o(1) and by the mean-value-theorem (1 − k1,n/n)−2/κ −
1 ∼ (2/κ)k1,n/n hence (k2,n/n)1−2/κ ∼ Kk1,n/n, therefore(

k2,n

k1,n

)1−2/κ

=
(

k2,n/n

k1,n/n

)1−2/κ

∼ K
(k1,n/n)

(k1,n/n)1−2/κ
= K(k1,n/n)2/κ → 0.

Now combine k2,n/k1,n → 0 and (12) to deduce (9).
There are several things to note from (10). First, there are arbitrarily many valid {k1,n, k2,n}.

Second, {k1,n, k2,n} requires knowledge of κ , which can be consistently estimated for many pro-
cesses defined by (1) (see Hill [29]). However, the method of moments estimator in Section 3
only requires one two-tailed fractile without knowledge of κ .
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Third, k2,n/k1,n → 0 since k1,n/n → 0 and κ > 2. This logically follows since Et has support
[−1,∞). The right tail is heavier, hence trimming a positive extreme must be off-set by trimming
more negative observations in order to get E[Et I

(E)
n,t ] ≈ 0.

Fourth, k1,n ∼ n/g1,n for slowly varying g2,n → ∞ implies k2,n ∼ n/g2,n for slowly vary-
ing g2,n, g2,n/g1,n → ∞. Similarly, k1,n ∼ λ1n

δ1 for λ1 ∈ (0,1) and δ1 ∈ (2/κ,1) implies
k2,n ∼ λ2n

δ2 for λ2 ∈ (0,1) and δ2 ∈ (0, δ1). Further, slowly varying k1,n → ∞ is not valid
since k2,n → 0 is then required which leads to asymptotic non-normality when E[ε4

t ] = ∞.
Fifth, we need monotonically larger k1,n as κ ↘ 2, but always lim supn→∞(k2,n/k1,n) < 1.

Exponential tails treated in Section 2.3.2 reveals an extreme case: there are no limitations on
how we set {k1,n, k2,n} outside of an upper bound, although k1,n > k2,n always reduces small
sample bias.

Finally, as a numerical example suppose κ = 2.5 and n = 100. If k2,n = 1 then k1,n = 33
renders (10) a near equality, although any k1,n ∈ {29, . . . ,35} aligns with k2,n = 1 by rounding.
This is striking: we need to trim roughly 33 times as many negative Et (θ) as positive Et (θ) to
approach unbiasedness at n = 100. If n = 800 then, for example, k2,n = 2 aligns with roughly
k1,n = 200.

2.3.2. Exponential tails

Now suppose εt has a Laplace distribution:

P(εt ≤ −c) = 1
2 exp{−√

2c} for c > 0 and P(εt > c) = 1
2 exp{−√

2c} for c ≥ 0.

We use a normal distribution in our simulation study, but the exposition here is greatly simplified
under Laplace, while the conclusions are the same.

We have P(Et ≤ −c) = 1 − exp{−√
2(1 − c)1/2} and P(Et ≥ c) = exp{−√

2(1 + c)1/2}.
The following are then straightforward to verify: Ln = 1 − (ln(n/(n − k1,n)))

2 and Un =
(ln(0.5n/k2,n))

2 − 1, hence

E
[
Et I (−Ln ≤ Et ≤ Un)

]
= 2

(
k1,n

n
− k2,n

n

)
− ln

(
n

n − k1,n

){
− ln

(
n

n − k1,n

)
+ 2

(
n − k1,n

n

)}
.

Observe E[Et I (−Ln ≤ Et ≤ Un)] ≈ 0 when k1,n > k2,n, hence if k1,n/n → 0 then k2,n/n → 0
must hold.

Since E[ε4
t ] < ∞ we need E[Et I (−Ln ≤ Et ≤ Un)] = o(1/n1/2). Notice ln(n/(n − k1,n)) ∼

k1,n/n. Hence if simply each ki,n = o(n1/2), then we achieve E[Et I (−Ln ≤ Et ≤ Un)] =
o(1/n1/2). This implies that technically we do not even need asymmetric trimming k1,n > k2,n as
long as we set k1,n = k2,n = o(n1/2). This follows since tails are so thin that in general extremes
on [0,∞) are not much larger than extremes on [−1,0) in small samples. Similarly, we can use
any form of asymmetric trimming that satisfies ki,n = o(n1/2). We show by simulation that as n

gets large, bias evaporates irrespective of ki,n, but k1,n > k2,n always leads to lower small sample
bias.
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2.3.3. Remarks

We demonstrate by simulation in Section 5 that using k1,n = 10k2,n or k1,n = 35k2,n for either
n ∈ {100,800} and either Paretian or Gaussian εt leads to a superb QMTTL estimator. Indeed,
simply using symmetric trimming k1,n = k2,n still leads to a better estimator than Log-LAD
and Weighted Laplace QML in terms of small sample bias and approximate normality, although
Power-Law QML tends to have lower bias and be closer to normal. In general using bias mini-
mizing fractiles, like k1,n = 100k2,n for Paretian εt when n = 800, is not evidently required for
obtaining low bias in finite samples, as long as k1,n is comparatively large relative to k2,n in
which case QMTTL trumps Log-LAD, WLQML and PQML.

We also find that our method of moments estimator in Section 3 dominates Log-LAD,
WLQML and PQML, although QMTTL with k1,n = 35k2,n leads to smaller bias and is closer
to normally distributed in nearly every case. Nevertheless, the method of moments estimator is
always asymptotically unbiased and easier to implement because trimming is symmetric. Which
estimator is chosen in practice depends on the analyst’s preferences: method of moments is guar-
anteed to be asymptotically unbiased, but QMTTL has superior small sample properties even if
{k1,n, k2,n} are not chosen to ensure asymptotic unbiasedness.

2.4. QMTTL scale and rate of convergence

The scale Vn and rate of convergence depend on the error tail index κ > 2. If E[ε4
t ] < ∞ then by

dominated convergence E[E2
t I

(E)
n,t ] = E[(ε2

t − 1)2I
(E)
n,t ] → E[(ε2

t − 1)2] = E[ε4
t ] − 1, thus Vn ∼

n(E[ε4
t ] − 1])−1E[sts

′
t ], the classic QML asymptotic covariance matrix. This implies trimming

does not affect efficiency asymptotically. Hence, we now assume E[ε4
t ] = ∞.

Let the intermediate order sequences {kn} and positive thresholds {Cn(θ)} satisfy

P
(∣∣Et (θ)

∣∣ ≥ Cn(θ)
) = kn

n
.

The rate E[E2
t (θ)I

(E)
n,t (θ)] → ∞ is logically governed by the right tail of Et (θ) = ε2

t (θ) − 1 ∈
[−1,∞) since by dominated convergence:

E
[
E2

t (θ)I
(E)
n,t (θ)

] = E
[
E2

t (θ)I
(−Ln(θ) ≤ Et (θ) ≤ Un(θ)

)]
∼ E

[
E2

t (θ)I
(∣∣Et (θ)

∣∣ ≤ Cn(θ)
)]

as though Et (θ) were symmetrically trimmed with thresholds and fractile

Cn(θ) = Un(θ) and kn = k2,n. (13)

Note E[E2
t (θ)I

(E)
n,t (θ)] ∼ E[E2

t (θ)I (|Et (θ)| ≤ Cn(θ))] is useful for characterizing the conver-
gence rate, but identification Assumption 2 in general requires k1,n > k2,n hence Ln(θ) < Un(θ).

As long as E[ε4
t ] = ∞, then the rate of convergence is V1/2

n = o(n1/2): heavy tailed errors can
only adversely affect the convergence rate. The exact rate can be deduced by observing that from
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P(|εt | > a) = da−κ(1 + o(1)) the variable Et = ε2
t − 1 has a tail sum dominated by the right tail:

P
(|Et | > a

) = P
(
ε2
t > 1 + a

) + P
(
ε2
t < 1 − a

)
(14)

= d(1 + a)−κ/2(1 + o(1)
) = da−κ/2(1 + o(1)

)
as a → ∞.

Hence, the thresholds Cn can always be chosen as Cn = d2/κ(n/kn)
2/κ . Now use an implication

of Karamata’s theorem to obtain as n → ∞ (e.g., Resnick [55], Theorem 0.6):3

κ = 4 : E[
E2

t I
(E)
n,t

] ∼ d ln(n),
(15)

κ ∈ (2,4) : E[
E2

t I
(E)
n,t

] ∼
(

κ

4 − κ

)
C2

nP
(|Et | > Cn

) =
(

κ

4 − κ

)
d4/κ

(
n

kn

)4/κ−1

= o(n).

The following claim summarizes the above details.

Theorem 2.5 (Convergence rate). Under Assumptions 1 and 2 if κ > 4 then Vn ∼ n(E[ε4
t ] −

1])−1E[sts
′
t ]. If κ ≤ 4 then for i = 1, . . . , q

κ = 4 : V1/2
i,i,n ∼

(
n

ln(n)

)1/2

d−1/2(E[
s2
i,t

])1/2
,

(16)

κ ∈ (2,4) : V1/2
i,i,n ∼ n1/2

(
kn

n

)2/κ−1/2

d−2/κ

(
4 − κ

κ

)1/2(
E

[
s2
i,t

])1/2
.

There are several key observations. First, as long as κ ∈ (2,4) then elevating kn arbitrarily
close to a fixed percent of n, that is kn ≈ λn for λ ∈ (1,0), will optimize the convergence rate.
This is logical since large errors adversely affect efficiency. In general this implies

kn ∼ n/gn for gn → ∞ at a slow rate, (17)

ensures V1/2
i,i,n ∼ n1/2/g

2/κ−1/2
n for any κ ∈ (2,4]. Hence, V1/2

i,i,n → ∞ can be driven as close

to rate n1/2 as we choose by setting gn → ∞ very slowly (e.g., gn = ln(ln(n))). Further, the
rate monotonically n1/2/g

2/κ−1/2
n ↗ n1/2 as κ ↗ 4. Hall and Yao [26] show the QML rate is

n1−2/κ/L(n) for some slowly varying L(n) → ∞ and any κ ∈ (2,4], hence QMTTL can be
assured to be faster for every κ ∈ (2,4). Conversely, Peng and Yao’s [52] Log-LAD and non-
Gaussian QML are n1/2-convergent (cf. Berkes and Horvath [5], Zhu and Ling [61]), but the
higher rate is not without costs: (i) these estimators are not robust to error extremes in small
samples: see Section 5; (ii) Log-LAD requires ln ε2

t to have a zero median; and (iii) non-Gaussian
QML requires additional moment conditions for Fischer consistency, for example, WLQML
requires E|εt | = 1: see Section 1 for discussion.

3Note if κ = 4 then for finite a > 0 there exists K > 0 such that E[E2
t I

(E)
n,t ] ∼ ∫ C2

n
0 P(Et > u1/2)du = K + ∫ C2

n
a P (Et >

u1/2)du ∼ K + d
∫ C2

n
a+1 u−κ/4 du ∼ K + d ln(C4

n) ∼ d ln(n) since Cn = K(n/kn)1/4.
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Second, if κ < 4 and we use a fractile form kn ∼ λn/gn for slow gn → ∞ and λ ∈ (0,1], then

n1/2

g
2/κ−1/2
n

(
θ̂n − θ0) d→ N

(
0, λ−(2/κ−1/2)

(
κ

4 − κ

)
d4/κ

(
E

[
sts

′
t

])−1
)

(18)
= N

(
0,V(λ, κ, d)

)
.

For example, in our simulation study we use kn ∼ λn/ ln(n), hence θ̂n is n1/2/(ln(n))2/κ−1/2-
convergent with asymptotic variance V(λ, κ, d). The asymptotic variance V(λ, κ, d) can always
by decreased by increasing λ and therefore removing more extremes per sample.

Third, in view of kn = k2,n by (13), trimming rule (17) only concerns the amount of trimmed
positive observations of Et = ε2

t − 1: the left tail of Et is bounded, hence only the rate of right tail
trimming of Et matters for the convergence rate. In terms of identification, however, as discussed
in Section 2.3 the number of trimmed left and right tail observations k1,n and k2,n must be bal-
anced when εt is governed by a heavy tailed distribution. For example, if P(|εt | > c) = (1+c)−κ

with κ ∈ (2,4), and k1,n ∼ λn/ ln(n), both as in our simulation study, then Assumption 2 holds

when k2,n ∼ Kk
κ/(κ−2)

1,n /nκ/(κ−2)−1 ∼ Kn/(ln(n))κ/(κ−2), hence from (18) the rate of conver-

gence is n1/2/((ln(n))κ/(κ−2))2/κ−1/2 = n1/2/(ln(n))(4−κ)/[2(κ−2)].
As a practical matter, naturally too much trimming in any given sample can lead to small

sample bias in θ̂n. In Section 5, we use kn ∼ λn/ ln(n) with λ = 0.025 for both very thin and thick
tailed error distributions: values much larger than 0.025 (e.g., λ = 0.10) leads to substantial bias,
and values much smaller (e.g., λ = 0.01) are not effective for rendering θ̂n approximately normal
in small samples. In general any value λ ∈ [0.02,0.05] leads to roughly the same results. Similar
trimming schemes are found to be highly successful in other robust estimation and inference
contexts: see Hill [30,31] and Hill and Aguilar [33].

Last, there are several proposed methods in the robust statistics literature for selecting trim-
ming parameters like λ, but in this literature the seeming universal approach for data transfor-
mations involve a fixed quantile threshold hence kn ∼ λn (cf. Huber [34], Hampel et al. [27],
Jureckova and Sen [37]). Such methods include covariance determinant or asymptotic variance
minimization where a unique internal solution for λ exists. These methods are ill posed here
since they lead to corner solutions: consider that minimizing V(λ, κ, d) above on λ ∈ [λ, λ̄] leads
to λ = λ̄. See Hill and Aguilar [33] for references and simulation evidence. In terms of inference
more choices exist, including test statistic functionals over λ like the supremum, and empirical
process techniques for p-value computation (see Hill [30]).

3. Method of moments with re-centering

Our second estimator uses the method of moments based on negligibly weighted errors imbedded
in a QML score equation. This gives us the advantage of re-centering to ensure identification. It
therefore allows us to use a greater variety of error transforms, as well as symmetric transforms
even if the errors have an asymmetric distribution. Define �t := σ(yτ : τ ≤ t).

The class of transformations we consider have the general form

ψ(u, c) := u × �(u, c) × I
(|u| ≤ c

)
, (19)
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where �(·, c) is for each c a Borel function, and

lim
c→∞�(u, c) × I

(|u| ≤ c
) = 1. (20)

Thus, ψ(u, c) is a redescending function (see Andrews et al. [1] and Hampel et al. [27]). In the
literature typically c is fixed, but the only way we can identify θ0 and obtain Fischer consistency
without an additional simulation step is to enforce c → ∞ as n → ∞.4 Notice as c → ∞ the
transform satisfies ψ(u, c) → u hence it applies a negligible weight to u. Further, it operates
similar to tail-trimming since by (20)

ψ(u, c) = uI
(|u| ≤ c

) × (
1 + o(1)

)
as c → ∞. (21)

We focus on two types of weights � . First, the simple trimming case ψ(u, c) = uI (|u| ≤ c),
hence

�(u, c) = 1.

The theory developed below easily extends to related redescending functions ψ(u, c), like Ham-
pel’s three-part trimming function with thresholds 0 < a < b < c (see Andrews et al. [1]):⎧⎪⎪⎪⎨⎪⎪⎪⎩

u, 0 ≤ |u| ≤ a,
a × sign(u), a < |u| ≤ b,
a × (c − |u|)

c − b
× sign(u), b < |u| ≤ c,

0, c < |u|.
This can be identically written as (19) with

�(u, c) = I
(|u| ≤ a

) + a

|u| × I
(
a < |u| ≤ b

) + a(c − |u|)
|u|(c − b)

× I
(
b < |u| ≤ c

)
. (22)

Of course, we abuse notation since there are three thresholds {a, b, c}. By construction �(u, c) ∈
[0,1], while negligibility requires the smallest threshold a → ∞, hence �(u, c) → 1 as a → ∞.

Second, we use smooth weights �(u, c) that are continuously differentiable in c, with∣∣∣∣ ∂

∂c
�(u, c)

∣∣∣∣ × I
(|u| ≤ c

) ≤ K
1

c
. (23)

Notice the simple trimming case �(u, c) = 1 trivially satisfies (23). Thus, as c → ∞ the trans-
form derivative (∂/∂c)ψ(u, c) → 0 at rate O(1/c) for all |u| 
= c. An example is Tukey’s bisquare
�(u, c) = (1 − (u/c)2)2 with (∂/∂c)�(u, c) = 2(1 − (u/c)2)u2/c3 hence (23) holds. A second
example is the exponential �(u, c) = exp{−|u|/c} with (∂/∂c)�(u, c) = exp{−|u|/c}|u|/c2.

Assumption 4 (Redescending transforms). Let ψ(u, c) satisfy (19), (20) and (23).

4See, for example, Sakata and White [58], Cantoni and Ronchetti [11] and Mancini et al. [43].
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Now define two-tailed observations ε
(a)
t (θ) := |εt (θ)| and their order statistics ε

(a)
(1) (θ) ≥

ε
(a)
(2)

(θ) ≥ · · · , and let {kn} be an intermediate order sequence. Write

Î
(ε)
n,t (θ) := I

(∣∣εt (θ)
∣∣ ≤ ε

(a)
(kn)(θ)

)
,

ψ̂n,t (θ) := ψ
(
εt (θ), ε

(a)
(kn)(θ)

) = εt (θ) × �
(
εt (θ), ε

(a)
(kn)(θ)

)
Î

(ε)
n,t (θ),

and define re-centered equations and a Method of Negligibly-Weighted Moments (MNWM) es-
timator

̂̌mn,t (θ) :=
(

ψ̂2
n,t (θ) − 1

n

n∑
t=1

ψ̂2
n,t (θ)

)
× st (θ) and

θ̂ (m)
n := arg min

θ∈�

(
n∑

t=1

̂̌mn,t (θ)

)′( n∑
t=1

̂̌mn,t (θ)

)
.

Any positive definite symmetric weight matrix W ∈ R
q×q leads to the same solution

arg minθ∈�

∑n
t=1

̂̌mn,t (θ)′ × W × ∑n
t=1

̂̌mn,t (θ). Similarly, any �t−1-measurable uniformly
L2+ι-bounded vector zt (θ) ∈ R

r , r ≥ q , can be used instead of st (θ) for a GMM estimator
(Hansen [28]). The scaled volatility derivative st (θ), however, provides an analogue to QML.
Finally, as discussed in Section 2 small sample performance appears to be improved if we also
trim by yt−1, while asymptotics are unchanged if trimming is negligible. The estimator in this
case uses the transformed error εt (θ)�(εt (θ), ε

(a)
(kn)(θ))Î

(ε)
n,t (θ)Î

(y)

n,t−1.
Next, for asymptotics let {Cn(θ)} satisfy

P
(∣∣εt (θ)

∣∣ ≥ Cn(θ)
) = kn

n
,

write compactly

I
(ε)
n,t (θ) := I

(∣∣εt (θ)
∣∣ ≤ ε

(a)
(kn)(θ)

)
,

ψn,t (θ) := ψ
(
εt (θ),Cn(θ)

)
and εn,t (θ) := εt (θ)I

(ε)
n,t (θ),

and define equations with non-random thresholds

m̌n,t (θ) := (
ψ2

n,t (θ) − E
[
ψ2

n,t (θ)
]) × (

st (θ) − E
[
st (θ)

])
.

In view of re-centering in ̂̌mn,t (θ) it can be shown that, asymptotically, m̌n,t and ̂̌mn,t are inter-
changeable. See the Appendix.

Since εt is i.i.d. and has a smooth distribution, the transform is negligible in that ψn,t (θ)
a.s.→

εt (θ), and st is �t−1-measurable, it follows for all n ≥ N and some large N ∈ N

E
[
m̌n,t (θ)|�t−1

] = 0 if and only if θ = θ0,

hence an identification condition like Assumption 2 automatically holds. Similarly, by negligi-
bility ψ(u, c) = uI (|u| ≤ c)× (1 + o(1)) as c → ∞ and E[ε2

n,t ] → 1, hence by independence of
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the errors

E
[
m̌n,t m̌

′
n,t

] = E
((

ψ(εt ,Cn)
2 − E

[
ψ(εt ,Cn)

2])2) × E
[(
st − E[st ]

)(
st − E[st ]

)′]
= E

((
ε2
n,t − E

[
ε2
n,t

])2) × E
[(
st − E[st ]

)(
st − E[st ]

)′] × (
1 + o(1)

)
= (

E
[
ε4
n,t

] − 1
) × E

[(
st − E[st ]

)(
st − E[st ]

)′] × (
1 + o(1)

)
.

The MNWM scale is therefore

◦
Vn = n

E[ε4
n,t ] − 1

× E
[(
st − E[st ]

)(
st − E[st ]

)′]
, (24)

which is positive definite under Assumption 1.

Theorem 3.1 (MNWM). Under Assumptions 1 and 4
◦
V1/2

n (θ̂
(m)
n − θ0)

d→ N(0, Iq). Further
each

◦
V i,i,n → ∞ and

◦
V i,i,n/Vi,i,n → (0,1).

Remark 7. In general a direct comparison of QMTTL and MNWM scales Vn and
◦
Vn is difficult

for a particular n due to the different trimming strategies. Notice, however, that E[ε4
n,t ] − 1 =

E[E2
t I

(E)
n,t ] × (1 + o(1)) if Cn = (Un + 1)1/2. This follows by noting E[ε2

t ] = 1, E2
t ∈ [−1,∞),

negligibility and dominated convergence imply

E
[
E2

t I
(E)
n,t

] = E
[(

ε4
t − 2ε2

t + 1
)
I
(−Ln ≤ ε2

t − 1 ≤ Un

)]
= E

[
ε4
t I

(
(1 −Ln)

1/2 ≤ |εt | ≤ (Un + 1)1/2)] × (
1 + o(1)

)
= E

[
ε4
t I

(|εt | ≤ (Un + 1)1/2)] × (
1 + o(1)

)
.

Thus,
◦
Vn × V−1

n = E[(st − E[st ])(st − E[st ]′] × E[sts
′
t ] as n → ∞. Therefore

◦
Vn is smaller

than Vn due to the centered term E[(st − E[st ])(st − E[st ])′], hence identification is assured at
a cost of efficiency.

Remark 8. Since
◦
Vn ∼ KnVn for some sequence of positive definite matrices {Kn}, the Sec-

tion 2.4 discourse on the QMTTL rate of convergence carries over here.

4. Inference

In view of Vn ∼ n(E[E2
t I

(E)
n,t ])−1E[sts

′
t ], a natural estimator of the QMTTL scale Vn is

V̂n = V̂n(θ̂n) = n × 1

1/n
∑n

t=1 1/n
∑n

t=1 E2
t (θ̂n)Î

(E)
n,t (θ̂n)

× 1

n

n∑
t=1

st (θ̂n)s
′
t (θ̂n). (25)

Theorem 4.1. Under Assumptions 1 and 2 V̂n = Vn(1 + op(1)).
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Remark 9. Notice V̂n = Vn(1 + op(1)) only reduces to V̂n = Vn + op(1) when E[ε4
t ] < ∞. In

general classic inference is available without knowing the true rate of convergence, nor even if
trimming is required.

Remark 10. A consistent estimator of the MNWM scale
◦
Vn can similarly be constructed.

A Wald statistic naturally follows for a test of (non)linear parameter restrictions R(θ0) = 0
where R :Rq → R

J and J ≥ 1. Assume R is differentiable with a gradient D(θ) = (∂/∂θ)R(θ)

that is continuous, differentiable and has full column rank. The test statistic with the QMTTL
estimator as a plug-in is

Wn = R(θ̂n)
′(D(θ̂n)V̂

−1
n (θ̂n)D(θ̂n)

′)−1
R(θ̂n).

Use Theorems 2.2 and 4.1 to deduce Wn
d→ χ2(J ) under the null, and if R(θ0) 
= 0 then

Wn
p→ ∞.

Similarly, the proof of Theorem 2.1 shows the QMTTL first order condition is 1/n ×∑n
t=1 mt(θ̂n)I

(E)
n,t (θ̂n) = 0 a.s. This naturally suggests the possibility of a score or Lagrange Mul-

tiplier test since a QMTTL estimator under the constraint R(θ0) = 0, denoted θ̂
(c)
n , also satisfies

1/n
∑n

t=1 mt(θ̂
(c)
n )I

(E)
n,t (θ̂

(c)
n )

p→ 0 if the constraint is true. A heavy tail robust test of R(θ0) = 0
can therefore be coached as a tail-trimmed moment condition test as in Hill and Aguilar [33].

5. Simulation

We now compare our robust QML and Method of Moments estimators with various estimators in
the literature. In order to draw the best comparisons between QMTTL and MNWM, we initially
focus on simple trimming for MNWM. We compare our estimators to QML as a benchmark, as
well as Log-LAD, Weighted Laplace QML (WLQML) and Power-Law QML (PQML) due to
their heavy tail robustness properties. Finally, we investigate other redescending transforms as
alternatives for MNWM, and whether tail-trimming can improve the small sample properties of
PQML.

5.1. Data generation and estimators

Let Pκ denote a symmetric Pareto distribution: if εt is distributed Pκ then P(εt ≤ −a) = P(εt ≥
a) = 0.5(1 + a)−κ for a > 0. We draw 20n observations for n ∈ {100,800} from the GARCH
process yt = σtεt and σ 2

t = 0.05 + 0.05y2
t−1 + 0.90σ 2

t−1 with a starting value σ 2
1 = 0.05, and

retain the last n observations for the sample. This is repeated to produce 10,000 samples {yt }nt=1.
Our choice of parameter values are indicative of values we obtain in the empirical study below,
and frequently encountered in macroeconomic and financial data. The error εt is i.i.d. N(0,1),
or P2.5 standardized such that E[ε2

t ] = 1.
We compute the feasible QMTTL and MNWM estimators conditional on the first observation,

with parameter space is � = [ι,2]× [ι,1 − ι]× [ι,1 − ι] where ι = 10−10. The iterated volatility
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variable is h1(θ) = ω and ht (θ) = ω + αy2
t−1 + βht−1(θ) where we initialize h1(θ) = ω for

QMTTL and hθ
1(θ) = [1,0,0]′ for MNWM.

As a benchmark for QMTTL we use strong asymmetric trimming with error fractiles k2,n =
max{1, [0.025n/ ln(n)]} and k1,n = 35k2,n. This equates to {k1,n, k2,n} = {1,35} and {3,105} for
n = 100 and 800. The fractile for trimming by yt−1 is k̃n = max{1, [0.1 ln(n)]}: asymptotics
do not require such trimming, while removing a very few criterion equations due to large yt−1
appears to improve the estimator’s performance. The benchmark for MNWM is simple trim-
ming ψ(u, c) = uI (|u| ≤ c). The error fractile is as above kn = max{1, [0.025n/ ln(n)]} and the
fractile for trimming by yt−1 is again k̃n.

In addition to the benchmark estimates, we compute MNWM with Tukey’s bisquare and ex-
ponential transforms. We also compute QMTTL with weak asymmetric (k1,n = 10k2,n) and sym-
metric (k1,n = k2,n) trimming. Recall from Section 2.3 that for QMTTL k1,n = 35k2,n roughly
minimizes bias in the Pareto case P(|εt | ≥ a) = (1+a)−2.5 when n = 100. We show here that us-
ing k1,n = 35k2,n even when n = 800 still promotes a sharp estimator. In simulations not reported
here, we find that the bias minimizing relation k1,n = 100k2,n when P(|εt | ≥ a) = (1 + a)−2.5

and n = 800 logically leads to even smaller bias, but bias is still low when k1,n = 35k2,n. Recall
also that any combination {k1,n, k2,n} works in the Gaussian case provided ki,n = o(n1/2). This
is violated here since we use ki,n ∼ Kn/ ln(n), however this matters only asymptotically, and we
demonstrate that using k2,n ∼ Kn/ ln(n) and k1,n = 35k2,n for n = 100 and 800 in the thin tail
case still leads to a competitive estimator in small samples. Indeed, if we use ki,n ∼ Kn1/2/ ln(n)

then the small sample performance is essentially identical to what we see here.
Peng and Yao’s [52] Log-LAD criterion is

∑n
t=2 | lny2

t − lnht (θ)|. The WLQML criterion

is
∑n

t=2{lnh
1/2
t (θ) + |yt/h

1/2
t (θ)|}wt where we choose the weights {wt } as in Zhu and Ling

[61], equation (2.4): wt = (max{1,C−1 ∑∞
i=1 i−9|yt−iI (|yt−i | > C)|})−4 where C = y

(a)
(0.10n)

and yt−i = 0 ∀i ≥ t .
The PQML estimator detailed in Berkes and Horvath [5], Example 2.3, is based on the cri-

terion −∑n
t=2 ln(h

−1/2
t (θ)f (yt/h

1/2
t (θ))) where f (u) = K(1 + |u|)−ϑ with tail index ϑ > 1.

The value K > 0 ensures
∫ ∞
−∞ f (u)du = 1 and of course is irrelevant for estimation, hence we

simply set K = 1. Identification of θ0 requires E[|εt |/(1 + |εt |)] = 1/ϑ , while in the Pareto case
P(|εt | ≥ a) = (1 + a)−κ it is easily verified that E[|εt |/(1 + |εt |)] = 1/(κ + 1) hence we set
ϑ = κ + 1 = 3.5 in both Paretian and Gaussian cases.5 We also set ϑ = 3 as a control case to see
if small sample bias increases when εt is Pareto, as it should.

5.2. Simulation results

Table 1 contains estimator bias, root mse [rmse], and the Kolmogorov–Smirnov statistic scaled
by its 5% critical value. We only report results for θ0

3 in order to conserve space, while the omitted
results are qualitatively similar. In Table 2, we report t -test rejection frequencies for tests of the
hypotheses θ0

3 = 0.9, θ0
3 = 0.70 and θ0

3 = 0.50, where the first is true. If {θ̂ (r)
3,n}Rr=1 is the sequence

5Simply note P(|εt | ≥ a) = (1 + a)−κ implies P(|εt |/(1 + |εt |) > a) = P(|εt | > a/(1 − a)) = (1 − a)κ hence

E[|εt |/(1 + |εt |)] = ∫ 1
0 P(|εt |/(1 + |εt |) > a)da = ∫ 1

0 (1 − a)κ da = 1/(1 + κ).
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Table 1. Simulation estimation results for θ0
3

εt ∼ P̄2.5 εt ∼ N(0,1)

n = 100 n = 800 n = 100 n = 800

Bias RMSa KSb Bias RMS KS Bias RMS KS Bias RMS KS

QMTTL-SAc −0.010 0.092 1.75 0.008 0.045 1.45 −0.063 0.095 3.87 0.001 0.030 1.07
QMTTL-WA −0.031 0.102 3.01 0.024 0.038 2.76 −0.060 0.089 4.76 0.003 0.030 1.34
QMTTL-S −0.041 0.114 4.69 0.016 0.044 4.21 −0.069 0.075 6.30 0.005 0.032 1.89
MNWM-Id −0.023 0.111 2.31 −0.010 0.064 1.56 −0.029 0.108 2.86 −0.008 0.036 1.17
MNWM-T −0.019 0.103 2.87 −0.012 0.069 1.61 0.021 0.113 3.16 −0.010 0.039 1.20
MNWM-E −0.025 0.117 3.13 −0.016 0.058 1.50 −0.026 0.097 3.02 −0.013 0.037 1.31
WLQMLe −0.063 0.124 5.92 −0.135 0.107 7.64 −0.092 0.082 8.12 −0.088 0.084 6.05
WLQMLE|εt |=1 −0.082 0.219 8.48 −0.072 0.089 5.64 −0.075 0.078 9.36 −0.065 0.067 3.97
PQML3 −0.048 0.085 6.17 −0.039 0.059 3.00 −0.065 0.067 9.07 0.005 0.032 1.30
PQML3.5 −0.034 0.083 4.74 −0.018 0.056 3.17 −0.064 0.062 9.54 0.009 0.029 2.75
PQMTTLSA

3.5 −0.054 0.116 6.23 −0.017 0.056 2.23 −0.061 0.074 6.38 0.011 0.028 2.65

PQMTTLWA
3.5 −0.031 0.074 4.28 −0.012 0.046 1.35 −0.051 0.074 8.21 0.008 0.028 2.12

PQMTTLS
3.5 −0.027 0.077 4.05 −0.019 0.057 2.43 −0.055 0.069 8.30 0.011 0.027 2.76

Log-LAD −0.217 0.165 9.88 −0.253 0.149 9.12 −0.082 0.100 7.01 −0.019 0.046 3.61
QML −0.073 0.099 6.23 −0.054 0.078 4.65 −0.112 0.089 8.71 −0.013 0.034 1.64

aThe square root of the empirical mean squared error.
bThe Kolmogorov–Smirnov statistic divided by the 5% critical value: KS > 1 indicates rejection of normality at the 5% level.
cBenchmark QMTTL-SA (strong asymmetric) uses fractiles k1,n = 35k2,n; QMTTL-WA (weak asymmetric) uses k1,n = 10k2,n; QMTTL-S (symmetric) uses
k1,n = k2,n.
dBenchmark MNWM-I uses the simple trimming function ψ(u, c) = uI (|u| ≤ c); MNWM-T and MNWM-E use Tukey’s bisquare and exponential transforms.
eWLQML is Weighted Laplace QML. WLQMLE|εt |=1 is WLQML for processes with E|εt | = 1. PQMLϑ is power-law QML with criterion index ϑ . PQMTTLWA

ϑ

and PQMTTLSA
ϑ are tail-trimmed PQML with weak asymmetric (k1,T = 5k2,T ) or strong asymmetric (k1,T = 9k2,T ) trimming.
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Table 2. Test rejection frequenciesa at 5% level for θ0
3

εt ∼ P̄2.5 εt ∼ N(0,1)

n = 100 n = 800 n = 100 n = 800

H0 H 1
1 H 2

1 H0 H 1
1 H 2

1 H0 H 1
1 H 2

1 H0 H 1
1 H 2

1

QMTTL-SAb 0.054 0.694 0.995 0.046 0.951 0.999 0.059 0.664 0.789 0.048 1.00 1.00
QMTTL-WA 0.068 0.431 0.924 0.041 1.00 1.00 0.065 0.067 0.868 0.045 1.00 1.00
QMTTL-S 0.074 0.256 0.880 0.036 1.00 1.00 0.058 0.166 0.942 0.040 1.00 1.00
MNWM-Ic 0.055 0.521 0.840 0.054 0.899 0.997 0.058 0.716 0.927 0.047 0.998 1.00
MNWM-T 0.043 0.791 0.981 0.055 0.878 0.991 0.031 0.963 0.998 0.054 0.992 1.00
MNWM-E 0.050 0.236 0.907 0.058 0.867 0.982 0.062 0.573 0.981 0.053 0.988 1.00
WLQMLd 0.058 0.045 0.838 0.038 0.006 0.260 0.047 0.031 0.809 0.043 0.052 0.793
WLQMLE|εt |=1 0.041 0.012 0.493 0.041 0.036 0.436 0.038 0.021 0.771 0.044 0.104 0.965
PQML3 0.058 0.367 0.955 0.060 0.688 1.00 0.049 0.243 0.980 0.034 1.00 1.00
PQML3.5 0.051 0.578 0.980 0.058 0.891 0.998 0.045 0.246 0.983 0.039 1.00 1.00
PQMTTLSA

3.5 0.078 0.122 0.845 0.043 0.863 1.00 0.058 0.260 0.952 0.043 1.00 1.00

PQMTTLWA
3.5 0.053 0.600 0.978 0.056 0.938 1.00 0.060 0.281 0.955 0.051 1.00 1.00

PQMTTLS
3.5 0.053 0.662 0.978 0.055 0.888 1.00 0.057 0.385 0.972 0.040 1.00 1.00

Log-LAD 0.061 0.009 0.000 0.025 0.000 0.000 0.058 0.046 0.785 0.053 0.951 1.00
QML 0.065 0.109 0.789 0.061 0.342 0.733 0.061 0.000 0.575 0.051 0.997 1.00

aThe hypotheses are H0: θ3 = θ0
3 , H 1

1 : θ3 = θ0
3 − 0.2, and H 2

1 : θ3 = θ0
3 − 0.4, where θ0

3 = 0.9.
bBenchmark QMTTL-SA (strong asymmetric) uses fractiles k1,n = 35k2,n; QMTTL-WA (weak asymmetric) uses k1,n = 10k2,n; QMTTL-S (symmetric) uses
k1,n = k2,n .
cBenchmark MNWM-I uses the simple trimming function ψ(u, c) = uI (|u| ≤ c); MNWM-T and MNWM-E use Tukey’s bisquare and exponential transforms.
dWLQML is Weighted Laplace QML. WLQMLE|εt |=1 is WLQML for processes with E|εt | = 1. PQMLϑ is power-law QML with criterion index ϑ . PQMTTLWA

ϑ

and PQMTTLSA
ϑ are tail-trimmed PQML with weak asymmetric (k1,T = 5k2,T ) or strong asymmetric (k1,T = 9k2,T ) trimming.
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of R = 10,000 independent estimates of θ0
3 , we use the empirical variance 1/R

∑R
r=1(θ̂

(r)
3,n −

1/R
∑R

r=1 θ̂
(r)
3,n)

2 to standardize θ̂
(r)
3,n for KS test and t -test computation.

Log-LAD and WLQML perform poorly when E[ε4
t ] = ∞: in small samples they are sensitive

to large error observations, contrary to their theoretical robustness properties asymptotically.
Indeed, Log-LAD leads to exceptionally poor inference when E[ε4

t ] = ∞ due to a high degree
of bias, and is worst overall. Further, WLQML is sensitive to large errors even in the Gaussian
case. It is not surprising that Log-LAD and WLQML are similar since Laplace QML merely
generalizes LAD to a likelihood framework (Zhu and Ling [61]). QML performs better than
Log-LAD and worse than WLQML when E[ε4

t ] = ∞, and is better than both when εt is normal.
PQML is more promising than QML, Log-LAD and WLQML. It performs better on all mea-

sures and in nearly every case: Log-LAD and WLQML are closer to normally distributed for
Gaussian εt with small n = 100. In particular, PQML has the smallest rmse of all estimators in
this study, suggesting that it exhibits very low empirical variance since it has higher bias than
QMTTL and MNWM. Identification is assured in the Pareto case κ = 2.5 when ϑ = 3.5, so it
is not surprising that bias in the Pareto case is higher when ϑ = 3. Further, there should be no-
ticeable bias in the Gaussian case since identification fails, yet bias is actually smaller than for
Paretian errors when n = 800. It is important to stress that PQML with index ϑ = 3.5 is perfectly
suited for our Paretian case P(|εt | ≥ a) = (1 + a)−2.5 since this non-Gaussian QML leads to
identification and therefore Fischer consistency. However, even this estimator exhibits more bias
than QMTTL and MNWM evidently due to the adverse effects of sample error extremes (see
Section 5.3).

The best estimators in this study are QMTTL (with strong asymmetric trimming) and MNWM
in terms of bias, approximate normality and test performance, while only PQML has a smaller
rmse. QMTTL with strong asymmetric trimming (k1,n = 35k2,n), as required in the Paretian case
when n = 100, is superb when εt is Paretian for either n ∈ {100,800}, and works very well in the
Gaussian case with a rmse close to PQML. Overall, QMTTL with strong asymmetric trimming is
the best estimator since it beats MNWM in terms of bias and approximate normality in nearly
every case and has a small rmse in all cases.

QMTTL with weak asymmetric (k1,n = 10k2,n) or symmetric (k1,n = k2,n) trimming lead to
greater bias when εt is Paretian, and to negligible bias when εt is Gaussian, in each case as
this estimator should. Nevertheless, QMTTL with weak asymmetric or symmetric trimming is
superior to QML, Log-LAD, and WLQML by all measure; QMTTL with weak asymmetric
trimming beats PQML by all measures except rmse; and QMTTL with symmetric trimming beats
PQML when n = 800. Our QMTTL simulations strongly point to the use of strong asymmetric
trimming in general since it is valid for thin tailed errors, and necessary for heavy tailed errors.
They also reveal that using weak asymmetric of symmetric trimming still leads to a competitive
estimator.

Further, re-centering after trimming in the MNWM estimator in general leads to higher mean-
squared-error than QMTTL. Recall this estimator may be less efficient than QMTTL, and
QMTTL with strong asymmetric trimming results in the lowest bias of all estimators in this
study. Nevertheless, MNWM works well, with the second smallest bias, and overall is closer
to normal than all estimators save QMTTL with strong asymmetric trimming. As discussed in
Section 2.3.3, the preferred estimator depends on the analyst’s agenda: MNWM is always asymp-
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totically unbiased with symmetric trimming which is easy to implement, while QMTTL performs
better in small samples.

5.3. Addtional experiments for WLQML and PQML

We now perform two additional experiments. First, recall WLQML requires E|εt | = 1 which
does not hold for either Paretian or Gaussian errors in this study. We now standardize εt such
that E|εt | = 1 to see if ensuring identification helps in small samples. The results are nevertheless
qualitatively similar whether E[ε2

t ] = 1 and E|εt | 
= 1, or E|εt | = 1, is true. See Tables 1 and 2.
In fact, for heavy tailed errors WLQML actually performs worse in terms of bias and approximate
normality when identification is assured. Further, inference is still quite poor in many cases. This
suggests the previous poor performance of WLQML is not due to the identification condition
failing to hold.

Second, recall that QMTTL has lower bias and is closer to normally distributed that other
estimators whether trimming is needed or not. We therefore tail trim the PQML criterion
to see if the benefits of trimming carry over to non-Gaussian QML. Recall PQML with in-
dex ϑ > 1 has the identification condition E[ut ] = 0 where ut := |εt |/(1 + |εt |) − 1/ϑ . De-
fine u

(−)
t (θ) := ut (θ)I (ut (θ) < 0) and u

(+)
t (θ) := ut (θ)I (ut (θ) ≥ 0) and their order statis-

tics u
(−)
(1) (θ) ≤ · · · ≤ u

(−)
(n) (θ) ≤ 0 and u

(+)
(1) (θ) ≥ · · · ≥ u

(+)
(n) (θ) ≥ 0. Let {k(u)

1,n, k
(u)
2,n} be in-

termediate order sequences and let {c(u)
1,n, c

(u)
2,n} be positive sequences satisfying P(ut (θ) ≤

−c
(u)
1,n) = k1,n/n and P(ut (θ) ≥ c

(u)
2,n) = k2,n/n. The tail-trimmed PQML (PQMTTL) criterion

is −∑n
t=2 ln(h

−1/2
t (θ){1 + |yt/h

1/2
t (θ)|}−(κ+1))I (u

(−)

(k
(u)
1,n)

(θ) ≤ ut (θ) ≤ u
(+)

(k
(u)
2,n)

(θ)).

If εt is Paretian P(|εt | ≥ a) = (1 + a)−2.5 it is straightforward to show k
(u)
1,n = 5k

(u)
2,n when

n = 100 and k
(u)
1,n = 9k

(u)
2,n when n = 800 renders roughly E[utI (−c

(u)
1,n ≤ ut (θ) ≤ c

(u)
2,n)] = 0.

We therefore set symmetric (k(u)
1,n = k

(u)
2,n), weak asymmetric (k(u)

1,n = 5k
(u)
2,n) or strong asymmet-

ric (k(u)
1,n = 9k

(u)
2,n) trimming with k

(u)
2,n = max{1, [0.025n/ ln(n)]}. Tables 1 and 2 show PQMTTL

with weak asymmetric trimming performs better than PQML in all cases. If we use strong asym-
metric trimming then the over-trimming for n = 100 leads to greater bias, but when n = 800
the estimator works well as it should, in particular it is closer to normal and therefore has better
inference than PQML. Conversely, symmetric trimming leads to greater bias when n = 800 as
it should. QMTTL with strong asymmetric trimming and MNWM with simple or exponential
trimming are better than PQMTTL in terms of bias and approximate normality in most cases.
Consider when n = 800 then in the Pareto case PQMTTL with weak asymmetric trimming is
marginally closer to normal and slightly more biased than QMTTL, and in the Gaussian case
PQMTTL is slightly less biased and farther from normally distributed than QMTTL. Overall tail-
trimming seems to matter even for an inherently heavy tail robust non-Gaussian QML estimator.

6. Empirical application

Finally, we apply our estimators to asset returns series generated from the London Stock Ex-
change (FTSE-100), the NASDAQ composite index (IXIC), and the Hang Seng Index. The period
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is Jan. 1, 2008–Dec. 31, 2010, representing 757, 757 and 756 daily observations respectively, net
of market closures. We use log-returns yt = ln(xt /xt−1) where xt is the daily open/close average
of each index.6

As in Section 5, we compute MNWM using simple trimming denoted “I”, Tukey’s bisquare
and exponential transforms, with fractiles kn = max{1, [0.025n/ ln(n)]} and k̃n = max{1,

[0.1 ln(n)]} for trimming by εt and yt−1, respectively. Similarly, QMTTL is computed using
strong asymmetric (k1,n = 35k2,n), weak asymmetric (k1,n = 10k2,n), and symmetric (k1,n = k2,n)
error fractiles denoted “SA”, “WA” and “S”, with k2,n = max{1, [0.025n/ ln(n)]}, and k̃n for
yt−1. The parameter space is � = [ι,2] × [ι,1 − ι] × [ι,1 − ι] where ι = 10−10.

See Table 3 for estimation details where standard errors are computed using (25) for QMTTL
and its logical extension for MNWM. In each case a GARCH model fits well, while QMTTL
and MNWM produce qualitatively similar estimates. The various MNWM estimates are similar
across transform type, especially exponential and simple trimming versions. The QMTTL esti-
mates are somewhat similar across asymmetric and symmetric trimming. For example, evidence
for IGARCH or explosive GARCH α̂n + β̂n ≥ 1 exists only for the NASDAQ based on QMTTL-
SA and MNWM-I, while QMTTL-WA and QMTTL-S lead to smaller values. However, in all
cases β̂n is near 0.9 and α̂n is near 0.05, in many cases α̂n + β̂n ≈ 1, and for each series the
various estimates are quite similar. The latter suggests the various asymmetric and symmetric
trimming strategies for QMTTL work as well as inherently asymptotically unbiased MNWM.
This is matched by our simulations where n = 800 aligns with the sample sizes in the present
empirical study: strong asymmetric trimming leads to the best QMTTL results when εt has power
law tails with a small index κ , but each trimming strategy leads to similar results, especially when
n = 800.

7. Conclusion

We develop tail-trimmed QML and Method of Moments estimators for GARCH models with
possibly heavy tailed errors εt that satisfy E[ε2

t ] = 1. In the Method of Moments case, the
model errors are first negligibly transformed with a redescending function, and then re-centered
to control for small sample bias induced by the transform. We show by Monte Carlo experi-
ment that tail-trimming within a QML framework dominates QML, Log-LAD and Weighted
Laplace QML based on bias, mean-squared-error, approximate normality, and inference, and
trumps Power-Law QML in all aspects except variance (Power-Law QML has higher bias yet
lower mean-squared-error). Only QMTTL and MNWM directly counter the negative influence
of large errors in small and large samples. Indeed, we show trimming leads to a better infea-
sible Power-Law QML estimator in small samples. The next stage must involve a theoretical
development of data-dependent or automatic fractile selection, including possibly bootstrap and
covariance determinant methods. This is left for future research.

6The data were obtained from http://finance.yahoo.com, and the open/close average is computed using the reported
adjusted close values.

http://finance.yahoo.com
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Table 3. QMTTL and MNWM estimation results for financial returns

ω α β ω α β

QMTTL-SAa: k1,n = 35k2,n MNWM-Ib

NASDAQc 0.029 (0.031)c 0.113 (0.082) 0.893 (0.069) 0.016 (0.008) 0.117 (0.017) 0.884 (0.018)
HSId 0.058 (0.064) 0.106 (0.151) 0.878 (0.252) 0.020 (0.009) 0.078 (0.013) 0.915 (0.015)
LSE 0.066 (0.083) 0.213 (0.156) 0.743 (0.224) 0.025 (0.006) 0.119 (0.015) 0.822 (0.020)

QMTTL-WA: k1,n = 10k2,n MNWM-E
NASDAQ 0.017 (0.038) 0.138 (0.113) 0.849 (0.135) 0.032 (0.010) 0.102 (0.021) 0.886 (0.019)
HSI 0.046 (0.086) 0.082 (0.142) 0.910 (0.211) 0.021 (0.011) 0.078 (0.016) 0.915 (0.028)
LSE 0.022 (0.065) 0.179 (0.134) 0.805 (0.194) 0.030 (0.011) 0.125 (0.019) 0.824 (0.031)

QMTTL-S: k1,n = k2,n MNWM-T
NASDAQ 0.012 (0.033) 0.171 (0.145) 0.839 (0.125) 0.033 (0.011) 0.095 (0.031) 0.901 (0.034)
HSI 0.065 (0.092) 0.092 (0.123) 0.887 (0.163) 0.039 (0.011) 0.076 (0.017) 0.920 (0.027)
LSE 0.034 (0.076) 0.214 (0.189) 0.752 (0.203) 0.058 (0.016) 0.122 (0.021) 0.839 (0.024)

aSA = strong asymmetry; WA = weak asymmetry; S = symmetric.
bI = simple trimming, T = Tukey’s bisquare, E = exponential.
cStandard errors are in parentheses (·).
dHSI = Hang Seng; LSE = London Stock Exchange.
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Appendix: Proofs of main theorems

Recall Et (θ) := ε2
t (θ)−1, and score and Jacobian equations are mt(θ) = Et (θ)st (θ) and Gt(θ) =

Et (θ)dt (θ) − ε2
t (θ)st (θ)st (θ)′ where

st (θ) := 1

σ 2
t (θ)

∂

∂θ
σ 2

t (θ) and dt (θ) := ∂

∂θ
st (θ).

Define indicators, trimmed score equations and corresponding covariance and Jacobian matrices:

m̂n,t (θ) := mt(θ)Î
(E)
n,t (θ) and mn,t (θ) := mt(θ)I

(E)
n,t (θ),

�n(θ) := E
[
mn,t (θ)mn,t (θ)′

]
and

G(θ) := −E
[
st (θ)st (θ)′

]
and Vn(θ) = nG(θ)′�−1

n (θ)G(θ),

Sn(θ) := 1

n
E

[(
n∑

t=1

mn,t (θ)

)(
n∑

t=1

mn,t (θ)′
)]

,

Ĝn(θ) := 1

n

n∑
t=1

Gt(θ)Î
(E)
n,t (θ) and Ǧn(θ) := 1

n

n∑
t=1

Gt(θ)I
(E)
n,t (θ).

By independence and identification Assumption 2 Sn = �n × (1 + o(1)).
We implicitly assume all functions in this paper satisfy Pollard’s ([54], Appendix C) permis-

sibility criteria, the measure space that governs all random variables in this paper is complete,
and therefore all majorants are measurable. Cf. Dudley [19]. Probability statements are therefore
with respect to outer probability, and expectations over majorants are outer expectations.

A.1. Theorems 2.1 and 2.2

The proofs of QMTTL consistency and asymptotic normality Theorems 2.1 and 2.2 require sup-
porting lemmas. We state them when required and provide proofs in Appendix A.3. Consistency
requires bounding

∑n
t=1{m̂n,t (θ)−mn,t (θ)}, variance bounds, and laws of large numbers. Unless

otherwise noted, Assumptions 1 and 2 hold.

Lemma A.1 (Asymptotic approximation). (a) n−1/2�
−1/2
n

∑n
t=1{m̂n,t − mn,t } = op(1);

(b) supθ∈� ‖1/n
∑n

t=1{m̂n,t (θ) − mn,t (θ)}‖ = op(supθ∈� E‖mn,t (θ)‖).

Lemma A.2 (Variance bounds). Under Assumption 1(a) �n = o(n/ ln(n)); (b) Sn = o(n/

ln(n)).

Remark 11. Under Assumption 2 Sn = �n(1 + o(1)) hence then (b) follows from (a).

Lemma A.3 (LLN and ULLN). (a) 1/n
∑n

t=1 mn,t = op(1); (b) supθ∈�{‖1/n
∑n

t=1 mn,t (θ) −
E[mn,t (θ)]‖} = op(supθ∈� E‖mn,t (θ)‖).
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Asymptotic normality requires an expansion, central limit theorem, and Jacobian consistency.

Lemma A.4 (Asymptotic expansion). Let {θn} and {θ̃n} be any sequences of random variables
in � with probability limit θ0. Let θn,∗ ∈ � satisfy ‖θn,∗ −θn‖ ≤ ‖θn − θ̃n‖ which may be different
in difference places. (a) 1/n

∑n
t=1{mn,t (θn) − mn,t (θ̃n)} = Ǧn(θn,∗) × (θn − θ̃n) × (1 + op(1))4;

(b) 1/n
∑n

t=1{m̂n,t (θn) − m̂n,t (θ̃n)} = Ĝn(θn,∗) × (θn − θ̃n) × (1 + op(1)).

Lemma A.5 (CLT). n−1/2�
−1/2
n

∑n
t=1 mn,t

d→ N(0, Iq).

Lemma A.6 (Jacobian). (a) Ĝn(θ̂
∗
n ) = G × (1 + op(1)) and Ǧnθ̂

∗
n ) = G × (1 + op(1)) for any

θ̂∗
n

p→ θ0; (b) 1/n
∑n

t=1 st (θ̂n)s
′
t (θ̂n) = G × (1 + op(1)); (c) (∂/∂θ)E[mn,t (θ)]|θ0 = G × (1 +

o(1)); (d) lim supn→∞ supθ∈� E‖mn,t (θ)‖ ≤ K‖G‖ × (1 + o(1)).

We are now ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Define m̂n(θ) := 1/n
∑n

t=1 m̂n,t (θ), mn(θ) := 1/n
∑n

t=1 mn,t (θ),
Mn(θ) := E[mn,t (θ)] and en := supθ∈� E‖mn,t (θ)‖. We use an argument in Pakes and Pol-
lard [50], pages 1038–1039.

Step 1. We first prove a required inequality:

ε(δ) := lim inf
n→∞ inf

θ∈�:‖θ−θ0‖>δ

{∥∥Mn(θ)
∥∥/en

}
> 0 for any small δ > 0. (A.1)

Note E[mn,t ] → E[Etst ] = 0 by dominated convergence and independence. By the definition
of a derivative and Lemma A.6(c) we have E[mn,t (θ)] = G × (θ − θ0) × (1 + o(1)) where
G = −E[sts

′
t ], and bound Lemma A.6(d) states en := supθ∈� E‖mn,t (θ)] ≤ K‖G‖ × (1 + o(1)).

It therefore follows for every n ≥ N and δ > 0

inf
‖θ−θ0‖>δ

{
e−1
n

∥∥E
[
mn,t (θ)

]∥∥} ≥ K inf
‖θ−θ0‖>δ

{∥∥∥∥ G
‖G‖ × (

θ − θ0)∥∥∥∥}
× (

1 + o(1)
)
> 0.

Step 2. In view of (A.1) we have P(‖θ̂n − θ0‖ > δ) ≤ P(‖Mn(θ̂n)‖/en > ε(δ)), hence it suffices

to show ‖Mn(θ̂n)‖/en = op(1) in order to prove θ̂n
p→ θ0. By Minkowski’s inequality∥∥Mn(θ̂n)

∥∥/en ≤ ∥∥m̂n(θ̂n)
∥∥/en + ∥∥m̂n(θ̂n) −Mn(θ̂n)

∥∥/en =A1,n(θ̂n) +A2,n(θ̂n),

say. The proof is complete if we show A1,n(θ̂n) and A2,n(θ̂n) are op(1).
Consider A1,n(θ̂n). We exploit theory developed in Cizek [16], Lemma 2.1, page 29. By dis-

tribution continuity and linearity of the volatility process {σ 2
t }, Q̂n(θ) := 1/n

∑n
t=1(lnσ 2

t (θ) +
y2
t /σ 2

t (θ))Î
(E)
n,t (θ) is almost surely twice differentiable at θ̂n. In particular, up to a scalar con-

stant (∂/∂θ)Q̂n(θ)|
θ̂n

= m̂n(θ̂n) a.s. By θ̂n a minimum Q̂n(θ̂n) ≤ Q̂n(θ)∀θ ∈ � it follows

‖m̂n(θ̂n)‖ = 0 a.s., while lim infn→∞ en > 0 by distribution non-degeneracy and trimming negli-
gibility, hence A1,n(θ̂n) = 0 a.s.
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Next A2,n(θ̂n). By Lemma A.1(b) supθ∈� ‖m̂n(θ) − mn(θ)‖/en = op(1), and
supθ∈� ‖mn(θ) −Mn(θ)‖/en = op(1) by ULLN Lemma A.3(b). Hence

sup
θ∈�

{
A2,n(θ)

} ≤ sup
θ∈�

‖m̂n(θ) − mn(θ)‖
en

+ sup
θ∈�

‖mn(θ) −Mn(θ)‖
en

= op(1). �

Proof of Theorem 2.2. Use 1/n
∑n

t=1 m̂n,t (θ̂n) = 0 a.s. by the proof of Theorem 2.1, and ex-
pansion Lemma A.4(b) to deduce for some θ̂∗

n , ‖θ̂∗
n − θ0‖ ≤ ‖θ̂n − θ0‖:

Ĝn

(
θ̂∗
n

)(
θ̂n − θ0)(1 + op(1)

) + 1

n

n∑
t=1

m̂n,t = 0 a.s. (A.2)

Consistency ‖θ̂∗
n − θ0‖ ≤ ‖θ̂n − θ0‖ p→ 0 by Theorem 2.1 ensures Ĝn(θ̂

∗
n ) = G(1 + op(1))

by Lemma A.6(a). Multiply both sides of (A.2) by n1/2�
−1/2
n , rearrange terms and use

Vn = nG′�−1
n G to deduce V1/2

n (θ̂n − θ0) = −n−1/2�
−1/2
n

∑n
t=1 m̂n,t × (1 + op(1)). In view

of n−1/2�
−1/2
n

∑n
t=1{m̂n,t − mn,t } = op(1) by Lemma A.1(a), we have

V1/2
n

(
θ̂n − θ0) = −�

−1/2
n

1

n1/2

n∑
t=1

mn,t × (
1 + op(1)

)
,

hence V1/2
n (θ̂n − θ0)

d→ N(0, Iq) by Lemma A.5. Finally Vi,i,n → ∞ follows from the fact that
‖G‖ > 0, and ‖n�−1

n ‖ → ∞ by Lemma A.2(a). �

A.2. Remaining theorems

Define hθ
t (θ) := (∂/∂θ)ht (θ) and h

θ,θ
t (θ) := (∂/∂θ)hθ

t (θ). We require stationary solutions
{h∗

t (θ), h∗θ
i,t (θ), h

∗θ,θ
i,t (θ)} of the volatility process {ht (θ), hθ

i,t (θ), h
θ,θ
i,t (θ)} in order to prove the

asymptotic equivalence of the infeasible and feasible QMTTL estimators.
Let {s∗

t (θ),d∗
t (θ)} denote {st (θ),dt (θ)} evaluated with {h∗

t (θ), h∗θ
i,t (θ), h

∗θ,θ
i,t (θ)}. Define error

and volatility derivatives evaluated at {ht (θ), hθ
t (θ), h

θ,θ
t (θ)}

ε̃t (θ) := yt√
ht (θ)

, Ẽ t (θ) := ε̃2
t (θ) − 1,

s̃t (θ) := 1

ht (θ)

∂

∂θ
ht (θ) and d̃t (θ) = ∂

∂θ
s̃t (θ),

m̃t (θ) := Ẽ t (θ)s̃t (θ), G̃t (θ) := ∂

∂θ
m̃t (θ) and G̃ := −E

[
s̃t (θ)s̃′

t (θ)
]
.

Define ̂̃
I

(E)

n,t (θ) := I (Ẽ (−)

(k1,n)(θ) ≤ Ẽ t (θ) ≤ Ẽ (+)

(k2,n)(θ)) and let {L̃n(θ), Ũn(θ)} satisfy P(Ẽ t (θ) ≤
−L̃n(θ)) = k1,n/n and P(Ẽ t (θ) ≥ Ũn(θ)) = k2,n/n. Similarly Ĩ

(E)
n,t (θ) := I (−L̃n(θ) ≤ Ẽ t (θ) ≤

Ũn(θ)). Define trimmed variants ̂̃mn,t (θ) := m̃t (θ )̂Ĩ
(ε)

n,t (θ) and m̃n,t (θ) := m̃t (θ)Ĩ
(ε)
n,t (θ).
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Lemma A.7 (Stationary solution). Let at (θ) ∈ {ht (θ), hθ
i,t (θ), h

θ,θ
i,j,t (θ)} and a∗

t (θ) ∈ {h∗
t (θ),

h∗θ
i,t (θ), h

∗θ,θ
i,j,t (θ)}.

(a) A stationary and ergodic solution a∗
t (θ) exists for each θ ∈ �, it is σ(yτ : τ ≤

t − 1)-measurable, and infθ∈� a∗
t (θ) > 0 a.s. Further, h∗

t (θ
0) = σ 2

t a.s., h∗θ
t (θ) =

(∂/∂θ)h∗
t (θ) and h

∗θ,θ
t (θ) = (∂/∂θ)h∗θ

t (θ) a.s.
(b) E[supθ∈� |a∗

t (θ)|ι] < ∞ for some tiny ι > 0.
(c) If at (θ) is any other stationary solution then E[(supθ∈� |a∗

t (θ) − at (θ)|)ι] = o(ρt ) for
some ρ ∈ (0,1).

(d) E[supθ∈� |w∗
t (θ) − wt(θ)|] = o(ρt ) for each wt(θ) ∈ {si,t (θ),di,j,t (θ)}.

(e) 1/n
∑n

t=1 E[supθ∈� |Ĩ (E)
n,t (θ) − I

(E)
n,t (θ)|] and 1/n

∑n
t=1 E[supθ∈� |̂Ĩ (E)

n,t (θ) − Î
(E)
n,t (θ)|]

are o(1).

Proof of Theorem 2.3. We first characterize properties of random variables based on ht (θ).

We then prove consistency of the feasible QMTTL estimator θ̃n
p→ θ0. Lastly, we prove the

claim V1/2
n (θ̃n − θ̂n)

p→ 0.

Define ̂̃mn(θ) := 1/n
∑n

t=1
̂̃mn,t (θ), m̃n(θ) := 1/n

∑n
t=1 m̃n,t (θ), M̃n(θ) := 1/n ×∑n

t=1 E[m̃n,t (θ)], and ẽn := 1/n
∑n

t=1 supθ∈� E‖m̃n,t (θ)‖, and recall en := supθ∈� E‖mn,t (θ)‖.
Step 1: Use Lemma A.7 to obtain |ẽn − en| ≤ supθ∈� 1/n

∑n
t=1 ‖m̃n,t (θ) − mn,t (θ)]‖ =

Op(1/n) = op(1). Similarly, ‖1/n
∑n

t=1 ‖G̃t (θ)Ĩ
(E)
n,t (θ) − Gt(θ)I

(E)
n,t (θ)‖, ‖1/n

∑n
t=1 ‖G̃t (θ) ×̂̃

I
(E)

n,t (θ)−Gt(θ)Î
(E)
n,t (θ)]‖, and ‖G̃(θ)−G(θ)‖ are uniformly op(1), and for any sequence of pos-

itive numbers {gn}, gn → ∞, supθ∈�{1/gn

∑n
t=1 | |ε̃t (θ)| − |εt (θ)| |= op(1). Use the latter to

deduce supθ∈� k
1/2
n |Ẽ (a)

(kn)(θ) − E (a)
(kn)

(θ)| p→ 0, hence by Lemma B.2 supθ∈� |Ẽ (−)

(k1,n)(θ)/Ln(θ) +
1| = Op(1/k

1/2
1,n ) and supθ∈� |Ẽ (+)

(k2,n)(θ)/Un(θ) − 1| = Op(1/k
1/2
1,n ). By similar arguments and

Lemma A.7 it is straightforward to verify Lemmas A.1, A.3 and A.4 extend to ̂̃mn(θ) and
m̃n,t (θ).

Step 2 (θ̃n
p→ θ0): We follow the proof of Theorem 2.1. By the Lemma A.6(c), (d) arguments

and ‖G̃−G‖ = o(1) it follows 1/n
∑n

t=1 E[m̃n,t (θ)] = G×(θ −θ0)×(1+o(1)) and ẽn ≤ K‖G‖.
Since ‖G‖ > 0 it follows ε̃(δ) := lim infn→∞ inf‖θ−θ0‖>δ{ẽ−1

n ‖1/n
∑n

t=1 E[m̃n,t (θ)]‖} > 0 for

every n ≥ N and δ > 0. Therefore P(‖θ̃n − θ0‖ > δ) ≤ P(‖M̃n(θ̃n)‖/ẽn > ε̃(δ)). It remains to
show‖M̃n(θ̃n)‖/ẽn = op(1).

Note ‖M̃n(θ̃n)‖ ≤ ‖̂̃mn(θ̃n)‖+‖̂̃mn(θ̃n)−M̃n(θ̃n)‖, where ̂̃mn(θ̃n) = 0 a.s. by θ̃n a minimizer.
It remains to show ‖̂̃mn(θ̃n) − M̃n(θ̃n)‖/ẽn = op(1). Note

sup
θ∈�

∥∥̂̃mn(θ) − M̃n(θ)
∥∥

≤ sup
θ∈�

∥∥̂̃mn(θ) − m̂n(θ)
∥∥ + sup

θ∈�

∥∥m̂n(θ) −Mn(θ)
∥∥ + sup

θ∈�

∥∥M̃n(θ) −Mn(θ)
∥∥.
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The first and third terms on the right-hand side are op(1) by Step 1. The second is op(en) by
the proof of Theorem 2.1. Since |ẽn − en| = op(1) we have shown supθ∈� ‖̂̃mn(θ) − M̃n(θ)‖ =
op(ẽn) hence ‖̂̃mn(θ̃n) − M̃n(θ̃n)‖/ẽn = op(1) as required.

Step 3 (V1/2
n (θ̃n − θ̂n)

p→ 0): The first order conditions are
∑n

t=1 m̂n,t (θ̂n) = 0 a.s.

and
∑n

t=1
̂̃mn,t (θ̃n) = 0 a.s. Combine θ̃n

p→ θ0, supθ∈� ‖1/n
∑n

t=1 ‖G̃t (θ )̂Ĩ
(E)

n,t (θ) −
Gt(θ)Î

(E)
n,t (θ)]‖ = op(1), and ‖G̃ −G‖ = o(1) to deduce by Lemma A.6 1/n

∑n
t=1 G̃t (θ̃n)̂Ĩ

(E)

n,t =
G×(1+op(1)). Therefore, in view of consistency of the infeasible estimator θ̂n

p→ θ0, expansion
Lemma A.4, and the construction Vn = nG�−1

n G, it follows

1

n1/2
�

−1/2
n

n∑
t=1

{̂̃mn,t (θ̃n) − m̂n,t (θ̃n)
} = 1

n1/2
�

−1/2
n

n∑
t=1

{
m̂n,t (θ̂n) − m̂n,t (θ̃n)

}
(A.3)

= V1/2
n (θ̂n − θ̃n)

(
1 + op(1)

)
.

Further, by two applications of Lemmas A.1(a), A.4 and A.6, and cancelling the terms V1/2
n (θ̃n −

θ0) = n1/2�
−1/2
n G(θ̃n − θ0), we have

1

n1/2
�

−1/2
n

n∑
t=1

{̂̃mn,t (θ̃n) − m̂n,t (θ̃n)
}

= 1

n1/2
�

−1/2
n

n∑
t=1

{̂̃mn,t (θ̃n) − m̃n,t

}
− 1

n1/2
�

−1/2
n

n∑
t=1

{
m̂n,t (θ̃n) − mn,t

} + 1

n1/2
�

−1/2
n

n∑
t=1

{m̃n,t − mn,t }
(A.4)

= 1

n1/2
�

−1/2
n

n∑
t=1

{m̃n,t − mn,t }

+ n1/2�
−1/2
n G

(
θ̃n − θ0)(1 + op(1)

) − n1/2�
−1/2
n G

(
θ̃n − θ0)(1 + op(1)

)
= 1

n1/2
�

−1/2
n

n∑
t=1

{m̃n,t − mn,t } + op

(∥∥V1/2
n

(
θ̃n − θ0)∥∥)

.

Combine (A.3), (A.4) and Theorem 2.2 to obtain V1/2
n (θ̃n − θ̂n) = n−1/2�

−1/2
n

∑n
t=1{m̃n,t −

mn,t }(1 + op(1)). By Loève’s inequality, lim infn→∞ ‖�n‖ > 0 in view of non-degeneracy and
trimming negligibility, and Lemma A.7(d), it follows for tiny ι > 0, ρ ∈ (0,1), and sufficiently
large n and K

E

∣∣∣∣∣ 1

n1/2
�

−1/2
n

n∑
t=1

{m̃n,t − mn,t }
∣∣∣∣∣
ι

≤ K
1

nι/2

n∑
t=1

E|m̃n,t − mn,t |ι ≤ K
1

nι/2

n∑
t=1

ρt = o(1).



Robust estimation and inference for heavy tailed GARCH 1661

Therefore, V1/2
n (θ̃n − θ̂n) = op(1) by Markov’s inequality. �

Proof of Theorem 3.1. By Assumption 4 ψ(u, c) = u�(u, c)I (|u| ≤ c) behaves like uI (|u| ≤
c) as c → ∞. See (21). In the following, we therefore only treat the simple trimming transform
ψ(u, c) = uI (|u| ≤ c). The general case with properties (21) and (23) has a similar proof.

Lemmas A.1–A.6 extend to cover the equations

̂̌mn,t (θ) =
(

ε2
t (θ)Î

(ε)
n,t (θ) − 1

n

n∑
t=1

ε2
t (θ)Î

(ε)
n,t (θ)

)
× st (θ),

m̌n,t (θ) = (
ε2
t (θ)I

(ε)
n,t (θ) − E

[
ε2
t (θ)I

(ε)
n,t (θ)

]) × (
st (θ) − E

[
st (θ)

])
.

Consider Lemma A.1(a). By Lemma A.1, it follows

�
−1/2
n

1

n1/2

n∑
t=1

(
ε2
t Î

(ε)
n,t − 1

n

n∑
t=1

ε2
t Î

(ε)
n,t

)
× st

= �
−1/2
n

1

n1/2

n∑
t=1

(
ε2
t I

(ε)
n,t − 1

n

n∑
t=1

ε2
t I

(ε)
n,t

)
× st + op(1),

where by independence and dominated convergence �n ∼ E[(ε2
t I

(ε)
n,t −E[ε2

t I
(ε)
n,t ])2]×E[sts

′
t ] =:

σ 2
nS. Now add and subtract E[ε2

t I
(ε)
n,t ] and E[st ] to deduce

�
−1/2
n

1

n1/2

n∑
t=1

(
ε2
t Î

(ε)
n,t − 1

n

n∑
t=1

ε2
t Î

(ε)
n,t

)
× st

= �
−1/2
n

1

n1/2

n∑
t=1

(
ε2
t I

(ε)
n,t − E

[
ε2
t I

(ε)
n,t

]) × (
st − E[st ]

) + op(1) (A.5)

− 1

σnn1/2

n∑
t=1

(
ε2
t I

(ε)
n,t − E

[
ε2
t I

(ε)
n,t

]) ×S×
(

1

n

n∑
t=1

st − E[st ]
)

× (
1 + op(1)

)
.

Under Assumption 1 st is stationary, ergodic and integrable, hence 1/n
∑n

t=1 st − E[st ] =
op(1), and by a generalization of central limit theorem Lemma A.5 σ−1

n n−1/2 ∑n
t=1(ε

2
t I

(ε)
n,t −

E[ε2
t I

(ε)
n,t ]) = Op(1). The second term in (A.5) is therefore op(1), hence �

−1/2
n n−1/2 ×∑n

t=1(
̂̌mn,t − m̌n,t ) = op(1) which extends Lemma A.1(a) to {̂̌mn,t , m̌n,t }. In view of L2+ι-

boundedness of supθ∈N0
‖st (θ)‖ for some compact N0 ⊂ � with positive Lebesgue measure and

containing θ0, and independence of εt , the arguments used to prove Lemmas A.1(b), A.2–A.6
carry over with simple modifications to cover {̂̌mn,t , m̌n,t }. The claims therefore follow by imi-
tating the proofs of Theorems 2.1 and 2.2, and by the constructions of

◦
Vn and Vn. �

Lemma A.8. 1/n
∑n

t=1 E2
t (θ̂n)Î

(E)
n,t (θ̂n)/E[E2

t I
(E)
n,t ] p→ 1.
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Proof of Theorem 4.1. The claim follows from Jacobian consistency Lemma A.6(b) and
Lemma A.8. �

A.3. Proofs of supporting lemmas

In order to decrease the number of cases we augment Assumption 1(b) and impose power law
tails on εt in general:

P
(|εt | > a

) = da−κ
(
1 + o(1)

)
where d ∈ (0,∞) and κ ∈ (2,∞). (A.6)

Notice εt (θ) is stationary and ergodic on � by (2), and also has a power law tail. The latter
follows by noting

εt (θ) = yt

σt (θ)
= εt

σt

σt (θ)
and Et (θ) = ε2

t (θ) − 1,

where E(supθ∈� |σ 2
t /σ 2

t (θ)|)p < ∞ for any p > 0 under Assumption 1. Since εt is independent
of σt/σt (θ) the product convolution εt × (σt/σt (θ)) has tail (A.6) with the same index κ > 2
(Breiman [10]). In general lima→∞ supθ∈�{|cκP (|εt (θ)| > a) − d(θ)|} = 0 and infθ∈�{d(θ)} >

0 and supθ∈�{d(θ)} < ∞. Hence, in view of (14), Et (θ) := ε2
t (θ) − 1 also satisfies

lim
a→∞ sup

θ∈�

{∣∣aκ/2P
(∣∣Et (θ)

∣∣ > a
) − d(θ)

∣∣} = 0

(A.7)
where inf

θ∈�

{
d(θ)

}
> 0 and sup

θ∈�

{
d(θ)

}
< ∞.

Recall P(|Et (θ)| > Cn(θ)) = kn/n holds for Cn(θ) = Un(θ) and kn = k2,n. Then by (A.7)

Cn(θ) = d(θ)2/κ(n/kn)
2/κ . (A.8)

Further, by (A.7) and an application of Karamata’s theorem:

if κ = 4: E
[
E2

t (θ)I
(∣∣Et (θ)

∣∣ ≤ Cn(θ)
)] ∼ d(θ) ln(n),

if κ < 4: E
[
E2

t (θ)I
(∣∣Et (θ)

∣∣ ≤ Cn(θ)
)] ∼ κ

4 − κ
C2

n(θ)P
(∣∣Et (θ)

∣∣ > Cn(θ)
)

(A.9)

= κ

4 − κ
d(θ)4/κ (n/kn)

4/κ−1.

Uniform bounds are similar given (A.7)–(A.9). For example, when κ < 4:

sup
θ∈�

{
n

kn

C2
n(θ)

E[E2
t (θ)I (|Et (θ)| ≤ Cn(θ))]

}
→ (0,∞). (A.10)

Unless otherwise noted, and in view of (14) and (A.7), we assume two-tailed trimming to
reduce notation, hence thresholds and fractiles are simply Cn(θ) and kn, and order statistics are
E (a)

(kn)(θ) where E (a)
t (θ) := |Et (θ)|.



Robust estimation and inference for heavy tailed GARCH 1663

The proofs of Lemmas A.1–A.8 require two supporting results. See the supplementary mate-
rial Hill [32] for proofs. First, trimming indicators satisfy a uniform CLT.

Lemma B.1 (Uniform indicator CLT). Define In,t (θ) := ((n/kn)
1/2){I (|Et (θ)| ≤ Cn(θ)) −

E[I (|Et (θ)| ≤ Cn(θ))]}. Then {n−1/2 ∑n
t=1 In,t (θ) : θ ∈ �} �⇒∗ {I(θ) : θ ∈ �}, where I(θ) is a

Gaussian process with uniformly bounded and uniformly continuous sample paths with respect
to L2-norm, and �⇒∗ denotes weak convergence on a Polish space (Hoffman-Jørgensen [35]).

Second, intermediate order statistics are uniformly bounded in probability.

Lemma B.2 (Uniform order statistic bound). supθ∈� |E (a)
(kn)

(θ)/Cn(θ) − 1| = Op(1/k
1/2
n ).

Lemmas A.1, A.3, A.4 and A.6 are similar to results proven in Hill [31], Appendix A, hence
their proofs are relegated to the supplementary material Hill [32].

Proof of Lemma A.2.
Claim (a): st is L2+ι-bounded by Assumption 1, hence by error independence �i,i,n ∼

E[E2
t I

(E)
n,t ] × E[s2

i,t ] ∼ KE[E2
t I

(E)
n,t ]. The claim now follows from arguments leading to Theo-

rem 2.5.
Claim (b): We prove the claim for Si,i,n, so let mt denote mi,t , hence st denotes si,t , and

express Si,i,n as Sn. Note Sn ∼ E[m2
n,t ] + 2

∑n−1
i=1 (1 − i/n)E[mn,1mn,i+1]. If E[m2

t ] < ∞ then
Sn ∼ K = o(n/ ln(n)) in view of geometric β-mixing (cf. Ibragimov [36]).

Now assume E[m2
t ] = ∞. We first characterize the tails of mt = (ε2

t − 1)st , and then bound∑n−1
i=1 |E[mn,1mn,i+1]|.
Step 1: By Assumption 1(b) and (A.6) independent εt has a power law tail with index κ ∈

(2,4], and since α0 + β0 > 0 it follows E[s2
t ] < ∞. Therefore mt has a power law tail with

index κm := κ/2 ∈ (1,2], cf. Breiman [10].
Step 2: Define quantile functions Qn(u) = inf{m ≥ 0 : P(|mn,t | > m) ≤ u} and Q(u) =

inf{m ≥ 0 :P(|mt | > m) ≤ u} for u ∈ [0,1], recall geometric β-mixing implies α-mixing with
coefficients αh ≤ Kρh for ρ ∈ (0,1). By Theorem 1.1 of Rio [56]

n−1∑
i=1

∣∣E[mn,1mn,i+1]
∣∣ ≤ 2

n−1∑
i=1

∫ 2αi

0
Q2

n(u)du ≤ 2
n−1∑
i=1

∫ Kρi

0
Q2

n(u)du.

Tail-trimming mn,t = mtI
(E)
n,t coupled with distribution continuity imply P(mn,t = 0) = kn/n.

Thus Qn(u) = 0 for u ∈ [0, kn/n] and Qn(u) = Q(u) for u ∈ (kn/n,1]. Further, under the Step 1
power law properties Q(u) = O(u−2/κ). Therefore

n−1∑
i=1

∣∣E[mn,1mn,i+1]
∣∣ ≤ K

n−1∑
i=1

∫ Kρi

kn/n

u−4/κ du ≤ K

n−1∑
i=1

max
{
0, (n/kn)

(4/κ−1) − Kρ−i(4/κ−1)
}

= K

K ln(n/kn)∑
i=1

{
(n/kn)

(4/κ−1) − Kρ−i(4/κ−1)
}
.
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Moreover
∑K ln(n/kn)

i=1 {(n/kn)
4/κ−1 −Kρ−i(4/κ−1)} = K ln(n/kn)× (n/kn)

4/κ−1(1 + O(1)) and
kn = o(n) hence

n−1∑
i=1

∣∣E[mn,1mn,i+1]
∣∣ ≤ K ln(n/kn) × (n/kn)

4/κ−1(1 + O(1)
)

≤ K ln(n/kn) × (n/kn)
4/κ−1 ≤ K ln(n)(n/kn)

4/κ−1.

Further, ln(n)(n/kn)
4/κ−1 = o(n/ ln(n)) since kn → ∞ and κ ∈ (2,4]. Finally, by Step 1 and

(A.9) E[m2
n,t ] ∼ K(n/kn)

4/κ−1 if κ < 4 and E[m2
n,t ] ∼ K ln(n) if κ = 4. Therefore Sn ≤

K ln(n)(n/kn)
4/κ−1 = o(n/ ln(n)) which completes the proof. �

Proof of Lemma A.5. By identification Assumption 2 n−1/2�
−1/2
n

∑n
t=1 mn,t = n−1/2�

−1/2
n ×∑n

t=1{mn,t − E[mn,t ]} + o(1). Define zn,t := r ′�−1/2
n {mn,t − E[mn,t ]} for any r ∈R

q , r ′r = 1.
Note by error independence, dominated convergence and (6): E(

∑n
t=1 zn,t )

2 ∼ n. We will prove

1/n1/2 ∑n
t=1 zn,t

d→ N(0,1), hence the claim will follow from the Cramér–Wold Theorem. De-
fine �t := σ(yτ : τ ≤ t).

In view of geometric β-mixing and stationarity under Assumption 1, and E[z2
n,t ] = 1 it

suffices to show the three conditions of Theorem 2.1 in Peligrad [51] hold.7 The first two
are supn≥1 1/n

∑n
t=1 E[z2

n,t ] < ∞ and the Lindeberg condition 1/n
∑n

t=1 E[z2
n,t I (|zn,t | >

εn1/2)] → 0 ∀ε > 0. By construction E[z2
n,t ] = 1 hence 1/n

∑n
t=1 E[z2

n,t ] = 1 + o(1) which
verifies the first.

The Lindeberg condition holds if κ > 4 since E|εt |4+ι < ∞ and E|si,t |2+ι < ∞ for some

ι > 0, hence lim supn→∞ E|zn,t |2+ι < ∞. Now suppose κ ≤ 4, assume E[Et I
(E)
n,t ] = 0 to sim-

plify notation, and note zn,t = Et I
(E)
n,t r ′�−1/2

n st . By independence and L2-boundedness of st it

follows �n = E[E2
t I

(E)
n,t ] ×S where S = E[sts

′
t ] is finite and positive definite. By construction

lim infn→∞ infr ′r=1 ‖�n‖(r ′�−1/2
n st )

2 > 0 a.s., by independence E2
t × r ′�−1/2

n sts
′
t�

−1/2
n r ×

‖�n‖ has Paretian tails with index κ/4 ≤ 1, and by trimming |E2
t I

(E)
n,t | ≤ KC2

n . Therefore, for
finite K > 0 that may be different in different places,

E
[
z2
n,t I

(
z2
n,t > ε2n

)] ≤ KE

((
r ′�−1/2

n st

)2 × E

[
E2

t I
(E)
n,t I

(
E2

t I
(E)
n,t >

ε2n

(r ′�−1/2
n st )2

)∣∣∣�t−1

])
≤ KE

((
r ′�−1/2

n st

)2 × E
[
E2

t I
(E)
n,t I

(
E2

t I
(E)
n,t > Kε2nE

[
E2

t I
(E)
n,t

])|�t−1
])

≤ KE

((
r ′�−1/2

n st

)2 × E

[∫ KC2
n

Kε2nE[E2
t I

(E)
n,t ]

u−κ/4 du

])
.

7We require a result like Theorem 2.1 in Peligrad [51] since asymptotically zn,t need not have finite moments higher
than two.
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In general C2
n = K(n/kn)

4/κ . If κ = 4 then E[E2
t I

(E)
n,t ] ∼ K ln(n)) hence C2

n = K(n/kn) <

Kε2nE[E2
t I

(E)
n,t ] as n → ∞. This implies for some N ∈ N and all n ≥ N that∫ KC2

n

Kε2nE[E2
t I

(E)
n,t ] u

−κ/4 du = 0. If κ < 4 then E[E2
t I

(E)
n,t ] ∼ KC2

n(kn/n) = K(n/kn)
4/κ−1, hence

again C2
n = K(n/kn) < Kn(n/kn)

4/κ−1 = Kε2nE[E2
t I

(E)
n,t ] as n → ∞. Therefore,

E[z2
n,t I (z2

n,t > ε2n)] = 0 for some N ∈N and all n ≥ N . This proves 1/n
∑n

t=1 E[z2
n,t I (|zn,t | >

εn1/2)] → 0 ∀ε > 0.
The third condition concerns the maximum correlation coefficient ρ(A,B) :=

supf ∈L2(A),g∈L2(B) | corr(f, g)| defined on L2(F) the space of L2-bounded F-measurable
random variables. We require the interlaced coefficient ρ∗

k := supn≥1 supSk,Tk
ρ(σ (zn,i : i ∈

Tk), σ (zn,j : j ∈ Sk)) to satisfy limk→∞ ρ∗
k < 1, where Tk, Sk ⊂ {1, . . . , n} are non-empty subsets

with infs∈Sk,t∈Tk
{|s − t |} ≥ k, and supSk,Tk

is taken over all sets {Sk,Tk} for a given distance k.
See equations (1.2), (1.7) and (1.8) in Peligrad [51]. In view of the GARCH process and As-
sumption 1, {zn,t : 1 ≤ t ≤ n}n≥1 is a first order Markov chain that is stationary over 1 ≤ t ≤ n,
and by geometric β-mixing it is also geometric α-mixing. Since ρ∗

1 < 1 as a consequence of
independence of εt , it therefore follows ρ∗

k → 0 by an extension of Theorem 3.3 in Bradley [9]
to triangular arrays. �

Proof of Lemma A.7. Claims (a)–(c) follow from the Assumption 3 response Lipschitz prop-
erties. See Francq and Zakoïan [24,25] and Meitz and Saikkonen [44]. Claim (d) follows from
stationarity, independence of εt , and (b) and (c).

Consider (e). We will prove 1/n
∑n

t=1 E[supθ∈� |Ĩ (E)
n,t (θ) − I

(E)
n,t (θ)|] = o(1), the sec-

ond claim being similar. We can approximate I (u) := I (u ≤ 0) with the regular sequence
{In(u)}n≥1, defined by In(u) := ∫ ∞

−∞ I (�)S(Nn(� − u))Nne−� 2/N 2
n d� where S(ξ) =

e−1/(1−ξ2)/
∫ 1
−1 e−1/(1−w2) dw if |ξ | < 1 and S(ξ) = 0 if |ξ | ≥ 1. Here {Nn} is a sequence of

finite positive numbers, Nn → ∞, the rate to be chosen below. See Lighthill [40]. In(u) is uni-
formly bounded in u, continuous and differentiable. Also, (∂/∂u)I (u) has a regular sequence
Dn(u) := (Nn/π)1/2 exp{−Nnu

2}.
Define et (a) := |Et | − a and ẽt (a) := |Ẽ t | − a, and let C̃n(θ) satisfy P(|Ẽ t (θ)| ≥ C̃n(θ)) =

kn/n. Hence Ĩ
(E)
n,t (θ) = I (ẽt (C̃n(θ)) and I

(E)
n,t = I (et (Cn(θ)). Note Nn → ∞ can be made as

fast as we choose such that supθ∈� |I (et (Cn(θ)) − I (ẽt (C̃n(θ))| ≤ K supθ∈� |In(et (Cn(θ)) −
In(ẽt (C̃n(θ))| + op(1), and Dn(u) → 0 as fast as we choose. Hence, by the mean-value-theorem
and boundedness of Dn(u) it follows supθ∈� |I (et (Cn(θ)) − I (ẽt (C̃n(θ))| ≤ K supθ∈� |Ẽ t (θ) −
Et (θ)| + K supθ∈� |C̃n(θ) − Cn(θ)|. By (iii) supθ∈� |Ẽ t (θ) − Et (θ)| = op(ρt ). Similarly

supθ∈�

∑n
t=1 ||Ẽ t (θ)| − |Et (θ)|| = Op(1) hence supθ∈� |Ẽ (a)

(kn)(θ) − E (a)
(kn)(θ)| p→ 0, hence by

Lemma B.2 supθ∈� |C̃n(θ) − Cn(θ)| → 0. Therefore by dominated convergence 1/n ×∑n
t=1 E[supθ∈� |Ĩ (E)

n,t (θ) − I
(E)
n,t (θ)|] ≤ Kn−1 ∑n

t=1 ρt + o(1) = o(1). �

Proof of Lemma A.8. Define Zn,t (θ) := E2
t (θ)I

(E)
n,t (θ)/E[E2

t (θ)I
(E)
n,t (θ)]. By the same argu-

ments used to prove approximation Lemma A.1: 1/n
∑n

t=1 E2
t (θ̂n)Î

(E)
n,t (θ̂n) = 1/n

∑n
t=1 E2

t (θ̂n)×
I

(E)
n,t (θ̂n)(1 + op(1)). Since Zn,t (θ) is uniformly integrable and geometrically β-mixing by
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Assumption 1(d), it follows 1/n
∑n

t=1 Zn,t (θ)
p→ 1 by Theorem 2 and Example 4 in An-

drews [2]. Moreover, since Zn,t (θ) is trivially L1-bounded uniformly in �, Zn,t (θ) belongs
to a separable Banach space, hence L1-bracketing numbers satisfy N[ ](ε,�,‖ · ‖1) < ∞
(Dudley [20], Proposition 7.1.7). Combine the pointwise law and N[ ](ε,�,‖ · ‖1) < ∞
to deduce supθ∈� |1/n

∑n
t=1 Zn,t (θ)| p→ 0 by Theorem 7.1.5 of Dudley [20]. Therefore

1/n
∑n

t=1 E2
t (θ̂n)I

(E)
n,t (θ̂n)/E[E2

t (θ̂n)I
(E)
n,t (θ̂n)] p→ 1. Further, by the definition of a derivative:

|E[E2
t (θ)I

(E)
n,t (θ)] − E[E2

t I
(E)
n,t ]| ≤ ‖(∂/∂θ)E[E2

t (θ)I
(E)
n,t (θ)]|θ0‖ × ‖θ − θ0‖ × (1 + o(1)). By

the same argument as Lemma A.6(c) we can write

∂

∂θ
E

[
E2

t (θ)I
(E)
n,t (θ)

]|θ0 = E

[
∂

∂θ
E2

t (θ)

∣∣∣∣
θ0

× I
(E)
n,t

]
× (

1 + o(1)
)

= −2E
[
Et ε

2
t I

(E)
n,t st

] × (
1 + o(1)

)
,

and trivially E[Et ε
2
t I

(E)
n,t st ] = E[E2

t st I
(E)
n,t ] − E[Etst I

(E)
n,t ] = E[E2

t st I
(E)
n,t ] = E[E2

t I
(E)
n,t ] × E[st ].

Therefore |E[E2
t (θ)I

(E)
n,t (θ)] − E[E2

t I
(E)
n,t ]| ≤ K|E[E2

t I
(E)
n,t ]| × ‖θ − θ0‖ × (1 + o(1)). Now use

θ̂n
p→ θ0 by Theorem 2.1 and infn≥N E[E2

t I
(E)
n,t ] > 0 for some N ≥ 1 to deduce E[E2

t (θ̂n) ×
I

(E)
n,t (θ̂n)]/E[E2

t I
(E)
n,t ] → 1. This proves 1/n

∑n
t=1 E2

t (θ̂n)I
(E)
n,t (θ̂n)/E[E2

t I
(E)
n,t ] p→ 1. �
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Supplementary Material

Supplement to “Robust estimation and inference for heavy tailed GARCH” (DOI: 10.3150/
14-BEJ616SUPP; .pdf). We prove Lemmas A.1, A.3, A.4 and A.6, and Lemmas B.1 and B.2. As-
sume all functions satisfy Pollard’s [54] permissibility criteria, the measure space that governs all
random variables in this paper is complete, and therefore all majorants are measurable. Cf. Dud-
ley [19]. Probability statements are therefore with respect to outer probability, and expectations
over majorants are outer expectations.
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