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ROBUST ESTIMATION IN ANALYSIS OF VARIANCE1 

BY E. L. LEHMANN 

University of California, Berkeley 

1. Summary. In linear models with several observations per cell, estimates 

of all contrasts are given whose small and large sample behaviour is analogous 

to that of the estimate of a shift parameter proposed in [2]. In particular, the 

asymptotic efficiency of these estimates relative to the standard least squares 

estimates, as the number of observations in each cell gets large, is shown to be 

the same as the Pitman efficiency of the Wilcoxon test relative to the t-test. 

2. A compatible set of difference estimates. Consider the c-sample model, 

in which the observations are 

(2.1) X;a = ~; + U;a (a = 1, · · · , n; ; i = 1, · · · , c) 

where the variables U;a are independently distributed with distributions F; 

having a common median. Let 

(2.2) Y;; = med (X;a - X;p) 

be the median of the n,n1 differences X;a - X;p (a= 1, · · · , n; ; {3 = 1, · · · , n;). 

It was shown in [2] that the estimate Y;i of ~; - ~i has more robust efficiency 

than, and hence may be preferable to, the standard estimate T;1 = X;. - X 1., 

where X;. = LX;a/n;. 

Unfortunately, unlike the estimates T;1 , the estimates Y;1 are incompatible 

in the sense (see [4]) that they do not satisfy the linear relations satisfied by 

the differences they estimate. This leads to ambiguities. To estimate, for ex­

ample, ~a - ~I , we will get a different answer if we estimate this difference 

directly by Yai or if we take the sum of the estimates Ya2 and Y2I of ~a - ~2 and 

~2- ~ 1 . This is particularly awkward in the estimation of more general contrasts, 

where there is no longer a single "natural" estimate. Thus, for estimating 

(~a + ~4) - (~I + ~2) one will get the estimate Yai + Y42 when writing the con­

trast as (~ - ~I) + (~. - ~2), but Yu + Ys2 when writing it as (~4 - ~I) + 
(~a - ~2). 

To avoid this difficulty, we shall replace the raw estimates Y;1 by adjusted 

estimates Z;1 which have the form£; - £1 or equivalently which satisfy the set 

of restrictions Z;1 + Zi" + Z~c; = 0 for all i, j, k. 

If we suppose that any serious effect of gross errors has been eliminated by 

replacing the estimates T;1 by Y;1 , it is natural to adjust these latter estimates 

by minimizing the sum of squares 

(2.3) 
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If Y,. is defined to be zero for all i and t - £; denote the minimizing values 

of (2.3), differentiation of (2.3) gives.Li-i ( Y.1 - £, + £1) = 0 and hence 

£i- (1/c)Li=1 €1 = Y,., so that 

(2.4) Z;; = t - £1 = Y;. - Y 1 .. 

We shall in the next sections show that the estimates z.1 have essentially the 

same small- and large-sample properties that had been proved for the estimates 

Yi; in [2]. They are affected however by a peculiarity which may be considered 

a disadvantage: The estimate of ~. - ~i depends not only on the observations 

from the ith and jth sample but also on those of the other samples, which are 

quite unrelated to ~~ and ~; . 

Suppose for example that c = 3 and that xu = -4, x12 = 0, X13 = 6; x 21 = -10, 

x22 = 3, X23 = 7; X31 = -7, X32 = 0, X33 = 8. Then the raw estimates of ~3 - ~, 

~3 - ~2 and ~2 - ~ 1 are 0, 1 and 1 respectively. Since the data suggest that ~ 3 is 

larger than ~ 2 and ~ 2 is larger than ~ 1 , this is taken into account in arriving at 

the adjusted estimate for ~ 3 - ~ 1 . Instead of estimating this difference to be 

zero, the adjusted estimate is ·H2·0 + 1 + 1] = -J. As will be seen later, the size 

of the influence of the other samples becomes small as the sample sizes increase, 

tending in fact to zero in probability at a rate o,(~) where N is the total 

sample size. 

While the adjustment of the estimates does not affect their asymptotic effi­

ciency, we unfortunately have no results concerning the effect on small-sample 

efficiency. It should be pointed out however that the adjustment may result in a 

serious loss of efficiency when the sample sizes are widely disparate. This may 

be illustrated on the case c = 3. The variance of the raw estimate Y12 of ~I - ~ 

tends to zero as n1 and 1t2 tend to infinity. This is however not true of the vari­

ance of Z12 = t(2Y12 + Y13 - Y23) unless n3 also tends to infinity. 

3. The estimation of contrasts. A contrast is a linear function of the fs, say 

L c.~., withL c; = 0. Since this is a function only of the differences of the 

es, it can be written in the form 

(3.1) 

As estimate of the contrast (3.1) we propose 

(3.2) 

The representation (3.1) is not unique; however the estimate (3.2) is inde­

pendent of the representation. For if .L L d;;(t- ~;) = .L .L e;;(~•- ~;)for 

all vectors ( ~ , · · · , ~c), then obviously 

L L d;;(Y,.- Y;.) = L L e.:;(Y •. - Y;.) 

for all vectors ( Y1. , · · · , Yc.) . 

As an example, consider a two-way layout with several observations per cell. 

Changing the notation of (2.1), let the observable random variables be X,;., = 
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~i; + U iia where the U's are independent and identically distributed. In the 

usual decomposition into main effects and interactions, let ~i; = JJ. + a, + {3; + 
'Yi; where 

(3.3) 
J.l. = ~ .. ' O:i = ~ •. - ~-·' {3; = ~-; - ~-· ' 

''Iii = ~ij - ~ •• - ~.; + ~- .. 
If we denote the raw estimate of~.; - ~kl by vijkl' so that vijkl is the median 
of all differences X,;a - X,.IIJ between observations in the ijth and the klth cell, 

then the adjusted estimate of ~ij - ~kl is by (2.4), wijkl = £,;- £,., = v.; .• -

V"'· .. This leads to the following estimates for the contrasts a,, /3; and 'Y•; : 

&, = v •... - v .... ' {31 = V. 1 •• - V .... , 
(3.4) 

'91 ;= V 1; .• - V, ... - V.;. + V .... , 

where actually V .... = 0. 

As an illustration consider the data given by Brownlee (Statistical· Theory and 

Methodology in Science and Engineering, Wiley, New York, 1960, p. 379) on the 

per cent reduction in blood sugar a certain time after injection of insulin into 

rabbits, which are shown in the table below. There are two factors involved: the 

dose at three levels, and the preparation of insulin at two levels, A and B. The 

number of observations (rabbits) per cell is four. 

Preparation A Preparation B 

Dose 2.29 3.63 5.75 2.29 3.63 5.75 

17 64 62 33 41 56 

21 49 72 37 64 62 
49 34 61 40 34 57 

54 63 91 16 64 72 

The following table shows three estimates for the difference of any two cell 

means ~~; - ~"': The raw estimate V,;u = med (X,;a - X"IIJ), the adjusted 
estimate W,;,.1 = V,1 .. - V,., .. , and the classical estimate X,;. - X,., .. 

~11- ~u ~11- ~u ~11 - ~21 ~11 -~ ~11 - ~21 ~12- ~13 ~12- &! 

v -14.5 -40.5 7 -15 -29 -18 23.5 

w -17.33 -36.16 4.42 -15.91 -27.00 -18.83 21.75 

Classical -17.25 -36.25 3.75 -15.5 -26.5 -19 21 

~12- &: ~- ha tu - t21 ~u- ~ ~u - ~~~ ~21 - ~ ~21 - ~u &: - ~u 

v 0 -8 37 24 5.5 -24 -27 -11.5 

w 1.42 -9.67 40.58 20.25 9.16 -20.33 -31.42 -11.09 

Classical 1.75 -0.25 40 20.75 9.75 -19.25 -30.25 -11 

At least in this example, adjustment has moved the estimates closer to the 

classical ones. This is perhaps not surprising since the adjustment puts the 
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estimates onto the same linear surface on which the classical estimates are 

lying. 

From this table we obtain the estimates (3.4) of the a's, {3's and 'Y's, which 

are shown below together with the corresponding classical estimates 

Estimates (3.4) 

Classical Estimates 

2.50 -17 .54 1.29 16.25 - .29 

2.54 -17 .17 1.08 16.08 -.67 

-1.79 

-1.67 
2.08 
2.33 

Returning now to the general case, the following theorem gives two conditions 

under which the estimate 8 of any contrast 8 is symmetrically distributed about 

the true value of the contrast, and hence in particular is unbiased. 

THEOREM 1. For any contrast 8 given by ( 3.1 ) , the distribution of the estimate 

8 given by ( 3.2) is symmetric about 8 if either 

(i) the distributions F, defined in relation to (2.1) are symmetric or 

( ii) all sample sizes n1 , · · · , nc are equal. 

PROOF. 

(i) Let X, Y, Z denote the matrices (X, .. ), (Yii), (ZOJ) respectively and let 

Y = f( X) and Z = g( Y). Then itfollows from 2 (i) of [2] that f(- X) = - f( X) 

and from Equation ( 2.4) of the present paper that g (- Y) = - g ( Y). Hence 

we have g[f( -X)] = -g[f(X)] and therefore 

(3.5) 8( -X) = -o(X). 

The result now follows from (3 .5) as did Corollary (i) to Theorem 2 in [2] from 

the Equation (8.1) of that paper, with if here being the rectangular distribution. 

(ii) The proof of (ii) is exactly analogous, with Equation (8.3) of [2] in 

place of (8.1) . 

4. Asymptotic distribution and efficiency. In the remainder of the paper we 

shall assume that the variables. u, .. have a common distribution F. To obtain 

the asymptotic distribution of the adjusted estimates Z,;, we begin by deter­

mining the asymptotic distribution of the raw estimates Y,1 . This is given by 

the following theorem, where the sample sizes n, are assumed to tend to infinity 

in such a way that ni = p;,N, N ~ oo • 

THEOREM 2. 

( i) The joint distribution of ( Vt , · · · , V-.:-t) where 

(4.1) Vi= ~[Yic- (~i- ~c)] 

is asymptotically normal with zero mean and covariance matrix 

(4.2) 
Var (V,) = (1/12)(1/p; + 1/Pc)/(f f(x) dx) 2 

Cov (V,, V;) - (1/12pc)/(J l(x) dx) 2• 

Here the density f of F is assumed to satisfy the regularity conditions of Lemma 

3(a) of [1] . 
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(ii) For any i and j 

(4.3) 

where ,....._. indicates that the difference of the two sides tends to zero in probability. 

The proof of (i) rests on the following lemma. 

LEMMA 1. Suppose the variables X'" have the distribution specified in connection 

with (2.1) with fixed F but a se~uence of means (~, · · · , ~c) = (~iN>, · · · , ~~N>) 

satisfying ~~N> - ~~N> = - a,j N'. Let hii be defined by 

(4.4) n,n1h,1 = Number of pairs (a, {3) such that X;.a < X 1p 

and let IJ.ii = E(h,J) = P(X,a < XJp) where actually both h;.; and IJ.ii depend on 

N. Then the variables (W1 , • • • , We-t) given by 

(4.5) W, = N'(hic- P.ic) i = 1, '• · 7 C- 1 

have a joint asymptotic normal distribution as N ~ oo , with zero mean and covari­

ance matrix 

(4.6) Var (W,) = [ljp, + l/pc]/12; Cov (W;., W;) = 1/l2pc. 

The proof of this lemma is given in the appendix. 

PRooF oF THEOREM 2(i). By (9.1) of [2], 

lim P{N'[Y,c - (~, - ~c)] ~ a.for all i} = lim PN{N'(hic- !) ~ 0 for all i} 

where PN indicates that the probability is computed for a sequence of means 

satisfying ( 4.4). Since under the assumed regularity conditions 

N'(P.ic- !) ~-a, f f\x) dx as N ~ oo 

(see for example Lemma 3(a) of [1]), it follows that 

lim P{N'[Y,c - a, - ~c)] ~ a,.for all i} 

= lim PN{N'(hic - IJic) ~ ai f /(x) dx for all i} 

By Lemma 1, this is equal to Q(at 7 • • • 7 ac-1) where Q is the (c - i)-dimen­

sional multivariate normal distribution with zero mean and covariance matrix 

( 4.2) 7 as was to be proved. 

Part (ii) of Theorem 2 can also be proved through U-statistics. Alternatively 

it is a simple consequence of the following lemma which was communicated to 

me by Professor L. LeCam. 

LEMMA 2. (LeCam). Let (A~N>, A~N> 7 A~N>)beasequenceofrandomvectors such 

that for any 1 ~ i < j ~ 37 the pair (A~N> 7 A~N>) converges in law to a bivariate 

distribution with mean ( 7J;., TJ;) and covariance matrix (::; :;:) . If the u's satisfy 

(4.7) I: CT;,i + 22: CTij = 0, 
I i<j 
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PROOF. Since each sequence {A~N>} has a non-degenerate limit distribution, 

there exists a sequence {Nk} such that the distribution of (A~NJJ, A~NJJ, A~NJJ) 

converges completely, say that (A iN">, A~N~o>, A~N~o>) tends in law to (A1 , A2 , A3) . 

The covariance matrix of this limiting distribution by assumption satisfies 

( 4. 7) and hence the variance of .L: A; is 

Var(L A,) = L• uii + 2LL•<;u.;;; = 0, 

so that .L: A; = .L: 7J.;; with probability one. Since this argument applies to 

every converging subsequence, it follows that .L: A~m --+ 0 in probability, as 

was to be proved. 

PROOF OF THEOREM 2 ( ii). Let 

A~N) = ~[Yi; - (~i - ~;)); A~N) = ~[Y;c - (~; - ~c)]; 

A~N) = ~[Yci - ac - ~.:) ]. 

Since each pair of the Y's have one subscript in common, and using the fact 

that Y;i = - Yi;, it follows from part (i) of Theorem 2 that the assumptions 

of Lemma 2 are satisfied with 

un = :2 (;.+~)I (s l(x) dxy, 

u33 = 1
1
2 (;.+~)I (s l(x) dx y, 

.o-22 = 1 ~ (~+~)I (I l(x) dxy, 

o-12 = - 1;Pi I (I l(x) dx )
2
, 

so that (4.6) holds. Hence N!(Y .. ; + Y;c + Yc,) tends to zero in probability, 

which is equivalent to ( 4.3). 

The following corollary shows the asymptotic distribution of the adjusted 

estimate Z;; to be the same as that of the raw estimate Y,; given by Theorem 2; 

the corollary also establishes the statement at the end of Section 2, that the 

adjustments tend to become small as N --+ oo • 

CoROLLARY. The difference ~(Z.;;; - Y;;) tends to zero in probability for all 

t, J. 

PRooF. By definition, z,j = La (Y,,.- Y; .. )/c. Using the fact that by 

Theorem 2(ii), ~Y;,. r..~ ~(Y;c- Y,.c) and ~Y;,. r..~ ~(Yic - Yac), we 

see that ffZ.;;; r..~ ~( Y ic - Y ;c) r..~ ffY;;. 

We are now in a position to prove that the asymptotic efficiency of the estimate 

iJ of a contrast ()given by (3.2) and (3.1), relative to the classical least squares 

estimate of () is the same as the Pitman efficiency of the Wilcoxon test relative 

to the t-test. 

THEOREM 3. The asymptotic efficiency of the estimate iJ = L L d,;Z•; of() = 

.L: L d.;;;a; - ~;) relative to the estimate .L: .L: d,1(X;. - X;.) is 

(4.8) e = 12u2[Jl(x) dx]2 

where u2 = Var(X,,.). 
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PRooF. Let T;; = X;. - X;. and let v: = _NI[T;c - (t, - ~c)]. Then the 

variables ( V~, · · · , V~-1) have an asymptotic normal distribution with zero 

mean and covariance matrix 

I 2 I Var (V,) = q (1/p; + 1 Pc), 

Furthermore, T;; = T;c - T;c. Comparing this with the asymptotic distribu­

tion of the Z;;, which is given by Theorem 2 with Y ;; replaced by Z;; throughout, 

the result follows. 

So far, the means ~ 1 , · · · , ~c were assumed to be completely unrestricted. 

However, in more general linear models, they may be required to satisfy certain 

linear restrictions. These may then affect the classical estimate. However, when­

ever this estimate is a linear function of the differences X,. - X;. , then the 

estimate obtained from it by replacing X;. - X;. by Y ,. - Y ;. has asymptotic 

relative efficiency ( 4.1). This is an immediate consequence of Theorem 2. 

As an example suppose that E(X,a) = ~. (i = 1, · · · , 4) where~ = J.L + -y, 

~2 = J.L + ~, ~a = J.L + 'Y + 6, ~4 = J.L - 'Y - 6. Then the classical estimate 

of 'Y is 

.y = (10X1. - 8X2. + 3Xa. - 5X4.)/18, 

which is a linear function of the differences X;. - X;. since the sum of the coef­

ficients is zero. Replacing X,. - X;. by Y;. - Y;., we obtain the estimate 

1 = (10Y1. - 8Y2. + 3Ya. - 5Y4.)/18 

= (18Y 12 + 7Yta + 15Yl4 - 11 Y2a - 8Y2• + 8Ya4)/72 

and the asymptotic efficiency of 1 relative to .Y is given by ( 4.8). 

5. An alternative approach. There exists another class of estimates of the 

parameters in a linear model, not restricted to contrasts and not suffering from 

the peculiarity discussed at the end of Section 2. However, these estimates 

appear to have the efficiency of those treated in the main body of this paper 

only when the underlying distribution F is symmetric. 

Consider once more the c-sample model (2.1). In [2] it is shown that the 

estimate 

(5.1) ~~ = med [(X;a + XiP)/2] 

has asymptotic efficiency ( 4.8) relative to the standard estimate X,. as n, --+ oo 

provided the distribution F of the X's is symmetric. Hence the estimate L c;~~ 

of L: c;~; has asymptotic efficiency ( 4.8) relative to the standard estimate 

L c,X ;. when F is symmetric. 

As an example in which the method of Sections 2-4 is not applicable consider a 

weighing design, in which the sum and the difference of two objects A and B is 

each weighed n times, so that E(X1a) = ~ + 71, E(X2a) = 11 - ~ for a = 1, 

· · · , n, and suppose that the distribution F of the X's is symmetric. Then 

med [(X1a + Xt11 )/2] and med [(X2a + X211)/2] are independent estimates of 

~ + 11 and 11 - ~with asymptotic efficiency ( 4.8) relative to X1. and X2 .. Hence 
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~{med [(X1a + Xlii)/2] + med [(X2a + X2~)/2]} 
and 

!{med [(X1a + X111)j2] - med [(Xza + X211)j2]} 

are estimates of 11 and~ having asymptotic efficiency ( 4.8) relative to the stand­

ard estimates HX1. + X2-) and HX1. - X2.). 

6. Appendix: generalized U-statistics. The following theorem which is a 

slight extension of Hoeffding's theorem on U-statistics [3], is known to many 

workers in nonparametric inference. It is stated here solely for the purpose of 
convenient reference; the proof exactly parallels Hoeffding's argument. (Part 

(i) for s = 2 is stated in Fraser : Nonparametric Methods in Statistics, p. 229.) 

(i) Let <P(X1 I ••• I Xm! ; Y1 I • •• I Ym2 j Z1' .. . I Zma ; . .. ) be a junction sym­

metric in the x's, in the y's, in the z's, · · · . Let X1, · · · , Xn 1 ; Y1, · · · , Yn 2 ; 

Z1 , • • • , Zn1 ; • • • be samples of sizes n; = p;N from distributions F, G, H, · · · 
and consider the generalized U-statistic 

lj = (~) - 1 
(:)-

1 
(:)-

1 
L<P(Xal 1 • ·' ,Xam1 j Y~l I· '' I Y~m 2 j 

z'Y! ' • • • 'z'Yma; •.• ) 

where the summation extends over all 

(~)(:)(:) .. . 

sets of subscripts satisfying 1 ~ at < az < · · · < am 1 ~ nt ; 1 ~ fJ1 < fJz < 
· · ·</3m 2 ~ nz; ···.Let E(U) = 8(F, G, H, ···).Then as N- oo , Z = 
N 9( U - 8) tends in law to N(O, ci) with 

u2 = (mifp1)S1o .. . o + (mi/P2)smo . . o + · · · + (m!fp,)f'oo ... t • 

Here r Ct ••• • ,c, is the covariance of 

<P(Xt 1 • • • 1 XC! 1 Xc1 +1 1 • • • , Xm1 j Y1, • • • 1 Yc2, Yc2+t, · ~ • 1 Y m2 j • • ') 

. , x' Y Y y' y' With cp(X1 1 • • • 1 Xc! 1 Xct+l, · • · 1 m1 j 1 1 • • • 1 c2 1 c2+l 1 • • • 1 m2 j 

. . . ) where Xt' . .. ' Xmt I x:t+l' ... ' x~l are independently distributed 

according to F; Y1 , · · · , Y m2, Y;2+1, ··· · , Y~ 2 according to G; etc. 
( ii) Let U(l1 ( i = 1 I • • • ' r) be r generalized u -statistics defined in terms of 

junctions <P(i), where the numbers m1 , mz, · · · may depend on i but not the sample 
sizes nt , nz , · · · . The joint distribution of the variables z<1> = Nt ( uu> - 8<1>), 

· · · , z<•> = ~ ( u<•> - 8<•> ) is asymptotically normal, 'UJ1,th mean zero and co­

variance matrix }; = (u;;) where 

u;; = (m~i>m~')!Pt)s~~·.;.>.o + · · · + (m!i>m!')fp,)sd~·/.>. 1 . 

Here s~~:~~ .. c, is the covariance of 

cp('\X1 1 • • • 1 Xc 1 1 Xc 1+t 1 • • • 1 Xm1 j Yt, • • • , Yc2, Ye2+l, • · • 1 Y m: ; · • ·) 
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with 

cp(j)(XI' ••• 'Xcl' x~l+l, . .. 'x~l; YI' ... , Yez, v;,+I, ... , Y~.; ... ). 

(iii) Suppose that the distributionsF, G, H, ... depend onN. Let o~' = EN[U'''] 

and let ~N denote the covariance matrix ~ computed for (FN, GN, HN, · · · ). 

Then if ~N tends to a non-singular covariance matrix ~ as N ~ ro, it remains true 

that 

~(u<I>- o1I'), ·· ·, ~(u<r>- ol;"') 

tend in law to a normal distribution with zero mean and covariance matrix ~. 

As an application, we now prove Lemma 1. It will be convenient to use the 

present notation rather than that of Section 4. 

For simplicity of notation consider the case of c = .3 samples XI , · · · , Xn 1 ; 

Yt, · · · , Ynz ; Zt, · · · , Zn 3 • Let 

() 1 if XI < Z1 
cp I (XI ' YI ' Zl) = 

0 otherwise 

(2) ( ) 1 if YI < ZI 
cp XI ' YI ' ZI = 0 otherwise 

and consider a sequence of distributions 

FN(x) = F(x - aiFt), GN(y) = F(y - ~Ft), 

for the variables X"', Yp and Z'Y. Then n1n3U'1' = Number of pairs (a, -y) such 

that Xa < Z'Y and n2naU'2' = Number of pairs (fJ, -y) such that YtJ < Z'Y. 

To apply (iii), it is only necessary to compute the limiting covariance matrix 

~. 

Now 

d~~ = E/1'(Xt, Yt, Z1)cpm(Xt, Y~, Z~) - [P(Xt < Zt)]2 

= P{XI < z1, Z~} - [P(XI < ZI)t ~ l - i = r\ 

Similarly rm ~ A while rm = 0. Thus 0'11 = ( 1/ PI + 1/ Pa) /12. Exactly 

similarly, u22 = (ljp2 + 1/pa)/12. Finally, 

d~o 2 ' = P{XI < Zt and y~ < Z~} - P(X! < ZI)P(YI < Zl) = 0 = d~o 2 ' 

while 

s~~r> = P{Xt < Z1 andY~ < Zt} - P(Xt < Zt)P(Yt < Zt) ~ ~ 

so that u12 = 1/l2pa. This verifies the covariance matrix (4.6) and completes 

the proof of Lemma 1. 
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