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Biometrika (1989), 76, 1, pp. 149-60 
Printed in Great Britain 

Robust estimation in the errors-in-variables model 

BY RUBEN H. ZAMAR 

Department of Statistics, University of British Columbia, Vancouver, B.C., 
Canada, V6TIW5 

SUMMARY 

Orthogonal regression analogues of M estimates of regression, called here orthogonal 
regression M estimates, are defined. These estimates are shown to be consistent at elliptical 
errors-in-variables models and robust, if the corresponding loss function is bounded. The 
orthogonal regression analogues of regression scale estimates, called here orthogonal 
regression S estimates, are considered as well. In particular, they provide a robust estimate 
for the scale of the orthogonal residuals, a crucial quantity in the computation of 
orthogonal regression M estimates. Finally we present an algorithm for computing 
orthogonal regression S and M estimates and the results of a small Monte Carlo 
experiment. 

Some key words: Errors-in-variables; M estimate; Orthogonal regression; Robustness. 

1. INTRODUCTION 

This paper deals with robust estimation of the parameters of a linear model when all 
the variables are subject to errors. Given data consisting of (p + 1) -tuples x1, .. ., xn,, the 
classical errors-in-variables model is 

Xi=Xi +?i3, aXi=bo0, (1) 

where ao is a vector of length one and X1, ... ., Xn , l, ..., En are nonobservable indepen- 

dent random vectors. Except for sign change, ao and bo are unique and equations among 
stochastic quantities are intended to hold almost surely. 

It is also usually assumed that Ei is normal, E(Ei) = 0 and cov (si) = cr21. The Gaussian 
maximum likelihood procedure under model (1) is the method of orthogonal regression. 
A detailed discussion of the errors-in-variables model and the method of orthogonal 
regression is given, for example, by Fuller (1987, Ch. 1-2). 

Whether or not the assumption of normality holds, the method of orthogonal regression 
is taken to mean finding the unit vector a and the number b which solve 

min Z (a'xi - b)2. (2) 
JJaJ1= i,b 

Notice that (a'xi - b)2 is the square of the orthogonal distance from the point xi to the 
hyperplane H(a, b) = {y: a'y = b}. It can be shown that a is the principal component of 

A A,.. 

the sample covariance matrix, associated to the smallest eigenvalue. Furthermore b = a x, 
where x is the sample mean. 

Two additional features which make this method attractive in some practical situations 
are: (a) it treats all the variables in a symmetric way since it does not distinguish between 
response and explanatory variables; (b) under some regularity conditions, it is consistent 
and asymptotically normal. However, it has long been recognized that classical regression 
methods are nonrobust as they are very sensitive to some kinds of nonnormality of the 

This content downloaded from 202.205.222.17 on Tue, 3 Dec 2013 10:55:05 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


150 RUBEN H. ZAMAR 

data and to high leverage points in the design. Carroll & Gallo (1982) and Brown (1982) 

point to the lack of robustness as a very severe problem of the method of orthogonal 

regression. 

This motivates the search for closely related robust alternatives. Carroll & Gallo (1982) 

introduce a consistent, asymptotically normal robust estimate which can be used whenever 

each design point is replicated exactly twice. Brown (1982) discusses the possibility of 

using reweighted orthogonal regression to estimate a straight line through the origin. 
However, if poor initial estimates of the true slope and 'error free' explanatory variables, 

1,30, X1, . .. , X,,, are used to compute the weights, and some outliers remain unchecked, 

then the final estimates will be poor as well. 
Based on some simulations, Brown concludes that robust linear regression may be 

preferable to robust orthogonal regression in the errors-in-variables set-up. As we shall 

see later, this conclusion can be reversed by using properly defined and properly computed 

orthogonal regression M estimates. 
Orthogonal regression M estimates are defined as solutions of the minimization problem 

min p{(a'xi - b)/SS}, (3) 
Ija1j= 1,b 

where p is some loss function designed to induce robustness in the resulting estimate 

and S,, is some estimate of the scale of the orthogonal residuals. Notice that (2) is the 

particular case of (3) when p(t) = t2 and S,, = 1. We show later in ? 4 that to obtain robust 

estimates p must be bounded and S, must be robust. This is natural since the role of p 
is to downweight the influence of residuals which are large in comparison to S,,. Therefore, 

robust estimation of the scale of the orthogonal residuals is an important related problem. 

Orthogonal regression S estimates are defined as follows: for a given unit vector a 

and number b, let S(a, b) be the M scale of a'xl,..., a'xn; that is, S(a, b) is a solution 

of the equation 

n-1 Z X{(a'xi - b)/S} = /3 

where X is even, continuous, nondecreasing on [0, ?o), X(0) = 0 and lim X(t) = 1 as t -> oo. 

Furthermore, ,3 is a constant, usually taken to be equal to E{X(Z)}, where Z is a standard 

normal random variable. For details on M scale see, for example, Huber (1981, p. 109). 

Orthogonal regression scale estimates (a, b) are implicitly defined as the minimizers of 

S(a, b). Finally, S,, = S(a, b) is a robust estimate of the scale of the orthogonal regression 

residuals. 
The idea of constructing robust estimates by means of minimizing a robust scale was 

first used by Rousseeuw (1982) in the context of linear regression; see also Rousseeuw 

& Yohai (1984). This idea was also exploited by Li & Chen (1985) to define robust 

estimates of multivariate scale and principal components. 
The rest of the paper is organized as follows. A computing algorithm is presented in 

? 2. An application and examples are given in ? 3. Asymptotic and robustness properties 

of orthogonal regression M estimates are discussed in ? 4. In particular it is shown that 

these estimates are consistent at the errors-in-variables model if the distribution of the 

error, E, in (1) is spherically symmetric, that is, the distribution of a'e is the same for 

all unit vectors a. It is also shown that they are robust provided the loss function p is 

bounded. 
Unfortunately consistency does not hold in general. Indeed, in ? 5 examples are 

presented in which the estimate is actually asymptotically biased. On the other hand, the 

asymptotic bias seems to be fairly small in all the cases considered. 
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Robust estimation in the errors-in-variables model 151 

An important assumption for our consistency proof is that cov (AEi) = o 2I for some 
specified matrix A, which therefore can be assumed to be equal to the identity matrix, 
I, without loss of generality. On the other hand, if A cannot be specified and can be 
consistently and robustly estimated by An say, orthogonal regression M estimates can 
still be computed, using An instead of A; we conjecture that in this case consistency and 
robustness can be preserved. This, however, deserves further study. 

2. COMPUTING ALGORITHM AND MONTE CARLO 

The computing algorithm is laid out in four steps as follows. 

Step 1. Given data xl,... , x, , compute yi = xi - m, where m is some robust multivariate 

location estimate. A simple choice, adopted in our simulations and examples below, is 
the coordinate-wise median. 

Step 2: Reparameterization. To avoid redundancy and to allow a simple differential 
approach, the unit vector a is expressed in polar coordinates; that is, a = a(O), where 
o= (o, ., op) with 0< Oj-,m for j= 1. ,p- and 0 Op-,-2r. More precisely, 
a = a(O) = (al(O),..., ap+1(O)) with 

al(O) =sin 01 ... sin Op, a2(0) = sin 01 ... sin Op-, cos Op, 

a3(0) = sin 01 ... sin Op-2 COS Op-1, ..., ap(O) = sin 01 cos 02, ap+1(0) = cos 01. 

Observe that the symmetric treatment of the data and the compactness of the parameter 

space are preserved by the new parameterization. 

Step 3: Initial orthogonal regression S estimates. Initial values al(O) and robust scale 
Sn are found as follows. For each 0 in 

C={0: 0j 7<-,O O,p,<21,j= 1 ..,p-l} 

let S(0) be the solution to 

n-1 X{ei(0)/S} = ,3, (4) 

where ei(0) = a(0)'xi. The function X and ,3 must be chosen so that S(O) is a smooth 
function of 0 and Sn is robust. For simulations and examples, we use Tukey's loss function 
for X, with tuning constant c = 1 56, see (5) below, and ,3 = 0 05. Smoothness of S(0) is 
necessary to ensure a relatively fast and stable minimization procedure. Robustness of 

Sn is necessary for the next step. 

The minimization of S(0) entails two steps, a grid search and a gradient search. First, 
let C1 = {01, . . ., ON} be a grid of 8-equispaced points in C and S(0k) the scale of the 
orthogonal residuals ei (ok). By direct comparison, find the point 0(0) in C1 which minimizes 
S(0k). Secondly, the gradient, S(0) = (S1(0), ... Sp(O))', of S(0) can be obtained by 
differentiating (4). It is easy to see that 

S = E {ei(0)/S(0)}zij(0) 

5X0ei(0))S(0)ei(0) 

where zij(0) = (a/&0j)ei(O). The gradient search for a local minimum 'close' to 0(0) is as 
follows. Given 0(m) let 

A(m) 
- (I (0(m). 

, 
S (M)v) 

(M+ 
A= 0(m)+ I(m)A(m) 
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152 RUBEN H. ZAMAR 

where 0< 83() -1 is chosen so that Io0(m+1)- O(m)II <8, the size of the grid Cl, and 
S(O(m+l)) < S(O(m)). The iteration stops at step mo if IIA(mo)II is smaller than some pre- 
defined e > 0. An important feature of this gradient search is that, at each step, it forces 
a reduction in the value of S(O). 

Step 4: Computing the final estimates. Based on an appropriate loss function p, such 
as Tukey's in (5) below with c = 4 7, which we use in numerical computations, and the 
initial estimates a1(O) and Sn from Step 3, compute the final orthogonal regression M 
estimate a"= a(O). The function p must be such that the corresponding estimate is fairly 
efficient at the pure 'target' model. For example, the proposed choice achieves 95% 
efficiency at the Gaussian errors-in-variables model. 

The minimization of M(O) = n-1 I p{ei(O)/ISA} is as in Step 3. It can be easily seen 
that the gradient in this case is M(O) = (M1(O),..*, Mp(O))', where 

Mj(O)= n1 E f{ei(O)/Sn}Zij(O)- 

Finally let b = median {a'x1,.. ., a'Xn}. 
A modest Monte Carlo experiment was performed to investigate the small-sample 

behaviour of orthogonal regression M estimates. The particular orthogonal regression 
M estimate considered here uses Tukey's loss function, 

p(t) = min {1, 3c-2(t2- C-2t4+ 3C-4t6)}, (5) 

with c = 47. This estimate is compared with its relative, the classical M estimate of 
regression based on the same loss function, and two nonrobust alternatives, the usual 
orthogonal regression and least-squares. 

We generated 100 samples of size n = 20 of pseudo-random variables xi and yi following 
a 5% contaminated Gaussian errors-in-variables model; that is, 

Xi =Xi +uil, Yi =Yi +vi3, 21+ 
i 

2(i a),, 

with 

Xi - N(0, 1), Ui 
- CN(0-25, cr, 0 05), Vi 

- CN(0i253, r2,0-05). 

Here, CN(or2, or2, e) = (1 - E)N(O, cr2) + EN(O, r2). 

In this simulation, a = 0 and ,3 was chosen at random uniformly between -5 and 5 
to take account of the fact that the effect of outliers on the competing estimates depends 
on the 'true' value of ,3. 

Six estimates of /3 were computed: 
(i) T1, the classical least-squares estimate; 

(ii) T2, the classical orthogonal regression estimate; 
(iii) T3, the repeated medians estimate (Siegel, 1982), which has a breakdown point 

of 2 and is often used as initial estimate in the linear regression set-up; 
(iv) T4, the M estimate of regression using (5) with c = 47 and computed by the 

usual reweighted least-squares algorithm, with T3 as initial estimate; 
(v) T, the orthogonal regression S estimate using (5) with c = 1-56 and b = 0 5; and 
(vi) T6, the orthogonal regression M estimate using (5) with c=4 7. 

Both T5 and T6 are computed by the algorithm described above; T4 and T6 are 95% 

efficient at the Gaussian linear regression and errors-in-variables models, respectively. 
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Since the errors-in-variables model is invariant under orthogonal transformations, so 
must be the criterion used to measure the performance of the estimates. We adopt 

,=1{ (1+T.)2(1+3) } (i=1,... 6) (6) 

as a measure of performance. 
Notice that the unit vector a(,B) yielding a hyperplane through the origin with slope 

p iS (1 + /2)2(2p, 1). Therefore, the general term in (6) is equal to 

21 min III a( Tij) - a(,8j>)| |a( Ti) + a (,j>) 112}, 

which is orthogonally invariant and between zero and one. 
Table 1 summarizes the Monte Carlo results. The orthogonal regression M estimate 

outperforms the M estimate in all the sampling situations. Classical orthogonal regression 
is better than least-squares when cr ? , that is when the contamination in the x-coordinate 
is more severe. When the pure model is in force, cr = r = 05, orthogonal regression is 
slightly better than its robust counterpart. Not surprisingly, however, it rapidly deteriorates 
in the presence of contamination. 

Table 1. Simulated performance measure m as in (6) for 
regression estimates T1, T2, T4 and T6; T1, least-squares; 
T2, orthogonal regression; T4, M estimate; T6, orthogonal 
regression M estimate. Sample size, 20. Number of replica- 

tions, 100 

Contamination 
std dev. 

Or Xr T, T2 T4 T6 

0X5 0-5 095 0-58 2X45 0.87* 
0-5 2X0 1-21 1 99 2-20 0-56 
0-5 5-0 3 09 12-30 2*69 0-84 
2.0 0 5 2-70 0-94 2*25 070 
2-0 2-0 2-49 1-33 2-61 0-81 
2-0 5-0 3-95 7-21 3-73 0-85 
5 0 0*5 14-28 5-60 2-92 1-03 
5 0 2-0 13-99 8-31 4-30 1.09 
5 0 5 0 15*40 9-69 2-85 1*19 

* No-contamination case. 

3. APPLICATION AND EXAMPLES 

Robust orthogonal regression methods can also be used to identify multidimensional 
outliers in situations when classical methods are not very reliable, as, for example, when 
outliers occur in bunches and mask each other. In fact, robust orthogonal regression can 
help to find projections which are 'interesting' from the outlier-detection point of view, 
as shown below. 

Let x1,... , x,, be a sample of multivariate data. Consider the projection index 

S2(a'xl ,. .. ., a'xn) (7) 

var (a'x1, . . ., a'xn) 

where a is a unit vector and S is a robust scale estimate. The minimizing unit vector 4A 
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154 RUBEN H. ZAMAR 

gives the direction producing the largest difference between a robust and a nonrobust 
measure of dispersion. For a survey of projection pursuit techniques, see Huber (1984). 

Since the minimum of (7) is invariant under affine linear transformations one can 
equally well work with the standardized data y. = V-2(xi - m). Here, m and V are the 
sample mean and covariance matrix. For the standardized data, the denominator of (7) 
is constant, equal to one, and the minimization problem reduces to that of searching for 
the direction of smallest robust spread, that is, a robust orthogonal regression S or M 
estimate. 

Example 1. The data in Table 2 were created so that cases 1,2, 19 and 20 are multivariate 
outliers but neither their natural nor principal component coordinates are unusually 
large. Indeed, the largest Mahalanobis distance for these data, 6 35 for case 19, is well 
below the 95th X3 percentage point, 7X81. On the other hand, when the standardized data 

Y1,.. ., yYn are projected on the direction of the corresponding orthogonal regression M 

estimate ao with loss function (5), the outlying character of these cases is apparent; see 
Fig. 1. 

Example 2. The data in Table 3 on simultaneous pairs of measurements of serum 

Table 2. Artificial data includingfour multivariate outliers, cases 1, 2, 19 and 20 

Case XI X2 X3 Case XI X2 X3 

1 -95*7 4-8 32X6 11 6-6 0X6 -1.1 

2 -85X2 7-1 28X7 12 12-5 1.5 9X6 
3 -75.5 -7.9 -13X5 13 24-0 40 15X8 
4 -63X4 -6X8 25X1 14 36X1 3 0 -20X1 
5 -57*0 -5.4 -12X0 15 45-1 5X3 -2X9 
6 -44 9 -4-1 -6X7 16 52X7 5X7 3X6 
7 -35.9 -4.0 -25X2 17 64-9 6X6 -13X0 

8 -24X3 -2X5 -12X9 18 75 0 7X6 20X8 
9 -13X2 -1X8 -15X1 19 85X9 -5 7 10X3 

10 -7X1 -1X7 -16X2 20 93.9 -4X1 11-7 

Fig. 1 Fig. 2 

30 35 

~~~~ 20?~~~~~~~~~~~30 

-3101 

0 S 10 15 20 10 15 20 25 30 35 450 

0 C 

20- 

10-~~~~~~~~~~~~~~~~1 
-20 - - - - - - - -- - -? - - - - - - - 

-30 I10' 

0 5 1 0 1 5 20 1 0 1 5 20 25 30 3 5 40 

Case number Heelstick 

Fig. 1. Data from Table 2 standardized and projected on direction determined by orthogonal regression M 
estimate. Cases 1, 2, 19 and 20 more than 20 robust-scale units away from origin. Cases 3 to 18 within 3 

robust-scale units from origin. 
Fig. 2. Three different fits for data in Table 3. Solid line, orthogonal regression M estimate; dashed line, 
orthogonal regression estimate with case number two, outlying point on upper-right corner, removed; dotted 

line, orthogonal regression estimate, using all data. 
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Table 3. Serum kanamycin levels in blood samples from umbilical catheter and 
heel venapuncture in samples from 20 babies 

Case Heelstick Catheter Case Heelstick Catheter 

1 23-0 25-2 11 26-4 24-8 
2 33-2 26-0 12 21-8 26-8 

3 16*6 16*3 13 14*9 15*4 
4 26-3 27-2 14 17*4 14-9 
5 20*0 23*2 15 20-0 18*1 
6 20-0 18*1 16 13-2 16-3 
7 20*6 22*2 17 28*4 31*3 
8 18-9 17-2 18 25-9 31*2 

9 17-8 18-8 19 18*9 18-0 

10 20*0 16-4 20 13-8 15-6 

kanamycin levels in blood samples drawn from 20 babies are given by Kelly (1984). The 
assumption that both measurements are subject to random errors with equal variances 
seems reasonable. To illustrate the behaviour of different estimates in the presence of 
outliers, case number 2 was changed from its original value (33.2, 26.0) to (392, 32 0). 
This is the outlying point in the upper right-hand corner of Fig. 2. Classical orthogonal 
regression gives the dotted line in Fig. 2, with slope 0-86 and intercept 0 97. If case 2 is 
deleted the corresponding orthogonal regression fit becomes the dashed line, with slope 
1-30 and intercept -5 29. Observe the sensitivity of this method to the presence of just 
one outlier in the data. The solid line with slope 1-39 and intercept -6-91, corresponds 
to the orthogonal regression M estimate with loss function (5). This is very close to the 
classical fit without the outlier. The M estimate line with slope 0-85 and intercept 3-37 
is not shown. Observe the similarity between the M and the classical orthogonal regression 
estimates of the slope. 

4. SOME ASYMPTOTIC AND ROBUSTNESS RESULTS 

4 1. Consistency of orthogonal regression M estimates 

The following theorem follows from Huber (1967, Th. 1). Details are provided in the 
author's University of Washington Ph.D. thesis. 

THEOREM 1. Let x1, . .. , xn be independent, identically distributed random vectors with 
common distribution F. Suppose: (a) p is continuous, nonnegative and nondecreasing 
on [0, oo); (b) there exists 0 < s < oo such that sn -> S almost surely [F] as n ->oo; 
(c) there exists a vector (a,, b1), IIa,lI = 1, which uniquely, up to sign changes, minimizes 
EF[p{(a'x - b)/s}] among all unit vectors a and real numbers b. Let 

n 

An-1 iinf n1 E p{(a'xi-b)/s}. n 

JaJJ=1,b __ 

If the sequence (an, bn), l4an 1 =1, satisfies n- p{( anxi - b)/sn}I -An-> 0 almost surely 
[F], then (adn, bn) -> (al, bl) almost surely [F]. 

If the common distribution F is given by model (1), one may ask under what conditions 

the orthogonal regression M estimate is consistent; that is, under what conditions 

(a,, bl) = (ao, bo). The following corollary gives a sufficient condition. 

COROLLARY 1. Suppose that xi is as in model (1) and: (i) the distribution of ei is 
spherically symmetric; (ii) the density, h, of a4'e is unimodal and continuous; (iii) 
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E{p(a'Ei)} <oo; and (iv) there exists 8>0 such that p and h are strictly monotone on 
[0, 8). If assumptions (a) and (b) of Theorem 1 hold, then a bn) -> (ao, bo) almost surely 
[F]. 

4-2. Contaminated errors-in-variable distributions 

We now study the asymptotic behaviour of orthogonal regression M estimates when 
the underlying distribution belongs to the family of contamination distribution functions 

F = (1-E)Fo+ EH, (8) 

where Fo is the distribution of the data under the Gaussian errors-in-variable model, see 
(1), H is an arbitrary distribution on R(P+l) and 0< E<0-5. Equation (8) provides a 
simple way to model a sampling distribution which generates occasional aberrant data 
values, which typically appear in applications. 

An orthogonal M estimate, an, can be viewed as a functional a (.) defined on a subset 
of distribution functions. In particular an = a(Fn), where Fn is the empirical distribution 
of the data. Assume that a(FO) = ao and a(.) is continuous at all F in (8) so that 
a(Fn)>a(F). See Theorem 1 and Corollary 1. 

The asymptotic bias of a(.) at F, B(a, F), is defined as 

B(da F) =2 min {ja(F)- d0J2, a ja(F) + a2}= 1- Iaoa(F)J. (9) 

To assess the bias it is necessary that d(F) and ao have the same direction. Notice that 
both d(F) and -a(F) define the same hyperplane. This justifies the minimum in (9). 
Also notice that (9) respects the orthogonal invariance of the errors-in-variables model. 

A useful measure of the degree of bias-robustness of an estimate is its maximum 
asymptotic bias over a contamination family. A robust estimate is expected to be stable 
in a neighbourhood of the target model and therefore to have a relatively small maximum 
asymptotic bias. Clearly, the maximum asymptotic bias of an estimate is a function of 
?, the fraction of contamination, so one is led to consider maximum bias curves. Two 
important robustness concepts, the breakdown point and the gross-error sensitivity, are 
derived from such curves. The breakdown point of an estimate is the smallest value of 
e for which the maximum asymptotic bias attains its theoretical maximum, usually equal 
to oo. The gross-error sensitivity is the derivative of the maximum bias curve at E=0. It 
can be used, when finite, to obtain a local linear approximation to the maximum 
asymptotic bias curve, near zero. For discussion of these and other robustness concepts, 
see Hampel et al. (1986, Ch. 2). 

Let V be the covariance matrix of X in (1), 0 = Ao < A1 < A2 ... 2 Ap the eigenvalues 
of V and ao, al,,.. ., ap,, the corresponding eigenvectors. The author, in his Ph.D. thesis, 
shows that for an orthogonal M estimate, a, with bounded p function the maximum 
asymptotic bias, 

B(d) = sup B(d, F), 
F 

is given by 

1I1 otherwise, 

where 

8 = e/(1-?), hP(a) = EF[p{a(a)'x}-p(aOx)], 

a(a) = (1 - a)a0+ {1 - (1 - a:)2}!ai . 
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Robust estimation in the errors-in-variables model 157 

Since p is bounded it can be assumed, without loss of generality, that, as t -> 00, lim p ( t) = 1. 
It can also be shown that if p is unbounded then B(a) = 1, for all 8 > 0. 

The asymptotic breakdown point, E*, of an orthogonal M estimate a' is defined as 

8* =inf {E: B(a) = 1}. 

From (10) it follows that for a based on a bounded p, 

?* = 'inf {?: hp(l) -, EI(I - E)}. 1l) 

On the other hand, *- 0 for all orthogonal M estimate based on an unbounded p. Thus, 
for example, the classical orthogonal regression estimate with p(t) = 2t2 and the orthogonal 
M estimate based on Huber's favourite p-function p(t) = min (1t2, cItI + c2), c>0, have 
8* =0. 

The remainder of this section is devoted to the computation of the influence curve of 
orthogonal regression M estimates. Once more, the reader is referred to Hampel et al. 
(1986, Ch. 1) for a general definition and detailed discussion of influence curve. 

For simplicity, we only consider here the case when the target model is the Gaussian 
errors-in-variables model (1) with p = 1, bo= 0 and O.2 = 1. The general case is treated in 
the author's thesis. The influence curve for the classical orthogonal regression estimate 
is derived by Kelly (1984). 

In the simple case treated here, the orthogonal regression M function a(F) can be 
viewed as a composite function g{0(F)}, where 0(F) is defined as the minimizer of 
EF{p(xl sin + x2 cos 0)} and g(0) = (sin 0, cos 0)'. It follows that O(F) satisfies the 
estimating equation 

EF[h/{e(x, 0)}z(x, 0)]=0, (12) 

where 

e(x, 0) = x1 sin0 + x2 cos 0, z(x, 0) = x1 cos 0 - x2sin 0. 

From (12) we can easily derive the influence curve of 0 at y = (Yr, Y2) and F0, 
A 

ic(y, 9, FO) = K(Fo)fI{e(y, 0)}z(y, 0), (13) 

where 

K(Fo) = EFO[JI{e(0o)}e(0o) - q'{e(00)}z2(00)]. 

Finally, since a = g( 0) = (cos 0, sin 0)', it follows from (13) that 

ic(y, a, FO) = (cos 00, sin 00)'IC(y, & FO). (14) 

The asymptotic variances for 0 and a can be derived from (13) and (14) in the usual way. 

5. CONCLUDING REMARKS 

The case where the errors Ei in model (1) are independent and identically distributed 
is of considerable practical interest. In this case, the joint distribution of E is spherically 
symmetric if and only if the common marginal distribution is Gaussian. In the non- 
Gaussian case, Corollary 1 does not apply and the orthogonal regression M estimate 
may be asymptotically biased. However, numerical computations indicate that the 
asymptotic bias is small. For example, consider the orthogonal regression M estimate 
using (5) with c = 4-7. We found that, if the distribution of x and y is as in ? 2 except 
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that u and v are independent, Student's t random variables with k degrees of freedom, 
the asymptotic bias B is no larger than 0-005. The worst case, B = 0-005, corresponds to 
k =4. The Student's t distributions used in our computations were scaled so that the 
'signal-to-noise ratio', r2, measured in terms of the square of the median of the absolute 
deviations, is approximately equal to two. The use of a robust measure of dispersion is 
justified on intuitive grounds and also by the fact that Student's t distributions with k S 2 
do not have finite variance. The asymptotic bias is quite small, despite the poor signal-to- 
noise ratio used in our computations. The maximum asymptotic bias over E-contaminated 
neighbourhoods, computed using (10), is small too, even for moderately large values of 
E. Also the breakdown point is fairly large as shown in Table 4. Therefore we can conclude 
that this estimate enjoys a fair degree of bias-robustness as is consistent with the Monte 
Carlo results in Table 1. 

Table 4. Breakdown point, E*, of the orthogonal 
regression M estimate using (5) with c = 4 7, for 

several values of the signal-to-noise ratio r2 

r2 E* r2 * 

1.0 0-082 40 0205 
15 0112 50 0-228 
2-0 0137 6-0 0-246 
2-5 0-158 8-0 0-273 
3-0 0-176 10.0 0-293 

?*>.0-20 for r:2. 

It follows from (14) that the influence curve of orthogonal regression M estimates is 
unbounded; there are sequences {Ynl for which ifi{e(yn, 00o)}Z(yn, 6o) - so as n -> 00. There- 
fore, the gross-error sensitivity of these estimates is infinite and cannot be used to 
approximate their maximum asymptotic bias. This emphasizes the importance of formulae 
(10) and (11) which give the exact asymptotic bias and breakdown point for these 
estimates. Note that boundedness of the influence curve is neither a necessary nor sufficient 
condition for bias-robustness. For example, in the regression set-up, so called generalized 
M estimates have bounded influence curves and their breakdown points shrink to zero 
as the dimension of the factor space increases. On the other hand, S estimates of regression 
have unbounded influence curves but breakdown-point 2, independently from the 
dimension of the factor space. 

However, it may be of interest to study the bias-robustness properties of bounded 
influence estimates in the errors-in-variables set-up. In the linear regression case, bounded 
influence estimates are defined for example as the solution of 

E[ {if(y -13'x)IIxII}x/IIxII] = 0. 

See Hampel et al. (1986, p. 315) for a detailed discussion of bounded influence curve 
estimation in the regression set-up. 

In the orthogonal set-up one may be tempted to define bounded influence estimates 
as the solution to the estimating equation 

E[if{a'xIIz(a)II}z(a)/ ||z(a)|] = 0, (15) 

where z (a) = (I - aa')x and where I is the identity matrix. The problem with this approach 
is that even at a spherical error-in-variables model, (15) has several 'wrong' roots in 
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addition to the 'right' one. For example, in the classical orthogonal regression case, 
+f(t) = t, any eigenvector of the covariance matrix of x will solve (15) and we are only 
interested in the one with the smallest eigenvalue. 

One way to overcome this difficulty might be the following: for each c1 = 1 define 
y(c) as the solution to the minimization problem 

min E[p{a'xIIz(c)II}IIz(a)11-2]=0. 
jjajj =1 

Then, a fixed point c0 = y(c0) is the 'right' root of (15). An algorithm to compute c0 may 
be given by the recursion c m?1 = y(cm). A simpler method is to use only one-step recursion, 

starting from a robust initial estimate, for example an orthogonal regression M estimate 
with a bounded p. 
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APPENDIX 

Proof of Corollary 1 

LEMMA 1. Suppose that: (a) the random variable Y has a unimodal and continuous density f; 
(b) the loss function p is continuous, nonnegative and nondecreasing on [0, oo); (c) there exists 6 > 0 
such that p and f are strictly monotone on [0, 8). If 

g(t) = f {p(y- t)- p(y)}f(y) dy, 

then, g(t) > O for all t * O. 

Proof: Let t > 0. By (a) and (b) 

r+0 
g(t) = f {p(y - t) - p(y)}f(y) dy 

_00 
0 

= {p(y- t)- p(y)}f(y) dy+ J{p(y- t)- p(y)}f(y) dy 

=fJ {p(-y)- p(t-y)}f(t-y) dy-f {p(y)- p(y- t)}f(y) dy 
t/2 t/2 

= B {p(y) - p(y - t)}{f(y - t) -f(y)} dy : 0. 
t/2 

Notice that p(y) - p(y - t) s 0 and f(y - t) -f(y) 0 for all y ?t. 

Finally, by (c), for y= t, 

{p(y) - p(y - t)}{f(y - t) -f(y)} = {p(t) - p(O)}{f(O) -f(t)} < 0, 

and the lemma follows from continuity of p and f C 

Proof of Corollary 1. It suffices to show that assumption (c) of Theorem 1 holds with (a1, b1) = 

(a0, b A). Assume, without loss of generality, that s = 1 and EF{p(a'x - b) - p-(ax - b0)} <I o. Notice 
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that by (iii), if this last quantity is not finite then (c) of Theorem 1 trivially holds. By (i) the above 
expectation is equal to EF{p(a'x - b) - p(a'E)} which can be written as 

J|P+I J| [p{y-(b-a'z)}-p(y)]h(y) dydFx(z). (Al) 

By (ii), (iv) and Lemma 1, the inner integral is strictly positive for all (b - a'z) * 0. Therefore, if 
(Al) is equal to zero, b - a'X = 0 almost surely [Fx] and (a, b) = +(ao, bo). ? 
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