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Summary.
We introduce a robust estimation procedure based on the choice of a representative trimmed
subsample through an initial robust clustering procedure, and subsequent improvements based
on maximum likelihood. To obtain the initial trimming we resort to the trimmed k-means, a sim-
ple procedure designed for finding the core of the clusters under appropriate configurations.
By handling the trimmed data as censored, maximum likelihood estimation provides in each
step the location and shape of the next trimming. Data-driven restrictions on the parameters,
requiring that every distribution in the mixture must be sufficiently represented in the initial clus-
tered region, allow avoiding singularities and guaranteeing the existence of the estimator. Our
analysis includes robustness properties and asymptotic results as well as worked examples.

Keywords: Multivariate normal mixture model, identifiability, EM algorithm, censored maximum
likelihood, asymptotics, trimmed k-means, breakdown point, influence function.

1. Introduction

Estimation in mixture models has caught the interest of many researchers due to their
multiple statistical applications. Although a lot of research has been produced since its
publication, McLachlan and Peel [17] gives a general summary of the state of the art in this
topic. In this paper, we assume the so-called multivariate normal mixture model (MNMM)
given by {P θ : θ ∈ Θ} , with densities

fθ :=
k∑

i=1

πigφi
, (1)

where k is known, gφi
, φi = (µi,Σi), denotes the density function on IRd of the Gaussian

distribution with mean µi and covariance matrix Σi, and πi is the mixing proportion of gφi

in the mixture. The multi-parameter θ, indexing the model, varies in the set

Θ :=

{
θ = (π1, ..., πk, φ1, ..., φk) : πi > 0,

k∑
i=1

πi = 1, φi ∈ Φ, φi 6= φj if i 6= j

}
,
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where Φ := IRd ×M+
d×d and M+

d×d is the set of (strictly) positive definite d× d matrices.
Although the interest in these mixture models has a long history, the implementation of

stochastic algorithms solving the enormously complex computational problems involved in
the usual statistical approaches is recent. On the one hand, from its introduction, the EM
algorithm found one of its principal applications in the maximum likelihood (ML) treatment
of mixture models. On the other hand, the Markov chain Monte Carlo (MCMC) algorithms
have given the possibility of treating the problem from a Bayesian point of view (an overview
on mixtures in this Bayesian setting is Marin, Mengersen and Robert [15]).

In any case the solution of the estimation problem under the mentioned approaches
inherits difficulties which can be resumed through its qualification as an inverse ill-posed
problem (see Section 1.3.3 in [15]). A fact that translates in the unboundedness of the
likelihood function, the existence of multiple local maxima, the practical impossibility of
using improper priors in this setting and a great instability of the estimators and of the
available algorithms computing them.

The main computable approaches in the multivariate setup with a robust motivation
seem to be reduced to the one by Fraley and Raftery [6] through the addition of a mixture
component accounting for noise modeled as a uniform distribution, and the t mixture model
by McLachlan and Peel (see e.g. [18] and Section 7 in [17] for other references) which replaces
(1) by a mixture of t distributions. However, as noted by Hennig in [11], “while a clear gain
of stability can be demonstrated for these methods in various examples ..., there is a lack of
theoretical justification of their robustness.” In this work, we introduce a new methodology
for robust estimation in the MNMM supported by a sound theoretical analysis.

We propose a two-step procedure beginning with a robust estimator, whose efficiency is
improved with a maximum likelihood (ML) step. Several iterations of the ML step, leading to
an m-step procedure, would increase the efficiency. This method is a natural generalization of
that analyzed in Cuesta-Albertos, Matrán and Mayo [4] in the multivariate elliptical model.
A similar approach was adopted by Marazzi and Yohai [14] in the univariate regression
model. Also Markatou [16] considered a related weighted likelihood method for mixtures,
but based on a preliminary nonparametric density estimation step, which could make the
procedure undesirable for the multivariate setting due to the curse of the dimensionality.

The procedure searches initially a small (purportedly) uncontaminated core of the data,
consisting of k clusters, each one associated with one distribution in the mixture. Then, ML
estimation (obtained through a variant of the EM algorithm) of θ based on this trimmed
data subset, treating the removed data as censored, produces the estimation. This process
can be repeated by updating the trimmed sample in accordance with the present estimation
in such a way that in every step the information in the current trimmed sample is used to
produce a larger and better-shaped trimmed set. This would be repeated until some suitable
stopping rule is met, based on which the final estimate would be obtained.

The troublesome existence of multiple local maxima and the unboundedness of the like-
lihood function have often been handled with ad hoc procedures. The use of restrictions
on the parameter space to circumvent this difficulty was pioneered by Hathaway [10] for
mixtures of univariate normal distributions. Here, we introduce a data-driven restriction on
the parameters whose meaning is that each distribution in the mixture must have a sufficient
representation in the initial trimmed sample.

Features of the procedure are given in Section 2. In Section 3 we compare our method
with other procedures and show its performance in several examples. Section 4 is devoted
to the theoretical justification of the procedure, including asymptotic results and robustness
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properties. The main ideas of the proofs can be found in the Appendix (some extra details,
as well as some additional examples can be found in the Technical Report [5]). A last section
is devoted to discussion on the proposed methodology.

2. Assumptions and description of the procedure

Throughout we will handle the sample space IRd, d ≥ 1, with its usual norm ‖−‖, and Borel
sets βd. With B(m, r) we denote the closed ball centered at m with radius r. For a set
A ⊂ IRd, Ac denotes its complement and IA the associated indicator function. We will use

two families of sets: For every γ = (m1, ...,mk, r) ∈ Γ :=
(
IRd
)k

× IR+, B(γ) will denote the

union of closed balls ∪k
i=1B(mi, r), while, for every η = (m1, ...,mk,Σ1, ...,Σk, r1, ..., rk) ∈

Γ̃ :=
(
IRd
)k

×
(
M+

d×d

)k × (IR+
)k

, E(η) will be the union of ellipsoids
⋃k

i=1{x ∈ IRd :

(x−mi)T Σ−1
i (x−mi) ≤ ri}.

The notation Pf will denote integration of the random variable f with respect to the
probability distribution P . Given a random sample {Xn}n of a distribution P , {Pn}n will
denote the associated sequence of empirical distributions.

To circumvent the well-known problem of identifiability, we will assume as equivalent
(π1, ..., πk, φ1, ..., φk) ∈ Θ and every (πi1 , ..., πik

, φi1 , ..., φik
) for permutations (i1, i2, ..., ik)

of (1, 2, ..., k). Notice that in contrast with the ML approach, this assumption causes a
serious “label switching” problem in the Bayesian methodology (see Section 1.3.4 in [15]).

2.1. Initial estimator
We begin by choosing a trimming set Â through a robust clustering criterion. For this,
we use the trimmed k-means introduced in Cuesta-Albertos, Gordaliza and Matrán [3] (the
TRIMCLUSTER package includes an R-code, [19], to compute them). This procedure trims
a given proportion α of the sample and splits the remaining data into k groups in order to
minimize the within groups sums of squares of the distances to the centers of the groups.

It is shown in [3] that, if P is any probability on IRd, there exists γP := (mP
1 , ...,mP

k , rP ) ∈
Γ such that the set B(γP ) (= ∪k

i=1B(mP
i , rP )) fulfills P (B(γP )) ≥ 1−α and for every union

of closed balls A := ∪k
i=1B(mi, ri), verifying P (A) ≥ 1− α, it holds

1
P (B(γP ))

∫
B(γP )

inf
i=1,...,k

‖x−mP
i ‖2P (dx) ≤ 1

P (A)

∫
A

inf
i=1,...,k

‖x−mi‖2P (dx). (2)

The vector (mP
1 , ...,mP

k ) ∈
(
IRd
)k

is called an α-trimmed k-mean of P , and we will refer to
B(γP ) as its associated region. When P = P θ or Pθ0 , instead of γP we will use γθ or γ0.

Note that the right hand side term in (2) includes every union of k balls in IRd, but the
minimum is attained by an union of balls with the same radius. This is a peculiarity of the
regions associated to the trimmed k-means.

The solution provided by the trimmed k-means is quite simple and it is well suited to
our goals when the data set is composed by k approximately spherical distributions with
similar dispersions. This can be considered as a limitation of the procedure but through one
or several additional iterations it is generally possible to cover a wider framework.

Very often, specially if the components of the mixture do not overlap too much, this
non-parametric clustering method allows us to detect the components in a mixture (see [3]).
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Moreover, the theory developed in [4] shows that ML estimates based on any trimming of
the sample space suffice to successfully estimate the parameters of a Gaussian distribution.
Our approach combines both facts. First, the trimmed k-means procedure initializes the
search looking for so many zones as components in the mixture in such a way that the data
in every zone is likely to be highly representative of just one component. Thus, the (µi,Σi)
parameters in the global maximization of the censored likelihood are approximately the so-
lutions of the k maximizations corresponding to the likelihoods of their normal components.
Hopefully, this will avoid the EM algorithm to start in the domains of attraction of spurious
solutions. Running the EM we propose initializing the means of the distributions composing
the mixture with the trimmed k-means, while the initial values for the covariance matrices
and the weights of the distributions are those based on the data in the clusters corresponding
to each one of the k balls obtained in the trimming process.

Notice that more reliable initial estimators for particular situations (see e.g. our Example
3.2) are possible and covered by our asymptotic results as soon as they consistently estimate
a region in the space. Often these choices can lead to improvements but they should be
carefully handled because in some situations they could produce badly behaved solutions.

For a better understanding of the procedure we will apply it to an example, similar to
that included in Section 2.12.4 of [17], attributed to Ueda and Nakano.

Example 2.1. Let us consider a random sample of size 600 of the mixture given by

πi = 1/3, i = 1, 2, 3;µT
1 = (−2, 0), µT

2 = (0, 0), µT
3 = (2, 0); Σi =

(
0.2
0

0
2

)
, i = 1, 2, 3.

To analyze the behavior of the procedure in the presence of contaminated data we added
20 data simulated from the uniform distribution on the set

{(x, y) ∈ [−5, 5]× [−8, 8] : x < −4 or x > 4 or y < −5 or y > 5}.

The graph on the left in Figure 1 shows the trimmed region associated to the trimmed
3-means for a trimming level of 0.5 (the union of the three yellow balls), as well as the
(non-trimmed) 3-means (marked as bold squares). Here we only stress the scarce influence
that the contaminated data have on the trimmed 3-means. On the contrary, the 3-means
are greatly influenced by the contamination. The remaining features of the graphs in Figure
1 are explained later. •

2.2. Trimmed sets and the censored likelihood function
In [4] we consider several likelihood functions associated to a subsample constituted by the
points of the sample {x1, ..., xn} belonging to a bounded set A ∈ βd. As stated in the final
discussion there, under the hypothesized model the censored point of view is the best choice.

The (artificial) censoring leads to consider the censored log-likelihood function:

Lθ/A(x) := IA(x) log fθ(x) + IAc(x) log P θ(Ac), x ∈ IRd.

Thus, the empirical censored log-likelihood based on a sample of size n is

PnLθ/A = Pn (IA log fθ) + Pn(Ac) log P θ(Ac).

In this way we use the full information corresponding to the sample points belonging to
A, but also the number of points in Ac. Moreover, as soon as we guarantee the identifiability
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Fig. 1. Realizations of 3-means, 50%-trimmed 3-means, associated (and iterated) regions and dif-
ferent estimations in Example 2.1 (represented by the 95% level curves of the weighted estimated
normal distributions in the mixture). The main features are explained there, just before Subsection
2.2.1, and at the end of Subsection 2.2.1.

of the distribution on A (see Theorem 4.1 below) we can guarantee the uniqueness of the
maximization of the likelihood under the model (see Proposition 4.2).

To avoid degenerated solutions in the sample optimization problem, we consider restric-
tions on the parameters based on the presence of k populations. Assuming that the initial
procedure is successful in discarding the contaminated data and in searching for a represen-
tative subset of {x1, ..., xn}, the selected set Â should contain sufficient evidence of every
population. Therefore, once a threshold value, u ∈ (0, 1), has been chosen, we consider

Θn
u :=

θ ∈ Θ :
1

]
{

t : xt ∈ Â
} ∑

xt∈Â

P θ(i/xt) ≥ u, for every i = 1, ..., k

 , (3)

as the restricted parameter set. Defining

P θ(i/x) :=
πigφi

(x)
fθ(x)

=
πigφi

(x)∑k
j=1 πjgφj (x)

which is the ‘a posteriori’ probability of a point x arising from density gφi
, then, the whole

quotient in (3) is the sample conditional mean: Pn[P θ(i/·)/Â]. Thus the value u limits
our search to those parameters which would produce in mean at least a presence of 100u%
points of every component in our censored sample. The set Θn

u is mostly data-driven and
we will call it an impartially restricted parameter set.

Now we are in a position to define the (two steps) estimator of θ through

θ̂n := arg max
θ∈Θn

u

PnLθ/Â. (4)
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We use the EM algorithm to solve (4) (the Monte Carlo EM if the involved integrals make
the EM infeasible); see Remark 4.3 on the convergence of the EM algorithm in this setup.

Back to Example 2.1. It is not actually necessary to fix a very accurate value for u
in order to define the restricted parameter space. Let us consider a light one, u = 0.1, the
trimmed set Â already obtained in Example 2.1 and apply the EM algorithm to solve (4).

In the graph on the left in Figure 1 the thin (resp. thick) ellipses show the 95%-level
curves of the weighted true (resp. estimated) normal distributions in the mixture. The
solution given by the EM algorithm to the classic MLE starting from the 3-means is shown
in purple in the graph on the right. As already shown in [17] the poor choice of initial value
leads to a very bad solution, but, even with good initial solutions, the EM algorithm for the
classic MLE would exhibit a bad behavior in this case due to the contamination. •

2.2.1. Iterations: Improving the trimming regions

As we will see in Theorem 4.1, our model 1 is identifiable even if we use only the information
corresponding to any (fixed) open set. Thus, it is theoretically possible to estimate the
parameters just by handling the data lying in that set. However, it is intuitively sound (see
also our analysis on the Influence Function in Section 4.2) that in order to produce a good
estimation for all the parameters through the estimation based on a trimmed sample, we
should attempt to obtain a trimming region adapted to the features of the mixture. As
stated before, the trimmed k-means are not intended for this. Thus, to better reflect the
structure of the mixture, the trimmed set Â should be substituted by a union of k ellipsoids
with appropriate shapes and sizes. We should also improve the use of the information
incorporating into the active data set as many (good) data as possible. These facts are
patent in the yet unsatisfactory solution provided for Example 2.1.

To pursue in the aforementioned directions, we mimic the EM algorithm in the following
way. At this time, we have a value of the trimming parameter α1 = α, an estimated
active trimming set Â1 = Â and an estimate θ̂1 = θ̂n of the parameter, with components
θ̂1 = (π̂1

1 , ..., π̂1
k, φ̂1

1, ..., φ̂
1
k).

Let M ∈ IN and α2, ..., αM ∈ (0, 1), α1 ≥ α2 ≥ ... ≥ αM be given (as usually happens
with iterative procedures, a smooth enlargement will contribute to avoid brusque changes
in the behavior of the procedure). Step 3 consists in replacing the trimming set Â1 by the
set Â2 composed of the union of the ellipsoids given by the 1−α2 level curves of the density
functions gφ̂1

1
, ..., gφ̂1

k
. Now, we can obtain θ̂2, the MLE associated to the censored likelihood

function Lθ/Â2 with the same impartial restrictions as those used in step 2. We repeat the

process using the trimming sizes α3, ..., αM and, for every αi, the last estimation θ̂i−1 as the
initial value for the EM algorithm, the active trimming set Âi constructed as in step 3 from
θ̂i−1 and the new trimming level.

The above process assumes fixed values of M and αi, i = 1, ...,M , although it could
be adaptive (by resorting to a similar idea to that in [14] or to a stopping criterion based
in penalizing the censored likelihood). We shall not pursue this task here and in all the
examples we will use α1 = 0.5 and αM = 0.05, with small changes of size 0.05 (thus M=10).

We keep the initial restrictions, based on the trimmed k-means, to avoid the possibility
of a slow, step by step, degeneration of the estimated parameters of some distribution in
the mixture. The good performance of the trimmed k-means to select representative zones
of the clusters (see [3]) and the nature of our restrictions justify to keep this choice.
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Back to Example 2.1. In both graphs in Figure 1 the thin ellipses show the 95%-level
curves of the weighted true normal distributions in the mixture; while the thick ellipses show
the estimated 95%-level curves of the normal distributions in the mixture given by the initial
estimate (graph on the left), where α1 = 0.5, and by the iterated estimate with M = 10
steps and αM = 0.05 (graph on the right).

The three inner (resp. outer) yellow ellipses show the intermediate adaptive region
corresponding to 35% (resp. 20%) trimming size. •

3. The method in action

In this section we present some features of the method through its behavior on several
examples and discuss on the performance of the available alternatives in our framework.

To our best knowledge there is not an explicit robust proposal into the Bayesian method-
ology. However it is natural to consider the Bayesian analysis of mixtures allowing the
contaminating data to be modeled by additional components within the category of robust
alternatives. In our context, the main drawbacks of this methodology are the great difficul-
ties of handling multivariate data (the more elaborated and recent proposals focus on, at
most, IR2), and how to handle isolated outliers as individual components of the mixture.

The first drawback is directly concerned with the specification of manageable and suit-
able priors for the involved hyper-parameters, which at best would be possible at price of
computational challenges provided that strong constraints on the covariance matrices be
imposed “requiring them all to be equal or all to be diagonal for example” (Stephens [21] p.
64). In this sense, the approach in Bensmail et al. [1], looking at possible factorizations in
some aspects of the covariance matrices, could be also of some aid. Regarding the second,
when there are contaminating data that are not well explained by a few additional compo-
nents (as it happens e.g. when there are several isolated outliers or small groups of outliers),
allowing for the inclusion of new components to explain very small groups and preventing
convergence difficulties for the algorithms by the phenomenon of the “absorbing component”
(see Section 9.3 in Robert and Casella [20]) are opposite tasks. In any case, as argued in [11]
in a frequentist setting, in practice the maximum number of fitted components will often be
fixed and much smaller than the maximum number of outliers thus the lack of robustness
of the method for fixed k would remain relevant. Alternatively, a proper definition of the
outlying model should be provided and suitably introduced in the model.

In the non-Bayesian framework, the last comment is equally pertinent for the procedures
designed for an unknown number of components. For known k, Fraley and Raftery [6]
proposed the addition of a component in the mixture accounting for noise. For this task
they introduced a uniform distribution on the convex hull of the data. A variation through
an improper distribution has been proposed in Hennig [11] in the univariate setting. The t-
mixture model (see Section 7.3 in [17]) is based on the use of a variant of the EM algorithm
(the ECM algorithm) to estimate the parameters assuming a mixture of multivariate t
distributions, including the estimation of the degrees of freedom (which often is assumed to
be the same for every distribution in the mixture) and scale matrices.

As noted in [11], these proposals often improve the stability, but they break down in
any case under the addition of just one (far enough) outlier. Only the proposal of Hennig
circumvents this difficulty, although it is limited to the univariate case and no theoretical
justification for its behavior (excepting the breakdown point analysis) has been yet provided.

The examples and table that follow give a comparative perspective of our method. Even
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when the theoretical results in [11] and those presented in Subsection 4.2 would suffice to
show its superiority from a robust point of view, we will show some comparisons of its
behavior with that of the classic MLE as well as with the probably better known robust
alternative, the t-mixture model.

For the analysis involving the mixture of t distributions method we carry out the com-
putations with the EMMIX algorithm of McLachlan, Peel, Basford and Adams, using the
k-means as an initial solution, but also starting from 100 initial randomly chosen solutions,
choosing between the results the one that provides the maximum of the likelihood function
associated with the mixture of t distributions.

As a general background for the presented graphics, the different colors or symbols show
the assignment of the points to the clusters given by the procedure used to produce the
initial solution (i.e. the k-means or the trimmed k-means procedure). The cross symbol is
always assigned to the trimmed data. The thin (resp. thick) ellipses shows the 95%-level
curves of the weighted true (resp. estimated) normal distributions in the mixture.

With respect to the estimations produced through our proposal, in order to show the
scarce influence of using very accurate values in the separation threshold to define the
constrained parameter space, we have used u = 0.1, a light one in comparison with the
real proportions of the components considered in the mixtures of the worked examples.
Moreover, as stated in Subsection 2.2.1 we start with an initial trim of 50% of the data and
the final region, obtained in M = 10 steps, contains 95% of the points in the sample.

We begin by noting that the solution provided to Example 2.1 by the t mixture model is
similar to that obtained with our method. This often happens for symmetrical contamina-
tion, where both methods generally show a good performance. If we now substitute the 20
contaminating data there for another 20 points that constitute a well concentrated contam-
ination arising e.g. from a uniform distribution on the square [0.5, 1.5]× [−8,−7], then the
(bad) behavior of EM for the t mixture model is similar to that EM for the normal mixture
model. In fact, it is the classic MLE procedure which is unable to handle the problems
arising from the presence of some concentration of outliers.

Example 3.1. In this example we analyze the behavior of the methods in a 10-dimensional
problem. The mixture is composed of the product measure of a 8-variate normal distribution
with zero mean and covariance matrix equal to 8 times the identity matrix on IR8 with a
mixture of three bivariate normal distributions with parameters

πi = 1/3, i = 1, 2, 3;µT
1 = (−9, 0), µT

2 = (1, 5), µT
3 = (3.5,−3.5);

Σ1 =
(

16
0

0
16

)
,Σ2 =

(
8.5
−7.5

−7.5
8.5

)
,Σ3 =

(
1
0

0
1

)
.

The analysis has been carried out over a sample of size 600, slightly contaminated by
10 additional data obtained from a uniform distribution on the parallelepiped [−4, 4]8 ×
[6, 10] × [11, 19]. The graphs in Figure 2 show the plots of the last two dimensions of the
solutions. The graph on the left corresponds to the solution given by the EM algorithm,
for the classic MLE, starting from the 3-means as the initial solution (violet) and to the
solution provided by the t mixture model (yellow). The violet solution is nearly equivalent
to a local maximum found by the EMMIX algorithm for the t mixture model. The graph
on the right shows the solution obtained with our method. •
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Fig. 2. Plots showing the last two components of the 95% level ellipsoids of the true distribution (thin
ones) and the estimated distributions of Example 3.1.

Example 3.2. Here we use the subset of the crabs data set in Campbell and Mahon
[2] corresponding to the blue crab species, which includes 50 males and 50 females. The
fit, by a mixture of two normal distributions, to the bivariate data provided by the RW
and CL variates is studied in Peel and McLachlan [18] and in [17]. That analysis mainly
addresses the fitness and robustness of the t mixture model in the classification framework.
It includes detailed comments on the influence of the equal covariance matrices hypothesis on
the estimation, showing a better performance of the estimation without such restriction. In
fact this constraint produces an unnecessary overlapping of the estimated distributions. By
introducing one outlier into the original data set, they also show how the normal mixture
model fitting can give an outright solution resulting in degenerating one component to
explain just the outlier. The t mixture model is robust against the analyzed perturbations.

We will show that a similar case can happen even for the t mixture solution in presence
of a small cluster of anomalous observations. For this, we have added three outliers in the
left upper corner in the plot of Figure 3 which cause the t mixture model approach to break
down. It could be argued that it is also legitimate to consider this set of outliers as a true
cluster. If so, we would be in a situation in which the addition of 3 anomalous observations
would radically change our model because it forces us to step from k = 2 to k = 3 clusters.
Thus, the very principles of robustness would lead to consider these observations as clustered
contamination. In this sense, the restrictions given by (3) and the choice of our trimming
level avoid the consideration of non-enoughly representative components in the mixture.

The breakdown solutions provided by the EM algorithm, for the classic MLE, starting
from the 2-means as initial solution (violet) and the solution provided by the t mixture
model (yellow) coincide. In this case we have used as initial region for our procedure the
solution provided by Gallegos and Ritter [7] (covering the 50% of the data by a union of two
identical ellipses suitably located). The use of the initial solution given by this procedure
is coherent with the hypothesis of homocedasticity discussed in [17], while the iterative ML
steps improve the solution without such constraint. A similar solution would be obtained
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Fig. 3. Plot showing the 95% ellipses for the estimated distributions of the Blue Crab Data set of
Example 3.2. Small circles and triangles distinguish the sex of the individuals in the data.

using the 0.7-trimmed 2-means as the initial region, and a final trimming size of 5% (see [5]).
Note that in this example, the very elongated shapes of the groups could make impossible
to choose a representative region of both populations based on two balls of the same radius
unless for a very high trimming level. •

Table 3.1 shows the results of a simulation study to analyze the performance of the
method under different types of contamination and dimensions of the sample space. The
table shows the proportions of successes obtained by the natural classification rule provided
through the estimation procedures under consideration (x is classified in the j-th class, even
for trimmed data, iff π̂jgφ̂j

(x) > π̂igφ̂i
(x) for i 6= j). The displayed values are the proportions

of well classified data. Obviously the outliers are not considered here. To ease the analysis
we include the classic MLE solution provided by the EM algorithm, starting from the true
theoretical solution, for the non-contaminated data sets. The columns labeled tk-m (resp.
G-R) show the results obtained when the procedure starts with the 0.5-trimmed 3-means
(resp. with the solution provided by Gallegos and Ritter as a union of 3 equal ellipses
suitably located containing 50% of the data). Regarding this table it becomes apparent the
scarce influence that the initial solution has over the final estimation in our simulations.

We consider three kinds of the problem. Each kind is handled in three different dimen-
sions (2, 5 and 10) and three different sample sizes. The mixtures will be composed of three
populations of equal size (250, 500 or 1000 each) obtained from three normal distributions.
In order to ease comparisons between the performances of our procedure when the dimension
grows and additionally to give a quick picture of the nature of the problem under consider-
ation, we begin with 2-dimensional problems. Then, we immerse them in dimensions 5 and
10 by completing the last components with independent N(0,1) random variables.

Notice that the particular representation we have chosen does not affect to the real
dimension of the problem and, in fact, in dimension 5 we are estimating 62 parameters: 2
for the proportions in the mixture, 3× 5 for the means vectors and 3× 15 for the covariance
matrices. In dimension 10 the number of estimated parameters is 167 = 2+(3×10)+(3×45).

In the first kind of problems (labeled as A) the first two coordinates are obtained from
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the distributions with parameters

µT
1 = (0,−4), µT

2 = (0, 0), µT
3 = (0, 4); Σ1 = Σ2 = Σ3 =

(
4
0

0
1

)
.

In the second kind (labeled as B) the involved distributions are defined by

µT
1 = (0,−3), µT

2 = (0, 2), µT
3 = (−2, 0); Σ1 =

(
4
0

0
1

)
,Σ2 =

(
6 −5

−5 6

)
,Σ3 =

(
0.4 0
0 0.4

)
;

while in the third kind (Problems C) they are determined by

µT
1 = (0,−4), µT

2 = (−4, 0), µT
3 = (0, 0); Σ1 =

(
4
0

0
1

)
,Σ2 =

(
1
0

0
4

)
,Σ3 =

(
6 −5

−5 6

)
.

Table 3.1. Proportions of correctly classified data in our simulation study with the
shown sample sizes and dimensions (d). The employed estimation procedures were the usual
M.L.E. and the proposed procedure starting from two different trimmed sets: the one obtained
with the Gallegos and Ritter methodology (labeled as G-R) and from the trimmed k-means
(labeled as tk-m). In both cases the initial trimming level was α = .5. Regular samples were
generated from a standard Gaussian distribution. Contaminations are described in the text.

No contamination Contamin. 1 Contamin. 2 Contamin. 3
Problem d Sizes

MLE tk-m G-R tk-m G-R tk-m G-R tk-m G-R
A 2 3× 250 .967 .967 .967 .966 .966 .967 .967 .967 .967

3× 500 .968 .968 .968 .968 .968 .968 .968 .968 .968
3× 1000 .969 .969 .969 .969 .970 .969 .969 .969 .969

5 3× 250 .967 .966 .966 .966 .966 .965 .965 .966 .966
3× 500 .967 .967 .967 .968 .968 .967 .967 .968 .968

3× 1000 .969 .969 .969 .969 .969 .969 .969 .969 .969
10 3× 250 .962 .959 .958 .960 .958 .959 .959 .960 .959

3× 500 .966 .965 .965 .966 .966 .966 .966 .966 .966
3× 1000 .968 .968 .968 .968 .967 .968 .968 .968 .968

B 2 3× 250 .946 .887 .800 .867 .827 .870 .825 .867 .832
3× 500 .946 .889 .799 .884 .842 .907 .852 .909 .823

3× 1000 .947 .916 .789 .896 .867 .914 .841 .903 .872
5 3× 250 .942 .938 .919 .939 .910 .938 .926 .935 .929

3× 500 .945 .944 .942 .944 .940 .944 .944 .945 .941
3× 1000 .947 .946 .945 .945 .945 .946 .943 .944 .944

10 3× 250 .936 .927 .825 .933 .827 .933 .827 .931 .818
3× 500 .942 .940 .918 .940 .907 .941 .926 .942 .909

3× 1000 .945 .944 .939 .944 .937 .944 .944 .943 .934
C 2 3× 250 .860 .839 .835 .822 .810 .830 .823 .828 .822

3× 500 .864 .852 .850 .840 .829 .841 .834 .844 .835
3× 1000 .867 .853 .854 .842 .836 .845 .841 .845 .835

5 3× 250 .850 .831 .802 .830 .783 .836 .794 .835 .785
3× 500 .858 .850 .841 .850 .829 .852 .838 .850 .835

3× 1000 .863 .857 .854 .857 .853 .857 .849 .857 .851
10 3× 250 .833 .782 .688 .770 .695 .786 .697 .778 .715

3× 500 .851 .840 .810 .835 .800 .841 .807 .838 .803
3× 1000 .858 .853 .850 .854 .848 .854 .848 .853 .851
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Each problem is considered without contamination and with three kinds of contamina-
tion, where we enlarge the whole sample by adding 5% of outliers. Any one of the already
available procedures would produce outright solutions with at least one of these contami-
nations. In the first kind of contamination we add far away outliers in the sphere centered
at the origin with radius 100. In the other cases the contamination is situated outside the
zone defining the 99% covering of the populations. In the second kind of contamination
the outliers constitute an additional cluster obtained from a normal centered at (8,8,0,...,0)
with identity covariance matrix. In the last case we consider sparse outliers obtained from
a distribution with independent components N(5,82), N(5,82), N(0,1),..., N(0,1).

4. Theoretical framework

The following theorem gives the identifiability result that justifies the proposed methodol-
ogy. The proof, based in Proposition 6.1 in the Appendix, is an easy consequence of the
characterizations of identifiability in Yakowitz and Spragins [24].

Theorem 4.1. Let θ1, θ2 ∈ Θ and let A be a d-dimensional open set. If fθ1(x) = fθ2(x),
for every x ∈ A, then θ1 and a permutation of θ2 coincide.

From this it is straightforward to justify the use of MLE in this framework. The classical
proof, based on the use of Jensen’s (strict) inequality, works here.

Proposition 4.2. Let θ0, θ ∈ Θ with θ 6= θ0. If A ∈ βd has a nonempty interior, then

P θ0
Lθ0/A > P θ0Lθ/A.

The restrictions considered in Section 2.2 are the sample version of the following general
framework: Given a bounded set A in βd, u ∈ (0, 1), and a distribution P , let

ΘA,u :=
{

θ ∈ Θ :
1

P (A)
P [IAP θ(i/·)] ≥ u, for every i = 1, ..., k

}
. (5)

Thus, ΘA,u is the family of parameters which give an expected probability to every popula-
tion, conditioned by A, greater or equal than u. In particular, if P = Pθ0 , it is enough that
u ≤ infi π0

i Gφ0
i
(A) to guarantee that θ0 ∈ ΘA,u, where Gφi

denotes the Gaussian distribution
with parameters φi = (µi,Σi).

Once we fix an α ∈ (0, 1) we are also fixing the trimmed k-means of the subjacent
distribution, say P , thus the corresponding trimming set B(γP ). The choice of the threshold
value, u, in turn determines the restricted set ΘP ≡ ΘB(γP ),u, in which we maximize the
censored likelihood function obtaining θP := arg maxθ∈ΘP

PLθ/B(γP ). From now on we will
assume that the value u is fixed and we will omit it in the notation.

Particularizing for the theoretical, Pθ0 (resp. sample, Pn), distribution we will use the
notation B(γ0) (resp. B(γn)) for the trimming set, Θγ0 (resp. Θn) for the restricted sets,
and θ̂n := arg maxθ∈Θn PnLθ/B(γn) for the resulting estimator (already defined in (4)). Also
note that, as soon as θ0 belongs to Θγ0 , it fulfills θ0 = arg maxθ∈Θγ0

Pθ0Lθ/B(γ0).
For our asymptotic results, a technical assumption in relation with the theoretical un-

derlying distribution, Pθ0 , is that θ0 is an interior point of Θγ0. It is realistic, for moderately
well-separated components in the mixture, when we use the theoretical trimmed k-means
to get B(γ0), if e.g. u is taken as 1

k infi=1,...,k vi, where vi is the proportion of non-trimmed
sample points in the i-th ball that compose B(γn).
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Remark 4.3. The impartial restrictions allow to assure the existence of the estimator
because (see below) the sets Sθ′ :=

{
θ ∈ Θn : PnLθ/B(γn) ≥ PnLθ′/B(γn)

}
are compact for

every θ′ ∈ Θn. Moreover they assure the convergence of the EM algorithm to stationary
points of the likelihood function. This is a consequence of Theorem 2 in [23], taking into
account that in this setup the likelihood corresponding to the complete data belongs to the
curved exponential family and the compactness of Sθ′ already noted.

In the model of complete data we assume also known the vector (zi,1, ..., zi,k) of explana-
tory variables, where zi,j = 1 or 0 respectively means that xi arises or not from the j-th
distribution in the mixture. Therefore, the corresponding likelihood function

n∏
i=1

exp

 k∑
j=1

zi,j

(
log (πj)−

1
2

log (|Σj |)−
1
2
µjΣ−1

j µj −
1
2
xiΣ−1

j xi + µjΣ−1
j xi

) ,

belongs to the curved exponential family. On the other hand, notice that

• with probability one, no sample of size n > d of an absolutely continuous distribution
on IRd contains more than d points in the same hyperplane,

• the sets used to determine the sample-based restrictions are B(γn), which contain at
least [α · n] points.

From here, it is possible, by slightly modifying the proof of Proposition 4.5 below, to
prove the following compactness property:

Proposition 4.4. Let α, u ∈ (0, 1), γ ∈ Γ and Pn be the sample distribution based on a
sample X1, ..., Xn of an absolutely continuous distribution. Assume that n > 2(d+1)/(u(1−
α)), and that Pn(B (γ)) ≥ 1− α.

Let θ∗m = (πm
1 , ..., πm

k , φm
1 , ..., φm

k ) ∈ Θn
B(γ) (the restricted set defined in (5) for the set

B(γ), γ ∈ Γ, taking P = Pn), m ∈ N , be a sequence such that if we denote by λm
i the

smallest eigenvalue of Σm
j (where φm

j = (µm
j ,Σm

j )), then there exists i ∈ {1, ..., k} such that
one of the following conditions is satisfied

(a) limm λm
i = 0.

(b) limm ‖φm
i ‖ = ∞ and lim infm λm

j > 0, j = 1, ..., d.
(c) limm πm

i = 0 and lim infm λm
j > 0, j = 1, ..., d.

Then limm PnLθ∗m/B(γ) = −∞ a.s. holds.

Thus if, for some θ′ ∈ Θn, the set Sθ′ is not compact then there would exist a sequence
{θm} ⊂ Sθ′ without accumulation points in Sθ′ . But, Lθ/B(γn) being continuous in θ, Sθ′

should be a closed subset of Θn, so the sequence should satisfy any of the conditions (a),
(b) or (c), leading to PnLη/B(γn) ≤ limm PnLθ∗m/B(γn) = −∞. •

4.1. Asymptotics
The proof of the consistency of our procedure is mainly based on an usual compactness
argument stated in Proposition 4.5 (see the proof in the Appendix). A chain of statements
related to this result and facts involving the behavior of the trimmed k-means (enumerated
in Proposition 6.2) allow to obtain the consistency. We want to emphasize the interest
of Proposition 4.5 for providing arguments such as those in Remark 4.3 for analyzing the
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robustness of the estimator. We stress the fact that uniqueness of the trimmed k-means for
the parent distribution is not required for our results (see Remark 4.7 in [5]). Notice also
that the argument developed in this proposition allows us to prove easily the existence of
θP for every absolutely continuous distribution or even the continuity with respect to the
convergence in distribution, leading to Corollary 4.7.

Proposition 4.5. Let θn = (πn
1 , ..., πn

k , φn
1 , ..., φn

k ) ∈ Θn, n ∈ IN , where φn
i = (µn

i ,Σn
i ).

Let us denote by λn
i the smallest eigenvalue of Σn

i and assume that there exists i ∈ {1, ..., k}
and a subsequence {jn}n which satisfy one of the following conditions

(a) limn λjn

i = 0.
(b) limn ‖φjn

i ‖ = ∞ and lim infn λjn

j > 0, j = 1, ..., d.
(c) limn πjn

i = 0 and lim infn λjn

j > 0, j = 1, ..., d.

If the random sample was generated from an absolutely continuous distribution, then
limn P jnLθjn/B(γjn ) = −∞ a.s.

Theorem 4.6 (Consistency). Let {Xn} be a random sample taken from P θ0 . If θ0 is
an inner point of Θγ0 , then limn θ̂n = θ0 a.s.

Corollary 4.7 (Qualitative Robustness). Assume that θ0 is an inner point of
Θγ0 . If {Qn} is a sequence of probability measures that converges in distribution to P θ0 ,
then limn θQn = θ0.

To obtain the asymptotic law of the estimator we resort to the Empirical Processes
Theory, as developed in van der Vaart and Wellner [22]. For this recall the parameterization
by Γ̃, indexing the sets E(η), η ∈ Γ̃, constituted by the union of k ellipsoids.

We can use arguments of the Empirical Process Theory for the family of functions

GΛ :=
{
mθ,η := IE(η) log (fθ) + IE(η)c log (P θ (E(η)c)) : (θ, η) ∈ Λ

}
, (6)

and their derivatives with respect to θ:

hθ,η := IE(η)

(
∂

∂θ
log (fθ)

)
+ IE(η)c

(
∂

∂θ
log (P θ (E(η)c))

)
,

where Λ is a suitable subset of Θ× Γ̃.
As noted in [4] the extension of the arg-max arguments of the Empirical Processes Theory

to this semi-parametric model (the η-parameter acts as a nuisance parameter in the model)
is an easy fact through the extensions of the results of Section 3.2.4 in [22] given by Theorem
5.2 and Lemma 5.3 in [4]. From these extended statements the results will arise from that
work after some algebra on Donsker classes based on the theory included in [22]. A sketch
of the proofs is available in Lemma 6.5 in the Appendix.

The estimators θ̂n were defined in (4) on the basis of general trimming sets Â. Thus we
can consider here the ones based on sets E(ηn) (possibly random).
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Theorem 4.8 (Asymptotic distribution). Let {Xn} be a random sample taken from
P θ0 and η∗ ∈ Γ̃. If θ0 is an inner point of ΘE(η∗) and {ηn}n is a sequence in Γ̃ such that

ηn → η∗ a.s. then the sequence
{

θ̂n

}
n

of estimators based on the sets E(ηn) satisfies

√
n
(
θ̂n − θ0

)
→w N

0,

(
∂

∂θ

∣∣∣∣
θ=θ0

P θ0hθ,η∗

)−1
 .

The asymptotic covariance matrix can also be expressed as(
P θ0

(
(hθ0,η∗) (hθ0,η∗)

T
))−1

.

We want to remark an important (and somehow surprising) fact already reported in [4]:

Corollary 4.9. Under the hypotheses in Theorem 4.8, the rate of convergence of θ̂n to
θ0 is n1/2 and does not depend on the rate of convergence of ηn to η∗.

The proof of Theorem 4.6 in [5] can easily be modified to cover the m-step estimator,
as described in Subsection 2.2.1. Once we have the consistency for the two steps estimator
we automatically have the consistency of the trimming sets involved in the next step and so
on up to those involved in the step m. Hence, we will have the a.s. consistency of the final
estimator as well as its asymptotic law, given in Theorem 4.8, but with η being the element
in Γ̃ whose components are the parameters which determine the (1−αm)-level curves of the
k normal laws involved in the mixture defined by θ0.

4.2. Measures of robustness
The influence function (IF) and the breakdown point (BP) are central concepts of Hampel’s
approach to robustness. However, as far as we know, the available proposals for robust
estimation in mixtures did not include this kind of analysis until Hennig’s work on the BP,
[11], and a general approach in Kharin [13].

The IF of the trimmed k-means method was obtained in [8], including a graphical analysis
showing its behavior for some variants of a mixture of normal univariate distributions. We
resort to a similar explanation that allows us to get some conclusions from the visualization
of the involved graphics.

In order to get the IF we will first assume that we have a fixed set E ≡ E(η), η ∈ Γ̃. In
this case, the IF of θ̂n, IF(x, θ̂n, θ0), can be obtained as the IF of a MLE, thus

IF(x, θ̂n, θ0) = −

(
P θ0

(
∂

∂θ

∣∣∣∣
θ=θ0

hθ,η

))−1

hθ0,η. (7)

If {η}n ⊂ Γ̃ and ηn → η ∈ Γ̃, from the continuity of the estimator with respect to η, it is
easy to see that the IF for the estimator θ̂n(ηn) coincides with that of θ̂n(η) for the points
that do not belong to the boundary of E (see the proof of Theorem B.1 in [8]). Therefore,
the IF for the two steps estimator based on the α-trimmed k-means will be the one given by
(7) with E(η) being the union of the k balls associated to the α-trimmed k-means of P θ0 .
On the other hand, for the m-step estimator, m > 1, the IF will be also (7) with E(η) being
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the union of the ellipsoids defined by the 1− αm level curves of the k normal laws involved
in the mixture determined by θ0.

The use of this last region, better adapted to the underlying mixture, is not important
if the parent distribution is symmetrical, but it becomes very useful in non-symmetrical
situations. This arises from the expressions in (8) and is made apparent in the graphs in
Figure 4. The lower row in Figure 4 shows an asymmetric case for the one-dimensional
mixture (N(−3, 1.5) + N(0, 1.5) + 2N(3, 1.5))/4. The graph on the left shows the IF when
the k-means are used and the one on the right when employing the ellipsoids. In the upper
row in Figure 4, we analyze the symmetric mixture (N(−5, 1) + N(0, 1) + N(5, 1))/3. Since
in this case there is no difference between both regions, to ease the understanding of the
figure, we show on the left the IF for the means and on the right the IF for the variances.
To avoid excessive noise in the images we excluded the IF for the weights of the component
distributions. In all graphs the black curves represent the corresponding density functions
augmented 40 times.

Fig. 4. IF’s for the means (blue, green and red) and the variances (cyan, yellow and magenta) of the
distributions making up a mixture of three normal distributions. The upper graphs correspond to the
two-steps estimator for the mixture (N(−5, 1) + N(0, 1) + N(5, 1))/3. The graph on the lower left
(resp. lower right) presents the IF for the two-step (resp. m-step) estimator for the one-dimensional
mixture (N(−3, 1.5)+N(0, 1.5)+2N(3, 1.5))/4. The black curves represent the corresponding density
functions augmented 40 times.

To get a more accurate idea of the IF, we include the expression of the components
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(in πi, for i = 1, ..., k − 1, and µi and Σi, for i = 1, ..., k) of hθ,η(x) as a function of
θ = (π1, ..., πk−1, µ1, ..., µk,Σ1, ...Σk)

(8)
∂

∂πi
Lθ/E(x) =

(
P θ(i/x)

πi
− P θ(k/x)

πk

)
IE(x) + P θ

[
P θ(i/x)

πi
− P θ(k/x)

πk

/
Ec

]
IEc(x)

∂

∂µi
Lθ/E(x) = Σ−1

i (x− µi)P θ(i/x) IE(x) + P θ

[
Σ−1

i (x− µi)P θ(i/x)/Ec
]
IEc(x),

∂

∂Σi
Lθ/E(x) =

1
2
(

Σ−1
i (x− µi)(x− µi)T Σ−1

i − Σ−1
i

)
P θ(i/x) IE(x)

+
1
2
P θ

[(
Σ−1

i (x− µi)(x− µi)T Σ−1
i − Σ−1

i

)
P θ(i/x)/Ec

]
IEc(x).

The study of the BP of the method is not as simple as that of the IF. Pathological conste-
llations of data may break down even the trimmed k-means procedure by the substitution of
only one point by another. However, more favorable configurations can exhibit a BP equal
to the trimming level, thus the BP of a procedure in this framework must be considered as
data dependent. In any case, the impartial restrictions link the estimations to the procedure
used to obtain the initial clustered region. Then, the BP of our, 2 or m-step, estimators for
the location parameters are very related to that of the trimmed k-means.

In Donoho and Huber’s replacement sample version, some data are replaced by unfor-
tunate data points and the optimistic upper bound min {(dαne+ 1)/n, mini=1,...,k ni/n},
where ni is the size of the i-th cluster, is realistic for the location parameters in most
well-clustered data sets (see [8]).

Alternatively, the BP may be analyzed under a general assumption of well-clustered data
in an idealized situation that permits comparisons between procedures under controlled
assumptions in a kind of ‘in vitro’ analysis. Hennig (Section 4 in [11]), introduces such
an ideal model and shows the bad behavior of several estimators for mixtures through an
addition r-components BP; which is defined as l/(n + l) when l is the minimum number of
points to be added to the sample to break down r parameters in the estimation.

Let k ≥ 2 and n1, ..., nk ∈ IN be fixed and such that n1 < . . . < nk. Let us consider k se-
quences of sets indexed by m ∈ IN : A1

m = {x1,m, ..., xn1,m}, A2
m = {x(n1+1),m, ..., xn2,m}, ...,

Ak
m = {x(nk−1+1),m, ..., xnk,m}, and let Xm = ∪iA

i
m.

Following the ideas in Section 4.1 in [11] we consider this sequence Xm as an ideal array
of well k-clustered data sets whenever there exists b < ∞ such that for every m ∈ IN ,

max
1≤i≤k

max{‖xj,m − xl,m‖ : xj,m, xl,m ∈ Ai
m} < b and (9)

lim
m→∞

min{‖xj,m − xl,m‖ : xj,m ∈ Ah
m, xl,m ∈ Ai

m; i 6= h} = ∞. (10)

Under this model the addition of r outliers assumes the existence of a sequence Ym =
{y1,m, ....yr,m} added to Xm to constitute new data sets Xm ∪ Ym verifying

lim
m→∞

min{‖yj,m − xl,m‖ : yj,m ∈ Ym, xl,m ∈ Xm} = ∞, and (11)

lim
m→∞

min{‖yj,m − yl,m‖ : yj,m, yl,m ∈ Ym, j 6= l} = ∞. (12)

The breakdown of an estimator En must be understood here in a relative fashion, relat-
ing the behavior of the estimator acting over Xm and over Xm ∪ Ym for large values of m.
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For estimators related to location (as the k-means) breakdown happens if for every rear-
rangement of the components of the estimator ‖En(Xm)−En(Xm∪Ym)‖ → ∞, as m →∞,
holds. For the estimator of the weights, the components breakdown would happen if the
minimum weight estimation under Xm converges to zero while under Xm ∪ Ym it remains
bounded away from zero, or vice-versa. For the covariance estimators, breakdown would
happen, if the smallest eigenvalue of the estimated matrix under Xm converges to zero while
under Xm ∪Ym it remains bounded away from zero, or vice-versa, but also if that is not the
case but one of the sequence of matrices is bounded while the other is unbounded.

Hennig handles this ideal model of data sets to show (Theorem 4.4 in [11]) that r < k
added outliers break down (in any case!) the estimation of r parameters through the ML
estimation, as well as through robustified versions like the t-mixture model of McLachlan
and Peel or the Fraley and Raftery proposal (also considered in [17]). In particular, the
addition of only one outlier breaks down the estimation of at least one parameter.

Note that this idealized model guarantees, in Hennig’s words, that if enough mixture
components are fitted, “eventually there exists a mixture component corresponding to each
group, all mixture components correspond to one of the groups and the maximum of the log-
likelihood can be obtained from the maxima considering the groups alone; that is, all groups
are fitted separately”. Therefore it is easy to show that the α-trimmed k-means do not
break down unless we add more than dαne outliers. The link constituted by the impartial
restrictions (3) and an argument similar to that arising from Lemmas 4.1 and 4.2 in [11]
(Proposition 4.5 plays here an analogous role) guarantee that our m-step procedure does
not break down, if we add r ≤ dαne outliers, if the number of points of every cluster Ai

m

is greater than dαne + d and they are in general position. Then every affine hyperplane
H ⊂ IRd contains, at most, d points of Ai

m and there is not possibility of degeneracy of some
component into a lower dimension. This leads to the following, even pessimistic, result on
the BP of our procedure assuring the lower bound dαne/(n + dαne) for the addition BP of
1-component in Hennig’s model.

Theorem 4.10. Let Xm,m ∈ IN, be an ideal array of data sets in IRd well clustered in
k ≥ 2 groups Ai

m, i = 1, ..., k, verifying (9) and (10), such that the points in every group Ai
m

are in general position and fulfill ni − ni−1 > dαne+ d, i = 1, ..., k where we take n0 = 0.
If r ≤ dαne, then the m-step estimator of the parameter θ ∈ Θ, determining the mixture

of k multivariate normal distributions, does not break down by the addition of r outliers
through a sequence Ym = {y1,m, ..., yr,m} verifying (11) and (12).

A nice complement of our previous analysis on the breakdown point of the trimmed
k-means and other clustering methods appears in Hennig [12].

5. Discussion

The connection between mixture and clustering modelings is often used to get a cluster
configuration from an estimation of the parameters in a mixture. Here we exploit such con-
nection just in the opposite way. Our estimation procedure starts with a clustering process
to estimate the parameters in the mixture. This point of view allows us to take advantage
of robust clustering methods to produce robust estimators in the MNMM estimation setup.

We assume the knowledge of the number of components in the mixture. In some sit-
uations this assumption can hinder the model, but it is realistic in many problems which
involve ‘a priori’ information of the existence of a determined number of groups in a physical
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sense (corresponding to say sex, species, kind of illness,...) although the information on the
classification of the data might have been lost or, simply, non-recorded. Moreover, in a nat-
ural way, our approach allows us to consider situations related to finding a fixed number of
main components in the mixtures considering the remaining ones (if any) as contamination.

The introduced procedure is based on making the estimation from a highly representative
subset of the data. The choice of such a set begins with a preliminary selection of a core
of the data through a clustering-based trimmed procedure. Subsequent improvements are
based on ML estimations over increasing sub-sets of representative data obtained in each step
by trimming according to the estimated model in the previous step. The additional tools for
the estimation process are the EM algorithm, for the involved computations, and impartial
restrictions on the parameters, which aid to avoid singularities and spurious solutions. These
data-driven restrictions require that the sub-populations which constitute the mixture must
be sufficiently represented in the initial trimmed sample.

The proposed method shows a good performance not only under symmetrical contami-
nation but also in the presence of concentration of outliers which often cause other proposals
to break down. The estimators obtained are asymptotically Gaussian with n1/2 convergence
rate and qualitatively robust. The analysis of the BP under Hennig’s idealized model shows
that the procedure greatly improves those of the available procedures for a fixed number of
components. The IF shows finite gross error sensitivity for the estimators. Also, as usually
happens for the methods involving data trimming, the IF is discontinuous in the boundary
of the region used to trim. The influence of non-trimmed points on the estimation of the
parameters of one distribution are modulated by their ‘a posteriori’ probability of arising
from that distribution.

The initial active data set can be selected through the trimmed k-means. In practice, even
with this simple method, through the improvement steps based on ML we shall often detect
adequate shape and location parameters for the groups as to try the final joint estimation
in a successful way. This choice is computationally feasible and can be modulated through
the initial trimming level to obtain our goal in well clustered data sets. Moreover most of
the asymptotic mathematical analysis of the estimators is valid for other more elaborated
clustering-based trimming procedures, as soon as they are consistent.

To conclude, we want to point out that the estimation in the mixture model inherits so
many difficulties as to make reliable no method when facing specifically designed unsuited
problems. Our proposal shows a nice behavior under the analyzed conditions, where other
methods show a poor one. Variations of the presented method, adapted to more involved
problems, can be also considered handling other initial robust clustering methods. We
think that the results obtained have been encouraging enough to merit the inclusion of our
methodology in the toolbox of applied statisticians for estimation of mixtures.
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6. Appendix

Proposition 6.1. Let Y = {gφ : φ ∈ Φ}. Let A ⊂ IRd be a non-empty open set and Ψ
be the function defined by Ψ(f) = fIA on the set 〈Y〉 of the linear combinations of elements
of Y. Then Ψ is a linear isomorphism of 〈Y〉 on the image space.

Proof.- Obviously Ψ is linear. To show that Ψ is an injective map, let φ1 6= φ2 and assume
that gφ1(x) = gφ2(x) for every x ∈ A. Then, if x ∈ A,

(x− µ1)
T Σ−1

1 (x− µ1)− (x− µ2)
T Σ−1

2 (x− µ2)) = 2 log

(
|Σ2|

1
2

|Σ1|
1
2

)
.

Since the expression on the left hand side can be expanded in a power series, it must
also be constant on IRd, thus (µ1,Σ1) = (µ2,Σ2) , and both distributions are the same. •

Proposition 6.2 contains some basic properties of the trimmed k-means useful to obtain
the results on consistency. They are taken (or are easily deduced) from [8]. In this propo-
sition we employ that, under our model, from the Glivenko-Cantelli theorem, the sequence
{Pn}n (a.s.) converges in distribution to P θ0 . Thus, (from Skorohod’s Representation
Theorem for the weak convergence) we can (and will) assume that {P θ0 , P 1, ...} are the
distributions of some random vectors {Y0, Y1, ...} such that Yn → Y0 ν-a.s.

Proposition 6.2. If P is absolutely continuous, then the sequence of trimmed k-means
and associated trimmed regions of the empirical measures Pn fulfills:

(a) limn ‖γn − γP ‖ = 0.
(b) limn IB(γn)(Yn) = IB(γP )(Y0), ν-a.s.
(c) limn Pn [B(γn)] = P [B(γP )] = 1− α.
(d) limn Pn

[
IB(γn) log fθP

]
= P

[
IB(γP ) log fθP

]
.

(e) limn PnLθP /B(γn) = PLθP /B(γP ).

Proof of Proposition 4.5.- Let φ ∈ Φ, denote M(φ) := sup{gφ(x) : x ∈ IRd},
and assume that (a) holds. By resorting to a subsequence argument and a relabeling, let
us assume that 1 ∈ I ⊂ {1, ..., k}, where limn λn

i = 0 if i ∈ I, lim infn λn
i > 0 if i /∈

I, and M (φn
1 ) = sup {M (φn

i ) : i ∈ I} , n ∈ IN.
Note that

K1 := sup
i/∈I

sup
n

M (φn
i ) < ∞. (13)
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Given r > 0, let Hr :=
{

x ∈ IRd : 〈x− µn
1 , vn〉2 ≤ r2

}
, where vn is the eigenvector

associated to λn
1 , and set rn := inf {r > 0 : Pn[Hr/B(γn)] > u/2} .

From the continuity of P , we obtain that limn Pn[Hrn/B(γn)] = u/2. Thus lim infn rn >
0 because, otherwise lim infn Pn[Hrn

/B(γn)] = 0 would hold. Let

Cn :=
{

x ∈ Hc
rn
∩ B(γn) : P θn(1/x) ≥ u

4

}
.

We have that,

u ≤ lim inf
n

1
Pn[B(γn)]

Pn

[
IB(γn)Pθn

(1/·)
]

≤ lim
n

Pn[Hrn
/B(γn)] + lim inf

n

1
Pn[B(γn)]

Pn

[
IB(γn)∩Hc

rn
Pθn

(1/·)
]

≤ u

2
+

u

4
+ lim inf

n
Pn[Cn/B(γn)],

and, as a consequence, lim infn Pn[Cn/B(γn)] ≥ u/4. From here and (c) in Proposition 6.2,

lim inf
n

Pn[Cn] ≥ u(1− α)/4 > 0. (14)

On the other hand, if i ∈ {2, ..., k} and x ∈ Cn, we have that

u

4
≤ P θn

(1/x) ≤
πn

1 gφn
1
(x)

πn
i gφn

i
(x)

.

Therefore, if x ∈ Cn,

sup
i=1,...,k

πn
i gφn

i
(x) ≤ 4

u
gφn

1
(x) ≤ 4

u
βn

1 , (15)

where βn
1 = supx/∈Hrn

gφn
1
(x). From here and (13), from an index onward, we have that

PnLθn/B(γn) ≤ Pn

[
IB(γn)∩Cc

n
log fθn

]
+ Pn [ICn log fθn ]

≤ Pn[B(γn) ∩ Cc
n] log [sup(K1,M(φn

1 ))] + Pn[Cn] log [k4βn
1 /u]

≤ log (k4/u) + log+(K1) + log
[
(βn

1 )Pn[Cn]
M(φn

1 )
]
,

which converges to −∞ due to (14), to βn
1 = (2πλn)−d/2 exp

(
−r2

n/(2λn)
)
) and to M(φn) ≤

(2πλn)−d/2.
Now, let us suppose that (b) or (c) hold. By repeating the subsequence argument and

the notation simplifications, we assume that for every i ∈ {1, ..., k}, lim infn λn
i > 0 and

limn ‖φn
i ‖ = ∞ or limn φn

i = φi ∈ Φ, and that limn ‖φn
1‖ = ∞, or limn πn

1 = 0.
Define Dn := {x ∈ B(γn) : P θn

[1/x] > u/2} . Then Pn[Dn/B(γn)] > u/2, and arguing as
in (14) and (15), we have that u(1− α)/2 ≤ lim infn Pn(Dn) and, if x ∈ Dn, that

fθn
(x) ≤ k2δn

1 gφn
1
(x)/u, (16)

and K2 := supn supi M(φn
i ) < ∞. Therefore:

PnLθn/B(γn) ≤ Pn

[
IB(γn)∩Dc

n
log fθn

]
+ Pn [IDn log fθn ]

≤ log+(K2) + log (k2/u) + Pn

[
IDn log(πn

1 gφn
1
)
]
,

which converges to −∞. The proof ends as in the previous case. •
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Lemma 6.3. If θ0 is an inner point of Θγ0 , then there exists N0 ∈ IN such that if n ≥ N0,
then θ0 ∈ Θn.

Proof.- The continuity of the map x :→ P θ0(i/x) and (b) in Proposition 6.2, give that

P θ0(i/Yn)IB(γn)(Yn) →a.s. P θP
(i/Y0)IB(γ0)(Y0). (17)

Now, taking into account that P θ0(i/·) ∈ [0, 1], we obtain that, for some δ > 0:

Pn

[
P θ0(i/·)IB(γn)

]
= ν

[
P θ0(i/Yn)IB(γn)(Yn)

]
→ ν

[
P θ0(i/Y0)IB(γ0)(Y0)

]
= P

[
P θ0(i/·)IB(γ0)

]
≥ (u + δ)P [B(γ0)] ,

and the proof ends by applying (c) in Proposition 6.2. •

Corollary 6.4 follows from Lemma 6.3 and (e) in Proposition 6.2, taking into account that
in Proposition 4.5 we can take the vectors θn as close as desired to the optimum parameters.

Corollary 6.4. If θ0 is an inner point of Θγ0 , then, from an index onward, the se-
quence {θ̂n}n belongs to a compact set contained in Θ.

Proof of Theorem 4.6: It is straightforward by resorting to standard techniques and
to the properties enumerated in Proposition 6.2. •

Proof of Theorem 4.8: After our consistency results, for the analysis of the asymp-
totic distribution, we can assume that the η-parameters belong to a compact subset K of
Γ̃, as well as that the θ-parameters fulfill the restrictions given by Θn and belong to the set
{θ : ‖θ − θ0‖ < δ} for some small enough δ > 0 and large enough n.

Now the proof parallels that given in [4] based on extended versions of the results in
Section 3.2.4 in [22] to this semiparametric framework. In our case, for mθ,η defined as in
(6) the components of ṁθ,η := hθ,η are those given in (8) with E(η) as E . The result is then
the consequence of Lemma 6.5 below, similar to Lemma 3.12 in [4]. From here, taking into
account Proposition 4.2 and some easy computations, obtaining the asymptotic distribution
given in the theorem as well as its different expressions is straightforward. •

Lemma 6.5. There exist δ > 0 and a compact neighborhood K of η∗ such that{
mθη −mθ0η − (θ − θ0)

T
ṁθ0η

‖θ − θ0‖
: ‖θ − θ0‖ ≤ δ, η ∈ K

}
(18)

is P -Donsker and

P
(
mθη −mθ0η − (θ − θ0)

T
ṁθ0η

)2

= o (‖θ − θ0‖)2 , (19)

uniformly in η ∈ K.

Proof.- Let δ small enough to assure that the parameters in Θδ := {θ ∈ Θ : ‖θ − θ0‖ ≤ δ}
do not lead to degeneration of the mixture, and let K be any compact neighborhood of
η∗. If we choose a compact ball, B0, in IRp containing all the ellipsoids composing the sets
E(η), η ∈ K, the continuity of mθ,η and ṁθ,η with respect to the argument and with respect
to the parameters guarantee that the functions in the family (18) are uniformly bounded by
a constant over the set B0. This implies the uniform L2-Frechet derivability (19).

The first statement is then consequence of a chain of arguments beginning with:
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- The class Mδ of density functions of mixtures of normal distributions with parameters
in Vδ fulfills the uniform entropy condition (see Section 2.5.1 in [22]).

The class of functions given by

I :=
{

log
(
(2π)−

p
2 (det (Σ))−

1
2

)
− 1

2
(x− µ)′ Σ−1 (x− µ) : µ ∈ IRp, Σ ∈M+

p×p

}
defines a linear space of finite dimension, thus it is a V C-class of functions (see Lemma
2.6.15 in [22]). The density functions of normal distributions are obtained by composing a
function in the class I with the exponential function, exp (I) , hence it is also a VC-class of
functions (see Lemma 2.6.18 in [22]). Now, we can assure that the finite mixtures of normal
distributions are a VC-hull class, and from Corollary 2.6.12 and the previous arguments in
[22], a such class fulfills the uniform entropy condition.

- The class of functions log(Mδ)IB0 := {log(f)IB0 : f ∈ Mδ} fulfills the uniform entropy
condition.

The class of functions Mδ fulfills the condition, so we can apply Theorem 2.10.20 in [22] to
assure that the transformed class log (Mδ) IB0 also fulfills that condition. We only need to
show that there exists a constant, A, such that

(log (f (x)) IB0 (x)− log (g (x)) IB0 (x))2 ≤ A2 (f (x)− g (x))2 , x ∈ IRp, f, g ∈Mδ,

but this is an easy consequence of the mean value theorem and the fact that we can obtain
two constants 0 < c < C such that c < f(x) < C, for all f ∈Mδ and x ∈ B0.

- The class of indicator functions of unions of k ellipsoids and the class of indicator functions
of complementary of unions of k ellipsoids fulfill the condition of uniform entropy

- inf {P θ (E(η)c) : θ ∈ Θδ and η ∈ K} > 0.

- The family
{
IE(η) log (fθ) + IE(η)c log (P θ (E(η)c)) : (θ, γ) ∈ Θδ ×K

}
fulfills the uniform

entropy condition.

Theorem 2.10.20 in [22] leads to this statement, because this class of functions is constituted
by sums of functions verifying the uniform entropy condition.

- The class of the functions IE(η) (x) ∂
∂θ log (fθ (x)) + IE(η)c (x) ∂

∂θ log (P θ (E(η)c)), where
θ ∈ Θδ and η ∈ K} is a Donsker class.

This statement can be proved by a chain of arguments similar to the above, beginning
with the fact that the class of functions {IB0 (x) ∂

∂θ log (fθ (x)) : θ ∈ Θδ} is a Donsker
class of functions. But this follows from the fact that the components of these functions
are products of P θ(i/x)IB0 with functions of the types 1

πi
,Σ−1

i (x− µi) and − 1
2Σ−1

i +
1
2Σ−1

i (x− µi) (x− µi)
′ Σ−1

i . •


