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Abstract 
Neural oscillations often occur as transient bursts with variable amplitude and frequency 

dynamics. Quantifying these effects is important for understanding brain-behaviour 

relationships, especially in continuous datasets. To robustly measure bursts, rhythmical periods 

of oscillatory activity must be separated from arrhythmical background 1/f activity, which is 

ubiquitous in electrophysiological recordings. The Better OSCillation (BOSC) framework 

achieves this by defining a power threshold above the estimated background 1/f activity, 

combined with a duration threshold. Here we introduce a modification to this approach called 

fBOSC which uses a spectral parametrisation tool to accurately model background 1/f activity 

in neural data. fBOSC (which is openly available as a MATLAB toolbox) is robust to power 

spectra with oscillatory peaks and can also model non-linear spectra. Through a series of 

simulations, we show that fBOSC more accurately models the 1/f power spectrum compared 

with existing methods. fBOSC was especially beneficial where power spectra contained a 

“knee” below ~0.5-10 Hz, which is typical in neural data. We also found that, unlike other 

methods, fBOSC was unaffected by oscillatory peaks in the neural power spectrum. Moreover, 

by robustly modelling background 1/f activity, the sensitivity for detecting oscillatory bursts 

was standardised across frequencies (e.g. theta- and alpha-bands). Finally, using openly 

available resting state magnetoencephalography and intracranial electrophysiology datasets, 

we demonstrate the application of fBOSC for oscillatory burst detection in the theta-band. 

These simulations and empirical analyses highlight the value of fBOSC in detecting oscillatory 

bursts, including in datasets that are long and continuous with no distinct experimental trials. 

 

 
Keywords  
1/f, burst detection, neurophysiology, oscillations, signal processing, theta   
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Graphical abstract 

 
To determine a power threshold for burst detection, the Better OSCillation framework (BOSC) 
estimates background 1/f activity by modelling neural power spectra. Here we introduce a 
modification, termed fBOSC, to more robustly estimate 1/f activity in situations with 
prominent oscillatory peaks and/or the presence of a non-linear “knee” in the power spectrum. 
This was shown to standardise burst detection across frequency bands in both simulated and 
empirical data. 
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1. INTRODUCTION 
Rhythmical signals are present in many different types of neural data, from single neuron 

measurements to non-invasive magnetoencephalography (MEG) or electroencephalography 

(EEG) recordings of large-scale population dynamics (Başar et al., 2000; Buzsaki, 2006). 

Changes in the amplitude of these neural oscillations are linked to a range of cognitive tasks 

within specific frequency bands. For example, motor tasks are associated with dynamic beta-

band (13-30 Hz) changes (Barratt et al., 2018; Neuper & Pfurtscheller, 2001), and higher-level 

executive functions (e.g. working memory, memory encoding) are associated with theta-band 

(3-7 Hz) changes (Costers et al., 2020; Herweg et al., 2020; Roux & Uhlhaas, 2014). From a 

theoretical perspective, oscillations have been argued to play a mechanistic role in the dynamic 

temporal and spatial organisation of neural activity (Bastos et al., 2015; Buzsaki, 2006; Fries, 

2015). Furthermore, perturbations to oscillations are associated with several clinical 

conditions, including Autism spectrum disorder (Kessler et al., 2016; Seymour et al., 2019), 

schizophrenia (Kirihara et al., 2012; Thuné et al., 2016) and mild traumatic brain injury (Allen 

et al., 2021).  

 

Electrophysiological analyses typically average oscillatory power across trials. However, 

oscillations within single trials are often high-amplitude and transient, occurring as short 

“bursts” of activity (Jones, 2016; Jones et al., 2009; Stokes & Spaak, 2016). The characteristics 

of this bursting behaviour often go unstudied, meaning that potentially important information 

in neural datasets is missed. Single trial burst analyses allow the separation of rhythmical burst 

amplitude from duration (Kosciessa et al., 2020; Quinn et al., 2019). Furthermore, 

characterising oscillations as bursts rather than sustained rhythmical signals is more 

physiologically faithful, which has implications for brain-behaviour relationships (Stokes & 

Spaak, 2016). For example, within the motor literature, it has recently been demonstrated that 

the rate and timing of beta bursts in humans is more predictive of behaviour than mean beta 

amplitude (Bonaiuto et al., 2021; Jana et al., 2020). Consequently, there is increasing interest 

in characterising the bursting properties of neural oscillations (Bonaiuto et al., 2021; Jones, 

2016; Kosciessa et al., 2020; Stokes & Spaak, 2016). This will be particularly important for 

continuous datasets which cannot be split into distinct trials, such as naturalistic paradigms 

involving free movement (Seymour et al., 2021; Stangl et al., 2021).  
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Rhythmical bursts occur in the context of a continuous arrhythmic, fractal-like background 

component in neural data (He, 2014; He et al., 2010; Miller et al., 2009). The power spectral 

density of this component decreases logarithmically with frequency, such that P ≈ 1/fβ, where 

β is the power-law exponent (Chaudhuri et al., 2017; Miller et al., 2009). β typically varies 

between 1 and 3 in human electrophysiological data (He, 2014; He, 2010; Miller et al., 2009). 

Here we refer to this activity as “(background) 1/f activity”, but others call it “scale-free” (He 

et al., 2010) or “aperiodic” (Donoghue, et al., 2020b). This type of activity is ubiquitous across 

a wide range of systems, from empty-room EEG and MEG recordings to economic data (He et 

al., 2010). In the context of brain dynamics, neural 1/f activity is not simply a summation of 

multiple oscillations, but potentially reflects the population firing rate (Manning et al., 2009; 

Miller, 2010), and also relates to the balance between excitatory and inhibitory neural circuits 

(Gao et al., 2017). Dynamic changes to background 1/f activity have also been associated with 

various aspects of cognitive function independently of oscillations (Gao et al., 2020; Helfrich 

et al., 2021; Lendner et al., 2020; Wilson et al., 2022). Given their different neural origins, it 

is vital to robustly separate background 1/f activity from oscillations (Donoghue et al., 2020a; 

Donoghue et al., 2020b; Gerster et al., 2021; He, 2014). This presents a challenge from a data 

analysis perspective, given that electrophysiological tools concurrently measure both rhythmic 

and arrhythmical signals (Donoghue et al., 2021). 

 

There are several burst detection methods that aim to solve this problem, but here we focus on 

the Better OSCillation (BOSC) framework (Hughes et al., 2012; Whitten et al., 2011) which 

works as follows: for each frequency of interest, a power threshold is defined based on the 

modelled background 1/f spectrum. In addition, a duration threshold is defined, typically 

equivalent to 2-3 oscillatory cycles. An oscillatory burst is said to be detected when both the 

power and duration thresholds are exceeded. BOSC has been applied successfully to a range 

of electrophysiological datasets in humans and rodents (Caplan et al., 2001; Hughes et al., 

2012; Stangl et al., 2021; Whitten et al., 2011). 

 

Here, we introduce a modification to the BOSC method by modelling the background 1/f 

activity with a recently developed spectral parametrisation tool (Donoghue et al., 2020b). 

Using simulated data, we show that our tool, called fBOSC, recovers 1/f signals with greater 

accuracy than existing methods, especially in situations with non-linear power spectra. 

Simulations also show that by modelling the 1/f spectrum more accurately, fBOSC standardises 
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burst detection across frequency bands. Finally, we demonstrate the empirical utility of fBOSC 

using openly available MEG and intracranial EEG (iEEG) datasets. 

 

2. MATERIALS AND METHODS 
2.1 The BOSC framework and different approaches to 1/f fitting 

The BOSC framework determines the frequency and duration of transient oscillatory bursts 

above and beyond the background 1/f power spectrum present in neurophysiological data 

(Hughes et al., 2012; Whitten et al., 2011). The first step involves a time-frequency 

decomposition of each experimental trial, typically using Morlet wavelets to control time-

frequency trade-offs. The logarithmically transformed power spectrum, averaged over trials, is 

then used to fit the background 1/f activity over all frequencies of interest (e.g. 2-64 Hz). A 

power threshold based on this 1/f fit is then calculated, for example, at the 95th percentile of 

the theoretical probability distribution (with chi-squared form) of power values at a given 

frequency. A duration threshold is also defined, typically equivalent to 2 or 3 oscillatory cycles. 

For each trial, if a time-frequency value exceeds the power threshold and lasts longer than the 

duration threshold, an oscillation is said to be detected.  

 

A key part of the BOSC framework is the accurate modelling of 1/f background activity, as it 

is used to directly define the power threshold. The original BOSC implementation (Hughes et 

al., 2012; Whitten et al., 2011) uses ordinary least squares regression to fit the power spectrum 

in log-log space (Figure 1, left). However, when a prominent peak(s) exists in the power 

spectrum, this approach can lead to a skewed 1/f fit. For example, Whitten et al., (2011) noted 

that performing the background fit on data with a large alpha-band peak (where eyes were 

closed) led to different results compared to data with a relatively flat spectrum (when eyes were 

open). To address this, an extended BOSC (eBOSC) implementation (Kosciessa et al., 2020) 

was introduced using MATLAB’s robustfit function to down-weight outliers. In addition, 

eBOSC allows the user to exclude certain peak frequencies during the 1/f fit (see Figure 1, 

middle).  

 

However, two issues remain. First, where oscillatory peaks exist in the power spectrum, the 

eBOSC approach requires manual specification of peak frequencies, which is not ideal for data 

automation and processing pipelines. Furthermore, exclusion of multiple frequencies in the 

power spectrum may lead to a poor 1/f fit. Second, where power spectra are non-linear when 
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plotted in log-log space, the linear methods used by BOSC and eBOSC will be unsuitable. This 

is especially problematic during the analysis of lower frequency oscillatory bursts (e.g. delta- 

and theta-bands), as human neurophysiological data often exhibits a bend or “knee” at ~0.5-10 

Hz (He, 2014; He et al., 2010). Furthermore, there is emerging evidence that the broadband 

power spectrum of humans is highly non-linear, and is best modelled by the sum of two 

Lorentzian functions (Chaudhuri et al., 2017; Gao et al., 2017). 

 

To address these issues, we introduce a modification to the 1/f fitting procedure under the 

BOSC framework, using the “fitting oscillations and one over f” (FOOOF) spectral 

parametrisation algorithm (Donoghue et al., 2020b). We call this modification fBOSC 

(FOOOF+BOSC, see Figure 1 right). In short, the FOOOF algorithm performs an initial 1/f fit 

and iteratively models oscillatory peaks above this background as gaussians. These peaks are 

removed from the spectra and the 1/f fit is performed again. Consequently, the fit is not 

influenced by oscillatory peaks (Donoghue et al., 2020b; Wilson et al., 2022), and no manual 

selection of peak frequencies is required, as is the case for eBOSC. FOOOF can also model the 

1/f power spectrum as either linear or non-linear. In the case of latter, a variable knee parameter 

is included. This addresses the second issue with the BOSC/eBOSC fitting approaches.  

 

An additional advantage of FOOOF is that the 1/f fit returns several parameters describing the 

shape of the spectrum over frequencies of interest (f). First, the offset parameter (b) which 

corresponds to the overall up/down translation of the whole spectrum. Second, the exponent 

(β) describes the rate of decay over frequency (Chaudhuri et al., 2017; Miller et al., 2009). The 

third optional parameter, k, describes the knee in the power spectrum. These parameters are 

estimated by the fit of the function (L) to the background 1/f activity, expressed as: 

 

𝐿(𝑓) = 𝑏 − log	(𝑘 + 𝑓!) 
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FIGURE 1 Different methods for modelling the background 1/f power spectrum within the 
BOSC framework. The original BOSC implementation uses an ordinary least squares 
approach. The eBOSC toolbox uses MATLAB’s robustfit function, whilst also allowing the 
user to exclude peaks. fBOSC uses the FOOOF algorithm to parametrise the neural spectra. In 
this example, a non-linear 1/f frequency spectrum with a prominent knee is plotted in log-log 
space. Unlike fBOSC, the 1/f fits from BOSC and eBOSC (red dotted line) fail to model this 
non-linear spectrum. Power thresholds (plotted in green) are therefore higher for frequencies 
below the knee when using BOSC and eBOSC compared to fBOSC. 
 

2.2 Code availability 

We share the MATLAB code for fBOSC openly at https://github.com/neurofractal/fBOSC. 

The code is built on top of the original BOSC (Caplan et al., 2001) and eBOSC (Kosciessa et 

al., 2020) code and is shared under a GNU General Public License v3.0. fBOSC is also 

compatible with the post-processing options included with eBOSC. For all results presented 

here we used v0.1 of fBOSC and the original Python implementation of FOOOF (Donoghue 

et al., 2020b). However a MATLAB version of the same algorithm has also been implemented 

within fBOSC, adapted from Brainstorm (Tadel et al., 2011). 

 

2.3 Simulations 

Various simulations were performed to assess the performance of BOSC, eBOSC and fBOSC. 

We generated two types of data to mimic background, aperiodic neural activity with either 

linear or non-linear 1/f slopes when plotted in log-log space. Data with linear 1/f power spectra 

were generated by filtering randomly generated white noise signals (β exponent = 2) using the 

cnoise MATLAB toobox (https://people.sc.fsu.edu/~jburkardt/m_src/cnoise/cnoise.html). 

Data with non-linear 1/f power spectra were generated by convolving Poisson activity with 

BOSC
1/f fit using ordinary least 

squares regression

eBOSC
1/f fit using robustfit + exclusion 

of peaks

fBOSC
1/f fit using FOOOF algorithm

1/f fit ThresholdFrequency   
x Power



 

9 
 

exponential kernels that mimic the shape of post-synaptic potentials, using the Python neurodsp 

toolbox (sim_synaptic_current function; Cole et al., 2019). These neurophysiologically 

plausible data had a prominent knee in the power spectrum when plotted in log-log space. For 

both linear and non-linear simulations, two hundred trials, each lasting 20 s, were computed at 

500 Hz sampling rate. 

 

Sine waves at 4 Hz or 10 Hz were then added to simulate oscillatory bursts in the theta-band 

alone or the alpha-band alone. These lasted 6 s and were placed within the centre of the trial. 

We also simulated data with oscillatory bursts at both theta and alpha frequencies by 

concatenating 20 s-long trials together (i.e. creating 40 s-long trials, with theta bursts in the 

first 20 s and alpha bursts in the last 20 s). The amplitudes of the sine waves were equivalently 

scaled to specific signal-to-noise ratios (SNRs) based on the relative amplitude of band-pass 

filtered data (1 Hz bandwidth) at 4 Hz or 10 Hz. Therefore, SNR in the context of our study 

refers to the relative measure between background 1/f power and rhythmical power at 4 Hz or 

10 Hz, rather than the overall SNR across all frequencies (Kosciessa et al., 2020). 

 

For BOSC, eBOSC and fBOSC analyses, we used frequency sampling at logarithmically-

spaced frequencies (log base 2) between 2 to 64 Hz. Time-frequency analysis was conducted 

using Morlet wavelets (6-cycles). This was performed on the simulated data before and after 

the oscillatory bursts were added. The mean power spectrum over all trials was then used for 

the 1/f fit in BOSC, eBOSC and fBOSC. For eBOSC, frequencies between 3-7 Hz (theta) and 

7-13 Hz (alpha) were excluded from the 1/f fit. For fBOSC, the aperiodic mode was modelled 

with a knee for the non-linear 1/f data, and without a knee (fixed) for the linear 1/f data. For 

each trial, the 1/f fit from all three methods was compared with the power spectrum of the 

original 1/f data using the root mean squared error (RMSE) metric. 

 

In a separate analysis, using BOSC, eBOSC and fBOSC, we used the 1/f fitting procedures to 

define a power threshold (0.99, chi-squared distribution), combined with a duration threshold 

(3 oscillatory cycles) to detect oscillatory bursts. For each trial, the hit rate (time points where 

a burst was simulated and detected) and the false alarm rate (time points where a burst was not 

simulated but detected) was quantified for the theta- and alpha-bands. 
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2.4 Resting state MEG data analysis 

We compared burst detection between BOSC, eBOSC and fBOSC using an openly available 

MEG dataset from the Young Adult Human Connectome Project (HCP; Larson-Prior et al., 

2013). Resting state data from the first 50 participants were used (26 female, 24 male; 

participant numbers 100307 to 214524; first run only) which had been pre-processed using a 

standardised HCP MEG Pipeline (see: https://www.humanconnectome.org/software/hcp-meg-

pipelines). The resting state scan involved participants looking at a screen and fixating on a red 

cross for 6 minutes. Sensor-level data were mapped to source space using a linearly constrained 

minimum variance beamformer (Van Veen et al., 1997), as implemented in the Fieldtrip 

toolbox (Oostenveld et al., 2011). For the forward model, a participant’s T1-weighted structural 

MRI scan was used to create a single-shell description of the inner surface of the skull (Nolte, 

2003). Using SPM12, a non-linear spatial normalisation procedure was used to construct a 

volumetric grid (8 mm resolution) registered to the canonical Montreal Neurological Institute 

brain. The source-localised data were then parcellated into 42 cortical regions of interest (ROIs) 

based on a down-sampled version of the whole brain HCP multimodal atlas (Glasser et al., 

2016). In addition, an ROI in each hippocampus was included (Tian et al., 2020). For burst 

detection, the power threshold for rhythmicity at each frequency was set at the 95th percentile 

of a chi-squared distribution of power values, in combination with a duration threshold of 3 

oscillatory cycles.  

 

2.5 Resting state iEEG data analysis  

We also analysed an openly available resting state iEEG dataset, originally published by Miller 

et al. (2012, 2017). The data were collected from 10 patients (aged 18-42) with implanted 

electrocorticographic grids for the monitoring and treatment of medically-refractory epilepsy. 

A total of 533 electrodes were analysed across the 10 patients, which were mainly located 

across bilateral frontal and frontotemporal areas. Patients were instructed to fixate on an ‘X’ 

which was located on a wall 3 m away, for a duration of 2-3 minutes. Data were sampled at a 

rate of 1000 Hz. Raw iEEG timeseries were loaded into MATLAB, down-sampled to 200 Hz, 

notch filtered at 60 Hz, followed by a high-pass filter at 0.5 Hz and low-pass filter at 90 Hz 

(5th order Butterworth filters applied bidirectionally to achieve zero-phase shift). All patients 

participated in a purely voluntary manner, after providing informed written consent, under 

experimental protocols approved by the Institutional Review Board (IRB) of the University of 
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Washington (#12193). All patient data were anonymised according to IRB protocol, in 

accordance with HIPAA mandate. 

 

2.6 Statistical analysis 

Statistical analyses were conducted using the JASP software package (Love et al., 2019). One-

way ANOVAs were used to compare RMSE, hit rate, false alarm rate and theta abundance 

across the three methods BOSC, eBOSC and fBOSC. Post-hoc tests were then conducted with 

Bonferroni correction. For the knee versus fixed analysis, a paired two-tailed t-test was used. 

 

3. RESULTS 
3.1 fBOSC reduces 1/f fit error 

To compare our fBOSC method, which combines FOOOF spectral parametrisation with the 

BOSC framework, to existing methods (BOSC and eBOSC, see Figure 1) we performed a 

series of simulations. Data with a linear or non-linear background 1/f power spectrum were 

combined with simulated oscillatory bursts in the theta-band (4 Hz), the alpha-band (10 Hz), 

or both bands, at SNR = 5. The RMSE between the simulated 1/f power spectrum (with known 

ground truth) and the 1/f fit using BOSC, eBOSC and fBOSC was calculated. Note that lower 

RMSE values indicate better performance. 

 

Results for the simulated data with a linear 1/f power spectrum are shown in Figure 2, top 

panel. Across all three simulated oscillatory burst conditions (theta alone, alpha alone, theta 

and alpha) there was a main effect of method, F(2,597) > 4.71, p < 0.009. Follow-up tests 

showed that fBOSC outperformed the other two methods, with significantly lower RMSE 

values across all bursting conditions, all p < 0.001. eBOSC had lower RMSE values than 

BOSC, p < 0.001, suggesting that the use of robustfit and exclusion of oscillatory peaks 

somewhat improves 1/f fitting (Kosciessa et al., 2020), but not to the level achieved by fBOSC.  

 

Simulation results for data with a non-linear 1/f power spectrum are shown in Figure 2, bottom 

panel. Again, across the different burst conditions (theta alone, alpha alone, theta and alpha) 

there was a main effect of method, F(2,597) > 263.5, p < 0.001. Follow-up tests showed fBOSC 

had significantly lower RMSE values compared with the other two methods, all p < 0.001. 

RMSE values were especially large for eBOSC when theta frequencies were excluded from 

the 1/f fit (bottom panel, left and right). By excluding frequencies, the eBOSC 1/f fitting 
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procedure assumes that the angle of the linear slope between 7-40 Hz extends below 7 Hz, 

when in fact there is a non-linear knee (also see Figure 1 middle panel). Consequently, eBOSC 

had higher RMSE values than fBOSC and BOSC for the simulated data with embedded theta 

bursts or a combination of theta and alpha bursts, p < 0.001. Similar results were obtained for 

simulations with very high SNR bursts (SNR = 24, see Supporting Figure S1). 

 

 
FIGURE 2 Simulations were performed using data with either a linear or non-linear 
background 1/f power spectrum. These data were then combined with simulated bursts in the 
theta-band alone (4 Hz), alpha-band alone (10 Hz), or both the theta and alpha-bands (4 Hz and 
10 Hz). The SNR of the bursts was set at 5. For each set of simulations, the root mean squared 
error (RMSE) between the estimated and actual 1/f fit was plotted for BOSC, eBOSC and 
fBOSC. Individual data points correspond to RMSE values from each simulated trial. 
 

To assess how the three methods dealt with the presence of oscillatory peaks in the power 

spectrum, we repeated the simulation analyses using data with a 1/f non-linear background 

spectrum and oscillatory bursts in the theta- and alpha-bands. The SNR of the embedded bursts 

was increased from 0-24 in steps of 2, which had the effect of introducing increasingly large 

oscillatory peaks into the power spectrum. The RMSE between the simulated non-linear 1/f 

power spectrum and the fit from BOSC, eBOSC and fBOSC is plotted in Figure 3. eBOSC had 

the highest overall RMSE values, due to the exclusion of frequencies below 7 Hz when 

modelling the power spectrum. RMSE values also slightly increased as a function of SNR. 

BOSC had lower RMSE values than eBOSC, however these increased sharply as a function of 

SNR. This replicates a well-known issue with the BOSC background 1/f fitting approach 

(Kosciessa et al., 2020; Whitten et al., 2011). The RMSE error over trials was lowest for 

αθ α + θ

Linear 
1/f

Non-
linear 1/f
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fBOSC, with a negligible increase as a function of oscillatory burst SNR. Overall, these 

simulations demonstrate that the 1/f fit from fBOSC is more accurate than the other two 

methods, including when the spectrum is non-linear and/or contains large oscillatory peaks. 

 

 
FIGURE 3 Simulations using data with a non-linear 1/f power spectrum and embedded theta 
and alpha bursts. The signal-to-noise ratio (SNR) of the bursts was increased from 0-24, in 
steps of 2. The root mean squared error (RMSE) between the estimated and actual 1/f fit was 
plotted for BOSC, eBOSC and fBOSC for each of the SNRs. 
 

3.2 fBOSC standardises burst detection across frequencies 

Inaccuracies during the 1/f fit led to inappropriate power thresholds for burst detection (see 

Figure 1, green line). In the case of non-linear power spectra, BOSC and eBOSC fail to model 

the knee, resulting in differing sensitives to oscillatory burst detection based on whether the 

frequency of the burst is above or below the knee, assuming a fixed power threshold is used. 

To demonstrate this empirically, we performed simulations with a non-linear 1/f background 

power spectrum, with embedded 6 second oscillatory bursts in theta-band (4 Hz) or alpha-band 

(10 Hz). The SNR of the bursts were equivalently scaled according to background 1/f activity 

at 4 Hz or 10 Hz. The hit rate and false alarm rates for theta/alpha burst detection were then 

compared between BOSC, eBOSC and fBOSC. As shown in Figure 4A, the hit rate for burst 

detection in the alpha-band was higher than the theta-band when using BOSC and eBOSC. 

However, for fBOSC, the hit rate was constant across theta and alpha (Figure 4A). Formal 
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comparison of the difference between hit ratealpha and hit ratetheta showed that there was an effect 

of method F(2,597) = 129.4, p < 0.001, with fBOSC having significantly lower values than 

BOSC and eBOSC, p < 0.001. Unlike BOSC and eBOSC the hit rate difference for fBOSC 

was close to 0 (Figure 4B), indicating no disparity between frequency bands.  

 

False alarm rates were higher for alpha bursts than for theta bursts when using BOSC and 

eBOSC, but not for fBOSC (Figure 4C). Again, we subtracted false alarm ratealpha from false 

alarm ratetheta and compared the methods (Figure 4D). There was an effect of method F(2,597) 

= 174.0, p < 0.001, with fBOSC having lower values than the BOSC and eBOSC, p < 0.001. 

The difference in false alarm rate between alpha and theta bursts for fBOSC was close to 0 

(Figure 4D). Similar false alarm results were obtained for simulations with very high amplitude 

bursts (SNR = 24, see Supporting Figure S2). Overall, our results show that when analysing 

data with a non-linear 1/f spectrum, fBOSC standardises the sensitivity for detecting oscillatory 

bursts across frequencies, in terms of hit rate and false alarm rate. 

 

 
FIGURE 4 Simulations were performed using data with a non-linear 1/f power spectrum and 
embedded theta or alpha bursts (SNR = 5). BOSC, eBOSC and fBOSC were used to detect 
these oscillatory bursts. The (A) hit rate and (C) false alarm rate of theta and alpha burst 
detection are plotted for all three methods. The difference in (B) hit rate and (D) false alarm 
rate between theta and alpha burst detection is also plotted, with an additional dotted line at 0. 
Across all plots, individual data points correspond to each simulated trial. 
 

A

C D
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3.3 Modelling 1/f activity: fixed versus knee parameter 

The simulation analyses showed that fBOSC outperformed BOSC and eBOSC particularly in 

situations where the 1/f power-spectrum was non-linear. In real electrophysiological data, this 

non-linearity typically presents itself as a knee in the power spectrum from ~0.5-10 Hz (Gao 

et al., 2017; He, 2014; He et al., 2010). To demonstrate how modelling the knee reduces 1/f 

modelling errors in real data, we analysed MEG and iEEG resting state electrophysiological 

datasets (Larson-Prior et al., 2013; Miller et al., 2012; see Materials and Methods). The power 

spectrum from each ROI/electrode was computed using Welch’s method. Example power 

spectra are plotted from one MEG participant and one iEEG patient (Figure 5, top panels). Note 

the non-linear nature of the spectrum when plotted in log-log space, with a prominent knee 

below ~8 Hz. Across all MEG participants and iEEG patients the spectra were parametrised 

using the “fixed” option of the FOOOF algorithm (Donoghue et al., 2020b) which assumes a 

linear 1/f, or the “knee” option which assumes a non-linear 1/f. We specified a frequency range 

of 1-40 Hz, overlapping with the frequency of delta, theta, alpha and beta oscillations. The 

error between the modelled 1/f spectrum and the actual power spectrum was then calculated. 

As shown in Figure 5, bottom panel, for both MEG and iEEG datasets the error was lower 

when modelling the power spectrum as non-linear (with a knee) versus linear (fixed), p < 0.001. 

This demonstrates how non-linear 1/f power spectra are common in human 

electrophysiological data. We expect our fBOSC method to be particularly useful in these 

situations, and especially when analysing oscillatory bursts below the knee frequency (~0.5-10 

Hz). 
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FIGURE 5 Neural power spectra are often non-linear. The top panels show power spectra 
plotted on a log scale from one example MEG dataset and one iEEG dataset. Individual lines 
correspond to ROIs (MEG) or electrodes (iEEG). Note the prominent knee in the power 
spectrum below ~8 Hz. The bottom panel shows the error when modelling the 1/f power 
spectrum as linear (fixed) or non-linear (can contain a knee parameter), using FOOOF 
(Donoghue et al., 2020b). Individual data points correspond to ROIs across participants (MEG) 
or electrodes across patients (iEEG). 
 

3.4 fBOSC and theta-band burst detection 

Next, we used BOSC, eBOSC and fBOSC to detect oscillatory bursts in the same MEG and 

iEEG datasets with the aim of quantifying differences in burst detection between the methods. 

We focussed on theta-band (3-7 Hz) bursts where errors in the 1/f fit will be highest for non-

linear power spectra when using BOSC or eBOSC (Figure 1). Quantifying the bursting 

properties of theta rhythms is of particular interest for the study of working memory (Lisman, 

2010), autobiographical memory retrieval (Barry et al., 2019) and spatial navigation in humans 

(Stangl et al., 2021).  

 

For the MEG dataset (Larson-Prior et al., 2013), across 50 participants and 44 ROIs, we 

quantified theta burst “abundance”, defined as the duration of the theta rhythmic episode 

relative to the length of the analysed data segment. This is crucial metric in burst analysis as it 

helps separate rhythmic duration from power (Kosciessa et al., 2020). Across participants the 

highest theta abundance values were in bilateral frontal regions (Figure 6, left panel), 

Resting State MEG Data

p < 0.001, 
Cohen’s d = 0.272

Resting State iEEG Data

p < 0.001, 
Cohen’s d = 0.473
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overlapping with theta power localisations in resting state MEG data (Markello et al., 2022). 

Focussing on the ROI with the highest theta abundance (right dorsolateral frontal cortex), we 

statistically compared abundance values as quantified using BOSC, eBOSC and fBOSC 

(Figure 6, right panel). There was a main effect of method, F(2,147) = 8.492, p < 0.001, with 

follow-up tests showing that fBOSC produced higher theta abundance values than the other 

two methods, p < 0.013. This result is unsurprising, given that the 1/f fit will be lower at theta 

frequencies for fBOSC than for BOSC and eBOSC, accurately reflecting the knee in the power 

spectrum (Donoghue et al., 2020b; He, 2014; He et al., 2010).  

 

 
FIGURE 6 Using resting state MEG data, theta (3-7 Hz) burst abundance was quantified as 
the duration of rhythmic episodes relative to the length of the recording. The abundance values 
were plotted on a whole brain mesh separately for BOSC, eBOSC and fBOSC, thresholded at 
p < 0.02 for illustrative purposes. Abundance values from the right frontal cortex are plotted 
on the right panel separately for each method, with individual data points corresponding to 
each participant. 
 

For the iEEG dataset (Miller et al., 2012), we repeated the theta abundance analysis using data 

from 533 electrodes across 10 participants (see Materials and Methods). Theta abundance 

values were statistically compared using BOSC, eBOSC and fBOSC (Figure 7). Again, there 

was a main effect of method, F(2, 1596) = 53.88, p < 0.001, with follow up tests showing that 

fBOSC produced higher theta abundance values than BOSC and eBOSC, p < 0.001. Overall, 

our analysis of theta bursts in human MEG and iEEG electrophysiological datasets show that 
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using fBOSC produced statistically different results compared to BOSC or eBOSC. 

Specifically, at a set fixed threshold, BOSC and eBOSC produced lower theta abundance 

values when a knee was present in the power spectrum. 

 

 
FIGURE 7 Using resting state iEEG data from 10 patients, theta (3-7 Hz) burst abundance was 
quantified as the duration of rhythmic episodes relative to the length of the recording. 
Abundance values are plotted separately for each method. Individual data points correspond to 
each of the 533 electrodes across the 10 patients. 
 

4. DISCUSSION 
In this study we presented an improved method for oscillatory burst detection based on the 

BOSC framework (Caplan et al., 2001; Hughes et al., 2012). To separate background 1/f neural 

activity from rhythmical bursts, the BOSC framework models the average neural power 

spectrum across trials to define a power threshold per frequency of interest. Rather than using 

existing linear regression approaches, here we utilised a recently developed spectral 

parametrisation algorithm (Donoghue et al., 2020b), which accurately models neural power 

spectra across a wide variety of conditions. 

 

A series of simulation analyses were performed to compare our modified method (termed 

fBOSC) with existing approaches: (i) the original BOSC implementation which uses a partial 

least squares regression for 1/f fitting, and (ii) the extended BOSC implementation (Kosciessa 

Resting State iEEG Data
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et al., 2020) which uses MATLAB’s robustfit function for 1/f fitting combined with manual 

removal of oscillatory peaks (see Figure 1). Simulation analyses for data with a linear power 

spectrum showed that fBOSC more accurately modelled the 1/f slope than the other two 

methods. We also replicated an established issue with the original BOSC implementation 

(Whitten et al., 2011), whereby the fit is biased by peaks in the power spectrum. While eBOSC 

performed better than BOSC (Kosciessa et al., 2020), error values were slightly higher than for 

fBOSC. This is presumably due to the exclusion of peak frequencies resulting in fewer data 

points being included in the linear regression. Simulations were also performed using data with 

a non-linear 1/f slope, containing a prominent knee below ~5 Hz (Gao et al., 2020; He, 2014). 

Both BOSC and eBOSC failed to accurately model the power spectrum in this context resulting 

in high RMSE values. The errors were particularly high for eBOSC after removal of peaks 

below the knee frequency. These results are unsurprising, given that both methods assume a 

linear 1/f slope. By contrast FOOOF can model neural power with an additional knee parameter 

and, consequently, across all simulations fBOSC produced the lowest modelling errors (see 

Figure 2). Furthermore, fBOSC was shown to be relatively unaffected by the presence of 

increasingly large oscillatory peaks in the power spectrum (see Figure 3). This is presumably 

because FOOOF models peaks as gaussians, iteratively removes them from the power 

spectrum, and then re-models the flattened 1/f slope (Donoghue et al., 2020b). This leads to 

more accurate 1/f fits compared with the exclusion of peaks as used in eBOSC (Kosciessa et 

al., 2020). 

 

Within the BOSC framework the 1/f fit is used to directly determine the power threshold. 

Consequently, any inaccuracies introduced during the 1/f modelling process will have knock-

on effects for burst detection. Where oscillatory peaks bias the 1/f fit (see Figure 3), the power 

threshold will be artificially increased across some or all frequency bands of interest. The 

failure to model the knee in the power spectrum has even greater consequences, as shown in 

Figure 4. Using simulated data with a non-linear 1/f power spectra, BOSC and eBOSC had 

dramatically different hit rates and false alarm rates between theta-band and alpha-band bursts. 

This is because theta bursts occur below the knee frequency, whereas alpha bursts occur above 

the knee frequency. Of course, this assumes a fixed threshold was used across frequencies (e.g. 

the 95th percentile of the theoretical probability distribution). In contrast, fBOSC displayed 

identical hit rate and false alarm rates for theta and alpha bursts embedded within simulated 
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data with a non-linear background 1/f spectrum. Our fBOSC method therefore ensures 

equivalent sensitivity for burst detection across frequency bands. 

 

The empirical application of fBOSC was demonstrated using MEG and iEEG resting state 

datasets, which showed evidence of non-linear power spectra (see Figure 5). We focussed on 

quantifying theta-band (3-7 Hz) bursts below the ~5 Hz knee. There were quantifiable 

differences in the abundance of theta bursts when using fBOSC compared to BOSC or eBOSC. 

Abundance values were approximately 1% higher for the iEEG data when using fBOSC (see 

Figure 7). This is presumably due to the failure of BOSC and eBOSC to accurately model the 

bend in the power spectrum overlapping with theta frequencies. On a practical level, fBOSC is 

expected to give the greatest benefits over and above existing BOSC methods for the detection 

of bursts below or overlapping with the knee frequency, i.e. delta (1-3 Hz), theta (3-7 Hz) and 

potentially alpha (8-13 Hz) bursts. This could be particularly useful in the field of memory 

research to disentangle the roles of theta oscillations from dynamic tilts in the background 1/f 

spectrum (Herweg et al., 2020). In terms of higher-frequency bursts (e.g. beta, gamma), the 

advantages of using fBOSC compared with the existing methods are likely to be subtler. In 

neural data, frequencies from 10-100 Hz are accurately modelled with linear approaches (He, 

2014; Kosciessa et al., 2020; Miller et al., 2012), although our simulation analyses (see Figure 

2, top panel) did reveal that fBOSC significantly improved 1/f fitting for linear power spectra.  

 

More generally, our findings highlight the importance of robustly separating background 1/f 

activity from rhythmical activity. Neural oscillations are generated by groups of neuronal 

ensembles firing in a regular, synchronised manner (Buzsaki, 2006; Buzsáki & Draguhn, 

2004). These often occur within single trials as transient bursts (Bonaiuto et al., 2021; Jones, 

2016; Stokes & Spaak, 2016). On the other hand, background 1/f neural activity is highly 

correlated with asynchronous population neuronal firing rates in macaques and humans 

(Manning et al., 2009). Interestingly, the knee frequency at 0.5-10 Hz is related to a decay 

constant (Gao et al., 2020), potentially from membrane leak (Miller et al., 2009). Rhythmical 

oscillations and arrhythmical 1/f activity are concurrently measured with iEEG/EEG/MEG, but 

are clearly dissociable in terms of their neural origins (He, 2014; Miller et al., 2012). Both 

types of activity are physiologically important for cognition, but conflating them has 

consequences for the interpretation of neuroscientific findings. There is emerging evidence that 

previously reported oscillation-related effects might actually be driven by a spectral tilt of the 
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1/f power spectrum (Donoghue et al., 2020b; Herweg et al., 2020; Lendner et al., 2020; Ouyang 

et al., 2020). For example, He et al. (2019) recently reported that the classic developmental 

redistribution of oscillatory power from lower to higher frequencies during childhood can be 

partly explained by a flatter 1/f slope in children compared to adults. Calculating the power 

ratio between frequency bands also conflates rhythmical and 1/f arrhythmical components of 

neural signals (Donoghue et al., 2020a). One of the primary goals of any burst detection 

algorithm should be the robust isolation of rhythmical signals from background 1/f activity and 

other experimental noise (Donoghue et al., 2021; van Ede et al., 2018). fBOSC achieves this 

with greater accuracy and flexibility than existing BOSC methods. In addition, fBOSC returns 

parameters describing the shape of background 1/f activity from the FOOOF parametrisation  

(offset, exponent and knee), which can be examined separately from any oscillatory bursting 

properties. 

 

When analysing neural power spectra, there are several methodological considerations to be 

made. We refer the interested reader to Donoghue et al., (2020b) and Gerster et al., (2021) for 

thorough guidelines. One commonly encountered issue is the modelling of spectra with 

oscillatory peaks crossing the edge of the frequency range. This creates large fitting errors as 

FOOOF models complete gaussian peaks (Gerster et al., 2021). If the situation is unavoidable, 

users should specify a smaller fitting range at higher frequencies (via the 

cfg.fBOSC.fooof.settings option). More generally, fBOSC users should routinely visualise 

the 1/f fit using fBOSC_fooof_plot.m to identify inaccurate 1/f fitting results. When 

performing burst analysis, we would also recommend estimating the background 1/f spectrum 

separately between experimental conditions or participant groups of interest. This ensures that 

any reported burst-related differences are not simply a reflection of a spectral tilt of the 1/f 

slope between conditions or groups (He et al., 2019; Weber et al., 2020; Wilson et al., 2022). 

The parametrised 1/f slope properties returned by fBOSC could also be compared between 

conditions. It should be noted that FOOOF (Donoghue et al., 2020b) is not the only spectral 

parametrisation tool available. One popular alternative is Irregular-Resampling AutoSpectral 

Analysis (IRASA) which estimates fractal activity through a resampling procedure (Wen & 

Liu, 2016). However, IRASA operates in the time-domain rather than on power spectra, and 

can distort 1/f fits when data contain a knee (Donoghue et al., 2020b). FOOOF also has reduced 

computational costs compared with IRASA. 
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The BOSC framework, which detects bursts via amplitude and duration thresholds, is an 

intuitive, computationally inexpensive and flexible tool for oscillatory burst analysis (Caplan 

et al., 2001; Hughes et al., 2012). It exists alongside a plethora of other burst detection 

techniques. Our method, fBOSC, is conceptually similar to the recently developed 

Periodic/Aperiodic Parameterization of Transient Oscillations (PAPTO) approach (Brady & 

Bardouille, 2022), in that background 1/f activity is parametrised using FOOOF (Donoghue et 

al., 2020b). However, PAPTO has a different amplitude threshold procedure (Shin et al., 2017) 

and post-processing options. Other methods include the use of Hidden Markov Models 

(HMMs) to characterise transient changes in spectral power across multiple frequency bands 

(Quinn et al., 2019). However, it is unclear whether HMM-based methods are able to properly 

separate dynamically changing 1/f activity from oscillatory bursting across frequencies. It is 

also important to note that where neural oscillations are non-sinusoidal or possess some other 

non-linear property, the Fourier-based decomposition of signals used within the BOSC 

framework will be unsuitable and may lead to spurious results (Donoghue et al., 2021b). Non-

sinusoidal oscillatory bursts would be better quantified through empirical mode decomposition 

(Huang et al., 1998; Quinn et al., 2021) or time domain approaches based on waveform shape 

(Cole & Voytek, 2019). A principled comparison between different burst detection methods is 

beyond the scope of this article, but would be of benefit to the field.  

 

One way fBOSC could be improved upon in the future is in terms of the dynamic estimation 

of background activity. In the current implementation, time-frequency spectra are averaged 

with the assumption that 1/f activity is constant across trials or conditions. However, it is well 

established that background 1/f activity can be dynamic, changing with arousal level (Lendner 

et al., 2020) and during cognitive tasks (Gao et al., 2020). Time varying spectral 

parametrisation approaches (Wilson et al., 2022) are in development, and could be used to 

dynamically update the power threshold used for burst detection. This would be particularly 

useful for situations where dynamic 1/f changes co-occur with oscillatory bursts, as well as for 

longer EEG/MEG sleep recordings where the tilt of the 1/f slope changes dramatically between 

sleep stages (Lendner et al., 2020). Of course, this would come with the added computational 

effort of parametrising multiple neural spectra. 
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4.1 Conclusions 

We have presented a tool for oscillatory burst detection which combines spectral 

parametrisation (FOOOF, Donohough et al., 2020b), with the BOSC framework, termed 

fBOSC. This modification addresses two issues with existing methods when modelling the 1/f 

background spectrum of neural data (Caplan et al., 2001; Kosciessa et al., 2020; Whitten et al., 

2011). First, it is robust to oscillatory peaks in the power spectrum. Second, it can accurately 

model non-linear power spectra containing a knee. By robustly separating background 1/f 

activity from neural oscillations, fBOSC ensures that the power threshold used for burst 

detection is consistent across frequencies. Our tool is openly available for use at 

https://github.com/neurofractal/fBOSC.  
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SUPPORTING FIGURE S1 Simulations were performed using data with either a linear or 
non-linear background 1/f power spectrum. These data were then combined with simulated 
bursts in the: theta-band (4 Hz) alone; alpha-band (10 Hz) alone; or both the theta and alpha-
bands (4 Hz and 10 Hz). The SNR of the bursts was set at 24. For each set of simulations, the 
root mean squared error (RMSE) between the estimated and actual 1/f fit was plotted for 
BOSC, eBOSC and fBOSC. Individual data points correspond to RMSE values from each 
simulated trial. The pattern of results is very similar to those shown in main Figure 2 (where 
bursts were set at a SNR = 5). fBOSC had the lowest RMSE values across all simulations.  
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SUPPORTING FIGURE S2 Simulations were performed using data with a non-linear 1/f 
power spectrum and embedded theta or alpha bursts (SNR = 24). BOSC, eBOSC and fBOSC 
were used to detect these oscillatory bursts. The difference in false-alarm rate between theta 
and alpha burst detection is plotted, with an additional dotted line at 0. Across all plots, 
individual data points correspond to each simulated trial. Note that fBOSC is much closer to 0 
than the other two methods, indicating smaller differences in the false alarm rate between 
frequency bands. Hit-rate is not plotted because the high SNR bursts caused ceiling effects, i.e. 
the hit-rate was nearly always equal to 1 for each trial. 
 
 


