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Robust Estimation of a Single Complex Sinusoid
in White Noise—H Filtering Approach

Kiyoshi Nishiyama

Abstract—A novel robust estimator is proposed for extracting a single
complex sinusoid and its parameter (frequency) from measurements cor-
rupted by white noise. This estimator is called an H111 sinusoidal estimator
(HSE), which is derived by applying an H111 filter to a noisy sinusoidal
model with the state-space representation. Simulations demonstrate that
the HSE is more robust to the nature of observation noise {vvvkkk} than the
Kalman sinusoidal estimator (KSE), which is an improved version of the
nonlinear filter previously proposed by the author.

Index Terms—Frequency estimation, H111 filter, Kalman filter, nonlin-
ear filter, robust estimation, sinusoid.

I. INTRODUCTION

Estimation of the unknown parameters of sinusoids in noise is of
great importance in many applications. Various estimation methods
[1] have been proposed in each field. Linear-prediction (LP) methods
are widely known. However, the location of the estimated spectral
peaks can be greatly affected by a small amount of noise because
of the appearance of outliers. Tufts and Kumaresan [2] dramatically
improved the frequency estimation accuracy at low signal-to-noise
ratio (SNR) by using a singular value decomposition (SVD) of the
LP data matrix. On the other hand, the Kalman filter (KF) [3],
[4] has often been applied to frequency estimation. Bitmeadet al.
[5] proposed the Kalman filtering short-time Fourier analysis, which
estimates the amplitudes and phases of frequency components instead
of fixing the frequencies such as!i = 2�fi = 2�i=(N�t). This
method could be adopted for neither noise rejection nor accurate
frequency estimation since the observation noise no longer remains
white due to the modeling error. Andersonet al. [6] and Hilandset al.
[7] have applied the extended Kalman filter (EKF) to the problem of
estimating the parameters of a multiharmonic signal in white noise,
where the system dynamics is linear, but the observation of the state
is nonlinear, and moreover, its nonlinearity is strong, i.e., the Taylor
series expansion of the observation function has infinite number of
terms. The nonlinearity has often caused the EKF to diverge in some
poor initial conditions. To overcome these problems, a guaranteed-
stability nonlinear filter based on EKF (precisely ECKF) has been
proposed for estimating a single complex sinusoid in white noise [8].
In general, however, the performance of the Kalman filter is degraded
under non-Gaussian white noises since the Kalman filter is sensitive
to the Gaussian property of noises.

In this correspondence, a robust estimator known as an H1

sinusoidal estimator (HSE) is proposed for simultaneously estimating
both a single complex sinusoid and its frequency (precisely a function
of frequency) from measurements corrupted by Gaussian or non-
Gaussian white noises.
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II. PROBLEM FORMULATION

Let an observation signalyk at time tk be a single sinusoidzk
with the additive noisevk

yk = zk + vk; k = 1; 2; 3; � � � ; N (1)

wherezk = a1 exp(j!1tk); a1 = ja1je
j� ; !1 = 2�f1; tk = k�t

in which a1 and f1 are a complex amplitude with initial phase�1
and the frequency of the sinusoid, respectively,�t is a sampling
interval, andj2 = �1. The observation noisevk is a complex white
noise with zero-mean, and in general cases, the real and imaginary
parts are correlated as

E
vrk
vik

[vrk vik ] =
�2v sv
sv �2v

:

Our goal here is to estimate a single complex sinusoidfzkg
and its frequencyf1 in the presence of white noise, where the

complex amplitudea1 and the covariance
� s

s �
are assumed to

be previously unknown.

III. H1 SINUSOIDAL ESTIMATOR (HSE)

A. Preparation

Before deriving the H1 sinusoidal estimator (HSE), we shall
introduce the fundamentals of the H1 filtering theory [9], [10].

1) H1 Filtering Problem: Consider a time-variant state-space
model of the form

xk+1 =Fkxk +Gkwk

yk =Hkxk + vk; k = 0; 1; 2 � � � (2)

where Fk; Gk; Hk are known matrices,x0; fwkg; fvkg are un-
known quantities regarded as disturbances, andfykg is the obser-
vation. Here, the noise processes have the boundedl2 norm, i.e.,
kwk22 = 1

k=0 w
�T
k wk < 1, kvk22 = 1

k=0 v
�T
k vk < 1, but the

Gaussian of the noise processes is not assumed.
In such a situation, we would like to estimate an arbitrary linear

combination of the statexk, say,zk = Lkxk, using the observations
fykg, where Lk is given. All the above equations can be also
summarized as

xk+1
yk
zk

=
Fk 0 B1

k

Hk 0 B2
k

Lk 0 0

xk
uk
dk

(3)

where

dk = [wT
k vTk ]T ; B1

k = [Gk 0 ]; B2

k = [0 I ]

which is a form used in H1 control.
Let �zkjk = Ff(y0; y1; � � � ; yk) denote the estimate ofzk, given

observationsfykg from t0 to tk. We then have the following
estimation error:

ef; k = �zkjk � zk = �zkjk � Lkxk: (4)

As illustrated in Fig. 1, let Tk(Ff) denote the transfer
operator that maps the unknown disturbances�0�1=2(x0 �
�x0j�1); fwig

k
i=0; fvig

k
i=0 to the filtered errorfef; igki=0, where�0
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Fig. 1. Transfer matrix from disturbances to filtered error.

is a positive-definite matrix that reflectsa priori knowledge as to
how closex0 is to the initial guess�x0j�1.

Our object is to choose a functionalFf to minimize the H1 norm
of the transfer operatorTk(Ff). This problem is called the H1
optimal filtering problem.

In general, the H1 norm of a transfer operatorT is defined as

kTk1 = sup
u2l ; u 6=0

kTuk2
kuk2

(5)

using the inputu and outputy = Tu, whereu has the boundedl2
norm, i.e.,kuk22 = 1

k=0
u�Tk uk = 1

k=0
kukk

2 < 1, and l2 =
fuj kuk2 < 1g (kuk2 is the 2-norm of the causal sequencefukg).
The H1 norm thus has the interpretation of being the maximum
energy gain from the inputu to the outputy.

A closed-form solution of the optimal H1 estimation problem is
available only in specific cases, and therefore, it is common in the
literature to settle for a (finite-time) suboptimal solution.

Suboptimal H1 Filtering Problem: Given a scalarf > 0, find
an H1 suboptimal estimation strategy�zkjk = Ff(y0; y1; � � � ; yk)
that achieveskTk(Ff)k1 < f . In other words, find a strategy that
achieves

sup
x ;fw g;fv g

�

k

i=0

kef; ik
2

kx0 � �x0j�1k
2

�
+

k

i=0

kwik2 +

k

i=0

kvik2

< 
2
f : (6)

This clearly requires checking whetherf � f; op, wheref; op =
infF kTk(Ff)k1.

The solution (optimal H1 filter) of the optimal H1 filtering
problem can be obtained to the desired accuracy by iterating on the
f of the suboptimal H1 problem. Therefore, the solution to the
suboptimal H1 problem is called an H1 filter hereafter.

2) H1 Filter: We now present the existing solution to the subop-
timal H1 filtering problem.

H1 Filter: For a givenf > 0, one possible level-f H1 filter
that achieveskTk(Ff)k1 < f is given by

�zkjk =Lkx̂kjk (7)

x̂k+1jk =Fkx̂kjk

x̂kjk = x̂kjk�1 +Ks; k(yk �Hkx̂kjk�1) (8)

Ks; k = P̂kjk�1H
�T
k I +HkP̂kjk�1H

�T
k

�1

(9)

P̂k+1jk =FkP̂kjk�1F
�T
k +GkG

�T
k

� FkP̂kjk�1 [H
�T
k L�Tk ]R�1e; k

Hk

Lk
P̂kjk�1F

�T
k (10)

where

Re; k =Rk +
Hk

Lk
P̂kjk�1 [H

�T
k L�Tk ]

Rk =
I 0
0 �2fI

: (11)

For the existence of the H1 filter, P̂kjk�1 (or P̂kjk) needs to satisfy

P̂
�1
kjk = P̂

�1
kjk�1 + [H�T

k L�Tk ]
I 0
0 ��2f I

Hk

Lk

= P̂
�1
kjk�1 +H

�T
k Hk � 

�2
f L

�T
k Lk > 0 (12)

where the[Fi Gi ] have full rank. The existence condition can be
replaced by another condition in whichRk andRe; k have the same
inertia, i.e.,

I +HkP̂kjk�1H
�T
k > 0

� 
2
fI + Lk(P̂

�1
kjk�1 +H

�T
k Hk)

�1
L
�T
k < 0 (13)

which is used to construct the H1 filter.

B. Derivation of H1 Sinusoidal Estimator (HSE)

Using the fact that the difference equationzk = �(1)zk�1 holds
for a single complex sinusoidfzkg and some ideas [�(1) = �(1)
holds over time because�(1) is constant with respect to time], we
have

�(1)
zk+1

=
1 0
0 �(1)

�(1)
zk

yk = [0 1 ]
�(1)
zk

+ vk (14)

where �(1) = exp(j!1�t) is an unknown parameter, which is
called an AR coefficient. Here, replacing�(1) in the dynamics by
�(1) + ��(1) to allow for the uncertainty��(1) of �(1), the above
state equation is represented by

�(1)
zk+1

=
1 0
0 �(1)

�(1)
zk

+
0
1

wk (15)

where the mean ofwk = ��(1)zk is assumed to be zero for
simplicity.

This linear state-space model with an unknown parameter�(1)
can be rewritten by the following nonlinear stochastic system:

xk+1 = f(xk) +Gwk; yk = Hxk + vk (16)

where

xk = [xk(1) xk(2) ]
T = [�(1) zk ]

T

f(xk) = [�(1) �(1)zk ]
T
; G = [0 1 ]T

H = [0 1 ]: (17)

Linearizing the above nonlinear system (the terms higher than
the first order are ignored) and then applying the H1 filter to the
linearized system, we can obtain an H1 sinusoidal estimator (HSE)
to provide robust estimation of the linear combinationzk = Hxk
(Lk = H)

�zkjk =Hx̂kjk (18)

x̂k+1jk = f(x̂kjk)

x̂kjk = x̂kjk�1 +Ks; k(yk �Hx̂kjk�1) (19)

Ks; k = P̂kjk�1H
�T (1 +HP̂kjk�1H

�T )�1 (20)

P̂k+1jk =FkP̂kjk�1F
�T
k + �

2
GG

T

� FkP̂kjk�1[H
�T H�T ]R�1e; k

H

H
P̂kjk�1F

�T
k (21)
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where

x̂kjk =
x̂kjk(1)
x̂kjk(2)

=
�̂kjk(1)
ẑkjk

Fk =
@f(xk)

@xk x =x̂

=
1 0

x̂kjk(2) x̂kjk(1)

Re; k =Rk +
H
H

P̂kjk�1[H
�T H�T ]

Rk =
1 0
0 �2f

P̂�1kjk = P̂�1kjk�1 + (1� �2f )H�TH > 0 (22)

in which superscripts� and T denote the complex conjugate and
transpose, respectively.

IV. RELATIONSHIP WITH THE KALMAN SINUSOIDAL ESTIMATOR (KSE)

In general, the formula of the H1 filter is very similar to that
of the Kalman filter. However, for the H1 filter to exist, additional
conditions (12) or (13) must be satisfied, andLk and the indefinite

matrix Rk = I 0

0 � I
appear in the equations, which would not

appear in the Kalman filter.
To clarify the relationship between the HSE and the KSE [8],

increasingf to 1, we have

R�1e; k =
1 0
0 �2f

+
H
H

P̂kjk�1
H
H

�T �1

=
1 0
0 0

�
H
0

H�TH + P̂�1kjk�1

�1

[H�T 0 ]: (23)

Substituting the above into (21), we see that the Riccati recursion
in (21) reduces to

P̂k+1jk =FkP̂kjk�1F
�T
k + �2GG�T

� FkP̂kjk�1H
�T 1�H(H�TH + P̂kjk�1

�1)�1H�T

�HP̂kjk�1F
�T
k : (24)

Furthermore, this can be rewritten as

P̂k+1jk =FkP̂kjk�1F
�T
k + �2GG�T � FkP̂kjk�1H

�T

� 1 +HP̂kjk�1H
�T

�1

HP̂kjk�1F
�T
k (25)

using the inversion lemma. Hence, the HSE whenf = 1 is
presented by

x̂k+1jk = f(x̂kjk)

x̂kjk = x̂kjk�1 +Ks; k(yk �Hx̂kjk�1) (26)

Ks; k = P̂kjk�1H
�T HP̂kjk�1H

�T + 1
�1

(27)

P̂k+1jk =FkP̂kjkF
�T
k + �2GG�T

P̂kjk = P̂kjk�1 �Ks; kHP̂kjk�1: (28)

This agrees with the formula of the KSE, which is a version with
system noise of [8] obtained by applying the extended Kalman filter
to (16). Consequently, we see that the HSE, whenf = 1, is in a
sense equivalent to the KSE.

Fig. 2. MSE and VAR characteristics of HSE (f = 1:2, �2 = 0:1) and
KSE (�2 = 0:1); complex Gaussian case ofvk; N = 40, f1 = 7:2=60,
a1 = ej�=6.

This fact suggests that the H1 norm concerning the KSE is quite
large and that the KSE may have poor robustness properties to
variations inx0, fwkg, andfvkg. This will be verified by simulations
presented in next section.

V. SIMULATION STUDY

In this section, the performance of the HSE is evaluated from
various points of view using computer simulations, and it is compared
with that of the KSE. Now, we consider 40 data sets of the length
N = 40 under the same SNR, which consists of a single complex
sinusoid with additive white noise

yk = zk + vk; k = 1; � � � ; 40 (29)

where zk = a1e
j! t , a1 = 1 � ej�=6, !1 = 2�f1, f1 =

7:2=60(=4:8=40), tk = k�t, and �t = 1 is set for simplicity.
The variance�2v of stationary, complex white noisevk with zero
mean is chosen to yield a given SNR, which is defined by SNR=
10 log10(ja1j

2=�2v)[dB].

A. Robustness of the HSE to the Observation Noise Variations

The Kalman filter is strictly optimal only ifx0; fwkg, andfvkg are
Gaussian. In contrast, as seen in (6), the H1 filter is designed using
the energies ofx0; fwkg; and fvkg and not their nature (Gaussian
distributed, uncorrelated, etc.). Hence, it is expected to be robust to
variations inx0; fwkg; andfvkg. First of all, to ensure the robustness
of the HSE to variations infvkg, we focus on the performances of
the HSE and the KSE in a noncomplex Gaussian case ofvk (the real
and imaginary parts ofvk are correlated), wherevk = vrk + jvik is
set such that

E
vrk
vik

[vrk vik ] =
9�2v �3�2v

�3�2v �2v

i.e., Refvkg = �3Imfvkg. Note that such a case will happen when
the complex signal is generated from a real signal using Hilbert
transform. Figs. 2 and 3 show the mean square error (MSE) and
the variance (VAR) characteristics [8] in complex Gaussian and
correlated cases offvkg, respectively. Here,̂x1j0 andP̂1j0 are set as
in [8]. In addition, we have to choosef to be as small as possible,
checking the existence condition in (22), to effectively use the H1

filter. However, in order to guarantee the stability of the HSE,f
must be selected such thatf > 1:0 (The stability of the HSE is
proved by same way as in [8]).

These results demonstrate that the HSE is considerably more robust
than the KSE to the correlation of real and imaginary parts ofvk
(see Section IV).
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Fig. 3. MSE and VAR characteristics of HSE (f = 1:2, �2 = 0:1) and
KSE (�2 = 0:1); correlated case ofvk(Refvkg = �3Imfvkg), N = 40,
f1 = 7:2=60, a1 = ej�=6.

Fig. 4. MSE and VAR characteristics of HSE (f = 1:2; �2 = 0:1) and
KSE (�2 = 0:1); mixture case ofvk; N = 40; f1 = 7:2=60; a1 = ej�=6.

Furthermore, we consider another non-Gaussian case wherevk
obeys a mixture distribution such that

vk =
v
(1)
k ; with probability 1� "

v
(2)
k ; with probability "

(30)

wherev(i)k is complex Gaussian with zero mean and variance�2
i . In

this case, the probability density function ofvk is given by

p(v) = (1� ")p1(v) + "p2(v)

= (1� ")
1

��1
e
�(jvj =� ) + "

1

��2
e
�(jvj =� )

: (31)

This may be a more reasonable assumption in many practical applica-
tions, which means that there are some outliers in the noise process.
Fig. 4 shows the MSE and VAR characteristics in a mixture case of
vk, where" = 0:1 and�2 = 8�1 are set so that�2

v = 7:3�2
1 . Note

that " and�1 are assumed to be unknown in the simulations.
From the above result, it is seen that the HSE is also more robust

than the KSE to variations in the distribution ofvk, especially for
the mixture case. Note that the Cramer–Rao bound (CRB) in Figs. 3
and 4 is calculated under the complex Gaussian assumption.

B. Robustness of the HSE to Variations in the Initial
State and the Tuning Parameter�2

From kTk(Ff)k1 < f , it is expected that the HSE will be
also robust to variations in the initial state and the tuning parameter
�2 (system noise) as well as the observation noise. To ensure
this, we make simulations for the following two cases: 1)x̂1j0 =

[0; ẑ1j0]
T ; �2 = 0:1 and 2) x̂1j0 = [�̂1j0; ẑ1j0]

T ; �2 = 0:01, as
shown in Fig. 5.

(a) (b)

Fig. 5. MSE characteristics of HSE (f = 1:2) and KSE; complex Gaussian
case ofvk. (a) x̂1j0 = [0; ẑ1j0]

T , �2 = 0:1. (b) x̂1j0 = [�̂1j0, ẑ1j0]
T ,

�2 = 0:01, whereN = 40, f1 = 7:2=60, a1 = ej�=6.

These results show that the HSE is also a little more robust than
the KSE to variations in the initial state and the tuning parameter
�2 (system noise).

VI. DISCUSSION AND CONCLUSION

The robust estimator, which is called the HSE, has been proposed
for estimating a single complex sinusoid and its parameter (frequency)
in the presence of white noise. Some simulations showed that the HSE
is more robust than the KSE to variations in the observation noise
fvkg as well as the initial state and tuning parameter (system noise).

Some questions, however, remain unanswered. For example, it has
not yet been confirmed whether the HSE is effective for multiple
sinusoids. However, it will be a future work.
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