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Received: 22 May 2013 / Accepted: 8 April 2014 / Published online: 9 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Deformation measurements have a repeatable
nature. This means that deformation measurements are per-
formed often with the same equipment, methods, geomet-
ric conditions and in a similar environment in epochs 1
and 2 (e.g., a fully automated, continuous control measure-
ments). It is, therefore, reasonable to assume that the results
of deformation measurements can be distorted by both ran-
dom errors and by some non-random errors, which are con-
stant in both epochs. In other words, there is a high prob-
ability that the difference in the accuracy and precision of
measurement of the same geometric element of the network
in both epochs has a constant value and sign. The constant
errors are understood, but the manifestation of these errors is
difficult to determine in practice. For free control networks
(the group of potential reference points in absolute control
networks or the group of potential stable points in relative
networks), the results of deformation measurements are most
often processed using robust methods. Classical robust meth-
ods do not completely eliminate the effect of constant errors.
This paper proposes a new robust alternative method called
REDOD. The performed tests showed that if the results of
deformation measurements were additionally distorted by
constant errors, the REDOD method completely eliminated
their effect from deformation analysis results. If the results
of deformation measurements are only distorted by random
errors, the REDOD method yields very similar deformation
analysis results as the classical IWST method. The numerical
tests were preceded by a theoretical part. The theoretical part
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describes the algorithm of classical robust methods. Partic-
ular attention was paid to the IWST method. In relation to
classical robust methods, the optimization problem of the
new REDOD method was formulated and the algorithm for
its solution was derived.
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1 Introduction

Absolute and relative control networks are distinguished in
deformation measurements and analysis. Absolute control
networks consist of controlled points placed on the surveyed
object (e.g., on a dam, bridge) and potential reference points
usually placed outside the effect of factors causing deforma-
tions. Relative control networks consist only of controlled
points established on the surveyed object (e.g., on an area
covered by mining damage). Both potential reference points
of absolute networks and potential stable points of relative
networks (the points are on a potentially rigid network frag-
ment) form FCN (free control networks). The problem of
deformation analysis for FCN is, in fact, the problem of iden-
tifying the mutual stability of these network points. In this
way, the datum for the displacement vector of all absolute or
relative control network points is defined. It can be seen that
deformation analysis for FCN is, therefore, an essential task
in deformation analysis for control networks (Chen 1983;
Caspary 2000; Denli 2008).

Methods of deformation analysis for FCN described in lit-
erature can be classified according to different criteria. In this
paper, they are divided into robust methods and non-robust
methods (Chrzanowski and Chen 1990; Caspary 2000; Setan
and Singh 2001). Today, the robust methods are applied more
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often. It should be stressed that “robust” does not refer here
to outliers in observations; “robust” refers here to single-
point movements. The observations must be clean of outliers.
This is very important. Classical robust methods are based on
the results of separate adjustments by the least squares (LS)
method of two measurement epochs, i.e., on adjusted coordi-
nates. These methods consist in S-transformation (Helmert
similarity transformation) of differences in these coordinates
with the optimization condition of robust estimation. The
obtained displacement vectors of single points are assessed
statistically for significance. The best-known methods from
this group include the iterative weighted similarity transfor-
mation (IWST) method, which fulfills the condition of the
minimum sum of absolute component values of displace-
ment vectors (Chen 1983; Chen et al. 1990; Setan and Singh
2001; Setan and Othman 2006; Gökalp and Tasçi 2009) and
the least absolute sum (LAS) method, which fulfills the con-
dition of the minimum sum of length values of displacement
vectors (Caspary 1984; Caspary and Borutta 1987; Caspary
et al. 1990; Setan and Singh 2001). Proposals for the use of
other optimization conditions, e.g., the minimum objective
function of the Huber method or the Danish method, can also
be found in literature (Caspary and Borutta 1987). The IWST
method serves as the prototype for classical robust methods.
The other robust methods are only modifications, differing in
the optimization condition used. The non-robust methods are
also based on the results of separate adjustments by the LS
method of two measurement epochs, i.e., on adjusted coor-
dinates. Statistical tests are most popular in this group, e.g.,
the congruency test (Niemeier 1981; Setan and Singh 2001;
Denli and Deniz 2003). The congruency test method con-
sists in finding the most numerous possible group of points
for which the value of the displacement test statistic does not
exceed the critical value. Displacement vectors are computed
on the basis of S-transformation of differences in adjusted
coordinates of these points with the optimization condition
of the LS method or on the basis of differences in coordinates
obtained from free adjustments by the LS method. Although
many more other new methods for deformation analysis, e.g.,
robust method based on Msplit estimation (Wiśniewski 2009;
Duchnowski and Wiśniewski 2012) or R estimation (Duch-
nowski 2010, 2013) or the non-robust Fredericton approach
(Gökalp and Tasçi 2009), can be found in literature, this paper
is limited to the presentation of only the most common solu-
tions.

Geodetic methods are most often used to measure minor
deformations with values slightly exceeding errors in their
measurement. A special role in deformation analysis is, there-
fore, played by the quality of results, i.e., the accuracy of the
determined displacement vectors and the correct assessment
of their statistical significance (effectiveness). The quality of
deformation analysis results is conditioned by the measure-
ment precision (random errors) and the measurement relia-

bility and the processing of the results. A higher reliability
level of a measurement produces a lower risk of making gross
and systematic errors. A high measurement reliability level is
achieved by, among others, periodical instrument checks, the
use of self-checking measurement procedures and the intro-
duction of corrections due to the disturbing effects of external
conditions. The higher the reliability level of the processing
of measurement results, the higher the probability will be of
detecting possible gross and systematic errors (internal relia-
bility) and the lower the effect of these undetected errors will
be on the quality of deformation analysis results (external
reliability), e.g., Caspary (2000), Prószyński (2010).

Deformation measurements are performed at different
moments of time, but often with the same equipment, meth-
ods, geometric conditions and in a similar environment in
epochs 1 and 2. Moreover, the same instrument and target are
most often set on given points in both epochs. It is, therefore,
reasonable to assume that the results of deformation measure-
ments can be distorted both by random errors and by some
non-random errors, which are constant in both epochs, i.e.,
errors with the same value and the same sign in both epochs.
This means that the error of measurement of the same geo-
metric element of the network in both epochs may contain a
common factor, which is constant in both epochs. This fac-
tor is, in fact, the difference in the measurement accuracy
and precision. The constant errors are understood, but the
manifestation of these errors is difficult to determine in prac-
tice. Classical deformation analysis of FCN is most often
performed by robust methods. In these methods, the dis-
placement vector is determined in robust S-transformation of
differences in adjusted coordinates. This approach does not
completely eliminate the effect of constant errors and, there-
fore, leads to reduced external reliability level of processing
and, consequently, to reduced quality of deformation analy-
sis results. Moreover, the displacement vector and its covari-
ance matrix are estimated separately in two different com-
putational processes. As a result, the displacement vector
estimator and its covariance matrix estimator have different
stochastic properties, i.e., the actual and estimated accuracy
of the displacement vector estimator is different.

In the 1970s, the Polish geodesist Prof. Tadeusz Laz-
zarini dealt with this problem for control networks with a
defined datum. Prof. Lazzarini developed a method for joint
estimation of the displacement vector and its covariance
matrix directly from differences in unadjusted observations
(Lazzarini et al. 1977; Chrzanowski and Chen 1990). This
approach completely solves, among others, the problem of
the effect of constant errors and the problem of discrepancy
between the actual and estimated accuracy of the displace-
ment vector estimator. This method is still used successfully
in deformation analysis of control networks with a defined
datum, among others in an automated system for continuous
control measurements ALERT (Wilkins et al. 2003). Mod-
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ern robust estimation and matrix g-inverse theory allow this
approach to be expanded to FCN (control networks without
a defined datum). Such expansion is the aim of this paper. In
fact, a new robust method for FCN deformation analysis will
be developed and examined in this paper, in which the dis-
placement vector will be determined in the process of robust
M estimation of differences in unadjusted observations. The
proposed method was conventionally called robust estima-
tion of deformation from observation differences (REDOD).

2 Robust transformation of deformation from
coordinate differences

The robust FCN deformation analysis method proposed in
this paper will be developed based on classical robust meth-
ods and is specifically based on the IWST method. There-
fore, the algorithm of classical robust methods was derived
and described in this section. Particular attention was paid to
the IWST method.

As previously mentioned, in classical methods the dis-
placement vector is determined in the process of robust S-
transformation of the differences in adjusted coordinates.
Generally, the algorithm always consists of the following
three steps.

2.1 Step 1: LS estimation of the vector of coordinates

LS estimation of the vector of coordinates is carried out sep-
arately for each measurement epoch. The computations can-
not distort measurement results or the relationships occurring
between them. The basic aim is to provide data for starting
robust transformation. The result of this processing is the vec-
tor of adjusted coordinates for all analyzed points in an FCN

x̂ = x0 + δ̂x, (1)

where x0 ∈ �u×1 is the vector of the approximate coordi-
nates (the same in both epochs) and δ̂x ∈ �u×1 is the LS
estimator of the vector of the corrections to the approximate
coordinates.

The functional model, which is the linearized form of the
initial nonlinear relationships, has the form

lobs − l0 + v = Aδx, lobs ∼ N (Ax,C) , (2)

where A ∈ �n×u is the design matrix, l0 ∈ �n×1 is the vec-
tor of approximate observations, lobs ∈ �n×1 is the vector of
actual observations, v ∈ �n×1 is the vector of residuals of
observations and C ∈ �n×n is the covariance matrix of obser-
vations. The sought parameter vector estimator has the form

δ̂x = Qx̂ω, (3)

where ω = ATP(lobs−l0), P ∈ �n×n is the weight matrix of
observations, Qx̂ = N− is the cofactor matrix of the vector of

adjusted coordinates and N− = (ATPA)− is any g-inverse,
fulfilling the property NN−N = N. The network is a free
network. In this case, the network has a datum defect

de = u − rank(A), rank(A) = r < u (4)

the matrix A is the matrix of the columnarly incomplete rank
and, therefore, the ordinary (classical) inverse N−1 will not be
determined. The g-inverse determination methods are well-
described in literature (e.g., Rao 1973; Caspary 2000). For
example, one of the g-inverses can be determined in a simple,
algebraic manner, by representation of the design matrix in
the following form

A = [
A1 A2

]
, (5)

where A1 ∈ �n×r , r = rank(A1) = rank(A) and A2 ∈
�n×de is, in fact, the matrix defining the datum for the geo-
detic network. The final result of step 1 is the vectors x̂(e) (1)
and their cofactor matrices Qx̂(e) , where e is the number of
the measurement epoch.

Of course, during LS estimation of the vector of coordi-
nates, other important aspects that need to be considered are
outlier detection (observations) (e.g., Baarda’s data snoop-
ing, Pope’s test or some robust estimation) and tests of the
compatibility between the two epochs (variance ratio test).
Moreover, in the case of heterogeneous networks, it is some-
times important to perform the estimation of the variance and
covariance components.

2.2 Step 2: robust S-transformation of the displacement
vector

Displacements of individual points in an FCN cannot be
determined on the basis of differences in the direct values of
the vectors x̂(1) and x̂(2). LS estimation of the vector of coor-
dinates can concern networks with different datum defect
types in both epochs (because of different types of obser-
vations). Moreover, constraints defining the datum for the
geodetic network in epochs 1 and 2 can concern different
points (e.g., because of damage to some points in epoch 2)
or can concern the same unstable points. For this reason,
the datum for the geodetic network in epoch 2 can be freely
shifted, rotated and re-scaled in relation to the datum in epoch
1 (Chen 1983; Chen et al. 1990). The vector x̂(2) can, there-
fore, be adjusted in a different datum than the vector x̂(1) and
this is why

d �= x̂(2) − x̂(1), (6)

where d ∈ �u×1 is the vector of displacement components
for all analyzed points in an FCN. This difference x̂(2)− x̂(1)
is the so-called apparent (or raw) displacement vector.

To reduce the vectors x̂(1) and x̂(2) to a common datum,
the vector x̂(2) is transformed to the datum of the vector x̂(1).
This task consists in fitting the vector x̂(2) into the vector
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x̂(1) reduced to the center of gravity of the network. The
transformed vector x̂′

(2) has the form

x̂′
(2) = x̂(2) − Ht (7)

because x̂(2) = x̂′
(2) + Ht, where t ∈ �h×1 is the vector of

S-transformation parameters, i.e., translation, rotation, scale
distortion, h designates the number of all datum parame-
ters of a given network and H is the design matrix of S-
transformation to a common datum (epoch 1). For example,
for a 2-D network, the matrix H has the form

H ∈ �2m×h =

⎡

⎢⎢⎢
⎢
⎣

...
...

...
...

1 0 −ȳi(1) x̄i(1)

0 1 x̄i(1) ȳi(1)
...
...

...
...

⎤

⎥⎥⎥
⎥
⎦
, (8)

where m designates the number of points in a given network
and x̄i(1), ȳi(1) designate adjusted coordinates of point i in
epoch 1 reduced to the center of gravity of the network. The
first two columns refer to translation along the axes X,Y ,
respectively, the third column refers to rotation around the
axis Z and the last column refers to scale distortion. More
theory on that issue (among others, the matrix H for a 1-D
and 3-D network) can be found in papers by Chen (1983),
Caspary (2000) and Even-Tzur (2011).

Since the displacement vector now has the form d =
x̂′
(2) − x̂(1), consequently d = (x̂(2) − x̂(1))− Ht. Of course,

this system of equations has infinitely many solutions for the
displacement vector. To obtain a unique, sought value of this
vector, we also need to formulate proper objective functions.

Let us recall that FCN may consist of potential reference
points of absolute networks or potential stable points of rel-
ative networks. Hence, we can assume that most of these
points (more than half) are actually stable. Unfortunately,
there is a risk that single unstable points may occur among
this group. It can be assumed that measurement errors at
all epochs are a sample of random variables with a normal
distribution with a mean of zero and accepted standard devi-
ation. In this case, the estimated displacements of actually
stable points should also be a sample of random variables
with such a distribution and the estimated displacements of
actually unstable points should be random variables which
are the outliers of this distribution. In other words, the vec-
tor of displacement components of FCN points may have
a contaminated normal distribution (analogously as, e.g., a
vector of observations with suspected gross errors). This is
why the robust objective functions are very useful in defor-
mation analysis for FCN. Thus, “outliers” do not refer here
to the observations. “Outliers” refer here to the single-point
movements. It should be stressed that if all of the FCN points
are certainly actually stable, then the LS and robust methods
lead to unbiased results, but robust methods are less efficient

and yield greater variances. This decrease in efficiency is the
price to be paid for the robustness of the method.

In the IWST method, the objective function is the L1-
norm of vector d, i.e., (Chen 1983; Chen et al. 1990; Setan
and Singh 2001; Setan and Othman 2006; Gökalp and Tasçi
2009). The optimization problem of the IWST method has
the following form

,

(9)

where d = [d1, . . . , du]T, di is the given component of
vector d for point i (dxi or dyi or dzi ), u is the number of
the displacement components for all m analyzed points in an
FCN. The final solution to the optimization problem of the
IWST method has the following iterative form

d̂(k) = S(k)
(
x̂(2) − x̂(1)

)

Q(k)

d̂
= S(k)

(
Qx̂(1) + Qx̂(2)

) (
S(k)

)T

W(k+1) = diag
(
. . . , w

(k+1)
i , . . .

)

⎫
⎪⎪⎬

⎪⎪⎭
k=1,2,...

(10)

where S(k) = I − H(HTW(k)H)−1HTW(k) is the matrix of
S-transformation of the displacement vector to a common
datum in epoch 1, W(k=1) = I, I ∈ �u×u is the identity
matrix and

w
(k+1)
i = 1/

∣∣
∣d̂(k)i

∣∣
∣ (11)

It is possible that during the iterations (10) some d̂(k)i
may approach zero, causing numerical instabilities, because

1/
∣∣∣d̂(k)i

∣∣∣ becomes very large. For this reason in practice, Eq.

(11) is replaced with the equation

w
(k+1)
i = 1

/ (∣∣
∣d̂(k)i

∣∣
∣ + c

)
, (12)

where c is the precision for computations, e.g., 0.0001 m.
Proposals for uses of other solutions in this task can be
found in other papers, e.g., Marx (2013). The iterative
process (10) is finished when all components of the difference∣∣∣d̂(k+1) − d̂(k)

∣∣∣ are lower than the adopted precision for com-

putations c (convergence). The final robust estimator of the
vector of displacement components for all analyzed points
in an FCN, i.e., vector d̂R and the final cofactor matrix of
this vector, i.e., the matrix Qd̂R , is obtained from the last

iterative step. Vector d̂R consists of vectors d̂R
i for single

points in an FCN, i.e., (d̂R)T = [. . . , (d̂R
i )

T, . . .], and the
matrix Qd̂R , neglecting the correlation between the points
and contains cofactor matrices of these vectors, i.e., Qd̂R =
diag(. . . ,Qd̂R

i
, . . .). Proposals for uses of other objective
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functionsψ(t) in this task (among others, the objective func-
tion of the LAS method, the Huber method or the Danish
method) can be found in papers by Caspary and Borutta
(1987), Caspary et al. (1990), Setan and Singh (2001).

2.3 Step 3: assessment of the significance of the
displacement vector

All d̂R
i vectors are assessed statistically for significance. The

aim of this assessment is to check if these vectors are actu-
ally displacements or only the result of random measurement
errors. The first step consists in checking the global signifi-
cance test

T =
(

d̂R
)T

Q+
d̂R

(
d̂R

)

uσ̂ 2
0

< F (α, u, f ) , (13)

where

σ̂ 2
0 =

(
v̂T
(1)P(1)v̂(1) + v̂T

(2)P(2)v̂(2)
) /

f (14)

is the pooled variance factor estimator for both epochs and
v̂(e) = Aδ̂x(e) − (lobs

(e) − l0), f = f(1) + f(2), f(e) = n(e) −
u(e) + de(e), α is the significance level, i.e., the probability
of making a Type I error in testing statistical, u = rank(Qd̂R )

and F is the critical value read from Fisher’s cumulative dis-
tribution function (Aydin 2013). If the global test passes, this
means that all d̂R

i vectors are not statistically significant and,
thus, these points can be regarded as actually stable. In the
opposite case, localization of single-point displacements is
then performed. The single-point test, neglecting the corre-
lation between the points, is

Ti =

(
d̂R

i

)T
Q−1

d̂R
i

(
d̂R

i

)

ui σ̂
2
0

< F (α, ui , f ) , (15)

where ui = rank(Qd̂R
i
) is the number of the dimension of the

single-point displacement vector (1 or 2 or 3) (Chen 1983;
Setan and Singh 2001). Instead of the local test (15), neglect-
ing the correlation between the points, one can also apply the
local test based on the decorrelated matrix Qd̂R . More details
are given in Caspary (2000). If the single-point test passes,
this means that the displacement of point i is not statistically
significant and, thus, this point can be regarded as actually
stable. In the opposite case, this point can be regarded as
unstable. The solution (15) can be used for 1-D, 2-D and 3-D
networks. Moreover, another condition can be derived from
the condition (15) for better interpretation of results

d̂R
i ∈ E = f

(
F, σ̂ 2

0 ,Qd̂R
i

)
, (16)

where E is the confidence interval (1-D network) or the set of
points formed by the confidence ellipse (2-D network), (e.g.,
Kamiński and Nowel 2013) or the confidence ellipsoid (3-D

network) (e.g., Cederholm 2003). In this case, the signifi-
cance assessment consists in checking graphically whether
the vector d̂R

i does not exceed the confidence interval for
determination of this vector (1-D network) or the confidence
ellipse for determination of this vector (2-D network) or the
confidence ellipsoid for determination of this vector (3-D
network). Of course, both solutions (15), (16) give the same
results.

It should be stressed that the matrix Qd̂R is approximate

since the relation between x̂(2) − x̂(1) and d̂R is nonlinear
according to (10). Thus, the law of variance propagation
does not apply. In this case, the proper cofactor matrix can,
of course, be determined only by the Monte Carlo approach
(e.g., Du Mond and Lenth 1987). Moreover, the assumption
that the Ti statistic has Fisher’s distribution is also approxi-
mate based on the assumption d̂R ∼ N . The relation between
(x̂(2)− x̂(1)) ∼ N and d̂R is nonlinear and, therefore, the esti-
mator d̂R does not have a normal distribution. The distribu-
tion of this estimator is not known and the initial assumption
d̂R ∼ N is only approximate. Consequently, the assumptions
(d̂R

i )
TQ−1

d̂R
i
(d̂R

i ) ∼ χ2 and Ti ∼ F are also approximate,

although the approximate F tests (13, 15, 16) are accepted.

3 Robust estimation of deformation from observation
differences

As previously mentioned, classical robust methods for defor-
mation analysis of FCN are based on the results of separate
adjustments of observations for epochs 1 and 2, i.e.,

lobs
(1) LS estimation−−−−−−−−−→ x̂(1)

robust S-transformation−−−−−−−−−−−−−−−−−→ d̂R

lobs
(2) LS estimation−−−−−−−−−→ x̂(2)

The basis for such an approach is the assumption that vector
d is the difference in functions of independent observations
(d = f (lobs

(2) ) − f (lobs
(1) )). If the observations are distorted in

both epochs only by random errors, then such an approach is
correct, but not if observations are additionally distorted by
constant errors.

First (and most importantly), separate adjustments fulfill
the condition for the closing of geometric figures, which is not
significant in the deformation analysis process. Such a proce-
dure, in the case of the occurrence of constant errors, leads to
an unjustified increase in the values of the vectors v̂(1), v̂(2)
and, thus, the factor σ̂ 2

0 (14) and, consequently, may lead to
incorrect assessment of the statistical significance of the d̂R

i
vectors (13), (15) or (16). Second, if the matrices P(1), P(2)
are not proportional in both epochs (e.g., for GNSS vectors),
vector d̂R will be distorted by the effect of constant errors.
These errors will not cancel out completely in the iterative
process (10) because, in this case, their effect on the values
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of the vectors x̂(1), x̂(2) (1) will be different. As a result, the
vector d̂R will be partly distorted by their effect. Third, the
vector d̂R and the factor σ̂ 2

0 are estimated independently, in
two different computational processes. As a result, the vec-
tor d̂R and the factor σ̂ 2

0 have different stochastic properties.
This discrepancy may lead to incorrect assessment of the
statistical significance of the vectors d̂R

i .
As mentioned in the introduction, when the displacement

vector is determined directly from differences in unadjusted
observations, the above problems do not occur. Therefore,
this paper proposes a new robust alternative method for defor-
mation analysis of FCN (REDOD). The basis of this method
is the assumption that vector d is a function of differences in
independent observations (d = f (lobs

(2) − lobs
(1) )), i.e.,

(
lobs
(2) − lobs

(1)

) robust estimation−−−−−−−−−−−−−−−→ d̂R

If observations in both epochs are additionally distorted by
constant errors, such an approach can eliminate the effect of
these errors from deformation analysis results. As a result
of estimation, the vector of differences in observations is
assigned only such a vector of residuals which enables deter-
mination of vector d̂R , but “does not bend” observations to
fulfill the conditions for the closing of geometric figures.
An unjustified increase in the value of the factor σ̂ 2

0 (14)
and distortions of vector d̂R are avoided this way. Moreover,
the vector d̂R and the factor σ̂ 2

0 are estimated in the same
computational process and, as a consequence, have the same
stochastic properties.

The algorithm of the proposed REDOD method consists
of the following two steps.

3.1 Step 1: robust estimation of the displacement vector

It can be seen that if the same geometric network ele-
ments have been measured at both analyzed epochs, then
A(1) = A(2) = A, e.g., for continuous control measurements.
In this case, it is possible to construct a certain alternative and
very natural deformation model, in which the vector of obser-
vation differences will be the vector of “observations” and
the sought displacement vector will be the vector of para-
meters. If interepoch observations, which are described by
the model (2), are subtracted from each other, we will obtain

for two epochs
(

lobs
(2) − l0

)
+ v(2) −

(
lobs
(1) − l0

)
− v(1) =

Aδx(2) − Aδx(1) and then
(

lobs
(2) − lobs

(1)

)
+v� =Ad,

(
lobs
(2)−lobs

(1)

)
∼ N (Ad,C�) (17)

because δx(2) − δx(1) = d, v� = v(2) − v(1), C� ∈ �n×n

is the covariance matrix of differences in observations (Laz-
zarini et al. 1977). Because the vector of displacement com-
ponents of FCN points may have a contaminated normal dis-
tribution with a mean of zero and accepted standard devia-

tion, the solution to the system of Eq. (17) should be a robust
estimator of vector d. In the REDOD method, as in the IWST
method, the L1-norm estimator of vector d will be used for
this purpose. Moreover, because errors of geodetic observa-
tions are of random nature (according to normal distribution),
the robust estimator of vector d should simultaneously fulfill
the optimization condition of the LS method for the vector
of residuals of differences in observations. Consequently, the
following optimization problem for the system of Eq. (17) is
obtained

,

(18)

where v� ∈ �n×1 is the vector of residuals of differences in
observations, Q� = (Q(1) + Q(2)) ∈ �n×n is the cofactor
matrix of differences in observations and P� = Q−1

� ∈ �n×n

is the weight matrix of differences in observations.
To find the minimum of the first objective function φ (d),

the classical technique based on the differential calculus can
be applied. Determining the gradient of the objective func-
tion φ (d) and then using the necessary condition for the
existence of a minimum of this function (∂φ (d) /∂d)T = 0,
the following system of normal equations is obtained

N�d − ω� = 0, (19)

where N� = ATP�A, ω� = ATP�
(

lobs
(2) − lobs

(1)

)
. The

objective function φ (d) is a convex function. Therefore, if
the necessary condition is fulfilled, then the sufficient condi-
tion for a minimum of this function is fulfilled as well. The
obtained system of normal Eq. (19) is, in fact, the set of per-
missible solutions (constraints) for vector d, minimizing the
objective function φ (d).

Continuing the solution of the optimization problem (18),
we find the minimum of the second objective function ψ(d),
taking into account the constraints (19). The function ψ(d)
is not repeatedly differentiable and its minimum cannot be
found using the classical technique, based on differential cal-
culus, as minimization of this objective function requires the
use of complex linear programming procedures (e.g., simplex
method). For this reason, in this paper, the functionψ(d)was
replaced with an alternative, repeatedly differentiable func-
tion with the form (Kadaj 1988)

ψA(d) =
u∑

i=1

√
d2

i + c2, (20)
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where c is the precision for computations, e.g., 0.0001 m.
With the assumption that c is a numerically insignificant
value, the component of the function ψA(d) is equivalent to
the component of the function ψ(d) and then both functions
are equivalent in terms of optimization properties. Objective
function ψA(d) is now repeatedly differentiable and its min-
imum can be found using the classical technique, based on
differential calculus. According to the optimization theory,
the method of Lagrangian multipliers can be applied to find
the minimum of the objective function ψA(d) with the con-
straints (19). According to this method, the objective function
ψA(d) with the constraints (19) is replaced by a secondary
objective function without constraints (Lagrangian function)

L(d) =
u∑

i=1

√
d2

i + c2 − κT (N�d − ω�) , (21)

where κ ∈ �u×1 is the vector of Lagrangian multipliers. The
necessary conditions for the existence of a minimum of the
objective function ψA(d) with the constraints (19) then have
the following form (Kuhn–Tucker necessary conditions)

(∂L (d) /∂d)T = 0 (22)

κT (N�d − ω�) = 0 (23)

The objective function ψA(d) is a convex function. There-
fore, if the above necessary conditions are fulfilled, the suffi-
cient conditions for a minimum of this function are fulfilled
as well. Determining the gradient of the function L(d) and
then using the necessary condition (22), the following equa-
tion is obtained

Wd̂ − N�κ̂ = 0 (24)

where

W = diag

(
. . . , 1

/√
d̂2

i + c2, . . .

)
(25)

and NT
� = N�, WT = W, because N� and W are symmet-

rical matrices. The second necessary condition (23) can be
replaced by the condition (19), (for κ̂ �= 0). Finally, after
determination of vector d̂ from Eq. (24), the necessary con-
dition (23) will assume the following form (system of normal
equations of correlates)

Mκ̂ − ω� = 0, (26)

where M = N�W−1N�. If vector κ̂ solves the system of Eq.
(26), vector d̂ minimizes the objective function ψA(d) with
the constraints (19). Therefore, after determination of vector
κ̂ from Eq. (26) and its substitution into Eq. (24), we finally
obtain

Wd̂ − N�M−ω� = 0, (27)

where M− is a g-inverse, such that MM−M = M. In the
considered case of an FCN, A is the matrix of the columnarly

incomplete rank (4), which is why the matrix M is singular
and there is no ordinary (classical) inverse M−1. To determine
the g-inverse M−, according to g-inverse theory, the matrix
M ∈ �u×u can be reduced to block form

M =
[

M11 M12

M21 M22

]
→ M− =

[
M−1

11 0
0 0

]
, (28)

where M11 ∈ �r×r is a non-singular matrix with rank r .
The g-inverse of the matrix M is then the submatrix M−1

11 ,
complemented with zeros to the dimension �u×u (Rao 1973;
Prószyński 1981). Of course, there are also other methods for
determination of the g-inverse of this matrix. It can, therefore,
be seen that we have here the problem of a datum defect
for the geodetic network, which has not yet been solved.
To reduce the matrix M to the form (28), it is sufficient to
represent the matrix A in block form (5). Therefore, in this
case, the problem of a datum defect for the geodetic network
can be solved analogously as in the classical method, only in
this case it is done simultaneously for both epochs. Moreover,
let us recall that the same optimization conditions were also
proposed in both methods. It can, therefore, be seen that both
methods differ only in the functional models, i.e., (9) and
(18), while the other theoretical assumptions are common.
Returning to the computations, after substitution of the block
matrix A (5) into the matrix M, we obtain

M− =
[
(Q11W−1

1 Q11 + Q12W−1
2 QT

12)
−1 0

0 0

]
, (29)

where Q11 = AT
1 P�A1, Q12 = AT

1 P�A2 and W =
diag(W1,W2). After substitution of the matrix (29) into the
system of Eq. (27), we finally obtain

Wd̂ − DT
(

DW−1DT
)−1

AT
1 P�

(
lobs
(2) − lobs

(1)

)
= 0 (30)

where D = [ AT
1 P�A1 AT

1 P�A2 ]. We compute on the basis
of the system of Eq. (30) the robust estimator of vector d
and its cofactor matrix. The computations are carried out in
an iterative cycle with the following formula (approximate
Newtonian process)

d̂(k) = R(k)
(

lobs
(2) − lobs

(1)

)

Q(k)

d̂
= R(k)

(
Q(1) + Q(2)

) (
R(k)

)T

W(k+1) = diag
(
. . . , w

(k+1)
i , . . .

)

⎫
⎪⎪⎬

⎪⎪⎭
k=1,2,...

(31)

where R(k) = (
W(k)

)−1
DT

(
D

(
W(k)

)−1
DT

)−1
AT

1 P� is

the matrix of transformation of the vector of differences in
observations into the displacement vector, W(k=1) = I and

w
(k+1)
i = 1

/
√(

d̂(k)i

)2 + c2 ∼= 1
/ (∣∣∣d̂(k)i

∣∣∣ + c
)

(32)

It should be stressed that there still remains problem of outlier
detection (observations), which has not yet been solved. In

123



756 K. Nowel, W. Kamiński

this case, this problem can be solved, e.g., on the basis of
Baarda’s data snooping or Pope’s test, only in this case it is
done on the basis of the vector of residuals of differences in
observations from the first iterative step (31). Unfortunately,
in this case, robust estimation “does not work” for detecting
outliers (observations).

The iterative process (31) is finished when all components

of the difference
∣
∣∣d̂(k+1) − d̂(k)

∣
∣∣ are lower than the adopted

precision for computations c (convergence). The final robust
estimator of the vector of displacement components for all
analyzed points in an FCN, i.e., vector d̂R and the final cofac-
tor matrix of this vector, i.e., matrix Qd̂R , is obtained from
the last iterative step.

3.2 Step 2: assessment of the significance of the
displacement vector

Assessment of the significance of the vectors d̂R
i can of course

be performed analogously as in the classical method, i.e., on
the basis of the approximate global (13) and local (15) or (16)
F tests. For the stochastic model of the REDOD method (18),
the variance factor estimator has the following form

σ̂ 2
0 = v̂T

�P�v̂�/(n − u + de) (33)

4 Comparison of the classical IWST method
with the proposed REDOD method

As previously mentioned, classical deformation analysis of
FCN is most often performed by robust methods. The best
known methods from this group include the IWST method.
This method was used, among others, for deformation analy-
sis of the Tevatron atomic particle accelerator complex at the
Fermilab laboratory in the US and for deformation analysis
of the world’s largest strip copper mine in Chile. The IWST
method has also been implemented in the automated ALERT
monitoring system developed by the Canadian Centre for
Geodetic Engineering and in the universal GeoLab geodetic
computation software. Section 2 describes the algorithm of
classical robust methods. Particular attention was paid to the
IWST method. In Sect. 3, a new robust deformation analy-
sis method was proposed based on classical robust methods.
This method was conventionally called REDOD.

The theoretical principles of the proposed REDOD met-
hod are very similar to the theoretical principles of the clas-
sical IWST method. Both methods have in common, among
others, the definition of the datum for the geodetic network,
i.e., the zero-variance computational base (5), the optimiza-
tion condition for the displacement vector (the definition of
the datum for the displacement vector), i.e., the minimal
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Fig. 1 Block diagram of the algorithms of the IWST and REDOD
methods

L1-norm (9, 18), or the probabilistic model for the obser-
vations, i.e., normal distribution (2, 17).

The theoretical principles of both methods differ only in
the functional deformation models, i.e., (9) and (18). Gener-
ally, the functional models (9) and (18) assume that the dis-
placement vector is a function of differences in adjusted coor-
dinates and differences in unadjusted observations, respec-
tively. It is worth noting once more that the functional model
(18) has some advantages which the functional model (9)
does not have, namely, the functional model (18) accepts
measurement errors constant in both epochs, which can be
of any magnitude and may be different for individual geo-
metric elements of the network. Moreover, unlike model (9),
model (18) ensures stochastic consistency between the dis-
placement vector estimator and the variance factor estimator.
This results from the fact that both estimators are estimated
here in the same computational process.

As a consequence of using different functional models, the
aithms of the IWST and REDOD methods differ significantly.
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In Sects. 2 and 3, these algorithms were derived and described
in detail. Only their basic aspects are shown below, in the
form of a block diagram (Fig. 1).

5 Numerical tests

Numerical tests were performed on simulated FCN. The tests
compared deformation analysis results obtained from the
IWST and REDOD methods.

5.1 Example 1: deformation analysis of the leveling FCN

This test was performed on the example of a leveling network
of four points A, B, C, D (Fig. 2). Computations were carried
out for two variants of simulated observations.

First, the vector of theoretical heights of controlled points
in epoch 1 x(1) = [0.000, 0.000, 0.000, 0.000]T m, the
vector of theoretical displacements of controlled points d =
[0, 10, 0, 0]T mm and the vector of theoretical heights of
controlled points in epoch 2 x(2) = [0.000, 0.010, 0.000,
0.000]T m were assumed. Theoretical height differences in
both epochs were computed on the basis of the vectors x(1)
and x(2).

In variant 1, the theoretical height differences were dis-
torted with random errors according to the normal distribu-
tion and the significance level α = 0.05. The same standard
deviations of simulated errors of height difference measure-
ment σh = 4 mm were assumed in both epochs.

In variant 2, the theoretical height differences were dis-
torted with random errors from variant 1 and additionally
with constant errors εh = +2 mm.

The variants of simulated observations are presented in
Table 1. Carrying out in succession the computations (10),
(14), (13) and (15), complete results were obtained using
IWST method. Carrying out in succession the computations
(31), (33), (13) and (15) complete results were obtained
using REDOD method. In both methods, constant heights
zD were assumed to eliminate the network’s datum defect
[Eq. (3) in the classical method and Eq. (27) in the proposed

Fig. 2 Leveling FCN

Table 1 Simulated observations in epoch 1 and epoch 2

Observation designation Variant (m)

b e 1 2

lobs
(1) lobs

(2) lobs
(1) lobs

(2)

A B −0.003 0.014 −0.001 0.016

B C −0.004 −0.011 −0.002 −0.009

C A −0.001 0.006 0.001 0.008

A D 0.002 −0.005 0.004 −0.003

D C −0.001 0.004 0.001 0.006

B D 0.006 −0.009 0.008 −0.007

b beginning, e end

method], i.e., the submatrix A2 consisted of the de = 1 last
column in the matrix A, as was proposed in the theoretical
part of this paper (5). Standard deviations of simulated errors
of height difference measurement were assumed as a priori
mean errors of height difference measurement. The values of
a priori mean errors were the basis for determining the matri-
ces P(1), P(2) (IWST) and P� (REDOD). Outlier detection
was carried out using Baarda’s method. The critical values
wereχ2

0.05(3)/3 = 2.61 and tα0/2 = 2.51 (β0 = 0.20) for the
global and local test, respectively. In variant 1, in the IWST
method, the global test passed. In variant 2, in the IWST
method, the global test failed in epoch 2 (σ̂ 2

0(2) = 2.89 >
2.61), but the local test passed for all standardized residu-
als. In the REDOD method, the global test passed in both
variants. In the IWST method, the test on the variance ratio
passed in both variants [critical value F(0.05, 3, 3) = 9.28].

The results of the deformation analysis are presented in
Table 2.

In variant 1, both methods give the same, correct results.
In both methods, point B is considered unstable. In variant 2,
in the IWST method, the value of vector d̂R is the same as in
variant 1. Therefore, constant errors have no effect on vector
d̂R . However, the results of the assessment of significance
are different than in variant 1. This is caused by the effect
of constant errors. This effect was not eliminated from the
values of the vectors v̂(1), v̂(2). This led to an increase in
the value of σ̂ 2

0 (14), underestimation of the values of T
(13), Ti (15) and, consequently, erroneous assessment of the
significance of vector d̂R

B . In the REDOD method, the effect
of constant errors is eliminated. Both the value of vector d̂R

and the results of the assessment of significance are the same
as in variant 1.

5.2 Example 2: deformation analysis of the horizontal FCN

This test was performed on the example of a horizontal net-
work of six points A, B, C, D, E, F (Fig. 3). Computations
were carried out for four variants of simulated observations.
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Table 2 The results of the deformation analysis of the leveling FCN

Variant Point IWST REDOD

d̂R
i = d̂z R

i
(mm)

σ̂ 2
0

√
Qd̂R

i
= √

Qd̂z R
i

(m)
T Ti

d̂R
i = d̂z R

i
(mm)

σ̂ 2
0

√
Qd̂R

i
= √

Qd̂z R
i

(m)
T Ti

1 A 0.5 1.01 0.0014 6.03a 0.12 0.5 1.05 0.0014 5.79a 0.11

B 11.0 0.0033 10.61a 11.0 0.0033 10.19a

C −1.0 0.0026 0.15 −1.0 0.0026 0.14

D −5.5 0.0033 2.79 −5.5 0.0033 2.68

2 A 0.5 1.88 0.0014 3.23 0.06 0.5 1.05 0.0014 5.79a 0.11

B 11.0 0.0033 5.68 11.0 0.0033 10.19a

C −1.0 0.0026 0.08 −1.0 0.0026 0.14

D −5.5 0.0033 1.50 −5.5 0.0033 2.68

a The test statistic exceeds the critical value for the local F(0.05, 1, 6) = 5.99 or global F(0.05, 3, 6) = 4.76 test

Fig. 3 Horizontal FCN

First, the vector of theoretical coordinates of controlled
points in epoch 1 x(1)= [350.000, 200.000, 300.000, 300.000,
200.000, 300.000, 150.000, 200.000, 200.000, 100.000,
300.000, 100.000]T m, the vector of theoretical displace-
ments of controlled points d = [5, 5, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0]T mm and the vector of theoretical coordinates of con-
trolled points in epoch 2 x(2) = [350.005, 200.005, 300.000,
300.000, 200.000, 300.010, 150.000, 200.000, 200.000,
100.000, 300.000, 100.000]T m were assumed.

In variant 1, observations were distorted with random
errors. Theoretical observations were computed on the basis
of the vectors x(1), x(2). The theoretical observations were
then distorted with random errors according to the normal
distribution and the significance level α = 0.05. The same
standard deviations of simulated errors of angle measure-
ment σβ = 10cc and distance measurement σs = 3 mm
were assumed in both epochs.

In variant 2, observations were also distorted with random
errors. Theoretical observations were computed on the basis

of the vectors x(1), x(2). The theoretical observations were
then distorted with random errors according to the normal
distribution and the significance level α = 0.05. However,
different standard deviations of simulated errors of angle
measurement were assumed in both epochs in this case. In
epoch 1, the standard deviation of angle measurement errors
at central points A, B, C σβ = 15cc, at central points D,
E, F σβ = 5cc and the standard deviation of distance mea-
surement errors σs = 3 mm were assumed. In epoch 2, the
standard deviation of angle measurement errors at central
points A, B, C σβ = 5cc, at central points D, E, F σβ = 15cc

and the standard deviation of distance measurement errors
σs = 3 mm were assumed.

In variant 3, observations were distorted with random
errors and constant errors. The vector εx = [3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3]T mm was added to the vectors x(1), x(2) and the
vectors of eccentric coordinates of the target xε(1), xε(2) were
obtained. The eccentric observations were then computed
on the basis of the theoretical coordinates of the instrument
x(1), x(2) and the eccentric coordinates of the target xε(1), xε(2).
In other words, observations distorted by constant errors in
the form of eccentricity of the target in relation to the instru-
ment with the value of εx = +3 mm along the axes X and Y
were obtained this way. These observations were then addi-
tionally distorted with random errors from variant 1.

In variant 4, observations were distorted with constant
errors from variant 3 and random errors from variant 2.

The variants of simulated observations are presented in
Table 3.

Complete results were obtained in the IWST method by
carrying out the computations (10), (14), (13) and (16) in
succession. Complete results were obtained in the REDOD
method by carrying out the computations (31), (33), (13)
and (16) in succession. In both methods, constant coordi-
nates yE, xF, yF were assumed to eliminate the network’s
datum defect (Eq. (3) in the classical method and Eq. (27)
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Table 3 Simulated observations in epoch 1 and epoch 2

Observation designation Variant (g), (m)

c l r 1 2 3 4

lobs
(1) lobs

(2) lobs
(1) lobs

(2) lobs
(1) lobs

(2) lobs
(1) lobs

(2)

A B C 33.0507 33.0457 33.0510 33.0455 33.0515 33.0465 33.0518 33.0463

A C D 37.4338 37.4364 37.4344 37.4360 37.4343 37.4369 37.4349 37.4364

A D E 37.4354 37.4320 37.4354 37.4329 37.4361 37.4327 37.4361 37.4336

A E F 33.0503 33.0473 33.0500 33.0477 33.0513 33.0484 33.0510 33.0488

B C D 37.4328 37.4402 37.4332 37.4404 37.4344 37.4418 37.4348 37.4420

B D E 33.0501 33.0488 33.0507 33.0495 33.0507 33.0494 33.0513 33.0501

B E A 59.0319 59.0370 59.0332 59.0368 59.0339 59.0389 59.0352 59.0387

C D F 59.0341 59.0289 59.0340 59.0292 59.0345 59.0293 59.0344 59.0296

C F A 33.0512 33.0513 33.0488 33.0496 33.0515 33.0516 33.0491 33.0499

C A B 37.4351 37.4277 37.4333 37.4282 37.4355 37.4282 37.4337 37.4287

D E F 33.0504 33.0522 33.0498 33.0492 33.0495 33.0513 33.0489 33.0483

D F A 37.4327 37.4338 37.4338 37.4356 37.4322 37.4333 37.4333 37.4351

D A B 37.4359 37.4326 37.4335 37.4303 37.4352 37.4320 37.4328 37.4297

D B C 33.0510 33.0527 33.0508 33.0509 33.0499 33.0517 33.0497 33.0499

E F A 37.4333 37.4326 37.4331 37.4332 37.4317 37.4310 37.4315 37.4316

E A B 33.0491 33.0508 33.0497 33.0512 33.0484 33.0501 33.0490 33.0505

E B D 59.0337 59.0331 59.0338 59.0325 59.0318 59.0312 59.0319 59.0306

F A C 59.0316 59.0332 59.0335 59.0310 59.0313 59.0329 59.0333 59.0307

F C D 33.0509 33.0512 33.0500 33.0528 33.0505 33.0509 33.0496 33.0525

F D E 37.4343 37.4342 37.4336 37.4339 37.4339 37.4338 37.4332 37.4335

– A B 111.804 111.807 111.801 111.801 111.806 111.809 111.803 111.803

– B C 100.007 99.993 99.993 99.997 100.004 99.990 99.990 99.994

– C D 111.801 111.811 111.800 111.807 111.797 111.807 111.796 111.803

– D E 111.798 111.802 111.802 111.804 111.797 111.801 111.801 111.803

– E F 100.001 100.001 99.999 99.997 100.004 100.004 100.002 100.000

– F A 111.804 111.812 111.805 111.809 111.808 111.816 111.809 111.813

c central, l left, r right

in the proposed method), i.e., the submatrix A2 consisted
of the de = 3 last columns in the matrix A, as was pro-
posed in the theoretical part of this paper (5). The theo-
retical coordinates from epoch 1 were assumed as approxi-
mate coordinates. Standard deviations of simulated errors of
angle and distance measurement were assumed as a priori
mean errors of angle and distance measurement. The val-
ues of a priori mean errors were the basis for determining the
matrices P(1), P(2) (IWST) and P� (REDOD). Outlier detec-
tion was carried out by Baarda’s method. The critical values
were χ2

0.05(17)/17 = 1.62 and tα0/2 = 3.63 (β0 = 0.20)
for the global and local test, respectively. The global test
passed in variants 1 and 2 in the IWST method, but the global
test failed in both epochs in variant 3 in the IWST method
(σ̂ 2

0(1) = 2.51 > 1.62, σ̂ 2
0(2) = 2.10 > 1.62), although the

local test passed for all standardized residuals. In variant 4,
in the IWST method, the global test failed in both epochs

(σ̂ 2
0(1) = 2.98 > 1.62, σ̂ 2

0(2) = 3.42 > 1.62) and the local
test failed in both epochs. The largest standardized resid-
uals of epochs 1 and 2 were v̂DEF/σv̂DEF = 4.51 > 3.63
and v̂ABC/σv̂ABC = 5.36 > 3.63, respectively. These obser-
vations were deleted. The critical values at that point were
χ2

0.05(16)/16 = 1.64 and tα0/2 = 3.58 (β0 = 0.20) for
the global and local test, respectively. In the IWST method,
the global test failed again in both epochs (σ̂ 2

0(1) = 1.98 >

1.64, σ̂ 2
0(2) = 1.92 > 1.64), but the local test passed now

for all standardized residuals. In the REDOD method, the
global test passed in all variants. In the IWST method, the
test on the variance ratio passed in all variants [critical value
F(0.05, 17, 17) = 2.27].

The results of deformation analysis are presented in
Table 4.

In variant 1, both methods yield the same results (within
the limits of accuracy of computations).
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Table 4 The results of deformation analysis of the horizontal FCN

Variant Point IWST REDOD

d̂R
i =[

d̂x R
i

d̂ y R
i

]

(mm)

σ̂ 2
0

√
Qd̂R

i
=

⎡

⎣

√
Qd̂x R

i

√
Qd̂x R

i d̂ y R
i√

Qd̂ y R
i d̂x R

i

√
Qd̂ y R

i

⎤

⎦

(m)

E =
d̂R

i =[
d̂x R

i
d̂ y R

i

]

(mm)

σ̂ 2
0

√
Qd̂R

i
=

⎡

⎣

√
Qd̂x R

i

√
Qd̂x R

i d̂ y R
i√

Qd̂ y R
i d̂x R

i

√
Qd̂ y R

i

⎤

⎦

(m)

E =

ai
bi

(mm)

ϕi
(g)

ai
bi

(mm)

ϕi
(g)

1 A 7.1 1.13 0.0025 0.0010 6.9 16 7.1 1.10 0.0025 0.0011 6.9 18

4.1 0.0010 0.0016 4.1 4.0 0.0011 0.0016 4.1

B −2.4 0.0021 0.0017 7.8 −44 −2.4 0.0021 0.0017 7.8 −41

−0.6 0.0017 0.0024 4.0 −0.7 0.0017 0.0025 4.1

C 1.0 0.0011 0.0001 7.3 0 1.0 0.0011 −0.0004 7.3 2

10.2 0.0001 0.0027 3.1 10.1 −0.0004 0.0027 3.0

D 0.4 0.0013 −0.0011 5.3 36 0.4 0.0014 −0.0011 5.2 36

−1.3 −0.0011 0.0017 2.8 −1.4 −0.0011 0.0017 2.8

E −0.8 0.0012 0.0007 3.9 48 −0.8 0.0013 0.0007 3.9 46

−0.7 0.0007 0.0012 2.7 −0.7 0.0007 0.0012 2.7

F −0.8 0.0016 −0.0011 4.9 −35 −0.7 0.0016 −0.0011 4.9 −35

0.2 −0.0011 0.0012 2.1 0.2 −0.0011 0.0011 2.0

2 A 4.8 0.73 0.0026 −0.0015 6.1 −28 5.1 0.74 0.0028 −0.0008 6.2 −10

2.9 −0.0015 0.0017 2.9 3.7 −0.0008 0.0019 4.1

B −0.3 0.0022 0.0013 5.2 23 −0.2 0.0018 0.0013 4.8 41

0.1 0.0013 0.0010 1.4 0.2 0.0013 0.0015 2.1

C 1.6 0.0013 0.0008 3.9 −30 2.1 0.0018 0.0006 4.3 −36

10.1 0.0008 0.0016 2.5 10.4 0.0006 0.0019 3.8

D 0.0 0.0010 −0.0003 2.3 −23 0.0 0.0012 −0.0004 3.6 7

−0.1 −0.0003 0.0009 1.9 −0.4 −0.0004 0.0016 2.6

E −0.1 0.0011 0.0011 5.1 −17 0.0 0.0008 0.0003 5.1 −1

−1.7 0.0011 0.0022 2.0 −1.1 0.0003 0.0023 1.8

F −0.2 0.0015 −0.0016 6.2 28 −0.9 0.0024 −0.0016 6.4 48

−1.7 −0.0016 0.0026 2.4 −1.4 −0.0016 0.0024 4.0

3 A 7.1 2.30 0.0025 0.0010 9.9 16 7.1 1.10 0.0025 0.0011 6.9 18

4.1 0.0010 0.0016 5.9 4.0 0.0011 0.0016 4.1

B −2.4 0.0021 0.0017 11.2 −44 −2.4 0.0021 0.0017 7.8 −41

−0.6 0.0017 0.0024 5.8 −0.7 0.0017 0.0025 4.1

C 1.0 0.0011 0.0001 10.5 0 1.0 0.0011 −0.0004 7.3 2

10.2 0.0001 0.0027 4.5 10.1 −0.0004 0.0027 3.0

D 0.4 0.0013 −0.0011 7.6 36 0.4 0.0014 −0.0011 5.2 36

−1.3 −0.0011 0.0017 4.0 −1.4 −0.0011 0.0017 2.8

E −0.8 0.0012 0.0007 5.6 48 −0.8 0.0013 0.0007 3.9 46

−0.7 0.0007 0.0012 3.9 −0.7 0.0007 0.0012 2.7

F −0.8 0.0016 −0.0011 7.1 −35 −0.7 0.0016 −0.0011 4.9 −35

0.2 −0.0011 0.0012 3.0 0.2 −0.0011 0.0011 2.0

4 A 3.5 1.95 0.0022 −0.0017 10.0 −46 5.1 0.74 0.0028 −0.0008 6.2 −10

1.4 −0.0017 0.0021 4.5 3.7 −0.0008 0.0019 4.1

B −6.2 0.0028 0.0010 10.0 9 −0.2 0.0018 0.0013 4.8 41

0.0 0.0010 0.0005 1.1 0.2 0.0013 0.0015 2.1
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Table 4 continued

Variant Point IWST REDOD

d̂R
i =[

d̂x R
i

d̂ y R
i

]

(mm)

σ̂ 2
0

√
Qd̂R

i
=

⎡

⎣

√
Qd̂x R

i

√
Qd̂x R

i d̂ y R
i√

Qd̂ y R
i d̂x R

i

√
Qd̂ y R

i

⎤

⎦

(m)

E =
d̂R

i =[
d̂x R

i
d̂ y R

i

]

(mm)

σ̂ 2
0

√
Qd̂R

i
=

⎡

⎣

√
Qd̂x R

i

√
Qd̂x R

i d̂ y R
i√

Qd̂ y R
i d̂x R

i

√
Qd̂ y R

i

⎤

⎦

(m)

E =

ai
bi

(mm)

ϕi
(g)

ai
bi

(mm)

ϕi
(g)

C 1.3 0.0013 0.0009 6.4 −31 2.1 0.0018 0.0006 4.3 −36

11.8 0.0009 0.0016 4.0 10.4 0.0006 0.0019 3.8

D −1.0 0.0014 0.0000 4.9 0 0.0 0.0012 −0.0004 3.6 7

0.1 0.0000 0.0002 0.9 −0.4 −0.0004 0.0016 2.6

E 2.3 0.0021 0.0014 9.4 −43 0.0 0.0008 0.0003 5.1 −1

−2.8 0.0014 0.0023 6.2 −1.1 0.0003 0.0023 1.8

F −1.8 0.0015 −0.0010 10.7 10 −0.9 0.0024 −0.0016 6.4 48

−4.5 −0.0010 0.0029 5.2 −1.4 −0.0016 0.0024 4.0

In both methods, the global significance test of the displacement vector T (13) failed for all variants

In variant 2, the values of vector d̂R and the parameters
of confidence ellipses differ in both methods. This is caused
by disproportionateness of the matrices P(1), P(2) (IWST)
to the matrix P� (REDOD). However, these differences are
not significant. Moreover, the sum of absolute values of true
errors for the components of vector d̂R is the same in both

methods,
∑ ∣

∣∣d̂ R
i − di

∣
∣∣ = 8.2 mm.

In variant 3, in the IWST method, the value of vector d̂R

is the same as in variant 1. Therefore, constant errors have no
effect on vector d̂R . However, the values of the parameters
of confidence ellipses differ significantly from the values in
variant 1. This is caused by the effect of constant errors.
This effect was not eliminated from the values of the vectors
v̂(1), v̂(2). This led to an increase in the value of σ̂ 2

0 (14) and,
consequently, to an increase in the values of the parameters
of confidence ellipses (16). In the REDOD method, the effect
of constant errors is eliminated. Both the values of vector d̂R

and the values of the parameters of confidence ellipses are
the same as in variant 1.

In variant 4, in the IWST method, the value of vector d̂R

differs significantly from the value in variant 2. The sum of
absolute values of true errors for the values of vector d̂R is sig-

nificantly higher than in variant 2,
∑∣

∣∣d̂ R
i − di

∣
∣∣ = 26.9 mm.

This is caused by the disproportion of matrix P(1) to matrix
P(2). This in turn led to a disproportionate effect of constant
errors on the values of the vectors x̂(1), x̂(2) (1) and, con-
sequently, prevented complete reduction of these errors in
the iterative process (10). The values of the parameters of
confidence ellipses also differ significantly from the values
in variant 2. As in variant 3, this is caused by the effect of

constant errors on the value of σ̂ 2
0 . In the REDOD method,

the effect of constant errors is eliminated. Both the values
of vector d̂R and the values of the parameters of confidence
ellipses are the same as in variant 2.

Figure 4 presents graphical assessment of the significance
of vector d̂R (16).

In the case of the occurrence of only random errors (Fig. 4,
variants 1, 2), the results of assessment of significance are
correct in both methods. The displacements of points A and
C are considered significant in both variants.

In the case of the occurrence of random errors and con-
stant errors (Fig. 4, variants 3, 4), the results of assessment
of significance in the IWST method are not correct. Only
the displacement of point C is considered significant in both
variants. This is caused by the effect of constant errors. In the
REDOD method, the results of assessment of significance are
correct. The displacements of points A and C are considered
significant in both variants.

6 Summary and conclusions

Deformation measurements have a repeatable nature. In other
words, deformation measurements are performed at differ-
ent moments of time, but often with the same equipment,
methods, geometric conditions and in a similar environment
in epochs 1 and 2. Moreover, the same instrument and tar-
get are most often set on given points in both epochs. It is,
therefore, reasonable to assume that the results of deforma-
tion measurements can be distorted both by random errors
and by some non-random errors, which are constant in both
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Fig. 4 The results of
assessment of the significance of
displacements in the case of the
occurrence of random errors
(variants 1, 2) and in the case of
the occurrence of random and
constant errors (variants 3, 4)

epochs, i.e., errors with the same value and the same sign
in both epochs. There may be constant errors which can-
not be eliminated from measurement results, e.g., incom-
pletely reduced atmospheric refraction, eccentricity of the
target in relation to the instrument (caused by faulty exe-
cution or assembly, non-vertical mounting of the centering
sleeve in the instrument pillar or inclination of the instrument
pillar with time). There may also be constant errors which can
be eliminated from measurement results although, for exam-
ple, economic and technical limitations of the measurement
project prevent their elimination (Caspary 2000). For exam-
ple, a pillar could have a GNSS mounted, as well as a target
prism that RTS could observe (Fig. 5). In this case, the target
prism and GNSS receiver cannot define the same physical
point.

For FCN, the results of deformation measurements are
most often processed using the robust methods. Classical
robust methods do not completely eliminate the effect of con-
stant errors and, therefore, lead to reduced external reliability
level of processing and, consequently, to reduced quality of
deformation analysis results.

This paper proposes a new robust alternative method,
which was called REDOD. The performed numerical tests
showed that:

1. If the results of deformation measurements were addi-
tionally distorted by constant errors, the REDOD method
completely eliminated their effect from deformation
analysis results,

2. If the results of deformation measurements were distorted
only by random errors, the REDOD method yielded very
similar deformation analysis results as the classical IWST
method.

The REDOD method was developed for FCN, which has
the same observation structure in both epochs. That is, the
same geometric elements must be measured in the control
network in both epochs. For example, this condition is always
met for automated, continuous control measurements. As
previously mentioned, there is a high risk that the error of
measurement of the same geometric element of the network
in both epochs may contain a factor constant in both epochs
and, therefore, the REDOD method is strongly recommended
in this case.

It should be noted, however, that sometimes, in practice,
control networks have a different observation structure in
both epochs. For example, the classical technique in epoch 1
can be replaced with the GNSS technique in epoch 2. In this
case, the REDOD method can also be used. The input data for
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Fig. 5 Integrated deformation measurements (RTS, target prism and
GNSS receiver) for network of potential reference points (FCN)

the REDOD method will then be pseudo-observations of the
same geometric elements of the network in both epochs (e.g.,
vectors). Such pseudo-observations can be computed based
on preadjusted coordinates. However, it should be noted that
for networks which have different observation structure in
both epochs, there is a very low risk that error constant in both
epochs will occur and, therefore, in this case, the REDOD
method is not strongly recommended. As previously demon-
strated, if there are no error constant in both epochs, the
REDOD and IWST methods give much the same quality of
deformation analysis results.

he obtained results encourage further research into the lat-
est robust solutions for deformation estimation from observa-
tion differences. The method of sign-constrained robust least
squares, which detects over 50 % of outliers (Xu 2005), and
robust estimation by expectation maximization algorithm,
which is more sensitive to outliers than classical methods
(Koch 2013; Koch and Kargoll 2013), may be particularly
useful. Moreover, new numerical tests should be performed
for new approaches, based on many thousands of simulated
data sets (e.g., Monte Carlo simulations). Not only measure-
ment errors should be randomized in individual sets, but also
the number and location of displaced points and the values
and directions of these points’ displacements. The measure
of accuracy of the estimated displacements could be empir-
ical standard deviation and the measure of significance test
efficiency could be the mean success rate (MSR) (Hekimoglu
and Koch 1999).
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Wiśniewski Z (2009) Estimation of parameters in a split func-
tional model of geodetic observations (Msplit estimation). J Geod
83(2):105–120

Xu PL (2005) Sign-constrained robust least squares, subjective break-
down point and the effect of weights of observations on robustness.
J Geod 79(1–3):146–159

123


	Robust estimation of deformation from observation differences  for free control networks
	Abstract 
	1 Introduction
	2 Robust transformation of deformation from coordinate differences
	2.1 Step 1: LS estimation of the vector of coordinates
	2.2 Step 2: robust S-transformation of the displacement vector
	2.3 Step 3: assessment of the significance of the displacement vector

	3 Robust estimation of deformation from observation differences
	3.1 Step 1: robust estimation of the displacement vector
	3.2 Step 2: assessment of the significance of the displacement vector

	4 Comparison of the classical IWST method  with the proposed REDOD method
	5 Numerical tests
	5.1 Example 1: deformation analysis of the leveling FCN
	5.2 Example 2: deformation analysis of the horizontal FCN

	6 Summary and conclusions
	Acknowledgments
	References


