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Double Robust Estimation of
Encouragement-design Intervention Effects

Transported Across Sites

Kara E. Rudolph and Mark J. van der Laan

Abstract

We develop double robust targeted maximum likelihood estimators (TMLE) for
transporting intervention effects from one population to another. Specifically, we
develop TMLE estimators for three transported estimands: intent-to-treat average
treatment effect (ATE) and complier ATE, which are relevant for encouragement-
design interventions and instrumental variable analyses, and the ATE of the ex-
posure on the outcome, which is applicable to any randomized or observational
study. We demonstrate finite sample performance of these TMLE estimators us-
ing simulation, including in the presence of practical violations of the positivity
assumption. We then apply these methods to the Moving to Opportunity trial, a
multi-site, encouragement-design intervention in which families in public hous-
ing were randomized to receive housing vouchers and logistical support to move
to low-poverty neighborhoods. This application sheds light on whether effect dif-
ferences across sites can be explained by differences in population composition.
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1 Introduction

Multi-site interventions are common in public health, public policy, and economics. Do
we expect an intervention effect in one site to be the same as the intervention effect in
another site? In many cases, we would answer “no" for one of two reasons. First, there
could be differences in site-level variables related to intervention design/implementation
or contextual variables, like the economy, that would modify intervention effectiveness.
Such variables suggest that the intervention either is not the same or does not work
the same in the two sites. Second, there could be differences in person-level variables—
population composition—across sites that also modify intervention effectiveness. This
could cause intervention effects to differ across sites even if the interventions are struc-
tured and implemented in an identical fashion.

That intervention effects may differ for sites with different population composition
motivates previous work on transportability (Pearl and Bareinboim, 2011). Transporta-
bility (which has been discussed as generalizability (Cole and Stuart, 2010) and external
validity (Rothwell, 2005)) is the idea of applying the results of an experiment in one
setting/population to a target setting/population based on the observed characteristics
of that target population. Pearl and Bareinboim have formalized this goal by develop-
ing transport formulas and enumerating the necessary assumptions associated with each
transport formula (Pearl and Bareinboim, 2011).

These transport formulas can be applied to predict the effect of an intervention in a
target population based on the observed composition of that population and intervention
results from the original population. This prediction can be useful for researchers wanting
to estimate the potential long-term effects of an intervention in a new site based on long-
term follow-up results in an original site. An example of this would be predicting effects
from the expansion of home-visiting programs for low-income pregnant women under
the Affordable Care Act based on long-term follow-up results from the Nurse Family
Partnership trials (Eckenrode et al., 2010).

Transported predictions may also be useful in determining the extent to which dif-
ferences in intervention effects across sites can be explained by differences in population
composition. An example of this, which we use to motivate this work, is from the Mov-
ing to Opportunity (MTO) trial (Kling et al., 2007). MTO is a five-site, encouragement-
design intervention in which families in public housing were randomized to receive housing
vouchers and logistical support to move to low-poverty neighborhoods. To date, there
has been no quantitative examination of the underlying reasons for differences in MTO’s
effects across sites (Orr et al., 2003).

We are not aware of any literature on the development of estimators incorporating
transport formulas. However, there is a related literature on generalizing results from
randomized controlled trials. The simplest of these methods is post-stratification or non-
parametric direct standardization (Miettinen, 1972), but this method breaks down when
there are many population characteristics to control for or if those characteristics are
continuous. Previous model-based approaches have involved Horvitz-Thompson weight-
ing, propensity score matching, and principle stratification (Stuart et al., 2011; Cole and
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Stuart, 2010; Frangakis, 2009). These are important contributions but may be limited
by their reliance on correct model specification. In addition, with the exception of prin-
cipal stratification, we know of no extensions of these methods to encouragement-design
interventions. Model-based approaches for such an intervention design would involve
models relating 1) site (or population) to covariates, 2) instrument to exposure condi-
tional on covariates and relevant effect modifiers, and 3) exposure to outcome conditional
on covariates and relevant effect modifiers.

We address this research gap by first extending Pearl and Bareinboim’s transport
formulas to the case of an encouragement design intervention such as MTO. Next we
develop and evaluate targeted maximum likelihood estimators (TMLEs) for transporting
three estimands: the intent-to-treat average treatment effect (ITTATE), the complier
ATE (CATE), and the ATE of the effect of the exposure on the outcome, ignoring the
instrument (henceforth referred to as the EATE). This estimation approach has several
advantages. First, it is robust to multiple model misspecification scenarios. Second,
TMLE is efficient. Third, we target marginal population quantities, which are most rele-
vant to policy and program leaders, while allowing for potential effect modification across
a high-dimensional vector of covariates. Fourth, these estimators can easily incorporate
machine learning algorithms, thereby reducing bias due to model misspecification.

The paper is organized as follows. In Section 2, we introduce notation and define
the structural causal model. In Sections 3-5, we develop a TMLE for each of the three
estimands of interest. The ITTATE is discussed in Section 3, the EATE is discussed in
Section 4, and the CATE is discussed in Section 5. A reader who is interested in one of the
three estimands can skip the other two sections without compromising understanding.
For each estimand, we present the identification result, robustness properties, influence
function-based inference, and steps for computing the TMLE. In Section 6, we present
results from a simulation study in which we demonstrate consistency, efficiency and
robustness of each TMLE estimate under different model specification scenarios and
degrees of practical positivity violations. In Section 7, we apply these methods to the
MTO example. Section 8 concludes.

2 Notation and Structural Causal Model

We observe the following vector of data for each of n participants: O = (S,W,A,Z, S×Y ).
S is an indicator of the site; S = 1 for the site for which we have long-term follow-up
data and S = 0 for the site for which we do not have follow-up data. W is a vector of
covariates, the distribution of which depends on S. A is a binary instrument, which is
randomized. Z is the binary exposure of interest. Y is the outcome of interest, which we
only observe for those in the site with long-term outcome data (S = 1).

We assume each participant’s data vector O is an independent, random draw from
the unknown distribution P0 on O. We also assume the following causal relationships:

S = fS(US);W = fW (S,UW );A = fA(W,S,UA);Z = fZ(W,S,A,UZ);Y = fY (W,Z,UY ),

where US , UW , UA, UZ , UY are exogenous random variables. Knowledge of these functions
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and knowledge of U define a causal model, and in particular, a model for the distribution
of the observed data, O.

The objective is to develop a TMLE to estimate each of three target parameters:
ψ1, ψ2, ψ3. TMLE is a semiparametric estimation approach that has been described
previously (van der Laan and Rubin, 2006). It results in a substitution estimator for a
particular parameter of interest. It is double robust and locally efficient under regular
asymptotically linear conditions. Its consistency and efficiency properties derive from the
fact that it solves the efficient influence curve estimating equation, which itself determines
the linear approximation of any regular asymptotically linear and efficient estimator.
Thus, to develop a TMLE, we first need to identify the parameter of interest and derive
that parameter’s efficient influence curve. We go through each step in Sections 3-5 that
follow.

3 Intent-to-treat average effect of instrument

ψ1 is the intent-to-treat average effect of the instrument on the outcome for participants
in the site without follow-up data (S = 0), defined to be ψ1 = E(Y 1− Y 0|S = 0), where
for each a ∈ {0, 1}, Y a denotes the counterfactual outcome that would be observed if
instrument A = a were assigned and if Y were observed for participants with S = 0.

3.0.1 Identification

Under the assumptions given below, this parameter can be identified from the true data
distribution P0 (a subscript of 0 added to any notation denotes the truth):

ψ1 = Ψ1(P ) ≡ E(Y 1 − Y 0|S = 0)

≡ E({E(E(Y |S = 1,W,A = 1, Z)|S = 0,W,A = 1)

− E(E(Y |S = 1,W,A = 0, Z)|S = 0,W,A = 0)}|S = 0),

(1)

where Ψ1 is the statistical target parameter defined as a mapping Ψ1 : M → R that
takes a probability distribution P in statistical modelM, and maps it to a real number.
The true value is obtained by applying Ψ1 to the true distribution, P0. The statistical
model, M, is the collection of probability distributions of O that satisfy assumption 3
(below) and possibly put restrictions on P (A|W,S = 0). The other two assumptions do
not put restrictions on the data, so they do not affect the statistical model.

The assumptions needed for identifiability are:

1. E0(Y | S = 0,W,A,Z) = E0(Y | S = 1,W,A,Z),

2. A is independent of (Z0, Y 0, Z1, Y 1), given W,S = 0, and

3. P0(S = 1, A = a | W,Z) > 0 P0,W,Z|A=a,S=0-a.e. This is the positivity assumption
and means that every P (S = 1, A = a|W,Z) that one could draw from the true
joint distribution of W,Z given A = a and S = 0 must be greater than 0.

The proof of this identifiability result is in the supplementary Web Appendix.
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3.0.2 Efficient influence curve and robustness properties

Let Ψ1(P ) ≡ Ψ1
1(P ) − Ψ0

1(P ) = ψ1, where for each a ∈ {0, 1},Ψa
1(P ) is defined as in

Equation 1 and denotes the counterfactual mean outcome one would observe if instrument
A = a were assigned and if Y were observed for participants with S = 0. In addition, let
Q̄(s = 1,W,A,Z) = E(Y |S = 1,W,A,Z), let gA(A | s,W ) = P (A | S = s,W ), and let
gZ(Z | a, s,W ) = P (Z | A = a, S = s,W ).

Result 1. The efficient influence curve of P → Ψa
1(P ) = EP (Y a | S = 0) on a model

M that makes at most assumptions about P (A = a | W,S = 0) and positivity is given
by:

Da(P ) = Da
Y (P ) +Da

Z(P ) +Da
W (P ),

where

Da
W (P ) =

I(S = 0)

P (S = 0)
{EP (Q̄(s = 1,W, a, Z) | S = 0,W,A = a)

−EP (EP (Q̄(s = 1,W, a, Z) | S = 0,W,A = a) | S = 0)}

Da
Z(P ) =

I(A = a, S = 0)

gA(a |W,S = 0)P (S = 0)

×
{
Q̄(s = 1,W, a, Z)− EP (Q̄(s = 1,W, a, Z) | S = 0,W,A = a)

}
Da
Y (P ) =

I(S = 1, A = a)

gA(a |W,S = 1)P (S = 1))

gZ(Z | A = a,W, S = 0)

gZ(Z | A = a,W, S = 1)

P (W | S = 0)

P (W | S = 1)

×(Y − Q̄(s = 1,W, a, Z)).

We note that
P (W | S = 0)

P (W | S = 1)
=
P (S = 0 |W )P (S = 1)

P (S = 1 |W )P (S = 0)
.

There are three scenarios under which an estimator that solves the efficient influence
equation will be consistent (robustness result). First, the Y model may be misspecified
if all other models are correct. Second, the S and A models may be misspecified if the
Y and Z models are correct. Third, the S and Z models may be misspecified if the Y
and A models are correct.

We provide the derivation for the robustness properties in the supplementary Web
Appendix.

3.0.3 Targeted maximum likelihood estimator

There are two TMLEs that can be computed to estimate the transported ITTATE. In
this section, we describe how to compute one of them and describe how to compute the
other in the supplementary Web Appendix. This TMLE can be computed in one-step
and is particularly suitable when Z is high dimensional.
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Let Q̄0 be an initial estimate of Q̄. Let Q̄0
n, gZ,n, gS,n, and gA,n be estimators of

Q̄0, gZ(Z | a, s,W ), gS(S | W ), and gA(A | s,W ), respectively. Consider submodel
LogitQ̄0

n(ε) = LogitQ̄0
n + εCY (gZ,n, gS,n), where

CY (gZ , gS , gA) =
I(S = 1, A = a)

gA(a |W,S = 1)P (S = 1)

gZ(Z | A = a,W, S = 0)

gZ(Z | A = a,W, S = 1)

P (W | S = 0)

P (W | S = 1)
,

noting again that
P (W | S = 0)

P (W | S = 1)
=
P (S = 1)

P (S = 0)

gS(0 |W )

gS(1 |W )
.

CY is called the clever covariate. Its components can be calculated as follows. Q̄0
n

can be estimated by the predicted values of Y from a regression of Y on A,Z,W among
participants with Si = 1. Alternatively, one could use a machine learning approach,
but we will use regression terminology for simplicity. Similarly, gA(a | W,S = 1) can
be estimated by the predicted probabilities from a logistic regression model of A = a
on W among participants with Si = 1, and gS(s|W ) can be estimated by the predicted
probabilities from a logistic regression model of S = s on W . For binary Z, gZ(z|a, s,W )
can be estimated by the predicted probabilities setting A = a from a logistic regression
model of Z = z on A and W among strata of observations with Si = s.

Let ε0n be the fitted coefficient for CY in the univariate logistic regression model of Y
on CY using LogitQ̄0

n as an off-set, using the binary log-likelihood loss function multiplied
by I(S = 1, A = a) (i.e., only using the observations with Si = 1, Ai = a). If Y is not
on the [0, 1] scale, it can be bounded as previously recommended (Gruber and van der
Laan, 2010). The updated estimator is denoted with Q̄1

n = Q̄0
n(ε0n).

Next, run a regression of E0(Q̄1
n(s = 1,W, a, Z) | S = 0,W,A = a) by regressing

the predicted values Q̄1
n(s = 1,W, a, Z) on W among strata of observations with Ai =

a, Si = 0. Denote this estimator of Q̄0,Z = E0(Q̄0(s = 1,W, a, Z) | S = 0,W,A = a)
with Q̄0

Z,n. Consider the submodel

LogitQ̄0
Z,n(ε) = LogitQ̄0

Z,n + εCZ(gA,n),

where,

CZ(gA) =
I(A = a, S = 0)

gA(a |W,S = 0)P (S = 0)
.

Let ε1,n be the fitted coefficient for this univariate logistic regression model that uses
the binary log-likelihood loss function treating Q̄1

n(s = 1,W, a, Z) as the outcome and
LogitQ̄0

Z,n as an offset, restricted to the observations with Si = 0, Ai = a. Denote this
update with Q̄1

Z,n = Q̄0
Z,n(ε1,n).

The TMLE of ψa1 is given by ψa1,n = QW,n|S=0Q̄
1,a
Z,n, where QW,n|S=0 is the em-

pirical distribution of Wi among those with Si = 0 — a function of the participant’s
covariates. In other words, the TMLE of ψa1 is the empirical mean of Q̄1,a

Z,n among
the observations with Si = 0 and setting A = a. So, our final estimator is ψ1 =
ψ1

1 − ψ0
1 = QW,n|S=0(Q̄1,a=1

Z,n − Q̄1,a=0
Z,n ). This is the empirical mean of the difference in

Q̄1
Z,n setting a = 1 versus a = 0 among observations with Si = 0. This TMLE solves
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the efficient influence function PnD
a(gZ,n, gS,n, gA,n, Q̄

1,a
n , Q̄1

Z,n, QW,n|S=0) = 0, where
Pnf = 1/n

∑
i f(Oi) (the empirical mean of function f(O)).

We can conservatively estimate the variance of the TMLE with σ2
n = 1

n

n∑
i=1

(D1
n(Oi)−

D0
n(Oi))

2, which is the sample variance of the efficient influence curve, which was given
in Result 1.

4 Average effect of exposure, ignoring instrument

ψ2 is the average effect of the exposure on the outcome for participants in the site without
long-term follow-up data (S = 0), defined to be ψ2 = E0(Y 1−Y 0 | S = 0), where for each
z ∈ {0, 1}, Y z denotes the counterfactual outcome that would be observed if exposure
Z = z were assigned and if Y were observed for participants with S = 0.

4.0.4 Identification

Under the assumptions given below, this parameter can be identified:

ψ2 = Ψ2(P ) ≡ E(Y 1 − Y 0|S = 0)

≡ E({E(Y | S = 1,W,Z = 1)− E(Y | S = 1,W,Z = 0)} | S = 0),
(2)

where Ψ2 is the statistical target parameter defined as Ψ2 :M→ R. The true value is
obtained by applying Ψ2 to the true distribution, P0. The statistical model, M, is the
collection of probability distributions of O that satisfy assumption 3 (below). The other
two assumptions do not put restrictions on the data, so they do not affect the statistical
model.

The assumptions needed for identifiability are:

1. E0(Y |S = 0,W,Z) = E0(Y |S = 1,W,Z),

2. Z is independent of (Y 0, Y 1) given W, and

3. P0(Z = z|W,S = 1) > 0 P0W |S=0 − a.e. This is the positivity assumption and
means that every P(Z = z|W,S=1) that one could draw from the true distribution
of W given S = 0 must be greater than 0.

The proof of this identifiability result is trivial and known from the average treatment
effect literature.

4.0.5 Efficient influence curve

Let Ψ2(P ) ≡ Ψ1
2(P ) − Ψ0

2(P ) = ψ2, where for each z ∈ {0, 1}, Ψz
2(P ) is defined as in

Equation 2 and denotes the counterfactual mean outcome estimated if exposure Z = z
were assigned and if Y were observed for participants with S = 0. Unless otherwise
specified, we use the same notation as in Section 3.

http://biostats.bepress.com/ucbbiostat/paper335
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Result 2. The efficient influence curve of P → Ψz
2(P ) = EP (Y z | S = 0) on a model

M that at most makes assumptions about P (Z = z|W,S = 0) and positivity is given by

Dz(P )(O) =
I(S = 1, Z = z)

P (S = 1, Z = z |W )

P (S = 0 |W )

P (S = 0)
(Y − Q̄(s = 1,W, z))

+
I(S = 0)

P (S = 0)

{
Q̄(s = 1,W, z)− EP (Q̄(s = 1,W, z) | S = 0)

}
.

We have two scenarios under which an estimator that solves the efficient influence
curve will be consistent (robustness result). First, the S and Z models may be mis-
specified if the Y model is correct. Second, the Y model may be misspecified if the S
and Z models are correct. We provide the derivation of the robustness properties in the
supplementary Web Appendix.

4.0.6 Targeted maximum likelihood estimator

Consider the submodel LogitQ̄0
n(ε) = LogitQ̄0

n + εCY (gZ,n, gS,n), where

Cy(gZ , gS) ≡ I(S = 1, Z = z)

P (S = 1, Z = z |W )

P (S = 0 |W )

P (S = 0)

=
I(S = 1, Z = z)

P (Z = z | S = 1,W )P (S = 1 |W )

P (S = 0 |W )

P (S = 0)
.

The components of CY can be calculated as described in Section 3. Let ε0n be the fitted
coefficient for this clever covariate CY in the univariate logistic regression model of Y on
CY using LogitQ̄0

n as an off-set, using the binary log-likelihood loss function multiplied
by I(S = 1, Z = z) (i.e., only using the observations with Si = 1, Zi = z). Again, if
Y is not on the [0, 1] scale, it can be bounded as recommended previously (Gruber and
van der Laan, 2010). The updated estimator is denoted with Q̄1

n = Q̄0
n(ε0n).

The TMLE of ψz2 is given by QW,n|S=0Q̄
1,z
n , which is the empirical mean of Q̄1

n among
the observations with Si = 0 setting Z = z. So, our final estimator, ψ2 = ψ1

2 − ψ0
2 =

QW,n|S=0(Q̄1,z=1
n − Q̄1,z=0

n ), is the empirical mean of the difference in Q̄1
n setting z = 1

versus z = 0 among the observations with Si = 0. This TMLE solves the efficient
influence function PnDz(gZ,n, gS,n, Q̄

1,z
n ) = 0.

Again, we can conservatively estimate the variance of the TMLE with σ2
n = 1

n

n∑
i=1

(D1
n(Oi)−

D0
n(Oi))

2, which is the sample variance of the efficient influence curve, which was given
in Result 2.

5 Complier average effect of exposure, using instrument

ψ3 is the complier average effect of the exposure on the outcome in the site without long-
term follow-up data, defined to be ψ3 = E(Y 1 − Y 0|Z1 −Z0 = 1, S = 0), where for each
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a ∈ {0, 1}, Y a denotes the counterfactual outcome that would be observed if instrument
A = a were assigned and if Y were observed for participants with S = 0, and Za denotes
the counterfactual exposure that would be observed if instrument A = a were assigned.
The complier average causal effect is also called the instrumental variables (IV) estimand
and the local average instrument effect (LATE), even in the case of a binary instrument
and binary exposure (Angrist et al., 1996).

5.0.7 Identification

Under the assumptions given below, this parameter can be identified from the true data
distribution P0:

ψ3 = Ψ3(P ) ≡ E(Y 1 − Y 0|Z1 − Z0 = 1, S = 0) = (3)

E(E(E(Y |S = 1,W,Z)|S = 0,W,A = 1)− E(E(Y |S = 1,W,Z)|S = 0,W,A = 0)|S = 0)

E(E(Z|S = 0,W,A = 1)− E(Z|S = 0,W,A = 0)|S = 0)

where Ψ3 is the statistical target parameter defined as Ψ3 : M → R. The true value
is obtained by applying Ψ3 to the true distribution, P0. The statistical model, M, is
the collection of probability distributions of O that satisfy assumption 5. Note that the
numerator of this identification is the same as for ψ1 as specified in Equation 1.

Identification relies on five assumptions.

1. E0(Y | S = 0,W,A,Z) = E0(Y | S = 1,W,A,Z),

2. A = fA(UA) is independent of (Za=0, Za=1, Y a=0, Y a=1), given W,S = 0,

3. Y az = Y z, which is the exclusion restriction assumption, stating that the instru-
ment A only affects the outcome Y through the exposure Z,

4. Z1 − Z0 ≥ 0, which is the monotonicity assumption, meaning that the instrument
A cannot decrease exposure, and

5. P0(S = 1, A = a | W,Z) > 0 P0,W,Z|A=a,S=0-a.e. This is the positivity assumption
and means that every P (S = 1, A = a|W,Z) that one could draw from the true
joint distribution of W,Z given A = a and S = 0 must be greater than 0.

5.0.8 Efficient Influence Curve

Let Ψ3(P ) ≡ Ψ1
3(P ) − Ψ0

3(P ) = ψ3, where for each a ∈ {0, 1},Ψa
3(P ) is defined as in

Equation 3 and denotes the counterfactual mean outcome estimated if instrument A = a
were assigned and if Y were observed for participants with S = 0. Unless otherwise
specified, we use the same notation as in Section 3.

Result 3. The efficient influence curve of P → Ψa
3(P ) = EP (Y a | S = 0) on a model

M that at most makes assumptions about P (A = a|W,S = 0), P (Z = z|W,S = 0), and
positivity is given by

Da
Ψ1,Ψ̃

(P ) =
1

Ψ̃(P )
DΨ1(P )− Ψ1(P )

Ψ̃(P )2
DΨ̃(P ),

http://biostats.bepress.com/ucbbiostat/paper335
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where Ψ̃(P ) is the ATE TMLE, which is the nontransported average effect of the
instrument on the exposure for participants with S = 0. The TMLE for the ATE has
been described previously (van der Laan and Rubin, 2006).

An estimator that solves the above efficient influence curve will be consistent (ro-
bustness result) if both the numerator and denominator are correct. So, applying the
robustness results from the ITTATE TMLE and for the ATE TMLE (van der Laan and
Rubin, 2006) there are three scenarios under which this will happen. These scenarios are
the same as those for the ITTATE. First, the Y model may be misspecified if the S, Z,
and A models are correct. Second, the S and A models may be misspecified if the Y
and Z models are correct. Third, the S and Z models may be misspecified if the Y and
A models are correct. We provide the derivation for the efficient influence curve in the
supplementary Appendix.

5.0.9 Targeted maximum likelihood estimator

This TMLE is estimated as the ratio of two TMLEs: the TMLE detailed in Section 3.0.3
over the TMLE for the average effect of A on Z as detailed previously (van der Laan and
Rubin, 2006).

We refer to Section 3.0.3 for the steps to estimate the TMLE in numerator. The
TMLE in the denominator can be estimated as follows (van der Laan and Rubin, 2006).

Consider the submodel LogitQ̄0
n(ε) = LogitQ̄0

n + εCZ(gA,n), where

CZ(gA) ≡ I(S = 1, A = a)

P (S = 1, A = a |W )

The components of CZ can be calculated as described in Section 3. Let ε0n be the fitted
coefficient for this clever covariate CZ in the univariate logistic regression model of Z on
CZ using LogitQ̄0

n as an off-set, using the binary log-likelihood loss function multiplied
by I(S = 0, A = a) (i.e., only using the observations with Si = 0, Ai = a). The updated
estimator is denoted with Q̄1

n = Q̄0
n(ε0n).

The TMLE in the denominator is QW,n|S=0(Q̄1,a=1
n − Q̄1,a=0

n ), which is the empirical
mean of the difference in Q̄1

n setting a = 1 versus a = 0 among the observations with
Si = 0. This TMLE solves the efficient influence function PnDa

Ψ1,Ψ̃
= 0.

We can conservatively estimate the variance of the TMLE with the sample variance of
it’s efficient influence curve, which was given in Result 3. Alternatively, the variance can
be estimated using the multivariate delta method, which we show in the supplementary
Web Appendix.

6 Simulation Study

6.1 Overview and set-up

We conduct a simulation study to examine finite sample performance of the TMLE
estimators for ψ1, ψ2, and ψ3. We consider two data-generating mechanisms from the
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same structural causal model, shown in Table 1. The magnitude of several coefficients
increases in the second data-generating mechanism compared to the first, which results in
practical positivity violations. Comparing performance between the two data-generating
mechanisms allows us to examine sensitivity to the positivity assumption.

Table 1: Simulation data generating mechanisms.

Data-generating mechanism 1: Data-generating mechanism 2:
without positivity violations with positivity violations
S ∼ Ber(0.5) S ∼ Ber(0.5)
W1 ∼ Ber(0.4 + 0.2S) W1 ∼ Ber(0.3 + 0.5S)
W2 ∼ N(0.1S, 1) W2 ∼ N(0.5S, 1)
W3 ∼ N(1 + 0.2S, 1) W2 ∼ N(1 + S, 2)
A ∼ Ber(0.5) A ∼ Ber(0.5)
Z ∼ Ber(−log(1.6) + log(4)A −
log(1.1)W2 − log(1.3)W3)

Z ∼ Ber(−log(1.6)+log(4)A−log(2)W2+
log(2)W3)

Y ∼ Ber(log(1.6) + log(1.9)Z −
log(1.3)W3 − log(1.2)W1 + log(1.2)AW1)

Y ∼ Ber(log(1.6) + log(1.9)Z −
log(1.3)W3 − log(1.2)W1 + log(1.2)AW1)

Table 2: Characteristics of the clever covariate from the first simulation iteration for data-
generating mechanisms 1 and 2 and from the application to the Moving to Opportunity
Study.

CY (A = 1) CY (A = 0)
Mean
(SD)

Min Max Mean
(SD)

Min Max

ITTATE
Data-generating
mechanism 1

0.55(0.26) 0.14 2.12 0.60(0.28) 0.15 2.13

Data-generating
mechanism 2

1.16(1.58) 0.84×10−2 21.35 1.25(1.64) 1.06×10−2 22.82

Application 1.09(1.54) 0.83×10−2 8.77 2.69(3.89) 1.73×10−2 21.77
EATE

Data-generating
mechanism 1

0.49(0.38) 0.05 2.46 0.55(0.31) 0.14 1.75

Data-generating
mechanism 2

1.07(1.62) 0.15×10−2 26.26 1.33(2.26) 0.04×10−2 41.49

Application 2.05(2.76) 4.54×10−2 13.11 1.13(1.82) 1.01×10−2 10.69

For each of the ITTATE, CATE, and EATE, we show TMLE estimator performance in
terms of mean percent bias, closeness to the efficiency bound (mean estimator standard
error (SE) × the square root of the number of observations), 95% confidence interval
coverage, and mean squared error (MSE) across 10,000 simulations for a sample size of
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N=5,000. We evaluate performance under correct model specification and various model
misspecifications where misspecification of the S and Z models involved specifying a null
model and misspecification of the Y included a term for Z only.

6.2 Results

As seen in Table 3, the TMLE estimators are consistent under the robustness properties
derived for each estimand. Specifically, the TMLE estimators have less than 1% bias
for all model specifications except when all of the models (site, exposure, and outcome
models) are misspecified. The 95% CI for the TMLE estimator results in coverage of
about 95% for unbiased estimates.

Table 3: Results from data-generating mechanism 1 without positivity violations. TMLE
estimator performance under correct and incorrect model specification across 10,000 sim-
ulations in terms of percent bias, estimator standard error ×

√
n, 95% confidence interval

coverage, and mean squared error. The estimator standard error ×
√
n should be com-

pared to the efficiency bound, which is 1.49 for the ITTATE, 4.50 for the CATE, and
1.60 for the EATE.

Specification %Bias SE×
√
n 95%CI Cov MSE

ITTATE
All models correct -0.67 1.50 95.01 0.0004
S model misspecified -0.49 1.37 95.34 0.0004
Z model misspecified -0.67 1.49 95.00 0.0004
Y model misspecified -0.71 1.52 95.36 0.0005
S,Z models misspecified -0.49 1.37 95.29 0.0004
S,Z,Y models misspecified 6.05 1.38 94.84 0.0004

CATE
All models correct -0.13 4.54 95.17 0.0041
S model misspecified 0.04 4.15 95.50 0.0034
Z model misspecified -0.13 4.53 95.20 0.0041
Y model misspecified -0.17 4.54 95.00 0.0042
S,Z models misspecified 0.05 4.14 95.37 0.0034
S,Z,Y models misspecified 6.60 4.18 94.76 0.0036

EATE
All models correct -0.31 1.60 94.94 0.0005
S model misspecified -0.38 1.46 93.68 0.0005
Z model misspecified -0.31 1.48 93.01 0.0005
Y model misspecified -0.29 1.62 95.09 0.0005
S,Z models misspecified -0.43 1.36 92.95 0.0004
S,Z,Y models misspecified 14.46 1.37 76.27 0.0009

Performance of these estimators in the presence of practical positivity violations is of
interest for several reasons. First, the sites involved may have very different covariate dis-
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tributions, which could contribute to such violations. Second, the sites may differ in how
the instrument, A, is related to the exposure of interest, Z, which could also contribute
to the violations. Third, predicted probabilities from these two models are multiplied
together in the clever covariate, which may compound positivity violations from the first
two sources. When there are practical violations of the positivity assumption, theory no
longer guarantees consistency of the estimators (Petersen et al., 2010).

As compared to the results in Table 3 without positivity violations, Table 4 shows that
in the presence of such violations even the estimators using correctly specified models are
slightly biased. MSE is particularly compromised by these practical positivity violations
due to increased variability across the simulations. Coverage for the TMLE EATE is also
compromised because of this variability. The standardized TMLE EATE estimates are
slightly skewed with heavier tails. Calculating the 95% CI coverage using the percentile
method from bootstrapping corrects this under-coverage (results not shown but available
upon request).

The presence of these positivity violations exacerbates sensitivity to model misspec-
ification of the TMLE estimator. This is largely due to increased variability in the esti-
mates across the simulations and non-normally distributed standardized estimates—the
consequences of which are seen in the lower coverage and greater MSE.

Weight truncation is a common and easy-to-implement strategy that may lessen sensi-
tivity to practical positivity violations. Although truncation has the potential to improve
both bias and variance due to positivity violations, it may also increase bias due to mis-
specification (Petersen et al., 2010; Cole and Hernán, 2008; Bembom and van der Laan,
2008). We repeated the simulations under data-generating mechanism 2 truncating the
clever covariate at several different lower bound/upper bound truncation levels: 0.01/100,
0.05/20, and 0.1/10. We compare the untruncated results to the truncated results in Ta-
ble 5. Truncation resulted in the expected improvements in terms of reduced variance
and MSE but compromised confidence interval coverage for all estimands. Truncation
also resulted in increased bias for the EATE.

7 Application

7.1 Overview and set-up

We now apply the transportability estimators to an example from the Moving to Op-
portunity trial (MTO). MTO is a large-scale social policy experiment that has been
described in the Introduction and previously (Kling et al., 2007). In discussing potential
differences in effects across sites, MTO researchers concluded:

Of course, if it had been possible to attribute differences in impacts across
sites to differences in site characteristics, that would have been very valuable
information. Unfortunately, that was not possible. With only five sites, which
differ in innumerable potentially relevant ways, it was simply not possible to
disentangle the underlying factors that cause impacts to vary across sites.
(Orr et al., 2003, p.B11)
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Table 4: Results from data-generating mechanism 2 with practical positivity violations.
TMLE estimator performance under correct and incorrect model specification across
10,000 simulations in terms of percent bias, estimator standard error ×

√
n, 95% confi-

dence interval coverage, and mean squared error. The estimator standard error ×
√
n

should be compared to the efficiency bound, which is 2.68 for the ITTATE, 11.33 for the
CATE, and 4.09 for the EATE.

Specification %Bias SE×
√
n 95%CI Cov MSE

ITTATE
All models correct -0.88 2.68 94.85 0.0015
S model misspecified 0.32 1.38 95.19 0.0004
Z model misspecified -0.88 2.77 95.61 0.0015
Y model misspecified -0.41 2.85 95.81 0.0015
S,Z models misspecified 0.34 1.39 95.28 0.0004
S,Z,Y models misspecified 18.34 1.42 94.06 0.0004

CATE
All models correct 2.57 11.42 94.96 0.0265
S model misspecified 3.73 5.84 95.42 0.0068
Z model misspecified 2.57 11.85 95.86 0.0265
Y model misspecified 3.06 11.42 94.85 0.0270
S,Z models misspecified 3.98 5.93 95.60 0.0069
S,Z,Y models misspecified 23.00 6.12 94.23 0.0085

EATE
All models correct 0.18 3.60 91.36 0.0029
S model misspecified 1.98 1.96 86.33 0.0012
Z model misspecified 0.18 2.67 82.93 0.0029
Y model misspecified 2.09 4.17 96.05 0.0027
S,Z models misspecified 2.18 1.38 79.27 0.0009
S,Z,Y models misspecified -52.11 1.41 2.49 0.0065

We ask whether our transportability estimators can shed light on this previously in-
tractable problem. Taking two MTO sites, Boston and Los Angeles (LA), we test the
null hypothesis that the predicted effect of the intervention on school dropout for LA
equals the true effect for LA, where the predicted effect borrows the conditional outcome
model from Boston and makes use of differing distributions of population characteristics
between the sites through transport formulas. If we fail to reject the null, this suggests
that the intervention may be transportable based on the covariates included in the trans-
port formula. If we reject the null, it suggests that the intervention is not transportable
given our measured covariates. We consider two estimands that are typically reported
for MTO data: the ITTATE and the CATE.

We use the same school dropout outcome as reported previously for adolescents aged
15-19 years (completed less than 12 years of school, did not receive high school diploma
or GED, and is not enrolled in school) (Sanbonmatsu et al., 2011). We define a binary
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Table 5: Results of truncation of the clever covariate to lessen sensitivity to practical
positivity violations (from data-generating mechanism 2). Estimator performance under
correct model specification across 10,000 simulations in terms of percent bias, estimator
standard error ×

√
n, 95% confidence interval coverage, and mean squared error. The

estimator standard error ×
√
n should be compared to the efficiency bound, which is 2.68

for the ITTATE, 11.33 for the CATE, and 4.09 for the EATE.

Truncation Level %Bias SE×
√
n 95%CI Cov MSE

ITTATE
No modification -0.88 2.68 94.85 0.0015
Truncation at 0.01/100 -0.87 2.68 94.87 0.0015
Truncation at 0.05/20 -0.87 2.48 93.71 0.0014
Truncation at 0.1/10 -0.74 2.05 89.45 0.0012

CATE
No modification 2.57 11.42 94.96 0.0265
Truncation at 0.01/100 2.58 11.41 94.96 0.0265
Truncation at 0.05/20 2.59 10.57 93.80 0.0250
Truncation at 0.1/10 2.75 8.72 89.74 0.0221

EATE
No modification 0.18 3.60 91.36 0.0029
Truncation at 0.01/100 2.29 3.23 92.50 0.0024
Truncation at 0.05/20 2.71 2.40 89.78 0.0016
Truncation at 0.1/10 2.60 1.90 84.96 0.0013

instrument as has been done previously: randomized receipt of a voucher to move versus
no voucher (Osypuk et al., 2012). The exposure of interest is defined as moving to a
low-poverty neighborhood during follow-up. Neighborhoods were defined based on par-
ticipant addresses geocoded to Census tracts. Neighborhood poverty was calculated as
the percent of residents living at or below the federal poverty line based on the 2000
Census. A low-poverty neighborhood was defined as less than 25% of residents living
below poverty based on theory and breakpoints in the site-specific distributions. Pop-
ulation composition characteristics included an extensive set of baseline characteristics
spanning several domains: sociodemographic characteristics of the adolescent and adult
family member, behavior and learning characteristics of the adolescent, neighborhood
characteristics, and reasons for participation. A full list of the characteristics included
is in the supplementary Web Appendix. We consider two sites for simplicity. For the
purpose of this illustration, we ignore MTO study weights and only consider participants
with non-missing data (n=260 adolescents in the Boston site; n=270 adolescents in the
LA site). A more in-depth analysis of this and other MTO effects is the topic of a future
paper.

Because we do not know the true models relating the instrument to exposure, the
exposure to the outcome, and covariates to site, we use nonparametric methods instead
of the standard parametric regression models. Specifically, we use the nonparametric,
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ensemble machine learning method, Superlearner (van der Laan et al., 2007), to generate
the predicted probabilities needed for the TMLE transportability estimators. Super-
learner has been described previously (van der Laan et al., 2007). Briefly, it weights
multiple machine learning algorithms to minimize the cross-validated mean squared pre-
diction error. We conducted a simulation showing that incorporating Superlearner into
the TMLE transportability estimators did not change estimator performance (results not
shown but available from the first author upon request). The clever covariate for the IT-
TATE TMLE estimator ranges from 0.83× 10−2 to 21.77 (Table 2). This suggests that
practical positivity violations may be a minor problem.

7.2 Results

Figure 1 shows the ITTATE and CATE estimates for the average effect of 1) being ran-
domized to a voucher group and 2) moving to a low-poverty neighborhood on probability
of dropping out of high school, respectively. We see that the true site-specific effects for
Boston and LA differ. For Boston, the ITTATE is statistically significant, which suggests
that the MTO intervention was successful in reducing high school dropout. We see no
effect of the intervention on high school dropout for the LA site.

Our goal is to determine if the differences in these effect estimates between the sites
can be explained by population characteristics. Specifically, we transport the effects
estimated for the Boston site to the LA site using the population characteristics in LA
but no outcome data. Figure 1 compares the TMLE transported ITTATE and CATE
estimates to the site-specific estimates. We see that the transported estimates for LA are
similar to true LA estimates, which means that the difference in effects between Boston
and LA can be largely explained by population composition.

8 Conclusion

In this paper, we developed double robust TMLE estimators for transporting average
treatment effects from a study population to a target population. This complements
graphical work on the subject of transportability and fills the key gap in estimation
strategies in this area (Pearl and Bareinboim, 2011). These transport estimators are
applicable for encouragement design interventions as well as randomized experiments
and observational studies.

Development of new estimators is useful insofar as they are practical and easy to
implement. To facilitate the use of these estimators, we provide step-by-step instruc-
tions for implementing each transport TMLE in the article. In the supplementary Web
Appendix, we provide R code for each estimator as well as sample code for application.

A limitation of these estimators is their sensitivity to practical violations of the pos-
itivity assumption. This limitation is not unique to these estimators, but applies to
broad classes of estimators that rely on weights either exclusively or partially outside the
Q̄ model, e.g., TMLE estimators, inverse probability of treatment weighted (IPTW) es-
timators, and augmented IPTW (A-IPTW) estimators (Robins et al., 2007). Truncation
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Figure 1: Application results: average effect estimates and 95% confidence intervals using
data from the Moving to Opportunity Interim Follow-up. The ITTATE is interpreted as
the effect of being randomized to one of the voucher groups on risk of dropping out of high
school. The CATE is interpreted as the effect of moving to a low-poverty neighborhood
on the risk of dropping out of high school.
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of the clever covariate, which is related to the general strategy of weight truncation, is
a common strategy to deal with this limitation (Petersen et al., 2010; Cole and Hernán,
2008; Bembom and van der Laan, 2008), but we found that it did not appreciably im-
prove performance in our simulations. Although it slightly improved MSE, the trade-off
was increased bias and reduced CI coverage. An area for future work is to optimize
estimator performance in the presence of such practical positivity violations. We are
currently pursuing two strategies. The first is to reduce instances of practical positivity
violations by drawing on the screening and pruning strategies employed in collaborative
TMLE (van der Laan and Gruber, 2010). The second is reduce the influence of practical
positivity violations by moving part of the clever covariate into the Q̄ model (Stitelman
et al., 2012). This is a middle ground between TMLE and weighted G-computation, the
latter of which has been shown to be robust to practical positivity assumptions (Kang
and Schafer, 2007; Robins et al., 2007; Rudolph et al., 2014).

In an era of shrinking budgets, it is important to recognize that what works in one pop-
ulation may not work for another population so that resources can be targeted optimally.
Applying these TMLE estimators to examine site differences in multi-site epidemiologic
studies and large-scale policy or program interventions contribute to achieving that goal.
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A Identification proofs

A.1 ITTATE

ψ1 is the intent-to-treat average effect of the instrument on the outcome for participants
in the site without follow-up data (S = 0), defined to be ψ1 = E(Y 1− Y 0|S = 0), where
for each a ∈ {0, 1}, Y a denotes the counterfactual outcome that would be observed if
instrument A = a were assigned and if Y were observed for participants with S = 0.

The assumptions needed for identifiability are:

1. E0(Y | S = 0,W,A,Z) = E0(Y | S = 1,W,A,Z),

2. A is independent of (Z0, Y 0, Z1, Y 1), given W,S = 0, and

3. P0(S = 1, A = a | W,Z) > 0 P0,W,Z|A=a,S=0-a.e. This is the positivity assumption
and means that every P (S = 1, A = a|W,Z) that one could draw from the true
joint distribution of W,Z given A = a and S = 0 must be greater than 0.
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Proof.

ψ1 = Ψ1(P ) ≡ E0({E0(E0(Y |S = 1,W,A = 1, Z)|S = 0,W,A = 1)

−E0(E0(Y |S = 1,W,A = 0, Z)|S = 0,W,A = 0)}|S = 0)

By assumption 1,
≡ E0({E0(E0(Y |S = 0,W,A = 1, Z)|S = 0,W,A = 1)

−E0(E0(Y |S = 0,W,A = 0, Z)|S = 0,W,A = 0)}|S = 0)

By assumption 2, P (Z = z | S = 0,W,A = a) = P (Za = z | S = 0,W ), so
≡ E0(E0(E0(Y a | S = 0,W,Za) |W,S = 0) | S = 0)

≡ E(Y a | S = 0)

By assumption 3, we have that ψ1 is defined. �

A.2 CATE

ψ3 is the complier average effect of the exposure on the outcome in the site without long-
term follow-up data, defined to be ψ3 = E(Y 1 − Y 0|Z1 −Z0 = 1, S = 0), where for each
a ∈ {0, 1}, Y a denotes the counterfactual outcome that would be observed if instrument
A = a were assigned and if Y were observed for participants with S = 0, and Za denotes
the counterfactual exposure that would be observed if instrument A = a were assigned.

The assumptions needed for identifiability are:

1. E0(Y | S = 0,W,A,Z) = E0(Y | S = 1,W,A,Z),

2. A = fA(UA) is independent of (Za=0, Za=1, Y a=0, Y a=1), given W,S = 0,

3. Y az = Y z, which is the exclusion restriction assumption, stating that the instru-
ment A only affects the outcome Y through the exposure Z,

4. Z1 − Z0 ≥ 0, which is the monotonicity assumption, meaning that the instrument
A cannot decrease exposure, and

5. P0(S = 1, A = a | W,Z) > 0 P0,W,Z|A=a,S=0-a.e. This is the positivity assumption
and means that every P (S = 1, A = a|W,Z) that one could draw from the true
joint distribution of W,Z given A = a and S = 0 must be greater than 0.
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Proof.

ψ3 = Ψ3(P ) ≡ Ψ1(P )

Ψ̃(P )

≡ {E0({E0(E0(Y |S = 1,W,A = 1, Z)|S = 0,W,A = 1)

−E0(E0(Y |S = 1,W,A = 0, Z)|S = 0,W,A = 0)}|S = 0)}
/{E0(E0(Z|S = 0,W,A = 1)− E0(Z|S = 0,W,A = 0)|S = 0)}

By assumption 1,
≡ {E0({E0(E0(Y |S = 0,W,A = 1, Z)|S = 0,W,A = 1)

−E0(E0(Y |S = 0,W,A = 0, Z)|S = 0,W,A = 0)}|S = 0)}
/{E0(E0(Z|S = 0,W,A = 1)− E0(Z|S = 0,W,A = 0)|S = 0)}

By assumption 2, P (Z = z | S = 0,W,A = a) = P (Za = z | S = 0,W ), so
≡ {E0(E0(E0(Y 1 | S = 0,W,Z1) | S = 0,W )

−E0(E0(Y 0 | S = 0,W,Z0) | S = 0,W ) | S = 0)}
/{E0(E0(Z1|S = 0,W )− E0(Z0|S = 0,W |S = 0)}

≡ E0(Y 1 − Y 0 | S = 0)

E0(Z1 − Z0 | S = 0)

≡ {E0(Y 1 − Y 0|Z1 − Z0 = 1, S = 0)P0(Z1 − Z0 = 1|S = 0)

+E0(Y 1 − Y 0|Z1 − Z0 = 0, S = 0)P0(Z1 − Z0 = 0|S = 0)

+E0(Y 1 − Y 0|Z1 − Z0 = −1, S = 0)P0(Z1 − Z0 = −1|S = 0)}
/E0(Z1 − Z0 | S = 0)

By assumption 3,
≡ {E0(Y 1 − Y 0|Z1 − Z0 = 1, S = 0)P0(Z1 − Z0 = 1|S = 0)

+E0(Y 1 − Y 0|Z1 − Z0 = −1, S = 0)P0(Z1 − Z0 = −1|S = 0)}
/E0(Z1 − Z0 | S = 0)

By assumption 4,

≡ E0(Y 1 − Y 0|Z1 − Z0 = 1, S = 0)P0(Z1 − Z0 = 1|S = 0)

E0(Z1 − Z0 | S = 0)

By assumption 4, Z1 − Z0 can only have values in{0, 1},
so the conditional expression is a conditional probability.

≡ E0(Y 1 − Y 0|Z1 − Z0 = 1, S = 0)E(Z1 − Z0 | S = 0)

E0(Z1 − Z0 | S = 0)

≡ E0(Y 1 − Y 0|Z1 − Z0 = 1, S = 0)

By assumption 5, we have that ψ3 is defined. �
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B Robustness results

We derived each efficient influence curve D(P )(o) of Ψ on the nonparametric model
by noting that it is given by the Gateaux derivative of Ψ at P in the direction (δo −
Pδo), where δo is the probability distribution that puts mass 1 on o (Gill et al., 1989):
D(P )(o) = limε→0 Ψ(P + ε(δo − P (o))−Ψ(P )/ε. In addition, we note that the efficient
influence curve (EIC) for a parameter Ψ(P ) = Ψ(Q(P )) is not affected by model assump-
tions on nuisance parameters whose tangent space is orthogonal to the tangent space of
Q, so the EIC of the nonparametric model equals the EIC for the actual model.

B.1 ITTATE

B.1.1 Efficient influence curve

The following result provides the conditions under which an efficient influence curve-
based estimator is consistent. Let QW (w|s) = P (W ≤ w | S = s), Q̄ = (QW , Q̄(s =
1,W,A,Z)), and qW (w|s) = dQW

dµ (w) (i.e., density with respect to the appropriate dom-
inating measure µ). Let GZQ̄(W ) = EP (Q̄(s = 1,W, a, Z) | A = a,W, S = 0). A
subscript of 0 added to any of the above notation denotes the truth. For example,
gZ,0(Z | a, s,W ) denotes the true exposure mechanism.

Result 4. We have

P0D
a(P ) = Ψa(P0)−Ψa(P ) +Ra2(P, P0),

where

Ra2(P, P0) =
4∑
j=1

Ra2j(P, P0),

and

Ra21 = QW,0|S=0

(
gA,0|S=0

gA|S=0

P0(S = 0)

P (S = 0)
− 1

)
(G0,Z −GZ)Q̄

Ra22 = QW |S=0GZ

(
gA,0|S=1

gA|S=1

qW,0|S=1

qW |S=1

P0(S = 0)

P (S = 0)

gZ,0|S=1

gZ|S=1
− 1

)
(Q̄0 − Q̄)

Ra23 = (QW,0|S=0 −QW |S=0)GZ(Q̄− Q̄0)

Ra24 = QW,0|S=0(GZ,0 −GZ)(Q̄− Q̄0).

Inspection of the second order term Ra2 gives three scenarios under which an esti-
mator Ψa

1(Pn) that solves the efficient influence equation PnD
a(Pn) will be consistent

(robustness result). First, if QW , GZ , gA, qW |S=1, and P (S = 0) are correctly specified
in the sense that (QW |S=0 −QW,0|S=0)GZ(Q̄− Q̄0) = 0, GZ = GZ,0, gA|S=1 = gA,0|S=1,
qW |S=1 = qW,0|S=1,and P (S − 0) = P0(S = 0). In other words, the Y model may be
misspecified if all other models are correct. Second, if Q̄ and GZ are correctly specified
in the sense that Q̄ = Q̄0, GZ = GZ,0. In other words, the S and A models may be
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misspecified if the Y and Z models are correct. Third, if Q̄ and gA (and P (S = 0)) are
correctly specified in the sense that Q̄ = Q̄0, gA|S=0 = gA,0|S=0, P (S − 0) = P0(S = 0).
In other words, the S and Z models may be misspecified if the Y and A models are
correct.

Corollary 1. If P0D
a(P ) = 0 and one of three above scenarios holds, then Ψa

1(P ) =
Ψa

1(P0).

The implication of this corollary is that if Pn of P0 converges to a P so that P0D(P ) =
0 (which will be true for a TMLE since a TMLE solves PnD(Pn) = 0) and one of the
above three scenarios holds, then Ψa

1(Pn) is consistent for Ψa
1(P0).

B.2 EATE

The following result provides the conditions for consistency based on the efficient influence
curve.

Result 5.

P0D
z(P ) = Ψz

2(P0)−Ψz
2(P ) +Rz2(P, P0),

where
Rz2(P, P0) = Rz21(P, P0) +Rz22(P, P0) +Rz23(P, P0),

and

Rz21(P, P0) =

∫
g0(S = 1, z |W )− g(S = 1, z |W )

g(S = 1, z |W )
(Q̄0 − Q̄)(W )

gS(S = 0 |W )

P (S = 0)
dP0(W )

Rz22(P, P0) = (QW −Q0,W )(Q̄0 − Q̄)

+

∫
gS(S = 0 |W )

P (S = 0)
(Q̄0 − Q̄)d(P − P0)(W )

Rz23(P, P0) =
(P0 − P )(S = 0)

P (S = 0)
(Q0,W −QW )Q̄.

Considering the case that P (S = 1) = P0(S = 1) so that Rz23 = 0, we have two
scenarios under which an estimator that solves the efficient influence curve will be con-
sistent (robustness result). First, if Q̄ = Q̄0 (i.e., the Y model is correct). Second, if
P (S = 1, Z = z |W ) = P0(S = 1, Z = z |W ) and (QW , PW ) = (Q0,W , P0,W ) (i.e., the S
and Z models are correct).

Corollary 2. If P0D
z(P ) = 0 and one of two above scenarios holds, then Ψz

2(P ) =
Ψz

2(P0).

The implication of this corollary is that if Pn of P0 converges to a P so that P0D(P ) =
0 (which will be true for a TMLE since a TMLE solves PnD(Pn) = 0) and one of the
above two scenarios holds, then Ψz

2(Pn) is consistent for Ψz
2(P0).
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B.3 CATE

B.3.1 Efficient influence curve

We know the efficient influence curve of Ψ1 and Ψ̃, so by the delta method, the efficient
influence curve of Ψ3 is given by the following ratio:

Ψ3(P ) = Ψ1(P )

Ψ̃(P )
, where Ψ̃(P ) is the TMLE of the estimand in the denominator.

Da
Ψ1,Ψ̃

(P ) =

(
Ψ1(P )

Ψ̃(P )

)′
=

Ψ̃(P )Ψ1(P )′ −Ψ1(P )Ψ̃(P )′

Ψ̃(P )2

=
Ψ̃(P )DΨ1(P )−Ψ1(P )DΨ̃(P )

Ψ̃(P )2

=
1

Ψ̃(P )
DΨ1(P )− Ψ1(P )

Ψ̃(P )2
DΨ̃(P )

C Alternative ITTATE TMLE

Let Pa(Z) represent variables that are parents of Z. If Z is binary, then we can use that
for any function S(Z | Pa(Z)) with conditional mean zero, given Pa(Z), we have

S(Z | Pa(Z)) = (S(1 | Pa(Z))− S(0 | Pa(Z))(Z − E(S | Pa(Z)))

(Van der Laan and Robins, 2003). Therefore, we can rewrite Da
Z(P ) as follows:

Da
Z(P ) =

I(A = a, S = 0)

gA(a |W,S = 0)P (S = 0)

{
Q̄(s = 1,W, a, z = 1)− Q̄(s = 1,W, a, z = 0)

}
×(Z − gZ(Z = 1 | S = 0,W,A = a))

≡ CZ(gA, Q̄)(Z − gZ(Z = 1 | S = 0,W,A = a)).

As in TMLE I, consider submodel LogitQ̄0
n(ε) = LogitQ̄0

n + εCY (g0
Z,n, gS,n), and let

ε0n be the fitted coefficient for this clever covariate CY in the univariate logistic regression
model using LogitQ̄0

n as off-set, using the binary log-likelihood loss function multiplied
with I(S = 1, A = a) (i.e., only using the observations with Si = 1, Ai = a). The
updated estimator is denoted with Q̄1

n = Q̄0
n(ε0n). Consider the submodel

Logitḡ0
Z,n(ε) = Logitḡ0

Z,n + εCZ(gA,n, Q̄
0
n).

Let ε01n be the fitted coefficient using logistic regression of Z onW among the observations
with (Si = 0, Ai = a), using predicted values Logitḡ0

Z,n as an offset. This defines now
g1
Z,n = g0

Z,n(ε01n). This process can be iterated: Let k = 0, set Q̄k+1
n = Q̄kn(εkn) and gk+1

Z,n =

gkZ,n(εk1n), set k ← k + 1, and repeat until convergence. Assume that εkn, εk1n converge to
zero as k →∞ or that at a step K we have that PnDa(gA,n, g

K
Z,n, gS,n, Q̄

K
n , QW,n|S=0) =
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oP (1/
√
n). Let g∗Z,n, Q̄

∗
n denote the resulting final fits. The TMLE of ψa0,1 is defined by

the substitution estimator ψa∗n,1 = Ψa
1(g∗Z,n, Q̄

∗
n, QW,n|S=0). This TLME solves

PnD
a(gS,n, gA,n, g

∗
Z,n, Q̄

∗
n, QW,n|S=0) = 0 or oP (1/

√
n).

D Alternative variance estimate of ψ3

Alternatively, var(ψ3) can be estimated using the multivariate delta method.

V ar

(
Ψ1

Ψ̃

)
=

(
∇Ψ1

Ψ̃

)′
Cov(Ψ1, Ψ̃)

(
∇Ψ1

Ψ̃

)
=

[
1

µ̃
,
−µ1

µ̃2

] [
σ2

1 σ1σ̃
σ1σ̃ σ̃2

][ 1
µ̃
−µ1
µ̃2

]

=

[
σ2

1

µ̃
− µ1σ1σ̃

µ̃2
,
σ1σ̃

µ̃
− σ̃2µ1

µ̃2

][ 1
µ̃
−µ1
µ̃2

]

=
σ2

1

µ̃2
− µ1σ1σ̃

µ̃2
− µ1σ1σ̃

µ̃3
+
σ̃2µ2

1

µ̃4

=
1

µ̃2

(
σ2

1 −
2µ1σ1σ̃

µ̃
+
σ̃2µ2

1

µ̃2

)
=

µ2
1

µ̃2

(
σ2

1

µ2
1

− 2σ1σ̃

µ1µ̃
+
σ̃2

µ̃2

)

E Baseline covariates used in MTO application

An extensive set of baseline characteristics were included in applying our transport esti-
mators to the MTO research question.

• Adolescent characteristics: age, gender, race, number of family members.

• Characteristics related to the child’s behavior and learning: child was suspended
or expelled from school during 2 years prior to baseline, child had gone to a special
class or school or had gotten special help in school for behavioral or emotional
problems during 2 years prior to baseline, child had gone to a special class or
school or had gotten special help in school for a learning problem during 2 years
prior to baseline, someone from school asked to discuss problems the child had with
schoolwork or behavior during the 2 years prior to baseline, child enrolled in special
class for gifted and talented students, child had problems that made it difficult to
get to school or play active games/sports.

• Adult family member characteristics included: level of education, marital status,
age at birth of the adolescent, work status, receipt of AFDC/TANF, car status,
disability status.
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• Neighborhood characteristics: family lived in neighborhood for at least 5 years; felt
neighborhood streets were unsafe at night; household member had been assaulted,
threatened with a knife or gun, or robbed during the 6 months prior to baseline; chat
with a neighbor at least once per week; would likely tell neighbor if neighbor’s child
was getting into trouble; family living in neighborhood; friends in neighborhood;
neighborhood satisfaction.

• Reported reasons for participating in MTO: to get away from drugs or gangs, to
have access to better schools.

• Moving-related characteristics: confidence about finding an apartment in a different
part of the city, moved more then 3 times during the 5 years prior to baseline, and
previous application for Section 8 voucher.

F R code

F.1 Code for TMLE functions

1 ## a va r i a b l e needs to be named a and have va l u e s 0/1
2 ## s i t e v a r i a b l e needs to be named ’ s i t e ’ and needs to have va lue 0 f o r the

s i t e where the outcome data i s not used and va lue 1 f o r the s i t e where
the outcome data i s used

3 ## z v a r i a b l e needs to be named z and have va l u e s 0/1
4 ## y va r i a b l e needs to be named y and have va l u e s 0/1
5 ## w va r i a b l e s in a dataframe named w and wi th names w1 : wx
6

7 i t t a t e tm l e<−function ( a , z , y , s i t e , w, aamodel , as i temodel , azmodel ,
aoutmodel , aq2model ) {

8 datw<−w
9 n . dat<−nrow( datw )

10

11 #ca l c u l a t e components o f c l e v e r co va r i a t e
12 cpa <− predict (glm( formula=aamodel , family="binomial " , data=data . frame (

cbind ( datw , a=a ) ) ) , newdata=datw , type=" response " )
13 cps <− predict (glm( formula=asitemodel , data=data . frame (cbind ( s i t e=s i t e ,

datw ) ) , family="binomial " ) , type=" response " )
14

15 zmodels0 <− glm( formula=azmodel , data=data . frame (cbind ( a=a , z=z , s i t e=
s i t e , datw ) ) , subset=s i t e ==0, family="binomial " )

16 zmodels1 <− glm( formula=azmodel , data=data . frame (cbind ( a=a , z=z , s i t e=
s i t e , datw ) ) , subset=s i t e ==1, family="binomial " )

17 data_new0<−data_new1<−datw
18 data_new0$a<−0
19 data_new1$a<−1
20

21 dga1s0<−dbinom( z , 1 , prob=predict ( zmodels0 , newdata=data_new1 , type="
response " ) )

22 dga1s1<−dbinom( z , 1 , prob=predict ( zmodels1 , newdata=data_new1 , type="
response " ) )
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23 dga0s0<−dbinom( z , 1 , prob=predict ( zmodels0 , newdata=data_new0 , type="
response " ) )

24 dga0s1<−dbinom( z , 1 , prob=predict ( zmodels1 , newdata=data_new0 , type="
response " ) )

25

26 #ca l c u l a t e c l e v e r co va r i a t e
27 g0w<−(1−cpa )∗ ( dga0s1/dga0s0 )∗ ( cps/(1−cps ) )
28 g1w<−cpa∗ ( dga1s1/dga1s0 )∗ ( cps/(1−cps ) )
29 h0w<−((1−a )∗I ( s i t e ==1))/g0w
30 h1w<−( a∗I ( s i t e ==1))/g1w
31

32 ymodel<−glm( formula=aoutmodel , family="binomial " , data=data . frame (cbind (
datw , a=a , z=z , s i t e=s i t e , y=y) ) , subset=s i t e ==1)

33

34 #i n i t i a l p r e d i c i t on
35 q<−cbind ( predict ( ymodel , type=" l i n k " , newdata=data . frame (cbind ( datw , a=a ,

z=z ) ) ) , predict ( ymodel , type=" l i n k " , newdata=data . frame (cbind ( datw , a
=0,z=z ) ) ) , predict ( ymodel , type=" l i n k " , newdata=data . frame (cbind ( datw
, a=1,z=z ) ) ) )

36

37 ep s i l o n<−coef (glm( y ~ −1 + of fset (q [ , 1 ] ) + h0w + h1w , family="binomial " ,
subset=s i t e==1 ) )

38

39 #update i n i t i a l p r e d i c t i on
40 q1<− q + c ( ( e p s i l o n [ 1 ] ∗h0w + ep s i l o n [ 2 ] ∗h1w) , e p s i l o n [ 1 ] /g0w , ep s i l o n [ 2 ]

/g1w)
41

42 predmodela0<−suppressWarnings (glm( formula=paste ( " p l o g i s ( q1 ) " , aq2model ,
sep="~" ) , data=data . frame (cbind (w, a=a , s i t e=s i t e , q1=q1 [ , 2 ] ) ) , subset
=s i t e==0 & a==0 , family="binomial " ) )

43 predmodela1<−suppressWarnings (glm( formula=paste ( " p l o g i s ( q1 ) " , aq2model ,
sep="~" ) , data=data . frame (cbind (w, a=a , s i t e=s i t e , q1=q1 [ , 3 ] ) ) , subset
=s i t e==0 & a==1 , family="binomial " ) )

44 predmodelaa<−suppressWarnings (glm( formula=paste ( " p l o g i s ( q1 ) ~" , aq2model ,
"+a" , sep="" ) , data=data . frame (cbind (w, s i t e=s i t e , q1=q1 [ , 1 ] , a=a ) ) ,
subset=s i t e ==0, family="binomial " ) )

45

46 #ge t i n i t i a l p r e d i c t i on f o r second r e g r e s s i on model
47 q2pred<−cbind ( predict ( predmodelaa , type=" l i n k " , newdata=data . frame (cbind (

datw , a=a ) ) ) , predict ( predmodela0 , type=" l i n k " , newdata=datw ) ,
predict ( predmodela1 , type=" l i n k " , newdata=datw ) )

48

49 cz<−cbind ( i f e l s e ( a==0,I ( s i t e ==0)/(1−cpa ) , I ( s i t e ==0)/cpa ) , I ( s i t e ==0)/(1−
cpa ) , I ( s i t e ==0)/cpa )

50

51 ep s i l on2<−suppressWarnings ( coef (glm( plogis ( q1 [ , 1 ] ) ~ −1 + of fset ( q2pred
[ , 1 ] ) + cz [ , 2 ] + cz [ , 3 ] , family="binomial " , subset= s i t e ==0)) )

52 for ( k in 1 : 2 ) {
53 ep s i l on2 [ k ]<−i f e l s e ( i s .na( ep s i l on2 [ k ] ) , 0 , e p s i l on2 [ k ] )
54 }
55

56 q2<− q2pred + c ( ( ep s i l on2 [ 1 ] ∗cz [ , 2 ] + ep s i l on2 [ 2 ] ∗cz [ , 3 ] ) , e p s i l on2 [ 1 ] /
(1−cpa ) , ep s i l on2 [ 2 ] /cpa )
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57

58 tmlee s t<−mean( plogis ( q2 [ , 3 ] [ s i t e ==0]) )−mean( plogis ( q2 [ , 2 ] [ s i t e ==0]) )
59

60 ps0<−mean( I ( s i t e ==0))
61

62 e i c<−( ( ( h1w/ps0 ) − (h0w/ps0 ) )∗ ( y − plogis (q [ , 1 ] ) ) ) + ( ( ( a∗cz [ , 3 ] /ps0 ) −
((1−a )∗cz [ , 2 ] /ps0 ) )∗ ( plogis (q [ , 1 ] ) − plogis ( q2pred [ , 1 ] ) ) ) + ( ( I ( s i t e
==0)/ps0 )∗ ( ( plogis ( q2pred [ , 3 ] ) − plogis ( q2pred [ , 2 ] ) ) − tmlee s t ) )

63

64 return ( l i s t ( " e s t "=tmleest , " var "=var ( e i c )/n . dat , " e i c "=e i c ) )
65

66 }
67

68 eatetmle<−function ( a , z , y , s i t e , w, ns itemodel , nzmodel , noutmodel ) {
69 datw<−w
70 n . dat<−nrow(w)
71

72 #ca l c u l a t e components o f c l e v e r co va r i a t e
73 cps <− predict (glm( formula=nsitemodel , data=data . frame (cbind ( s i t e=s i t e ,

datw ) ) , family="binomial " ) , type=" response " )
74 cpz<−predict (glm( formula=nzmodel , data=data . frame (cbind ( a=a , z=z , datw ) ) ,

family="binomial " ) , type=" response " )
75

76 #ca l c u l a t e c l e v e r co va r i a t e
77 g0w<−((1− cpz )∗cps )/(1−cps )
78 g1w<−( cpz∗cps )/(1−cps )
79 h0w<−((1− z )∗I ( s i t e ==1))/g0w
80 h1w<−( z∗I ( s i t e ==1))/g1w
81

82 ymodel<−glm( formula=noutmodel , family="binomial " , data=data . frame (cbind (
datw , a=a , z=z , s i t e=s i t e , y=y) ) , subset=s i t e ==1)

83

84 data_new0<−data_new1<−datw
85 data_new0$z<−0
86 data_new1$z<−1
87 #i n i t i a l p r e d i c i t on
88 q<−cbind ( predict ( ymodel , type=" l i n k " , newdata=data . frame (cbind ( datw , a=a ,

z=z ) ) ) , predict ( ymodel , type=" l i n k " , newdata=data_new0) , predict (
ymodel , type=" l i n k " , newdata=data_new1) )

89

90 ep s i l o n<−coef (glm( y ~ −1 + of fset (q [ , 1 ] ) + h0w + h1w , family="binomial " ,
subset=s i t e==1 ) )

91

92 #update i n i t i a l p r e d i c t i on
93 q1<− q + c ( ( e p s i l o n [ 1 ] ∗h0w + ep s i l o n [ 2 ] ∗h1w) , e p s i l o n [ 1 ] /g0w , ep s i l o n [ 2 ] /

g1w)
94

95 tmlee s t<−mean( plogis ( q1 [ , 3 ] [ s i t e ==0]) )−mean( plogis ( q1 [ , 2 ] [ s i t e ==0]) )
96

97 #ge t e f f i c i e n t i n f l u en c e curve va l u e s f o r everyone
98 ps0<−mean( I ( s i t e ==0))
99
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100 e i c<−( ( ( z∗h1w/ps0 ) − ((1− z )∗h0w/ps0 ) )∗ ( y − plogis (q [ , 1 ] ) ) ) + ( I ( s i t e ==0)/
ps0∗plogis ( q1 [ , 3 ] ) ) − ( I ( s i t e ==0)/ps0∗plogis ( q1 [ , 2 ] ) ) − ( tmlee s t/ps0 )

101

102 return ( l i s t ( " e s t "=tmleest , " var "=var ( e i c )/n . dat , " e i c "=e i c [ s i t e ==0]) )
103 }
104

105 notransporttmle<−function ( a , z ,w, s i t e , ntamodel , ntzmodel ) {
106 datw<−w
107

108 n . dat<−nrow( datw )
109 ps0<−mean( I ( s i t e ==0))
110

111 #ca l c u l a t e components o f c l e v e r co va r i a t e
112 cpa <− predict (glm( formula=ntamodel , data=data . frame (cbind ( a=a , s i t e=s i t e

, datw ) ) , subset=s i t e ==0, family="binomial " ) , newdata=datw , type="
response " )

113

114 g0w<−1−cpa
115 g1w<−cpa
116

117 #c l e v e r c o v a r i a t e s
118 h0w<−I ( s i t e ==0)∗(1− a )/ (g0w∗ps0 )
119 h1w<−I ( s i t e ==0)∗a/ (g1w∗ps0 )
120

121 zmodel<−glm( formula=ntzmodel , family="binomial " , data=data . frame (cbind ( a=a
, z=z , s i t e=s i t e , datw ) ) , subset=s i t e ==0)

122

123 data_new0<−data_new1<−datw
124 data_new0$a<−0
125 data_new1$a<−1
126

127 q<−cbind ( predict ( zmodel , type=" l i n k " , newdata=data . frame (cbind ( a=a , z=z ,
datw ) ) ) , predict ( zmodel , type=" l i n k " , newdata=data_new0) , predict (
zmodel , type=" l i n k " , newdata=data_new1) )

128

129 ep s i l o n<−coef (glm( z ~ −1 + of fset (q [ , 1 ] ) + h0w + h1w , family="binomial " ,
subset= s i t e ==0))

130

131 q1<− q + c ( ( e p s i l o n [ 1 ] ∗h0w + ep s i l o n [ 2 ] ∗h1w) , I ( s i t e ==0)∗ ep s i l o n [ 1 ] / (g0w∗
ps0 ) , I ( s i t e ==0)∗ ep s i l o n [ 2 ] / (g1w∗ps0 ) )

132

133 tmlee s t<−mean( plogis ( q1 [ , 3 ] [ s i t e ==0]) )−mean( plogis ( q1 [ , 2 ] [ s i t e ==0]) )
134

135 e i c<−( ( ( a∗h1w) − ((1−a )∗h0w) )∗ ( z − plogis (q [ , 1 ] ) ) ) + ( ( I ( s i t e ==0)/ps0 )∗ ( (
plogis ( q1 [ , 3 ] ) − plogis ( q1 [ , 2 ] ) ) − tmlee s t ) )

136

137 return ( l i s t ( " e s t "=tmleest , " var "=var ( e i c )/n . dat , " e i c "=e i c ) )
138 }
139

140

141 catetmle<−function ( ca , cz , cy , c s i t e , cw , czmodel , c s i temode l , coutmodel ,
cq2model ) {

142 datw<−cw
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143 n . dat<−nrow( datw )
144 ps0<−mean( I ( c s i t e ==0))
145 camodel<−"a ~ 1"
146

147 not ranspor ta te<−notransporttmle ( a=ca , z=cz , s i t e=c s i t e , w=cw , ntamodel=
camodel , ntzmodel=czmodel )

148 i t t a t e<−i t t a t e tm l e ( a=ca , z=cz , y=cy , s i t e=c s i t e , w=cw , aamodel=camodel ,
a s i t emode l=cs i temode l , azmodel=czmodel , aoutmodel=coutmodel , aq2model
=cq2model )

149 cate<−i t t a t e $ e s t/not ranspor ta te$ e s t
150 varcate<−( i t t a t e $ e s t ^2/not ranspor ta te$ e s t ^2)∗ ( ( ( i t t a t e $var∗n . dat )/ i t t a t e $

e s t ^2) − ( (2∗cov (cbind ( i t t a t e $ e i c , no t ranspor ta te$ e i c ) ) [ 1 , 2 ] ) / ( i t t a t e
$ e s t∗not ranspor ta te$ e s t ) ) + ( ( not ranspor ta te$var∗n . dat )/
not ranspor ta te$ e s t ^2) )

151 e i c<−( i t t a t e $ e i c/not ranspor ta te$ e s t ) − ( i t t a t e $ e s t/ ( not ranspor ta te$ e s t ^2)
)∗not ranspor ta te$ e i c

152

153 return ( l i s t ( " e s t "=cate , " var "=var ( e i c )/n . dat , " e i c "=e i c ) )
154 }

Functions.R

F.2 Code for example application

1 source ( "Functions .R" )
2

3 n<−5000
4

5 s i t e<−rbinom(n , 1 , . 5 )
6

7 race<−rbinom(n , 1 , . 4 + ( . 2∗ s i t e ) )
8

9 crime<−rnorm(n , . 1∗ s i t e , 1)
10 d i s c r im ina t i on<−rnorm(n , 1+(.2∗ s i t e ) , 1)
11

12 #instrument
13 voucher<−rbinom(n , 1 , . 5 )
14

15 #exposure
16 move0<−rbinom(n , 1 , plogis ( −log ( 1 . 6 ) − log ( 1 . 1 )∗crime −log ( 1 . 3 )∗

d i s c r im ina t i on ) )
17 move1<−rbinom(n , 1 , plogis ( −log ( 1 . 6 ) +log (4 ) − log ( 1 . 1 )∗crime −log ( 1 . 3 )∗

d i s c r im ina t i on ) )
18 move<−i f e l s e ( voucher==1, move1 , move0 )
19

20 #outcomes
21 i n s choo l a0<−rbinom(n , 1 , plogis ( log ( 1 . 6 ) + ( log ( 1 . 9 )∗move0 ) −log ( 1 . 3 )∗

d i s c r im ina t i on − log ( 1 . 2 )∗ race + log ( 1 . 2 )∗ race∗move0 ) )
22 i n s choo l a1<−rbinom(n , 1 , plogis ( log ( 1 . 6 ) + ( log ( 1 . 9 )∗move1 ) − log ( 1 . 3 )∗

d i s c r im ina t i on − log ( 1 . 2 )∗ race+ log ( 1 . 2 )∗ race∗move1 ) )
23 i n s choo l a<−i f e l s e ( voucher==1, inschoo la1 , i n s choo l a0 )
24
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25 dat<−data . frame ( w2=crime , w3=d i s c r im ina t i on , w1=race , s i t e=s i t e , a=
voucher , z=move , y=in s choo l a )

26

27 wmat<−data . frame (w1=dat$w1 , w2=dat$w2 , w3=dat$w3)
28

29 amodel<−"a ~ 1"
30 s i t emode l<−" s i t e ~ w1 + w2 + w3 "
31 zmodel<−"z ~ a + w2 + w3 "
32 outmodel<−"y ~ z + w1 +w3 + z :w1"
33 outmodelnoz<−"y ~ a + w1+w3+ a :w1"
34 q2model<−"w1 + w2 + w3 "
35

36 i t t a t e tm l e t r a n s p o r t e s t<−i t t a t e tm l e ( a=dat$a , z=dat$z , y=dat$y , s i t e=dat$ s i t e
, w=wmat , aamodel=amodel , a s i t emode l=s i temodel , azmodel=zmodel ,
aoutmodel=outmodel , aq2model=q2model )$ e s t

37 c a t e tm l e t r an spo r t e s t<−catetmle ( ca=dat$a , cz=dat$z , cy=dat$y , c s i t e=dat$ s i t e
, cw=wmat , c s i t emode l=s i temodel , czmodel=zmodel , coutmodel=outmodel ,
cq2model=q2model )$ e s t

38 e a t e tm l e t r an spo r t e s t<−eatetmle ( a=dat$a , z=dat$z , y =dat$y , s i t e=dat$ s i t e , w
=wmat , ns i temode l=s i temodel , nzmodel=zmodel , noutmodel=outmodel )$ e s t

examp.R
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