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Summary. We show, through an examination of residuals, that all of the 
statistical assumptions usually used in estimating transfer functions for geo- 
magnetic induction data fail at periods from 5 min to several hours at 
geomagnetic mid-latitudes. This failure can be traced to the finite spatial 
scale of many sources. In the past, workers have tried to deal with this 
problem by hand selecting data segments thought to be free of source 
effects. We propose an automatic robust analysis scheme which accounts for 
the systematic increase of errors with increasing power and which auto- 
matically downweights source contaminated outliers. We demonstrate that, 
in contrast to ordinary least squares, this automatic procedure consistently 
yields reliable transfer function estimates with realistic errors. 

Key words: geomagnetic induction; robust transfer function estimation 

1 Introduction 

The first step in the interpretation of geomagnetic induction data usually involves the 
estimation of a frequency-dependent relationship between measured field components. In 
the case of geomagnetic depth sounding (GDS), a relationship between the vertical field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Z) 
and the horizontal field components [H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (H, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD)] of the form 

Z(O) = T~(W)H(U) (1) 

is sought. Here TT(a) is the transpose of a complex two-vector called the transfer function. 
In the case of the magnetotelluric (MT) method a similar relationshlp between the horizontal 
electric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E) and magnetic (H) fields 

E(w) = Z(w) H(w) ( 2 )  

is estimated, where Z(w) is the impedance tensor. 
The use of (1) and (2) can be simply justified if the external sources of the fields are 

plane waves of infinite horizontal extent. It is easy to show, using the linearity of Maxwell's 
equations, that with such source fields (1)  and (2) are exact in the absence of measurement 
errors. In practice (1) and (2) do not hold exactly, both because there are measurement 
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errors and because the plane wave source field assumption is, at best, only approximately 
true. It is thus necessary to estimate the transfer function or impedance tensor from less 
than perfect data, and the problem becomes a statistical one. 

The estimation of these parameters has been discussed extensively in the geophysical 
literature and many variants have been proposed (e.g. Sims, Bostick zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith 1971; Banks 
1975; Jupp 1978; Beamish 1979). In general the estimation procedures are based on least 
squares (LS) methods; the parameter estimate is chosen so that the sum of squares of some 
misfit to the data is minimized. For instance, in the case of GDS the usual estimate is 
obtained by choosing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(o) to minimize the error sum of squares: 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Egbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand J.  R. Booker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TTHj (u )  I ’. (3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LS procedures are conceptually and computationally simple, and with the assumption of 

independent, identically distributed Gaussian errors, they are, in a precise sense, statistically 
optimal (cf. Graybill 1976, p. 173 ff). Unfortunately, at least for long-period GDS data, such 
assumptions about the error structure are not tenable. 

The assumption that error variances are independent of signal power seems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 

unhkely. In part, the misfit of the data to the linear model is due to a failure of the uniform 
source field assumption. The magnitude of this sort of misfit seems very likely to depend on 
the strength of the signal, since for a given source field spatial structure, the earth response 
(including the part which fails to satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) will be proportional to the source magnitude. 
In addition, the strongest signals at mid-latitudes typically occur during the early phase of 
magnetic storms when the uniform source field assumption is particularly likely to be 
violated . 

For related reasons, the Gaussian error assumption is questionable. The failure of model 
assumptions makes very large deviations from predicted values possible and it is thus 
reasonable to  expect significant outliers. Such a situation is poorly modelled by a Gaussian 
error distribution. Finally, source related errors often occur in clusters so that the 
uncorrelated error assumptien may fail, e.g. the Fourier transform of a data segment 
recorded during the initial phase of a storm may have similar source errors in a band of 
frequencies. 

When some or all of these three assumptions fail, LS estimates can be seriously mis- 
leading; neither they, nor the associated standard error estimates are robust. As a result, 
consistent estimation of geomagnetic transfer functions has typically required careful 
preliminary screening of data to eliminate outliers. In this paper we describe a rigorously 
justifiable robust estimation scheme which deals with these problems in an automatic 
fashon. We will focus in particular on the violation of the first two assumptions, 
demonstrating, through an examination of residuals, that at geomagnetic mid-latitudes the 
error variance increases systematically with power and that substantial departures from 
Gaussian error structure occur. 

Failure of the equal variance assumption can be corrected by using a weighted LS 
estimate. We briefly review this approach, along with some standard LS theory in Section 2 .  

Non-Gaussian errors can be dealt with by using a robust alternative to LS. In Section 3 we 
describe such an estimate, a so called ‘regression-M estimate’ (Huber 1981) based on 
minimizing a misfit criterion which does not allow a few bad points to dominate the 
estimates. This can be accomplished efficiently with an iteratively reweighted LS algorithm 
which downweights ‘bad’ points. The procedure is automatic and an asymptotic theory 
exists which gives approximate errors for the estimates. Finally in Section 4 we compare the 
performance of our weighted robust estimates with the standard LS estimates. 
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Geomagnetic transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA175 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We will see that a robust weighted LS algorithm can lead to substantial improvement in 

transfer function estimates. In addition we will show that, while our error estimates may still 
be slightly optimistic (due to the possible failure of the uncorrelated error assumption), they 
are much more realistic than those obtained with standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALS theory. Finally, we discuss 
some implications of our results for the choice of time window length for Fourier trans- 
forming geomagnetic time series. We suggest that the weighted robust estimates (and the 
associated error estimates) can be improved by use of shorter time segments. 

While we only consider explicitly the robust estimation of the GDS transfer function at 
geomagnetic mid-latitudes, the ideas discussed in this paper should be useful in a much more 
general setting, in particular in the analysis of MT data. Note, however, that in this paper we 
ignore the effect of errors in the horizontal magnetic fields. It is well known that t h ~ s  can 
lead to biases in the resulting transfer function estimates. This effect is particularly 
important in MT analysis where several possible solutions to this problem have been 
suggested [remote reference, (Gamble, Goubau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Clark 1979) or the SVD estimate, (Jupp 
1978; Park & Chave 1984)]. Since these approaches are again based on LS, our methods 
can, with suitable modifications, be extended to  improve these more complicated cases. 

Ree ,  ‘ 
Im e l  

~ ..._ 

. ....... .. - 
Re eN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 Weighted least squares 

In this section we review some basic facts about the statistical theory of least squares, both 
for the weighted and unweighted case. We present an analysis of the residuals of a least 
squares fit of GDS transfer functions and show that, at least for long periods, the use of 
weighted least squares is essential. 

The model for the data which leads to the standard least squares estimate for the GDS 
transfer function assumes that the vertical field observations at a futed frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
(obtained by Fourier transforming windowed segments of the recorded time series) can be 
written as a linear function of the horizontal fields plus an error. For the ith of N 

observations we have: 

z~(o> = H ~ ( w ) ~ T ( ~ )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAei. (4) 

All quantities in (4) are complex, including the errors. Although it is easy to derive com- 
plex analogues of real LS procedures, for the purposes of this paper it will be simpler to 
recast the problem so that all quantities are real. Defming the frequency dependent matrices 
Z, H, e and T’ by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Im Tl 

Re T2 

Z =  

e =  

H =  
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it is easy to check that (4) (for i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN) is equivalent to the real matrix equation 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Egbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  R. Booker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z = HT’+ e. ( 6 )  

For the remainder of this paper, all quantities will be real. We thus redefine our notation 
slightly. We will subsequently refer to the i th  element of the real vector Z (e) defined in (5) 
as Zi (ei) and the vectors corresponding to the i th row of H as Hi;  we also drop the prime on 
T’  of (9, so that T now represents a real vector of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (rather zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan a complex 
vector of dimension 2) .  

The problem of estimating T from the data (assuming (6) holds) is a standard problem in 
statistics - multiple regression (e.g. Draper & Smith 1981). The standard regression estimate 
of T can be written, in matrix notation: 

? = ( H ~ H ) - ’ H ~ z .  (7 ) 

This estimate is a least squares estimate since it minimizes the sum of squared residuals 

2 N  2 N  

C r,? = C (zi - H??)~ .  
i =  1 i= 1 

If we add more assumptions, more can be said. If the errors are uncorrelated and have 
equal variances, i.e. if the covariance matrix of the error vector e satisfies 

E(eeT) = z = U’I 

then ? is the best (i.e. minimum variance) estimate of T among all estimates which are 
unbiased and are linear functions of the data. This is a special case of the Gauss-Markov 
theorem (cf. Graybill 1976, p. 219) which gives the best linear unbiased estimate: 

(9) ‘f = (HTXC-l H)-1 HTX-1 Z 

for a general error covariance matrix Z. 
For the case of uncorrelated errors with unequal variances, Var(ei) = a:, the estimate (9) 

is a weighted least squares (WLS) estimate in the sense that ? then minimizes a weighted sum 
of squared residuals 

where the weights wi are proportional to l /uf .  
The validity of assumptions about errors can be assessed by examining the residuals more 

carefully (cf. Goodall 1983). In particular, by plotting r,? against llHi112, it is easy to estimate 
the magnitude of the error variance as a function of signal powei. In Fig. 1 we present a 
smoothed version of such a plot. This plot summarizes results from 12 GDS stations located 
in western Washington and Oregon. Preliminary data processing, including windowing and 
Fourier transforming the three component time series, were carried out as described in detail 
in Section 4. Transfer functions were then estimated by LS and average squared residual 
magnitudes were computed for all Fourier coefficients in a specified signal power range. 
These are plotted against signal power for a range of frequencies on a log-log scale. 

For shorter period data (< 300 s) the error variance is independent of signal power and 
ordinary LS would be justified. For longer periods, however, error magnitudes tend to  
increase with increasing signal power. At an hour, the noise power is essentially proportional 
to signal power and the assumptions of standard LS are grossly violated. This strong 
systematic variation of error variance demands use of the WLS estimate of (9) and (10). 
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Geomagnetic transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 oar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j3000 SEC. 1 

177 

106, // zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr l O O O  S E C .  

-140 SEC 

101' 
101 102 103 104 105 106 107 108 l o9  

POWER IN H QND D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Noise power versus signal power (nT2 Hz- ' ) .  Results are averaged over 12 sites in western 
Washington and Oregon. Note thc increasing dependence of noise power o n  signal power at longer periods 
where source effects are expected to be greatest. 

The easiest way to compute a weighted estimate is to rescale the field components by 
dividing by the error scales setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z ;  = Zi/ai 

Hf = Hi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/oi 

e; = ei/ai 

so that Z (  = HITT + e;, where var(el) f 1, so that now the standard LS estimate is 
applicable. In order to compute the error scales, we have approximated the dependence of 
error variance on signal power with a linear function 

where a and b depend on frequency, and have been estimated from the empirical signal- 
noise power curves plotted in Fig. 1. 

Note that while the use of WLS can be justified by the improvement o f  estimation 
efficiency guaranteed by the Gauss-Markov theorem, there are other, perhaps more com- 
pellingjustifications for its use. First, unweighted LS gives too much influence to high power 
events to  be safe. In extreme situations the transfer function can be determined almost 
entirely by one or two events ~ events which are the most likely to be outliers. Secondly, 
the validity of the standard computation of estimation errors in LS is critically dependent 
on the equal variance assumption. It is not hard to show that with the systematic trend in 
error magnitudes seen in long period GDS, the error estimates obtained from unweighted 
LS are, on average, too small. 

The results of Fig. 1 have further implications. In the estimation of geomagnetic transfer 
functions, it is common practice to use only data from time periods when the magnetic field 
is active. This practice implicitly assumes that higher signal power implies a higher signal-to- 
noise ratio. In fact, Fig. 1 shows that at periods of thousands of seconds at mid-latitudes, the 
signal-to-noise ratio is independent of signal power. For such periods, then, background 
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variations are at least as good for transfer function estimation as variations from disturbed 
times. The practice of selecting only disturbed times for analysis can be justified only for 
shorter periods where source 2-fields are smaller and where instrument noise is large com- 
pared to background signal levels. 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEgbert and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  R. Booker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 A robust alternative to least squares 

In this section we will assume that the three (Fourier transformed) component fields have 
been rescaled so that error variances are constant. While the Gauss-Markov theorem now 
guarantees that the LS estimates will be the best among all linear estimates, there is no 
guarantee that any linear estimate will perform reasonably. The LS estimate is, in fact, 
optimal among all estimates if the errors are Gaussian, but this property is exceedingly 
sensitive to the actual error distribution. For non-Gaussian errors, other (non-linear) 
estimates may have smaller variances. Worse, the LS estimate is not robust zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a very small 
number of bad data points can lead to a catastrophlc failure of the estimate. 

The Gaussian error assumption can be tested by plotting the distribution of actual 
residuals observed against the distribution of residuals expected from a Gaussian error 
distribution. Such plots are called Q-Q plots or normal probability plots (cf. Goodall 1983; 
Wilk & Gnanadesikan 1968) and are constructed by ordering the signed, normalized (i.e. 
djvided by the error scale) residuals and plotting the value of the ith of m ordered residuals 
rU)  against zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP-' (i/m) (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW1 is the inverse of the Gaussian distribution function). For 
example, with m = 200 the fifth residual would be expected to be (0.025) = - 1.94 
(since 2.5 per cent of the observations from a Gaussian sample with unit variance are 
expected to be less than - 1.94) so that this point would be plotted as (- 1.94, Y ( ~ ) ) .  If the 
residuals are consistent with a Gaussian error distribution, the Q-Q plot should approximate 
a straight line with unit slope. 

In Fig. 2 we show examples of such Q-Q plots for GDS data from two stations in 
western Washington. In Fig. 2(a), plots for four frequencies from station SKA are given. 
These data included a severe storm that appeared in the magnetograms to  be severely 
contaminated by source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 fields. The Q-Q plots show the effect of this storm on the 
frequency domain residuals. At short periods (60 s) the Q-Q plot is a straight line indicating 
that the errors are Gaussian. For longer periods, however, the Q-Q plots show that even 
after weighting, the error distribution becomes increasingly heavy tailed - the largest 
residuals are much larger than expected. We have verified that these largest residuals are 
mostly from the highly disturbed period. We thus see that violations of the uniform source 
assumption can lead to unusually large residuals, invalidating the Gaussian error assump tion. 

In Fig. 2(b) we show plots from station KIN. This data sequence did not include any 
severe storms, but was noted to be rather noisy. Here the long-period errors seem reasonably 
Gaussian, but the Q-Q plots show that around 300 s the error distribution is very heavy 
tailed. In this case the contamination is almost certainly not due to geomagnetic sources, 
since the problem is greatest at relatively short periods. The heavy tailed error distribution a t  
this period is most likely due to sporadic cultural noise. Whatever the cause, the heavy tails 
seen in these plots demonstrate that the assumption of Gaussian errors can fail at any period. 

In the past decades, substantial progress has been made in understanding the sensitivity of 
standard statistical procedures (such as LS estimation) to distributional assumptions and 
numerous robust alternatives have been proposed. Huber (1981) gives a thorough but some- 
what technical treatment of the subject; Mosteller & Tukey (1977) offer a more accessible 
treatment; and Claerbout & Muir (1973) discuss some of the issues in a geophysical context. 
We discuss here a well understood, easily implemented robust alternative to the LS estimate 
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60 SEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 
Geomagnetic transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA179 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EXPECTED RES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI DURLS 

60 SEC + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K I N  t 
900 SEC + 

+ 
(b) EXPECTED 

I 

K I N  f 
3600 SEC + 

RES I DUFlLS 

Figure 2. Q-Q plots for (a) SKA ~ heavy tailed residual distributions for long periods due to source 
effects. (b) KIN - heavy tails at intermediate periods due to sporadic local noise. 
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of the GDS transfer function, a so-called ‘regression M-estimate’. In the remainder of this 
section we describe this estimate briefly; its practical implementation is described in 
Appendix A and in the next section we give an example of its use. 

The regression M-estimate is analogous to a LS estimate in that it minimizes the 
difference between prediction and observations, but the measure of misfit is now defined in 
a way that does not allow a few bad points to dominate the estimate. This general approach 
is familiar to geophysicists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL , minimization (cf. Claerbout 1976; Menke 1984) is a special 
case. We consider a generalization of this idea which is flexible, computationally efficient, 
and easily implemented. Specifically, we seek estimates of the transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf which 
minimize an expression of the form 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Egbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand J.  R .  Booker 

where p(r )  is some suitable loss function. Standard LS uses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p(r )  = r 2  /2 

and L 1  minimization p( r )  = Irl. For most purposes we have used a fairly standard hybrid 
(Huber 1981) 

with r,, = 1.5. 
Note that (12) depends in general on the scale parameter u used for normalizing the 

residuals. The loss function given by (13) corresponds to  Lz minimization for small residuals 
and to L ,  minimization for larger residuals. The actual transition point for the unscaled 
residuals is ur,,  so the scale parameter (together with r o )  determines which residuals we 
consider to be large. For Gaussian errors, possibly contaminated by a small number of 
outliers, a transition point of ro = 1.5 times the standard deviation of the (uncontaminated) 
Gaussian error distribution works well. We thus use a robust estimate of the residual 
standard deviation for the error scale. Details are discussed in Appendix A. 

Note that the minimum of (12) can be found by solving the system of equations 

where +(r) = p ’ ( r ) .  In practice the solution of (14) can be easily computed with an iterative 
LS algorithm which downweights outliers. Specifically, let 

w(r)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ) / r .  

Starting with the LS estimates of the transfer function ( P O )  and error scale 60, compute the 
predicted and residual Z fields: 

and then the ‘modified observation’: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi, = zj, + W(r~,/6,,)rto 
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Geomagnetic transfer functions 181 

Note that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp given by (13) 

w(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

so that the modified observations are identical to the originai observations for small (< ro 
standard deviations) residuals, while for larger residuals the observations are pulled toward 
their predicted values. Now, using the modified observations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z ,  ) in place of the originals 

( Z ,  

1 IrI YO i ro/IrI IrI ro 

Z )  compute new LS estimates of the transfer function 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(HTH)-' (HTZ,)  (17) 

together with a new error scale estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ,  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An iterative application of the above procedure is used to compute the regression M- 

estimate. Using the estimates Pn and en from the nth iteration (in place of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo and Go) new 
modified observations Z , , ,  and parameter estimates ?,+, and en+,  are computed exactly 
as above. 

This procedure is iterated until convergence to  the solution of (14) is achieved. Provided 
p(r) satisfies the conditions 

~ ( o ) = o  p'(r)> o ~ < p ' ( r ) <  1 

such convergence is guaranteed (cf. Huber 1981, p. 179 ff). This algorithm can be shown to  
be similar to a Gaussian-Newton scheme for solving the nonlinear system (14). Note also 
that this algorithm is a sort of weighted least squares. At the solution ? to (14) we have 
(using ri = zi ~ TT H ~ )  

rl, (ri 1 o = C ~ (zi - T T ~ i ) ~ i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 w(ri) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zi - ? T ~ i ) ~ i .  

This is identical to the equations that would arise from the weighted least squares 
minimization of (lo), with xvi = w(ri). Here the weights are determined from the data, with 
points which fit poorly given smaller weights. 

With sufficient regularity conditions, the estimates obtained by minimizing (12) are 
consistent with 

E(?) + T 

and they are asymptotically Gaussian with an easily approximated covariance matrix; details 
are given in Appendix A. 

The algorithm described above guarantees convergence to a unique estimate only if p(v) is 
convex @" > 0). This requires that rl, be a non-decreasing function. Ideally we would like to 
completely discard data points which are very bad. This essentially requires that $(r) x 0 for 
large r (so that the terms corresponding to  large residuals in (14) are completely omitted). 
This in turn requires that rl, be non-monotone. For such a rl, the non-uniqueness of the 
solution to (14) can potentially lead to very bad results if the starting estimate is poorly 
determined. Hence, it is advisable (Huber 1981) to use a non-monotone $ only for a final 
iteration (or two) after the algorithm has converged with a monotone rl,. To eliminate the 
worst points completely, we do two final iterations with 

i ri i 

+( r )= rexp  {-exp [ ro( l r  I-ro)l> 

using ro = 2.8. 
Using a non-monotone rl, for the final iterations allows this robust scheme to completely 
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eliminate the worst outliers. This is a significant advantage relative to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 1  minimization. Note 
that for the initial monotone zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ estimate, L 1  minimization could be used (it is a special case 
of the general method described here), but the direct computation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 1  estimate 
requires the solution of a linear programming problem. The use of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp given in (13) is 
cheaper and simpler to implement. For the large errors against which robust schemes offer 
protection, the two methods are similar. 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEgbert and J. R. Booker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Results 

In this section we compare estimates of GDS transfer functions obtained with standard LS, 
WLS and the robust algorithms described above. Ten days of data, recorded at several 
stations in western Washington in 1984 March and April, were used for the comparison. 
Three components of the magnetic field were recorded using EDA fluxgate magnetometers 
with an 8 s sampling interval. Initial processing of the data included detection and correction 
of obvious isolated outliers in the time series (such as parity errors), and visual inspection of 
plots of the time series to check for equipment malfunction or excessive cultural noise. 

Our windowing of the data used a modified cascade decimation algorithm genetically 
related to  that used in real-time MT (Wight et al. 1977) which allows longer time windows 
for longer period data. First, 256 point data segments with a half-hour time window are 
chosen from the raw 8 s data. In addition, the raw data are low pass fdtered and decimated 
by a factor of 4 to produce a time series sampled at 32 s interval. Four such decimates are 
collected to produce a new 256 point segment with a 2 hr time window. The filtering and 
decimation steps are repeated on the decimated series, producing segments sampled at 128 s 
which are collected to produce 256 point segments with an 8 hr time window. This process 
can be continued for higher levels of decimation. In practice we have obtained useful 
estimates at periods from 25 to at least 5000, and some times 10000 s from the first three 
levels and 10 day or less of data. 

At all periods, the intensity of the horizontal magnetic signal varies significantly with 
time. At shorter (25-250 s) periods this signal often drops below the system noise (present 
in all channels). Since the use of data with a low signal-to-noise ratio in the horizontal field 
channels can lead to biased transfer function estimates, estimation of short-period transfer 
functions requires screening of the data to  find time periods with sufficient high frequency 
signal. We accomplished this automatically with a two-step procedure. 

First,the undecimated and level one sets were screened in the time domain. To do this, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ad hoc indices of total signal power, based on squared second differences of the time series, 
were computed for each set. Power in different frequency bands was estimated by varying 
the spacing of points entering the second differences. Estimates from a set of logarithmically 
spaced frequency bands computed in this fashion were then 'whitened' by scaling according 
to typical powers found in these bands: the scaled estimates were then squared again and 
summed to form a scalar index of signal power for the set. Only data sets whose power index 
exceeded an empirically determined threshold were processed further. At the same time, 
using this index of signal power, data segments containing the highest power events (which 
included the worst storm source fields) were flagged so that they could be omitted from 
transfer function calculations if desired. Selected data segments were pre-whitened by first 
differencing (to account for the approximately l/f spectrum), multiplied by a pi-prolate 
spheroidal data window (Thompson 1982) and Fourier transformed. Successive time 
windows were overlapped 30 per cent. This overlap increases estimation efficiency without 
significantly effecting the independence of adjacent windows (Thompson 1982). 

After Fourier transformation of the time series, individual Fourier coefficients with 
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Geomagnetic transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA183 

magnitudes below a frequency-dependent threshold were omitted. T h s  threshold was chosen 
to ensure that the signal-to-noise (power) ratio was at least 10. The results presented in 
Fig. 1 were used to determine the appropriate power levels. This frequency domain 
screening affected only periods shorter than 250 s ;  from 250 s to the longest period looked 
at (10 000 s), the signal power was always well above the system noise level. 

For all decimation levels, transfer functions are computed for non-overlapping bands 
whose width is 25 per cent of the centre frequency. Note that windowing of the data in the 
time domain causes correlation of Fourier coefficients in the frequency domain (due to  over- 
lap of the corresponding frequency domain window). A proper treatment of estimation 
errors of the band averaged estimates must allow for this. To do this we used an approximate 
correction which is outlined in Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. 

In Fig. 3 we plot the magnitude of the Parkinson vectors (i.e. the negative of the real part 
of the transfer function) computed by the three methods for periods from 250 to 8000 s. 
Results are plotted for three stations (KIN, CLA and SKA) chosen to illustrate the sort of 
improvements in estimates we have seen. 

For station KIN (Fig. 3a) the three methods yield similar, but not identical, estimates. 
The robust estimate is distinctly the smoothest, while the unweighted estimate is the 
roughest. Plotted on an expanded scale in Fig. 4, the differences are more striking. Note that 
while the Parkinson vector estimated by the robust method appears to be a smoothed 
version of the others, the estimates are computed for the same non-overlapping bands for all 
methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R O B U S T  EST. 
,40 ........... WEIGHTED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-----STRNDRRO LS 

l o /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKIN 
0' 

m 102 103 104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c( 

CY .40 

, 
,--.' 

CLR 
I- 
u 0' 
2 102 103 104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z - -5Or 

.10 SKFI 
0 
102 103 104 

PERIOD (SEC. 1 
Figure 3. Magnitude of real part of induction vector, showing increased smoothness of weighted and 
robust estimates. (a) KIN.  (b) CLA. (c) SKA. 
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z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEgbert and J .  R. Booker 

- 

R O B U S T  EST. 
........... HEIGHTED LS 
-----STFINOAR0 LS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KIN 

.IS’ 
I02 103 104 

PERIOD (SEC. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. Magnitude of real part of induction vector fur  K I N  on expanded scale 

We take this increase in smoothness as strong evidence of the superiority of the robust 
estimate. One expects that the transfer function should vary slowly with frequency (e.g. for 
the one-dimensional MT transfer function Wiedelt (1 972) has provided rigorous bounds 
which severely constrain the roughness). The effect of noise can only make the estimates 
rougher. While smoothness does not always guarantee accuracy (systematic biases would not 
affect smoothness), excessive roughness always implies inaccuracy. In Fig. 3(a), where no 
systematic differences between curves are evident, the choice of the superior estimate is 
clear. 

The differences between estimates at stations CLA and SKA are much greater (Fig. 3b, c). 
Data recorded for these stations included several large storms which severely violated the 
uniform source field assumption. The worst high power segments of data (identified in 
preliminary processing) were omitted from all transfer function estimates, but 
contamination of the unweighted estimates is still apparent a t  both stations. The weighted 
estimate is much smoother (and more like the robust estimate) at CLA, but is still very 
rough at SKA. Only the robust estimate, is smooth at both stations. 

We should point out that the differences between estimates seen at SKA and CLA are not 
the norm. Typically, standard LS estimates work reasonably well and yield results which are 
similar t o  our weighted robust estimator. However, as the Parkinson vector estimates at CLA 
and SKA show, the failure of LS, when i t  does occur can be quite severe. Furthermore, as 
the results at KIN show, even when LS estimates are not obviously in error, improvement 
is still possible with a robust scheme. 

In Fig. 5 we plot the computed estimation error for the Parkinson vectors of Fig. 3. Some 
of the general features of Fig. 3 are reflected in the error estimates. For instance, the poor 
performance (relative to  the other two estimates) of the unweighted estimate at CLA shows 
up in the errors. At SKA, the improved performance of the robust estimate is reflected in 
the consistent reduction of errors beyond 1000 s. 

At the same time, however, there is clear evidence that the error estimates are overly 
optimistic for the non-robust estimates. Most significantly, the oscillations in the non-robust 
estimates, as well as their deviation from the robust estimate, far exceeds the claimed two 
standard errors at CLA and SKA (Fig. 5). We believe that this reflects the correlated nature 
of errors due to severe source problems - numerous data points spread across a range of 
frequencies are contaminated in a similar fashion by a storm with short spatial scale source 
structure. While the correlation of errors may also be expected to cause underestimates in 
the errors for the robust algorithm, the effect is not as serious. Such source contaminated 
observations are precisely those likely to be thrown out by the robust estimate. 

Note also that at KIN and SKA, where the weighted estimates are clearly superior, the 
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102 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03 104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
185 

0 '  
102 103 104 

PERIOD [ SEC. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Two standard errors of induction vector magnitude; errors for standard LS estimates are clearly 
too small. (a) KIN. (b) CLA. (c) SKA. 

estimation errors are almost always slightly smaller for the unweighted estimates. This 
reflects the downward bias in estimation error (for the unweighted estimates) caused by the 
systematic failure of the equal variance assumption. 

The transfer function estimates presented above are based on data which were screened to 
delete time segments with the worst source structure. To test the robust algorithm further, 
we have also run station SKA without omitting these data. Parkinson vectors computed from 
this unscreened data by the LS, WLS, and robust algorithms are plotted in Fig. 6. 

As discussed above, our method of data windowing uses a modified cascade decimation 
scheme. The frequency ranges for which estimates can be obtained for the two decimation 
levels overlap substantially, and for these frequencies a choice must be made of which 
estimate to use. For the results discussed above, differences between the two levels were 
small and the estimate with the smaller standard error was chosen. In Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 we plot 
estimates from both the first and second decimation levels of unscreened data, along with 
the robust estimate using screened data from Fig. 3(c) for reference. 

The estimates computed from the two levels of decimation are comparable for the 
standard LS estimate, but are substantially different from the WLS and robust algorithms. In 
both of these cases the estimates computed from the lower decimation level (the shorter 
time window) are closer to the reference curve computed with the screened data. In fact, if 
estimates from level one are used at all possible periods, the robust algorithm produces 
essentially the same estimates with or without the preliminary removal of obvious outliers 
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z 
CI WEIGHTED LS 

.lot STRNORRO LS 

" 

102 103 104 

PERIOD [ SEC. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure6. Magnitude of real part of induction vector at SKA with storm included. The robust and 
weighted estimates depend on the time window - estimates computed with the shorter window are 
affected less by inclusion of the storm data. (a) Robust estimate. (b) WLS. (c) LS. 

due to strong storms. This result is very encouraging. With proper windowing of the time 
series the robust estimate is not affected by the inclusion of some very poor quality data. 

The improved performance of the weighted and robust schemes with shorter time 
windows can be readily understood. The choice of the length of the data window involves a 
trade off between resolution in the time and frequency domains. Shorter time windows give 
sharp temporal resolution, but each Fourier coefficient (FC) represents an average over a 
broad frequency band; for long time windows, frequency resolution is sharp, but each FC 
is an average over a longer time period. With geomagnetic induction data, one is seeking to 
estimate a time stationary quantity which varies slowly in the frequency domain (the 
transfer function) from a nonstationary signal whose character may vary rapidly in time 
(i.e. with time-scales which are at most a few times the period of interest). This suggests that 
improved temporal resolution should be more important than improved frequency 
resolution, as we shall see. 

Consider, for example, a short duration event of high power (e.g. a bay) in a much lower 
power background signal. If the time series is broken into short segments, the power from 
the event will be concentrated in a small number of FCs corresponding to the broad 
frequency bands for the single, short time segment containing the event. The corresponding 
FCs for the adjacent time segments will contain only the background signal. If a longer time 
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window is used, the power from the event will still be concentrated in the same frequency 
range which will now contain more FCs (each representing a narrower frequency band 
averaged over a longer time). The event’s power will now, however, be averaged with the 
background signal. The net result is that the power from the event is spread over more of the 
FCs used for computation of the transfer functions when a longer time window is used. The 
event will thus be harder to  pick out as a high powered or outlier event. 

For the weighted and robust methods, then, window length can be an important 
consideration. Averaging high power events with the lower power background defeats the 
purpose of the weighting scheme. A few high power events can have their power spread over 
a large number of FCs so that a few short segments of data can still dominate the estimates. 
The same argument applies to the robust algorithm. An ‘outlier event’ with poor source 
characteristics can contaminate a number of adjacent frequencies. Since these are averaged 
with good data, none of these may be identifiable by themselves as outliers, and the event 
may slip by the robust algorithm. We thus suggest that the weighted and robust algorithms 
will work most effectively if the time window is kept as short as possible, consistent with the 
frequency resolution desired. 

Note that for the standard LS estimates, the distinction between shorter and longer 
windows is unimportant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- LS averages all the events together in essentially the same way 
that the longer window does. This can be seen in the similar estimates for the two levels of 
LS estimates in Fig.6(c). 

To test the consistency of our robust estimates, we have computed transfer functions 
from data collected at a single site in Oregon during two different time periods. The first 
(WIS064) had five and the second (WIS074) 10 days of data in 1982 August. This station was 
chosen because the data had both disturbed and quiet periods in each time segment and 
because we were confident that the sensing head had not changed orientation between 
segments. The two Parkinson vector estimates, together with error bars for the differences 
are plotted in Fig. 7. The two estimates are completely consistent. For one out of 23 
frequencies, the difference between the two estimates slightly exceeds two standard errors. 
This is exactly what would be expected. 

.40- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

.30- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 
W 

z 
=- -20- 

El 
L . 1 0 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 0 
z - 

0 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscussion 

In this paper we have considered the validity of the assumptions about errors which are 
inherent in the LS estimates of the GDS transfer function. Due to the nature of errors 

- 
...._.__... W I SO74 

W I SO64 
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caused by short spatial scale source fields, these assumptions often fail for long-period data, 
leading to  poor transfer function estimates. To deal with this problem we have proposed an 
automatic estimation scheme which is robust to violations of the usual assumptions about 
errors. With several examples, we have demonstrated that this scheme, unlike standard LS, 
can produce reasonable transfer function estimates (with reasonable error estimates) even in 
the presence of poor quality data. 

It could well be argued that the comparisons we have made between the standard LS and 
robust estimates are artificial, since any careful investigator will always screen the data to 
eliminate ‘bad’ time segments, and will then examine the resulting estimates critically. 
While it is certainly true that with proper care, LS estimates can work reasonably well, there 
are still compelling reasons to use a formal robust scheme of the sort described here. 

First, outliers will not always be obvious in the time series. An informal procedure for 
recognizing outliers seems excessively susceptible to errors and unconscious biases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t  thus 
seems essential to use some sort of preliminary estimate of the transfer function to facilitate 
recognition of bad data in a thorough and consistent manner. The method described here is a 
very simple, yet formally justifiable application of this idea. Secondly. with an informal 
procedure it is difficult to rigorously justify the estimation errors. How, for example, does 
one account for the effect of omitting data which does not seem to fit? This accounting is 
much more easily accomplished with a formal procedure. Finally, our robust procedure is 
automatic and is thus easier to use. With digitally recorded data and a small portable 
computer it is possible to get reliable estimates quickly in a field setting. This allows for any 
decisions about redeployment of instruments to be based on the data which have just been 
collected. 

In this paper, we have also shown at geomagnetic mid-latitudes, that the GDS signal-to- 
noise ratio is independent of signal power at periods larger than 250 s. This implies that the 
continuum data between disturbances is at least as good for GDS work as disturbed data. 

A question that we have not addressed, however, is whether our robust estimation scheme 
would work at geomagnetic latitudes much higher than Washington (55’). The success of our 
robust algorithm depends on the fact that short spatial scale sources are rare (although 
powerful) events. Thus they can be detected and discriminated against. We do not know 
whether this is also true in the auroral zone. It may turn out that at high latitudes, short 
spatial scales are the norm and uniform source fields are the outliers even during relatively 
quiet geomagnetic times. If such were the case our robust scheme would obviously fail. 
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Appendix A 
In this appendix we give more details about the regression M-estimate and its practical 
implementation. 

A.l C O N C U R R E N T  S C A L E  EST1MATF.S 

The computation of the regression M-estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi? generally requires the concurrent estimation 
of the error scale u. Assuming that the errors have a (possibly contaminated) Gaussian 
distribution the estimate proposed above will perform best if the scale is chosen as the 
standard deviation of the uncontaminated Gaussian distribution. The scale estimate should 
thus be an unbiased estimate of the standard deviation of a Gaussian distribution and, it 
should be robust. There are many possible estimates of the scale with these properties. We 
have used an estimate which can easily be incorporated into the interative least squares 
scheme described above. 

An initial scale estimate is computed, as in standard LS, from the rms residual 

Scale estimates Gn for subsequent iterations require a bit of care. On the one hand, using the 
actual rms of the residuals rin from the computed estimate ?n is not advisable since this 
estimate of u may be severely affected by outliers. On the other hand, replacing 

by the sum of squared residuals from the modified observations 

underestimates u because all larger residuals are decreased. A proper treatment must correct 
for this effect. 

The rms residual obtained at the nth iteration from the modified observations are roughly 
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190 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(assuming a small change in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT n  from the previous step so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  ) 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Egbert and J.  R. Booker 

where we have used (15) and (16). In the last line Erepresents the expectation operator and 
we have replaced sample averages by expectations and assumed EGi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 (for a Gaussian 
distribution). The new scale estimate is thus biased by a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = I < [ $ ( r / u ) l 2 .  Assuming 
a Gaussian distribution with unit variance for the loss function of (13): 

For ro = 1.5, 
for the nth iteration the scale estimate is 

= 0.7784. A simple correction for the scale estimate is to divide by 0, so that 

This estimate is an (asymptotically) unbiased estimate of the error variance if the 
distribution is Gaussian, and it is robust. Note that the estimate 6 is used only to determine 
the exact form of the loss function, not to compute estimation errors. 

A.2 C O M P U T A T I O N  OF E S T I M A T I O N  I - K K O K S  

The asymptotic covariance matrix of the estimate 'f is (Huber 1981) 

Using the natural approximations for u2,  E$*,  E$' from the final (say the nth) iteration, 
this expression is approximated, to zero order by 

where 
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can be computed from the modified observations via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 ri:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ;Z, - ( H ~ z , ) ~ ( H ~ H ) - ’  ( H ~ z , ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

Note that the scale correction discussed above does not directly enter into the covariance 
estimate. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp given by (13), $ ’  is 0 or 1 depending on residual magnitude so that the 
denominator in (A6) 

is just the fraction of ‘good’ data points. 

Appendix B 

In this appendix we derive an approximate correction to the transfer function error 
covariance to account for the effect of the time window on correlations between adjacent 
Fourier coefficients. In contrast to the rest of this paper, a complex formulation will be 
used. We initially consider three unwindowed time series: The horizontal field vector H ( t ) ,  
the measured vertical field vector Z(t )  and an error series E ( t )  which is to represent measure- 
ment and source errors. Fourier transform these series 

1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H(w) = [ exp (i2nwt) H(t)dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
;(a) = 

Z(w) = r”, exp ( i2nwtjZ(t jdt.  

In the frequency domain we assume that 

exp (i2nwt) ~ ( t )  d t  s‘+ 
2 

where T(w) is the transfer function. Note that we are assuming an idealized case here where 
no windowing of the data has occurred. Now we consider the effect of windowing with 
window W(t).  We assume the window is normalized so that 

m 

[ W ( t ) l Z  dt = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.. 
Set 

Then at frequencies oi, i = 1, . . . , I  the Fourier coefficients of the windowed time series 
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will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H i =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(a’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo i )H(o ‘ )dw’  

G. D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEgbert and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. R. Booker 

I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
2 

-_  

- 

Zi = ( ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(o ’ - w i ) j ( o  ’ ) d o  ’ 

1 - €i=j ’  W(o’ - Wi) E ( o ’ ) d o ’  
1 
2 

-_  

and (B2) is approximately 

zi = T ( O J ~  H~ + ei i = 1 ,  . . . , I 

this will be exactly true if T(o) is constant on the pppor t  of @a), and approximately true 
if T(o) changes slowly over the effective width of W(w) in the frequency domain (as we will 
assume). 

Note that in general the E I S  are not uncorrelated. We assume the error series is stationary 
and calculate the error covariance: 

.. 
dw’W(o’ - W i )  S,(W’) 6(o’ - 0”) 

1 
2 

d o ” W ( o ”  - mi)* 
_-  

= 1’ dw’W(w’ - Wi) *W(W’  - O i ) S , ( W ’ )  
1 _ _  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

where S,(w) = E [ e ( o )  E(w) * ]  is the error power spectrum and the superscript asterisk 
denotes complex conjugation. We further assume that the error spectrum is locally white so 
that S,(w) is (approximately) a constant u2 in the band where the integral of (B4) is 
concentrated. Then 

where pii is the complex correlation between ei and ei. 
Suppose now that the transfer function is estimated at 
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Geomagnetic transfer functions 193 

by band averaging over the frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1 , . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwI. Then it is easily seen that for standard 
LS 

?= T + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 H' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAei = truth + error 
I 

i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

n 

whereA= 1 HI! HT 
i= 1 

The covariance matrix of the transfer function estimate is thus 

I I 

Z = E  I( A-' H I c i )  [ (A-' H;cj)'] '1 
i= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =  I 

Rather than calculate this exactly, we approximate this expression by assuming that H(t) is 
also a realization of a stationary time series which is locally white. Then we have, using an 
argument analogous to that in (B5), 

E(H,* Hi') = pi;. E(HT HT). (B7) 

If the frequencies are evenly spaced, then the correlations pii depend only on the difference 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  I ; assuming this and writing p k  for the correlation at (frequency) lag k ( p j - ,  G p j , ) ,  

we have for (B6) 

k=-I+1 i 1 

replacing 

by its expectation from (B7) and approximating the expectation E(HfHT) by the observed 
average A/I we have 

2 ( H ~ H T + ~ ) = ( ( I -  I ~ I ) P ~ E ( H , * H ~ )  
i 

so (B6) is approximately 

If the window is such that IPk I' = 0 for Ik I > 0, 
covariance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = A-'02. Assuming adjacent 

7 

this reduces to  the usual expression for the 
frequencies satisfy - wi = 1/T where 
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T is window width, we find that for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- prolate window 

( p k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 2  = o for I ~ I  z 2,  so (since I P ~  I = I P - ~ I >  

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIpl 1’ = 0.17 (computed numerically by Fourier transforming the pi-prolate window 
and computing the integral of (B.5)). 

Note that 2(1- 1) is the number of pairs of adjacent frequencies in the band. If all 
frequencies in the band are not used (this is the case for our estimation scheme with 
frequency domain winowing) this should be changed slightly replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2(1- 1) 

I 

number of pairs of adjacent frequencies 
with 

number of frequencies in band 
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