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Abstract

Marginal structural models (MSMs) are becoming increasingly popular among applied re-
searchers as a tool to make causal inference from longitudinal data. Unlike standard regression
models, MSMs can adjust for time-dependent observed confounders while avoiding post-treatment
bias. Despite their theoretical appeal, a main practical challenge of MSMs is the difficulty in es-
timating inverse probability weights. Previous studies have found that MSMs can be highly
sensitive to model misspecification of treatment assignment model even when the number of
time periods is moderate. The effect of misspecification can propagate across time periods be-
cause inverse probability weights used for MSMs are typically based on the product of propen-
sity score estimated separately at each time period. To address this problem, we generalize
the Covariate Balancing Propensity Score (CBPS) methodology of Imai and Ratkovic (2013),
which estimates the inverse probability weights such that the resulting covariate balance is op-
timized. The proposed methodology incorporates all covariate balancing conditions associated
with inverse probability weights. Since the number of these conditions grows exponentially as
the number of time period increases, we orthogonalize them to make estimation feasible in this
high-dimensional setting. Our small scale simulation study suggests that the CBPS significantly
improves the empirical performance of MSMs by making the treatment assignment model robust
to misspecification. Open-source software is available for implementing the proposed methods.
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1 Introduction

Since its introduction by Robins (1999), marginal structural models (MSMs) have quickly gained

popularity among applied researchers in biomedical and other fields as a tool for making causal

inference from longitudinal data in observational studies. The paper that popularized MSMs in

the field of epidemiology have more than 1,000 Google Citations as of May 2013 (Robins et al.,

2000) and the method has been introduced to other disciplines (e.g., Blackwell, 2013). As explained

by Robins et al. (2000), when estimating the causal effects of time-varying treatments, standard

regression models fail to appropriately adjust for time-dependent observed confounders that are

affected by previous treatments. In contrast, MSMs allow one to estimate the causal effects of

different treatment sequences while avoiding this post-treatment bias.

Despite their theoretical appeal, a main practical challenge of MSMs is the difficulty in estimating

inverse probability weights. Using simulation and empirical studies, a number of previous studies

have found that MSMs can be highly sensitive to model misspecification of treatment assignment

model even when the number of time periods is moderate (e.g., Cole and Hernán, 2008; Howe

et al., 2011; Kang and Schafer, 2007; Lefebvre et al., 2008; Mortimer et al., 2005). The effect of

misspecification can propagate across time periods because the inverse probability weights used for

MSMs are typically based on the product of propensity score estimated separately at each time

period.

To address this problem, we introduce the Covariate Balancing Propensity Score (CBPS) method-

ology as a robust estimation method for inverse probability weights of MSMs. The CBPS estimates

the inverse probability weights such that the resulting covariate balance is optimized. The idea

was first introduced by Imai and Ratkovic (2013) to improve the estimation of propensity score in

the cross section settings. In this paper, we generalize the CBPS methodology to the longitudinal

data. After briefly reviewing MSMs and their assumptions (Section 2), we describe the proposed

methodology (Section 3). The proposed methodology incorporates all covariate balancing conditions

associated with inverse probability weights. Since the number of these conditions grows exponen-

tially as the number of time period increases, we orthogonalize them to make estimation feasible in

this high-dimensional setting. We then present simulation studies, which suggest that the CBPS can

dramatically improve the empirical performance of MSMs when the treatment assignment model is

misspecified (Section 4). The final section gives concluding remarks and discusses future research

agenda.
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2 A Review of Marginal Structural Models

In this section, we briefly review the marginal structural models (MSMs) of Robins (1999). See

Robins et al. (2000) for a more detailed introduction of MSMs. Suppose that we have a simple

random sample of size n from a population. For each unit, repeated measurements are taken at

each of J time periods. Specifically, at each time period j = 1, 2, . . . , J , we observe the time-

dependent treatment variable Tij as well as the time-dependent confounders Xij that are possibly

affected by previous treatments. We assume that Xij is realized before the treatment at time j

and therefore is not affected by Tij . We further assume that the treatment variable is binary where

Tij = 1 (Tij = 0) implies unit i receives (does not receive) the treatment at time j. Next, for each

unit, we denote the treatment and covariate history up to time j by T ij = {Ti1, Ti2, . . . , Tij} and

Xij = {Xi1, Xi2, . . . , Xij}, respectively. We also denote the set of possible treatment and covariate

values at time j as T j and X j . Finally, we observe the outcome variable Yi for unit i at the end of

the study, i.e., time J , after the treatment for the same time period, i.e., TiJ , is administered.

The potential outcome framework of causal inference was originally developed by Neyman (1923)

and Rubin (1973) in the cross-section setting, but Robins (1986) generalized it to the longitudinal

analysis. Under this framework, we use Yi(t̄J) to represent the potential value of the eventual outcome

variable for unit i measured at time J under the entire treatment history T iJ = t̄J where t̄J ∈ T J .

Thus, the observed outcome is given by Yi = Yi(T J). Similarly, Xij(t̄j−1) denotes the potential

values of covariates for unit i at each time period j under the treatment history up to time j − 1,

i.e., T i,j−1 = t̄j−1. Therefore, the observed values of covariates can be written as Xij = Xij(T i,j−1)

for unit i at time j. This setup relies upon the consistency assumption that the potential values

of outcome and covariates for each unit are only functions of its own treatment history up to that

point in time. The assumption excludes the possible interference between units (but not between

time periods), implying that the potential values of outcome and covariates are not influenced by

the treatment history of other units.

MSMs are based on the assumption of sequential ignorability, which states that the treatment

assignment of unit i at time j is exogenous given the treatment and covariate history of the same

unit up to that point in time. In other words, MSMs assume no unmeasured confounding at each

time period. This sequential ignorability assumption can be formally written as,

Yi(t̄J) ⊥⊥ Tij | T i,j−1 = t̄j−1, Xij = x̄j (1)

at any time period j for a given treatment history t̄J = {t̄j−1, tj , . . . , tJ} ∈ T J and covariate history
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x̄j ∈ X j . We also assume that the conditional probability of treatment assignment is bounded away

from zero and one at each time period. That is,

0 < Pr(Tij = 1 | T i,j−1 = t̄j−1, Xij = x̄j) < 1 (2)

at any time period j for a given treatment history t̄j−1 ∈ T j−1 and covariate history x̄j ∈ X j .

Under these assumptions, Robins (1999) showed that the inverse-probability-of-treatment weight-

ing (IPTW) can be used to consistently estimate the marginal mean of any potential outcome, i.e.,

E{Yi(t̄J)} for any treatment sequence t̄J ∈ TJ . For the reason that will become clear later, we first

define the potential value of this weight for unit i under treatment history t̄J as,

wi(t̄J , XiJ(t̄J−1)) =
1

P (T iJ = t̄J | XiJ(t̄J−1))
=

J∏
j=1

1

P (Tij = tij | T i,j−1 = t̄j−1, Xij(t̄j−1))
(3)

This weight is typically small and therefore the estimates become highly variable. Therefore, re-

searchers commonly follow the suggestion given in the literature and use the stabilized weights

of the form, w∗i (t̄J , XiJ(t̄J−1)) = P (T iJ = t̄J)/P (T iJ = t̄J | XiJ(t̄J−1)), when fitting the outcome

model. We denote the observed values of these weights as wi = wi(T iJ , XiJ) and w∗i = w∗i (T iJ , XiJ).

In an observational study, these weights are unknown and must be estimated. Typically, a

parametric model is used to estimate the conditional probability of treatment assignments given the

set of covariates,

w−1
i = πβ(T iJ , XiJ) (4)

where β is a finite dimensional vector of unknown parameters. A common choice of parametric

model is the logistic regression independently applied to each time period,

πβ(T iJ , XiJ) =

J∏
j=1

expit{(2Tij − 1)β>j X
∗
ij} (5)

where X
∗
ij = [T i,j−1 Xij ], expit(z) = {1 + exp(−z)}−1, and βj is a vector of unknown coefficients.

The numerator of the stabilized weight is typically estimated using the sample proportion for each

treatment sequence.

Once the (stabilized) weights are estimated, the conditional expectation of outcome is modeled

as a function of treatment history alone without covariates, i.e., E(Yi | T iJ). Robins (1999) has

shown that this yields a consistent estimate of the mean potential outcome, i.e., E{Yi(t̄J)} thereby

allowing researchers to compute the average outcome under any sequence of treatment assignments

over time.
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3 The Proposed Methodology

In this section, we propose a robust estimation procedure for the inverse-probability-treatment weight

wi for MSMs. Specifically, we estimate the weight such that time-dependent covariates are balanced

across appropriate sub-populations by generalizing the the covariate balancing propensity score

(CBPS) of Imai and Ratkovic (2013) to the longitudinal data settings. The CBPS methodology

estimates the propensity score such that the resulting covariate balance is optimized. Imai and

Ratkovic (2013) present the simulation and empirical evidence that the CBPS significantly improves

the robustness of propensity score matching and weighting methods to the model misspecification

of treatment assignment model. We show how to extend the CBPS to the causal analysis of panel

data with time-dependent treatments and confounders. In what follows, for the ease of exposition,

we first present the proposed methodology in the case of two time periods. We then consider the

general case of possibly more than two time periods.

3.1 The Two Time Period Case

To convey the intuition for the proposed methodology, we first present the CBPS for the case of two

time periods. For each unit i, we observe the outcome variable Yi measured at the end of study,

the binary treatment variable Tij , and a vector of confounders Xij for each time period j = 1, 2.

Suppose that we are interested in using MSMs to estimate the marginal mean of potential outcome

measured at the end of the second period, E{Yi(t̄2)}, where t̄2 can take any of the four possible

values, i.e., t̄2 ∈ T2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Covariate Balancing Conditions. We derive the moment conditions based on the covariate

balancing property of the weight for MSMs. To do this, we first express these moment conditions

as functions of the (potential) weight defined in equation (3). Specifically, at the first time period,

across all possible treatment histories, the weight should balance the mean of the baseline covariate,

Xi1. Formally, for all t̄2 = (t1, t2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we have

E(Xi1) = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, Xi2(t1))Xi1

]
. (6)

This gives the total of three moment conditions because the above equality holds across four different

treatment histories and one such equality is redundant. While there exist numerous ways to represent

these three moment conditions, we choose the following equalities that are orthogonal to each other
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Treatment history: (t1, t2)

Time period (0,0) (0,1) (1,0) (1,1) Moment condition

time 1

+ + − − E
{

(−1)Ti1wiXi1

}
= 0

+ − + − E
{

(−1)Ti2wiXi1

}
= 0

+ − − + E
{

(−1)Ti1+Ti2wiXi1

}
= 0

time 2
+ − + − E

{
(−1)Ti2wiXi2

}
= 0

+ − − + E
{

(−1)Ti1+Ti2wiXi2

}
= 0

Table 1: Orthogonal Representation of Covariate Balancing Moment Conditions in the Two Time
Period Case. The first and second time periods have three and two moment conditions, respectively.
There are four distinct values of treatment history with tj representing the value of the treatment
variable at time j. The symbols, “+” and “−”, in these four treatment history columns show
whether the weighted average of covariates among units with a certain treatment history is added
or subtracted when formulating the moment condition. Within each time period, row vectors of +’s
and −’s for the treatment history combinations are orthogonal to one another. The last column
represents the corresponding moment condition.

and can be written in a compact notation using the observed weight instead of its potential values,

E{(−1)Ti1wiXi1} = 0 (7)

E{(−1)Ti2wiXi1} = 0 (8)

E{(−1)Ti1+Ti2wiXi1} = 0 (9)

This orthogonal representation of covariate balancing conditions is summarized in the first three

rows of Table 1. In the table, if we treat + and − as +1 and −1 in the table, row vectors for each

time period are orthogonal to each other.

The covariate balancing conditions at the second time period are similar to those at time 1, except

that the covariates measured at time 2 are a function of the treatment at time 1, i.e., Xi2 = Xi2(Ti1).

Using the potential outcomes notation, for all t̄2 = {t1, t2}, we can write these covariate balancing

conditions as follows,

E{Xi2(t1)} = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, Xi2(t1))Xi2(t1)

]
(10)

Because Xi2(t1) is observed only when Ti1 = t1, the above covariate balancing equation implies the

following two sets of moment conditions, i.e., one for each value of t1, which again can be compactly

written as,

E
{

(−1)Ti2wiXi2

}
= 0 (11)

E
{

(−1)Ti1+Ti2wiXi2

}
= 0 (12)
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The bottom two rows of Table 1 summarize this result. While at time 1 both Ti1 and Ti2 are varied

to generate 3 moment conditions, only Ti2 is varied at time 2.

The benefits of this orthogonalization is twofold. First, it reduces the statistical dependence

between moment conditions, simplifying the estimation and improving the efficiency of the resulting

weight. Second, as shown in Section 3.2, its compact notation allows one to extend the proposed

methodology to the general case of more than two time periods.

Estimation. Since the number of moment conditions exceeds the number of parameters to be

estimated, we use the generalized method of moments (GMM; Hansen, 1982) estimation to combine

the covariate balancing conditions derived above. Our GMM estimator is given by,

β̂ = argmin
β∈Θ

vec(G)>{I3 ⊗W}−1vec(G) (13)

= argmin
β∈Θ

trace(G>W−1G) (14)

where the sample moment conditions are given by,

G =
1

n

n∑
i=1

 (−1)Ti1wiXi1 (−1)Ti2wiXi1 (−1)Ti1+Ti2wiXi1

0 (−1)Ti2wiXi2 (−1)Ti1+Ti2wiXi2

 , (15)

and W is given by,

W =
1

n

n∑
i=1

E

 w2
iXi1X

>
i1 w2

iXi1X
>
i2

w2
iXi2X

>
i1 w2

iXi2X
>
i2

∣∣∣ Xi1, Xi2

 (16)

where the expectation is calculated analytically.

It is important to note that this formulation rests upon a simplifying assumption in the GMM

weighting matrix structure. In particular, we assume that different covariate balancing conditions

are uncorrelated with each other. The assumption implies that each column of G in equation (15)

is uncorrelated with each other. While these assumptions do not generally hold, the orthogonal-

ization of covariate balancing conditions reduces the possible correlation. The main motivation for

this simplifying assumption is computational scalability. As shown in Section 3.2, this formulation

prevents the dimension of W from increasing exponentially as the number of time periods increases.

While it is known that the optimal weighting matrix equals the inverse of the covariance matrix of

all moment conditions, this assumption does not affect the consistency of the GMM estimator.

3.2 The General Case

We extend the above formulation to the general case with more than two time periods, i.e., j =

1, 2, . . . , J . We first generalize the covariate balancing conditions derived above and then describe

the GMM estimation.
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Covariate Balancing Conditions. We characterize the covariate balancing conditions in the

general case with an arbitrary number of time periods J ≥ 2. Recall that in the two time period

case, the weight for MSMs balances the covariates at the first time period across all possible values of

the entire treatment vector. At the second time period, however, the weight only balances covariates

across the treatment values at that time period among the units who receive the same treatment

value in the first time period. In general, the weight balances covariates at a given time period across

all possible combinations of the current and future treatment conditions, but not across the past

treatment combinations. Formally, for a given time period j and fixed past treatment sequence up

to that point t̄j−1, we can write the covariate balancing conditions across all treatment sequences of

the current and future time periods tj = {tj , tj+1, . . . , tJ} as,

E{Xij(t̄j−1)} = E[1{T j−1 = t̄j−1, T ij = tj}wi(t̄J , XiJ(t̄J−1))Xij(t̄j−1)] (17)

where T ij = {Tij , Ti,j+1, . . . , TiJ} represents a vector of observed current and future treatment

conditions.

In the two time period case, the balance conditions are characterized in terms of the sums and

differences of wiXij across all groups defined by a distinct value of the entire treatment sequence. We

generalize that formulation here. Specifically, for each time period, we orthogonalize the covariate

balancing conditions given in equation (17) by aliasing the past treatment effects on the covariates

at time j. Since there exist a total of 2J−j+1 possible current and future treatments, equation (17)

implies 2J−j+1 − 1 orthogonal constraints given a particular history of treatment up to time j − 1,

i.e., t̄j−1. There are a total of 2j−1 possible treatment histories and hence all together we have

(2J − 2j−1) covariate balancing conditions for each time period j.

To formalize this idea, we utilize the theoretical framework developed for analyzing and designing

randomized experiments based on the 2J full factorial design (see e.g., Box et al., 2005). In Table 2,

we present a running example of the case with J = 3 where the first three columns present the design

matrix in Yates order with +’s and −’s indicating the presence and absence of the treatment at each

time period, respectively. It is well known that the full 2J factorial design can be represented by

Hadamard matrix of order 2J . Recall that Hadamard matrix of order n, denoted by Hn, is an n×n

matrix of +1’s and −1’s whose rows are orthogonal to one another, implying that H>nHn = nIn.

To construct a Hadamard matrix that corresponds to the full 2J factorial design, let D be the

2J × J “negative” design matrix of +1’s and −1’s sorted in Yates order,

D = [d0, d1, d2, d12, d3, d13, d23, d123, d4, d14, . . .]
> (18)
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Treatment history: (t1, t2, t3)
Design matrix (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) Time periods
Ti1 Ti2 Ti3 h0 h1 h2 h12 h13 h3 h23 h123 1 2 3

− − − + + + + + + + + 7 7 7

+ − − + − + − + − + − 3 7 7

− + − + + − − + + − − 3 3 7

+ + − + − − + + − − + 3 3 7

− − + + + + + − − − − 3 3 3

+ − + + − + − − + − + 3 3 3

− + + + + − − − − + + 3 3 3

+ + + + − − + − + + − 3 3 3

Table 2: Orthogonal Representation of Covariate Balancing Moment Conditions in the Three Time
Period Case Using the 23 Factorial Experiment Framework. The first three columns show the
design matrix of the factorial experiment in Yates order where the symbol “+” (“−”) represents the
presence (absence) of each treatment factor. The next eight columns show the Hadamard matrix of
this factorial experiment based on this design matrix that corresponds to the eight distinct values of
treatment history with tj representing the value of the treatment variable at time j. The symbols,
“+” and “−”, in these eight treatment history columns also indicate the orthogonal representation of
covariate balancing moment conditions. Finally, the symbol 3(7) in the last three columns indicates
that the corresponding covariate balancing moment condition is (not) binding for each time period.

where d0 is a J dimensional column vector of 1’s and dj is a column vector of length J where the

elements of set j indicate the indexes of the elements of the vector with −1 and the other elements

of the vector are 1’s. For example, when J = 3, we have d12 = (−1,−1, 1)>. Thus, +’s and −’s

in Table 2 correspond to −1’s and +1’s in D, respectively. Let cj be the jth column of D so that

D = [c1, c2, . . . , cJ ]. Further, denote the common component of dj and ck by djk. For a subset t

of NJ = {1, . . . , J}, let the Hadamard product, denoted by ht, of columns ck with k ∈ t be a 2J

dimensional column vector with its jth element being
∏
k∈t djk. Then, the Hadamard matrix of

order 2J can be constructed by collecting in Yates order all the Hadamard products of the columns

of D. The result is given by the following 2J × 2J matrix,

H2J = [h0, h1, h2, h12, h3, h13, h23, h123, h4, h14, . . .] (19)

where h0 is a column vector of +1’s. This matrix in the case of J = 3 is given in the middle columns

of Table 2.

Thus, the Hadamard matrix representation allows us to orthogonalize the covariate balancing

moment conditions in a systematic way regardless of the number of time periods. Moreover, the suc-

cessive multiplication procedure used for the construction of this Hadamard matrix directly justifies

the notation used in equations (11) and (12). In fact, it has long been known that this Hadamard

matrix representation can be used to compute the mod 2 discrete Fourier transform (Good, 1958).
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For example, the second and sixth rows of Table 2 corresponds to the following covariate moment

conditions,

E{(−1)Ti1wiXij} = 0 (20)

E{(−1)Ti1+Ti3wiXij} = 0 (21)

That is, one can use the design matrix to form the treatment variables that enter the exponent of −1

in the compact expression of the covariate balancing moment conditions. In sum, the 2J factorial

experiment framework allows us to directly generalize the orthogonal representation of the covariate

moment conditions given in Section 3.1 to the general case with more than two time periods.

Therefore, this full 2J factorial design framework clearly shows which covariate balancing moment

conditions are binding at any given time period for the estimation of the weight for MSMs. As noted

above, the stabilized weight balances covariates measured at time j across all possible current and

future treatments but it does not balance across past treatments. Therefore, the covariate balancing

moment conditions, which correspond to the effects of past treatments and their interactions, are not

binding. These conditions can be easily identified by the design matrix. For example, in Table 2, we

see that the second row, corresponding to the main effect of time 1 treatment, i.e., Ti1, is not binding

for time 2 covariates Xi2. Similarly, for time 3 covariates, the moment conditions corresponding to

the effects of Ti1 and Ti2 as well as their interaction are not binding. In general, for covariates

measured at time j, the first 2j−1 rows of Hadamard matrix H2J can be ignored when constructing

the covariate balancing moment conditions.

Estimation. As in the two time period case, we use the GMM to combine all the covariate bal-

ancing conditions. Our GMM estimator is given in equation (14) where the expression for the vector

of covariate balancing conditions G and their sample covariance matrix W in the general case are

constructed as follows. We begin by defining the following two matrices,

X̃j =


w1X

>
1j

w2X
>
2j

...

wnX
>
nj

 and Rj =

 02j−1×2j−1 02j−1×(2J−2j−1)

0(2J−2j−1)×2j−1 I2J−2j−1

 (22)

where X̃j represents the matrix of weighted time-dependent covariates and Rj is the “selection”

matrix which identifies the binding covariate balancing conditions for each time period. Next, we

construct the n× (2J − 1) model matrix M based on the design matrix D arranged in Yates’ order
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as follows,

M = [m0,m1,m2,m12,m3,m13,m23,m123,m4,m14, . . . ] (23)

where m0 is a n dimensional column vector of ones, and the ith element of an n × 1 vector mt is

(−1)
∑

k∈t Tik with t ∈ {1, 2, 12, 3, 13, 23, 123, 4, 14, . . . }. For example, the ith element of m23 equals

(−1)Ti2+Ti3 . In fact, the ith row of M is given by the row of the Hadamard matrix in Table 2 that

corresponds to the treatment sequence of the ith observation. Finally, the set of balancing conditions

and their sample covariance matrix are given by

G =


X̃>1 MR1

...

X̃>JMRJ

 and W =


E(X̃1X̃

>
1 | X) · · · E(X̃1X̃

>
J | X)

...
. . .

...

E(X̃JX̃
>
1 | X) · · · E(X̃JX̃

>
J | X)

 . (24)

where the expectation is calculated analytically. Thus, the estimator derived in Section 3.1 can be

directly generalized to the case with an arbitrary number of time periods.

3.3 Combining with the Score Conditions

In the cross section settings, Imai and Ratkovic (2013) suggest that the CBPS may combine the

score conditions with the covariate balancing conditions under the GMM framework. The idea is

to exploit the dual characteristics of propensity score: if the propensity score is correctly estimated

it should predict the treatment assignment and balance the covariates. In the current longitudinal

settings, we can also take the same strategy by including the score condition from each time period

as another set of moment conditions in the GMM objective function given in equation (14).

Since the covariance between the score and covariate balancing conditions is complex, in practice

we may assume the independence among them. In our simulations, we account for the dependence

within each score condition across time periods using their sample covariance. Specifically, we apply

a logistic regression to model the treatment assignment at each time period. As shown in Imai

and Ratkovic (2013), in this case, a score condition can be written as another covariate balancing

condition with different weights. Thus, we include these score conditions as another set of columns

of X̃j in equation (22).

3.4 Extension to Multiple Binary Treatments

The method described above naturally extends to the setting where there exist multiple binary

treatments. Indeed, dynamic treatment regimes considered in this paper is essentially a special case

of J multiple binary treatments. The only difference is that for dynamic treatment regimes some
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Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(a) Simulation 1: Correct Lag Structure

Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(b) Simulation 2: Incorrect Lag Structure

Figure 1: Treatment Variable Data Generating Process in Simulation Studies. In the first set of
simulations summarized by the diagram of panel (a), a relatively simple treatment assignment model
is used and we only misspecify the functional form while maintaining the correct lag structure. In the
second set of simulations summarized by the diagram of panel (b), a more complex data generating
process is used and we examine the impact of incorrectly specifying the lag structure. The results
of these simulations are given in Figure 2 and 3, respectively

of the covariate balancing conditions are not binding as indicated by zero elements of G matrix in

equations (15) and (24). In contrast, for multiple binary treatments, all of these covariate balancing

conditions are binding. However, aside from this difference, the estimation for the case of multiple

binary treatments proceeds in an identical manner.

4 Simulation Studies

We conduct four sets of simulation studies in order to assess the empirical performance of the

proposed CBPS estimation. First, we show that when the treatment assignment model is correctly

specified, the proposed methodology does as well as the standard maximum likelihood estimation.

Second, we also examine several scenarios where the treatment assignment model is misspecified in

terms of either the lag structure or the functional form of the covariates (or both). We find that

the CBPS significantly reduces the bias and mean squared error of the standard method in each of

these model misspecification scenarios.

In all four simulation scenarios, we consider the case of three time periods, i.e., J = 3, and use

four different sample sizes n = 500, 1, 000, 2, 500, and 10, 000. Across these four simulations, we

vary both whether the lag structure and functional form for the treatment assignment model are

properly modeled. Figure 1 summarizes the treatment variable data generating processes used in our

simulations. In the first set of simulations summarized by the diagram of panel (a), a relatively simple

treatment assignment model is used and we only misspecify the functional form while maintaining

the correct lag structure. In practice, however, both the treatment variables and the covariates may
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be affected by the previous treatment. In the second set of simulations summarized by the diagram of

panel (b), a more complex data generating process is used and we examine the impact of incorrectly

specifying the lag structure. All simulations use the identical outcome variable model.

Specifically, in the first set of simulations, for time j, we use the covariates Xij = (Zij1 ·Uij , Zij2 ·

Uij , |Zij3 ·Uij |, |Zij4 ·Uij |)> where each Zijk is an i.i.d. draw from the standard normal distribution,

and Uij is constructed as Uij = 2 + (2Ti,j−1 − 1)/3 for j = 2, 3 and Uij = 1 for j = 1. The

treatment assignment model is given by Pr(Tij = 1) = expit{−Ti,j−1 + γ>Xij + (−1/2)j} where

γ = (1,−0.5, 0.25, 0.1)> and Ti0 = 0. Finally, the outcome model is defined as Yi = 250 − 10 ·∑3
j=1 Tij +

∑3
j=1 δ

>Xij + vi where δ = (27.4, 13.7, 13.7, 13.7)> and vi is a normal disturbance with

mean zero and standard deviation five. To consider the functional form misspecification, we use the

following non-linear transformation of the covariates, X∗ij = (Z3
ij1, 6 ·Zij2, log(|Zij3|), 1/|Zij4|)>, and

estimate the treatment assignment model with these covariates.

In the second set of simulations, we consider the misspecification of lag structure where only

the covariates from the current period and the treatment from the most immediately previous time

period are used. Recall that in these simulations we generate the treatment at any given time period

as a function of treatments and covariates from all previous time periods. As with the first two

simulations, we also consider the misspecification of functional forms using nonlinear transformation.

Specifically, the treatment assignment in the second set of simulations is given by Pr(Tij = 1) =

expit{
∑j

j′=1(Ti,j−1 + γ>Xij′)/2
j−j′ + (−1/2)j}. The true treatment assignment model is a function

of the entire covariate and treatment history for each observation, but each method is applied using

the most immediate covariates and treatment. In order to generate our covariates for this set of

simulations, we adjust Uij such that Uij =
∏j−1
j′=1

{
2 + (2Tij′ − 1)/3

}
for j = 2, 3 and Uij = 1 for

j = 1. The new set of covariates are then constructed as Xij = (Zij1Uij , Zij2Uij , |Zij3Uij |, |Zij4Uij |)>

so that they are a function of all past treatments. The outcome model is the same as the one used

for the first set of simulations except that the definition of Xij is different. As before, we assess

each methods’ performance when using the correct covariates, Xij , and the covariates after a mild

nonlinear transformation, X∗ij = {(Zij1Uij)3, 6 · Zij2Uij , log |Zij3Uij |, 1/|Zij4Uij |}>.

To evaluate the performance of our proposed CBPS methodology, we simulate 10,000 data sets

using the aforementioned data generating processes. We then fit a logistic regression model (GLM) as

the treatment assignment model independently for each time period using correct and incorrect model

specifications as discussed above. We also fit the same exact logistic model using the proposed CBPS

estimation but in two ways: first with covariate balancing conditions alone (CBPS1) and second with

12
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Figure 2: Impact of Treatment Assignment Model Misspecification based on Simulations with Cor-
rect Lag Structure. Two cases are considered where the treatment assignment model is either
correctly specified or misspecified. In the latter scenario, the functional form misspecification is con-
sidered while the lag structure is correctly modeled. The first three columns show that the bias and
root mean squared error (RMSE) for the estimated regression coefficients of the three treatment vari-
ables (one for each of the three time periods) from the marginal structural model. The final column
presents the bias and RMSE for the estimated mean potential outcome, E(Yi(t1, t2, t3)), averaged
across eight unique treatment sequences. Overall, CBPS1 (thick solid lines; balance conditions) and
CBPS2 (thick dashed lines; balance and score conditions alone) outperform the GLM (thin dashed
lines) when the model is misspecified. The dotted lines represent the results for the estimates based
on the true weights.
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the both covariate balancing and score conditions (CBPS2). Finally, the marginal structural model

(MSM) weights are constructed from each of the fitted models and then we regress the outcome

variable on all three treatment variables using the MSM weights. The resulting regression coefficients

are then compared with the numerical estimates of true regression coefficients obtained from a large

number of simulations with the true treatment assignment probabilities.

Figure 2 presents the results from the first set of simulations where the misspecification of treat-

ment assignment model is confined to the functional form and the correct lag structure is maintained.

The first three columns show that the bias (upper two rows) and root mean squared error or RMSE

(bottom two rows) for the estimated regression coefficients of the three treatment variables (one for

each of the three time periods, i.e., β̂1, β̂2, and β̂3, respectively) from the MSM. That is, our MSM

is a weighted linear regression where the outcome is regressed on three treatments using the MSM

weights. The final column presents the bias and RMSE for the estimated mean potential outcome,

E(Yi(t1, t2, t3)), averaged across eight unique treatment sequences. These estimates are obtained by

calculating the weighted average of the outcome using the subset of data for each treatment sequence.

When the treatment assignment model is correctly specified, all methods have small bias (the

first row) and small RMSE (third row) for all quantities of interest. However, when the model is

misspecified, the bias and RMSE are large and even grow in sample size for GLM (thin dashed

lines). In contrast, CBPS1 (thick solid line; covariate balancing conditions alone) and CBPS2 (thick

dashed line; covariate balancing and score conditions combined) have much smaller bias and RMSE

across parameters. Unlike the GLM, both the bias and RMSE do not grow in sample size, thereby

outperforming the standard estimation technique.

In the first row of Figure 3, the misspecified lag structure induces noticeable bias across all

methods, with the CBPS methods showing modest gains in bias (first row) and RMSE (third row).

When the lag structure is misspecified and the transformed covariates are included (second and

fourth rows), the standard GLM estimation leads to large bias and RMSE that increase in the

sample size when the model is misspecified. In contrast, the CBPS methods minimize the impact of

model misspecification and stays within a reasonable range for bias and RMSE across all quantities

of interest.

5 Concluding Remarks

In this paper, we have extended the CBPS methodology of Imai and Ratkovic (2013) to the esti-

mation of inverse probability weights for marginal structural models, which are often used in the
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Figure 3: Impact of Treatment Assignment Model Misspecification based on Simulations with In-
correct Lag Structure. Two cases are considered where the treatment assignment model is either
correctly specified or misspecified. In the latter scenario, both the functional form and lag structure
are misspecified. The first three columns show that the bias and root mean squared error (RMSE)
for the estimated regression coefficients of the three treatment variables (one for each of the three
time periods) from the marginal structural model. The final column presents the bias and RMSE for
the estimated mean potential outcome, E(Yi(t1, t2, t3)), averaged across eight unique treatment se-
quences. Overall, CBPS1 (thick solid lines; covariate balancing conditions alone) and CBPS2 (thick
dashed lines; covariate balancing and score conditions combined) outperform the GLM (thin dashed
lines) when the model is misspecified. The dotted lines represent the results for the estimates based
on the true weights.
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analysis of longitudinal data. The proposed methodology estimates these weights by optimizing the

resulting covariate balance. This is an important advantage because checking covariate balance, after

fitting the treatment assignment models, is a difficult task even when the number of time periods

is moderate. As a result, detecting model misspecification is much more challenging in longitudinal

data settings than simple cross-section data settings. In addition, because the marginal structural

model (MSM) weights are constructed by multiplying the inverse of the estimated propensity scores

from each time period, MSMs can be highly sensitive to the misspecification of treatment assign-

ment models. In contrast, the CBPS methodology provides a robust estimation method for inverse

probability weights by ensuring optimal balance of covariates. Our simulation studies illustrate the

effectiveness of the proposed method over the standard maximum likelihood estimation.

One important future research agenda is the question of how to select covariate balancing con-

ditions when there exist many such conditions. In this paper, we have essentially assumed that

the number of time periods is relatively small. The standard asymptotic properties of generalized

method of moments are applicable so long as we fix the number of time periods and let the sample

size tend to infinity. This is the setting we assume in this paper. However, suppose that we fix the

sample size and let the number of time periods increase. Under this scenario, the number of possible

treatment sequences increases rapidly, implying that the data will become sparse and some treat-

ment sequences have extremely small number of observations. As a result, the number of covariate

balancing conditions also increase at an exponential rate while their strength declines. Essentially,

this is the problem of many and weak moment conditions. We plan to investigate how the proposed

CBPS methodology performs in such a situation and develop effective strategies for addressing this

issue.
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