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Summary
A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on
a patient’s history. Q- and A-learning are two main approaches for estimating the optimal regime,
i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical
trial or observational study. Q-learning requires postulated regression models for the outcome,
while A-learning involves models for that part of the outcome regression representing treatment
contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that
maximizes a doubly robust augmented inverse probability weighted estimator for population mean
outcome over a restricted class of regimes. Simulations demonstrate the method’s performance
and robustness to model misspecification, which is a key concern.
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1. Introduction
Treatment of patients with chronic disease involves a series of decisions, where the clinician
determines the next treatment to be administered based on all information available to that
point. A dynamic treatment regime is a set of sequential decision rules, each corresponding
to a decision point in the treatment process. Each rule inputs the available information and
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outputs the treatment to be given from among the possible options. The optimal regime is
that yielding the most favorable outcome on average if followed by the patient population.

Q- and A-learning are two main approaches for estimating the optimal dynamic treatment
regime using data from a clinical trial or observational study. Q-learning (Watkins & Dayan,
1992) involves postulating at each decision point regression models for outcome as a
function of patient information to that point. In A-learning (Robins, 2004; Murphy, 2003),
models are posited only for the part of the regression involving contrasts among treatments
and for treatment assignment at each decision point. Both are implemented through a
backward recursive fitting procedure based on a dynamic programming algorithm (Bather,
2000). Under certain assumptions and correct specification of these models, Q- and A-
learning lead to consistent estimation of the optimal regime. See Rosthøj et al. (2006),
Murphy et al. (2007), Zhao et al. (2009) and Henderson et al. (2010) for applications; related
methods are discussed by Robins (2004), Moodie et al. (2007), Robins et al. (2008),
Almirall et al. (2010) and Orellana et al. (2010).

A concern with both Q- and A-learning is the effect of model misspecification on the quality
of the estimated optimal regime. If one attempts to circumvent this difficulty by using
flexible nonparametric regression techniques (Zhao et al., 2009), the estimated optimal rules
may be complicated functions of possibly high-dimensional patient information that are
difficult to interpret or implement and hence are unappealing to clinicians wary of black box
approaches.

Given these drawbacks, we focus on a restricted class of treatment regimes indexed by a
finite number of parameters, where the form of regimes in the class may be derived from
posited regression models or prespecified on the grounds of interpretability or cost to depend
on key subsets of patient information. Zhang et al. (2012) proposed an approach for
estimating the optimal regime within such a restricted class for a single treatment decision
based on maximizing directly a doubly robust augmented inverse probability weighted
estimator for the population mean outcome over all regimes in the class, assuming that
larger outcomes are preferred. Via the double robustness property, the estimated optimal
regimes enjoy protection against model misspecification and comparable or superior
performance than do competing methods. With judicious choice of the augmentation term,
increased efficiency of estimation of the mean outcome is achieved, which translates into
more precise estimators for the optimal regime.

We adapt this approach to two or more decision points. This is considerably more complex
than for one decision and is based on casting the problem as one of monotone coarsening
(Tsiatis, 2006, Chapter 7). We focus for simplicity on the case of two treatment options at
each decision point, though the methods extend to a finite number of options. The methods
lead to estimated optimal regimes achieving comparable performance to those derived via
Q- or A-learning under correctly specified models and have the added benefit of protection
against misspecification.

2. Framework
Assume there are K prespecified, ordered decision points and an outcome of interest, a
function of information collected across all K decisions or ascertained after the Kth decision,
with larger values preferred. At each decision k = 1, …, K, there are two k-specific
treatment options coded as 0,1 in the set of options k; write ak to denote an element of k.
Denote a possible treatment history up to and including decision k as āk = (a1, …, ak) ∈ 1
× … × k = 𝒜 ¯k.
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We consider a potential outcomes framework. For a randomly chosen patient, let X1 denote
baseline covariates recorded prior to the first decision, and let  be the covariate
information that would accrue between decisions (k − 1) and k were s/he to receive
treatment history āk−1 (k = 2, …, K), taking values xk ∈ k. Let Y*(āK) be the outcome that
would result were s/he to receive full treatment history āK. Then define the potential
outcomes (Robins, 1986) as

For convenience later, we include X1, which is always observed and hence is not strictly a

potential outcome, in W, and write  and x¯k = (x1,
…, xk) for k = 1, …, K, where then x¯k ∈ 𝒳 ¯k = 1 × … × k.

A dynamic treatment regime g = (g1, …, gK) is an ordered set of decision rules, where gk(x¯k,
āk−1) corresponding to the kth decision takes as input a patient’s realized covariate and
treatment history up to decision k and outputs a treatment option ak ∈ Φk(x¯k, āk−1) ⊆ k. In
general, Φk(x¯k, āk−1) is the set of feasible options at decision k for a patient with realized
history (x¯k, āk−1), allowing that some options in k may not be possible for patients with
certain histories; here, Φk(x¯k, āk−1) ⊆ {0, 1}. Thus, a feasible treatment regime must satisfy
gk(x¯k, āk−1) ∈ Φk(x¯k, āk−1) (k = 1, …, K). Denote the class of all feasible regimes by 

For g ∈  writing ḡk = (g1, …, gk) for k = 1, …, K and ḡK = g, define the potential

outcomes associated with g to be , where
 is the covariate information that would be seen between decisions k − 1 and k

were a patient to receive the treatments dictated sequentially by the first k − 1 rules in g, and
Y*(g) is the outcome if s/he were to receive the K treatments determined by g. Thus, Wg is
an element of W.

Define an optimal treatment regime  as satisfying

(1)

That is, gopt is a regime that maximizes expected outcome were all patients in the population
to follow it. The optimal regime gopt may be determined via dynamic programming, also
referred to as backward induction. At the Kth decision point, for any x¯K ∈ 𝒳 ¯K, āK−1 ∈
𝒜 ¯K−1, define

(2)

(3)

For k = K − 1, …, 2 and any x¯k ∈ 𝒳 ¯k, āk−1 ∈ 𝒜 ¯k−1, define
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For k = 1, x1 ∈ 1,  and

. Thus,  yields the treatment option
at decision K that maximizes the expected potential outcome given prior covariate and

treatment history. At decisions k = K − 1, …, 1,  dictates the option that maximizes the
expected potential outcome that would be achieved if the optimal rules were followed in the
future. An argument that gopt, so defined, satisfies (1) is given in an unpublished report by
Schulte et al. (2013) available from the last author.

This definition of an optimal regime is intuitively given in terms of potential outcomes. In
practice, with the exception of X1, W cannot be observed for any patient. Rather, a patient is
observed to experience only a single treatment history. Let Ak be the observed treatment
received at decision k and let Āk = (A1, …, Ak) be observed treatment history up to decision
k. Let Xk be the covariate information observed between decisions k − 1 and k under the
observed treatment history Āk−1 (k = 2, …, K), with history X¯k = (X1, …, Xk) for k = 1, …,
K to decision k. Let Y be the observed outcome under ĀK. The observed data on a patient
are (X¯K, ĀK, Y), and the data available from a clinical trial or observational study involving
n subjects are independent and identically distributed (X̄Ki, ĀKi, Yi) for i = 1, …, n.

Under the following standard assumptions, gopt may equivalently be expressed in terms of
the observed data. The consistency assumption states that

 for k = 2, …, K, and Y = Y*(ĀK)
= ∑āK ∈ 𝒜 ¯K Y*(āK)I(ĀK = āK); that is, a patient’s observed covariates and outcome are the
same as the potential ones s/he would exhibit under the treatment history actually received.
The stable unit treatment value assumption (Rubin, 1978), implies that a patient’s covariates
and outcome are not influenced by treatments received by other patients. A version of the
sequential randomization assumption (Robins, 2004) states that W is independent of Ak
conditional on (X¯k, Āk−1). This is satisfied by default for data from a sequentially
randomized clinical trial (Murphy, 2005), but is not verifiable from data from an
observational study. It is reasonable to believe that decisions made in an observational study
are based on a patient’s covariate and treatment history; however, all such information
associated with treatment assignment and outcome must be recorded in the X¯k to validate
the assumption.

Under these assumptions, from §1 of the Supplementary Material,

, so that

. Thus, letting QK(x¯K, āK) = E(Y | X¯K
= x¯K, ĀK = āK), (2) and (3) become

Using , for k = K, …, 2,
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and , V1(x1) = maxa1∈Φ1(x1) Q1(x1, a1). The Qk(x¯k,
āk) and Vk(x¯k, āk−1) are referred to as Q-functions and value functions and are derived from
the distribution of the observed data.

3. Q- and A- learning
Q-learning is based on the developments in §2. Linear or nonlinear models Qk(x¯k, āk; βk) in
a finite-dimensional parameter βk may be posited and estimators β̂k obtained via a backward
iterative process for k = K, …, 1 by solving least squares estimating equations; see §2 of the

Supplementary Material. The estimated optimal regime is , where

, and

 for k = 2,

…, K. Unless all models are correctly specified,  may not be a good estimator for gopt.

The A-learning method we consider is a version of g-estimation (Robins, 2004); see §2 of
the Supplementary Material. Write Qk(x¯k, āk) as hk(x¯k, āk−1) + akCk(x¯k, āk−1), hk(x¯k, āk−1) =
Qk(x¯k, āk−1, 0) and Ck(x¯k, āk−1) = Qk(x¯k, āk−1, 1) − Qk(x¯k, āk−1, 0). We refer to Ck(x¯k, āk−1)
as the Q-contrast function; with two treatment options, AkCk(x¯k, āk−1) is the optimal-blip-to-
zero function of Robins (2004). Posit models Ck(x¯k, āk−1; ψk) and C1(x1; ψ1), depending on
parameters ψk; and models hk(x¯k, āk−1; αk) and h1(x1; α1), with parameters αk for k = K, …,
2. Let πk(x¯k, āk−1) = pr(Ak = 1 | X ¯k = x¯k, Āk−1 = āk−1) and π1(x1) = pr(A1 = 1 | X1 = x1) be
the propensities for treatment, which are unknown unless the data are from a sequentially
randomized trial, and specify models πk(x¯k, āk−1; γk), k = K, …, 2, and π1(x1; γ1), e.g.,
logistic regression models. Estimators ψ̂k may be found iteratively for k = K, …, 1 by
solving for ψk and αk estimating equations given in §2 of the Supplementary Material,
substituting the maximum likelihood estimators γ̂k. As Qk(x¯k, āk) is maximized by ak =

I{Ck(x¯k, āk−1) > 0}, the estimated optimal regime is , where

 and

, for k = 2, …, K. If the contrast
and propensity models are correctly specified, then ψ¯k will be consistent for ψk even if

hk(x¯k, āk−1; αk) for k = K, …, 2, and h1(x1; α1) are misspecified, and  will consistently

estimate gopt. Thus, the quality of  depends on how close the Ck(x¯k, āk−1; ψk) are to the
true contrast functions.

As discussed in §2 of the Supplementary Material, the efficient version of A-learning is so
complex as to be infeasible to implement. The implementation of A-learning we use in the
empirical studies of §5 is likely as close to efficient as could be hoped in practice.

See the unpublished report of Schulte et al. (2013) for a detailed account of both methods.

4. Proposed robust method
Q- and A-learning are predicated on the postulated models for the Q-functions and Q-
contrast functions, respectively, so the resulting estimated regime may be far from gopt if
these models are misspecified. We propose an alternative approach that may be robust to
such misspecification, based on directly estimating the optimal regime in a specified class of
regimes.
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Models Qk(x¯k, āk; βk) or Ck(x¯k, āk−1; ψk), whether correct or not, define classes of regimes

β, , or ψ, indexed analogously by ψ, whose elements may often be
simplified. For example, with K = 2, if C2(x¯2, a1; ψ2) = ψ02 + ψ12x2 and C1(x1; ψ1) = ψ01 +
ψ11x1, the corresponding regimes gψ = (gψ1, gψ2) take gψ1(x1) = I(ψ01 + ψ11x1 > 0) and
gψ2(x¯2, a1) = I(ψ02 + ψ12x2 > 0). If prior knowledge suggests that treatment 1 would benefit
patients with smaller values of X1 or X2, then all reasonable regimes should have ψ11 < 0
and ψ12 < 0, and elements of ψ may be expressed in terms of η1 = −ψ01/ψ11 and η2 = −ψ02/
ψ12 as gη = (gη1, gη2), gη1 (x1) = I(η1 > x1) and gη2(x¯2, a1) = I(η2 > x2), η = (η1, η2)T.

This suggests considering a class η, with elements gη = (gη1, …, gηK), indexed by

, of form {gη1(x1), …, gηK (x¯K, āK−1)}. If η is derived from models
Qk(x¯k, āk; βk) or Ck(x¯k, āk−1; ψk), then η = η(β) or η = η(ψ) is a many-to-one function of β or
ψ, and gopt ∈ η if these models are correct. Here, estimating ηopt = arg maxη E{Y*(gη)}

defining the regime , say, will yield an estimator for gopt. If these models are
misspecified, η(β̂) or η(ψ̂) may not converge in probability to ηopt, and resulting regimes
may be far from optimal. If instead the form of elements of η is chosen directly based on
interpretability or cost, independently of such models, η may or may not contain gopt, but

 is still of interest as the optimal regime among those deemed realistic in practice.

We propose an approach to estimation of  in a given class η by developing an estimator
for E{Y*(gη)} that is robust to model misspecification and maximizing it in η. We cast the
problem as one of monotone coarsening. Following Tsiatis (2006, §7.1), for fixed η, let ḡηk
= (gη1, …, gηk), for k = 1, …, K, and let ḡηK = gη. Identify full data as the potential

outcomes , and let

. Let η be a discrete coarsening variable taking
values 1, …, K, ∞ corresponding to K + 1 levels of coarsening, reflecting the extent to
which the observed treatments received are consistent with those dictated by gη. In the
general coarsened data set up, when η = k, we observe Gk(Wgη), a many-to-one function of
Wgη; when η = ∞, we observe G∞(Wgη) = Wgη, the full data. Here, under the consistency
assumption, this is as follows. If A1 ≠ gη1(X1), then η = 1; that is, I( η = 1) = I{A1 ≠
gη1(X1)}, and we observe G η(Wgη) = G1(Wgη) = X1. None of the observed treatments are
consistent with following gη, so X2, …, XK, Y are not consistent with gη. If A1 = gη1(X1)
and A2 ≠ gη2{X¯2, gη1(X1)}, then η = 2, I( η = 2) = I{A1 = gη1(X1)}I[A2 ≠ gη2{X¯2,

gη1(X1)}], and . Only the treatment at decision 1 and the
ensuing X2 are consistent with gη. Likewise, I( η = 3) = I{A1 = gη1(X1)}I[A2 = gη2{X¯2,
gη1(X1)}]I{A3 ≠ gη3(X¯3)}, where gη3(X¯3) is shorthand for gη3[X¯3, gη1(X1), gη2{X¯2,
gη1(X1)}] = gη3{X¯3, ḡη2(X¯2)} and ḡη2(X ¯2) = [gη1(X1), gη2{X ¯2, gη1(X1)}] and similarly for

general k; and . Continuing in this fashion, I( η = K) =
I[ĀK−1 = ḡηK−1{X¯K−1, ḡηK−2(X¯K−2)}]I[AK ≠ gηK{X̄K, ḡηK−1(X¯K−1)}], and

. Finally, if ĀK = ḡηK {X¯K, ḡηK−1 (x¯K−1)}, G η
(Wgη) = G∞(Wgη) = Wgη = (X1, …, XK, Y). Here, the observed data are consistent with
having followed all K rules in gη. The coarsening is monotone in that Gk(Wgη) is a
coarsened version of Gk′(Wgη), k′ > k, and Gk(Wgη) is a many-to-one function of
Gk+1(Wgη).

Coarsened data are said to be coarsened at random if, for each k, the probability that the data
are coarsened at level k, given the full data, depends only on the coarsened data, so only on
data that are observed at level k (Tsiatis, 2006, §7.1). Under the consistency and sequential
randomization assumptions, it may be shown using results in §3 of the Supplementary
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Material that the coarsening here is at random. Define the coarsening discrete hazard pr( η
= k | η ≥ k, Wgη) to be the probability that the observed treatments cease to be consistent
with gη at decision k, given they are consistent prior to k and all potential outcomes. Under
coarsening at random, this hazard is a function only of the coarsened data, that is, the data
observed through decision k, which we write as pr( η = k | η ≥ k, Wgη) = λη,k{Gk(Wgη)}.
Then, from above, for k = 1, λη,1{G1(Wgη)} = λη,1(X1) = pr{A1 ≠ gη1(X1) | X1}, which can
be expressed in terms of the propensity for treatment at decision 1 as π1(X1)1−gη1 (X1){1 −
π1(X1)}gη1 (X1). Similarly, for k = 2, …, K,

We may then express the probabilities of being consistent with gη through at least the kth
decision, so having η > k, given all potential outcomes, in terms of the discrete hazards.
Under coarsening at random, these probabilities depend only on the observed data through
decision k. That is, pr( η > k | Wgη) = Kη,k{Gk(Wgη)} = Kη,k(X̄k), where

 (Tsiatis, 2006, §8.1).

We now use these developments to deduce the form of estimators for E{Y*(gη)}. From the
theory of Robins et al. (1994) for general monotonely coarsened data, under coarsening at
random, if the coarsening mechanism is correctly specified, which corresponds here to
correct specification of the λη,k(X ¯k), and hence of the propensity models, all regular,
asymptotically linear, consistent estimators (Tsiatis, 2006, Chapter 3) for E{Y*(gη)} for
fixed η have the form

(4)

where Lk(X¯k) are arbitrary functions of X¯k. The optimal choice leading to (4) with smallest

asymptotic variance is . The right hand term in (4)
augments the first, itself a consistent estimator for E{Y*(gη)} when the λη,k(X¯k) are
correctly specified, to gain efficiency. As in Tsiatis (2006, §10.3), (4) is doubly robust in
that it is a consistent estimator for E{Y*(gη)} if either the λη,k(X¯ki) are correctly specified or

if the Lk(X¯ki) are equal to ; see §4 of the Supplementary Material.

To implement (4), one must specify λη,k(X¯ki) and Lk(X̄ki). The first follow from specifying
π1(x1) = pr(A1 = 1 | X1 = x1), πk(x¯k, āk−1) = pr(Ak = 1 | X¯k = x¯k,Āk−1 = āk−1) for k = K, …,
2. If these are unknown, as in A-learning, posit models π1(x¯1; γ1), πk(x¯k, āk−1; γk) for k = 2,

…, K, and estimate γk by γ̂k (k = 1, …, K). With  and ,
this implies that λη,1(X1; γ1) = π1(X1; γ1)1−gη1 (X1){1 − π1(X1; γ1)}gη1 (X1),
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and , and suggests substituting λη,k(X¯k; γ̂k) and
Kη,k(X¯k; γ̂) in (4).

Several options exist for specification of the Lk(X̄k). The simplest is to take Lk(X¯k) ≡ 0,
yielding the inverse probability weighted estimator

(5)

which is consistent for E{Y*(gη)} if η1(X1; γk) and πk(X¯k, Āk−1; γk) (k = 2, …, K), and
hence Kη,K(X¯K; γ), are correctly specified, but otherwise may be inconsistent. The

corresponding estimator for  is found by estimating ηopt by , say, maximizing (5) in
η. As (5) is based on data only from subjects whose entire treatment history is consistent
with gη, it is relatively less efficient than estimators that use all the data, discussed next.

To take greatest advantage of the potential for improved efficiency through the
augmentation term in (4), an obvious approach is to posit and fit parametric models

approximating the conditional expectations , and
substitute these into (4) along with λη,k(X¯k; γ̂k) and Kη,k(X¯k; γ̂). To this end, let μηK(x¯K, āK)
= E(Y | X¯K = x¯K, ĀK = āK) and fηK(x¯K, āK−1) = μηK {x¯K, āK−1, gηK (x¯K, āK−1)}. Then define
iteratively, for k = K − 1, …, 2, the quantities μηk (x¯k, āk) = E{fηk+1 (x¯k, Xk+1, āk) | X¯k = x¯k,
Āk = āk} and fηk (x¯k, āk−1) = μηk {x¯k, āk−1, gηk (x¯k, āk−1)}; for k = 1, μη1 (x1, a1) = E{fη2(x1,
X2, a1) | X1 = x1, A1 = a1}, fη1(x1) = μη1 {x1, gη1 (x1)}. In §5 of the Supplementary

Material, we demonstrate that .

This suggests specifying η-dependent models μηk (x¯k, āk; ξk) depending on parameters ξk, k
= 1, …, K. For fixed η, estimators ξ̂k for ξk may be found iteratively by solving in ξk

where ∂/∂ξk{μηk (X¯ki, Āki; ξk)} is the vector of partial derivatives of μηk (X¯ki, Āki; ξk) with
respect to elements of ξk, f̃(K+1)i = Yi and f ̃ki = μηk [X ¯ki, Ā(k−1)i, gηk {X¯ki, Ā(k−1)i}; ξ̂k] (k =

K, …, 2). The fitted μηk {X¯k, ḡηk (X ¯k); ξ̂k} may then be used to approximate  in (4).
While these models almost certainly are not correct, as specification of a compatible
sequence of models for k = 1, …, K is a significant challenge, they may be reasonable
approximations to the true conditional expectations. Thus, define

(6)

which, by virtue of the double robustness property, will be consistent for E{Y*(gη)} if either
π1(x1; γk) and πk(x¯k, āk−1; γk) (k = K, …, 2), are correctly specified, or the the μηk (x¯k, āk;
ξk) are. If all of these models were correct, then (6) would achieve optimal efficiency. As for

(5), estimation of  follows by maximizing (6) in η to obtain .

A computational challenge is that the models μηk (x¯k, āk−1; ξk) must be refitted for each
value of η encountered in the optimization algorithm used to carry out the maximization. A
practical alternative when regimes in η are derived from models is to substitute for Lk(X¯k,i)
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in (4) fitted Q-functions Qk{X¯k, ḡηk (X̄k); β̂k} for k = K, …, 1 obtained from Q-learning;
holding β̂k fixed, these depend on η only through ḡηk (X¯k). While these are not strictly

models for , the hope is that they will be close enough to achieve near

optimal efficiency gains over (5). Thus, estimate  by maximizing in η to obtain 

(7)

See §6 of the Supplementary Material for a similar proposal when η is determined directly.

Standard errors for these estimators for  may be obtained via the sandwich
technique (Stefanski & Boos, 2002) based on the argument in Zhang et al. (2012, Equation
(4)).

5. Simulation studies
We have carried out several simulation studies to evaluate the performance of the proposed
methods, each involving 1000 Monte Carlo data sets.

The first simulation adopts the scenario in Moodie et al. (2007) of a study in which HIV-
infected patients are randomized to initiate antiretroviral therapy or not, coded as 1 or 0, at
baseline and again at six months to determine the optimal regime for therapy initiation. We
generated baseline CD4 count X1 ~ N (450, 150), where N(μ, σ2) denotes the normal
distribution with mean μ and variance σ2; baseline treatment A1 as Bernoulli with success
probability pr(A1 = 1 | X1) = expit(2 − 0.006X1), where expit(u) = eu/(1 + eu); six-month
CD4 count X2, conditional on (X1,A1), as N(1.25X1, 60); and treatment at six months A2 as
Bernoulli with pr(A2 = 1 | X̂2, A1) = A1 + (1 − A1)expit(0.8 − 0.004X2). Here, patients with
A1 = 1 continue on therapy with certainty. The outcome Y, one-year CD4 count, conditional
on (X¯2, Ā2), was normal with mean 400 + 1.6X1 − |250 − X1|{A1 − I(250 − X1 > 0)}2 − (1 −
A1)|720 − 2X2|{A2 − I(720 − 2X2 > 0)}2 and variance 602. The true Q-contrast functions are
thus C2(x1, x2, a1) = (1 − a1) (720 − 2x2), C1(x1) = 250 − x1, the optimal treatment regime

 has

and E{Y*(gopt)} = 1120.

For A-learning, we took

h1(x1, α1) = α10 + α11x1, and C1(x1; ψ1) = ψ10 + ψ11x1; and, analogously, for Q-learning,

so the Q-contrast functions are correct, but the Q-functions are misspecified. Here, C2(x¯2, 1;
ψ2) = 0, respecting that Φ2(x¯2, 1) = {1}. We used correct propensity models π2(x¯2, a1 = 0;
γ2) = expit(γ20 + γ21x2), π1(x1; γ1) = expit(γ10 + γ11x1) and incorrect models π2(x¯2, a1 = 0;
γ2) = γ2, π1(x1; γ1) = γ1.
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For maximizing ipwe(η) in (5), dr(η) in (6), and aipwe(η) in (7) to obtain , and

, we considered the class of regimes η with elements gη = (gη1, gη2),

so that η2 = (η20, η21)T, η1 = (η10, η11)T,  and ηopt = (250, −1, 360, −1)T.
Clearly, gopt ∈ η. We used the same propensity models, and, for (7), Q-function models as
above; for (6), we posited μη2(x¯2, ā2; ξ2) = ξ20 + ξ21x1 + a1(ξ22 + ξ23x1) + ξ24(1 − a1)x2 +
a2(1 − a1)(ξ25 + ξ26x2) and μη1(x1, a1; ξ1) = ξ10 + ξ11x1 + a1(ξ12 + ξ13x1) for each η. To
achieve a unique representation, we fixed (η21, η11) = (−1, −1) and determined η20, η10 via a
grid search; because ipwe(η), dr(η) and aipwe(η) are step functions of η with jumps at (x1i,
x2j) (i, j = 1, …, n), we maximized in η over all (x1i, x2j).

The second scenario is the same as the first except that the models for the Q-contrast
functions are misspecified. Specifically, the generative distribution of Y given (X¯2, Ā2) is
now normal with mean 400 + 1.6X1 − |250 − 0.6X1|{A1 − I(250 − X1 > 0)}2 − (1 − A1)|720
− 1.4X2|{A2 − I(720 − 2X2 > 0)}2 and variance 602, so that, from the discussion below (2)
of Moodie et al. (2007), the implied true contrast functions are no longer of the form above,
but all posited models were taken to be the same as in the first simulation.

Tables 1 and 2 show the results. For Q- and A-learning, we report η(β̂) and η(ψ̂). The
column Ê (η̂opt) shows for each estimator the Monte Carlo average and standard deviation of

the estimated values of  reflecting performance for estimating the true
achievable mean outcome under the true optimal regime, while E(η̂opt) reflects performance
of the estimated optimal regime itself. For each Monte Carlo data set, this is the true mean
outcome that would be achieved if the estimated optimal regime were followed by the
population was determined by simulation, and the values reported are the Monte Carlo
average and standard deviation of these simulated quantities. When compared to the true

, these measure the extent to which the estimated optimal regimes
approach the performance of the true optimal regime.

For the first simulation, from Table 1, because the Q-functions are misspecified, the Q-
learning estimators for η10 and η20 are biased, while those from A-learning based on
postulated Q-contrast functions that include the truth are consistent when the propensity
model is correct. When the propensity model is incorrect, Q-learning is unaffected; however,
A-learning yields biased estimators for η10 and η20 identical to those from Q-learning, as
linear models are used for C2(x¯2, a1; ψ2), C1(x1; ψ1), h2(x¯2, a1; α2) and h1(x1; α1)
(Chakraborty et al., 2010). Although Q-learning results in poor estimation of η10 and η20,
efficiency loss for estimating the optimal regime is negligible, as the proportion of benefit
the estimated regime achieves if used in the entire population relative to the true optimal
regime is virtually one. A possible explanation is that patients near the true decision
boundary have C2(X¯2, a1), C1(X1) close to zero, and few patients would receive treatment 1
according to the true decision rule for the first time point. This also follows from the fact

that for regime , the corresponding expectation is 1114. When the propensity
model is correct, the estimators based on dr(η) and aipwe(η) yield estimated regimes
comparable to those found by A-learning in terms of true mean outcome achieved, despite
yielding relatively inefficient estimators for η10 and η20 A-learning, perhaps for the same
reason as above. When the propensity model is incorrect, the dr(η) and aipwe(η) estimators
yield estimated regimes that are still close to the optimal. The ipwe(η) estimator show
relatively poorer performance, especially when the propensity score model is incorrect,
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which is not unexpected; this estimator only uses information from patients whose treatment
histories are consistent with following gη and hence is inefficient.

In the second simulation, the values of |C2(X¯2, A1)| and |C1(X1)| for patients near the true
decision boundary are larger than in the first simulation, and the posited Q-contrast
functions are no longer correct. From Table 2, the A- and Q- learning estimators perform
similarly, both yielding estimated regimes far from optimal. Those based on dr(η) and
aipwe(η) are almost identical to gopt on average and perform almost identically to the true
optimal regime, regardless of whether or not the propensity model is correct. Again, the
estimator based on ipwe(η) in (5) performs poorly. Evidently, augmentation even using
incorrect models leads to considerable gains over ipwe(η) regardless of whether or not the
propensity model is correct.

The third scenario involved K = 3 decision points. To achieve average numbers of patients
consistent with the regime comparable to those in the K = 2 cases, we took n = 1000. We
generated X1, A1, X2 as in the previous two scenarios; A2 as Bernoulli with pr(A2 = 1 | X¯2,
A1) = expit(0.8 − 0.004X2); twelve-month CD4 count X3, conditional on (X¯2, Ā2), as
N(0.8X2, 60); treatment at twelve months A3 as Bernoulli with pr(A3 = 1 | X¯3, Ā2) = expit(1
− 0.004X3); and the outcome Y, 18-month CD4 count, conditional on (X¯3, Ā3), as normal
with mean 400 + 1.6X1 − |500 − 1.4X1|{A1 − I(500 − 2X1 > 0)}2 − |720 − 1.4X2|{A2 −
I(720 − 2X2 > 0)}2 − |600 − 1.4X3|{A3 − I(600 − 2X3 > 0)}2 and variance 602. The optimal

treatment regime  has

 and
E{Y*(gopt)} = 1120.

For A-learning, we took

and for Q-learning

thus, both Q- and Q-contrast functions are misspecified. We used correct propensity models
π3(x¯3, ā2; γ3) = expit(γ30 + γ31x3), π2(x¯2, a1; γ2) = expit(γ20 + γ21x2), π1(x1; γ1) = expit(γ10
+ γ11x1) and incorrect models π3(x¯3, ā2; γ3) = γ3, π2(x¯2, a1; γ2) = γ2, π1(x1; γ1) = γ1.

For the three proposed estimators, we took the class of regimes η to have elements gη =
(gη1, gη2, gη3), gη3(x¯3, ā2) = I(η30 + η31x3 > 0), gη2(x¯2, a1) = I(η20 + η21x2 > 0), gη1(x1) =

(η10 + η11x1 > 0), so η3 = (η30, η31)T η2 = (η20, η21)T, η1 = (η10, η11)T, 
and ηopt = (250, −1, 360, −1, 300, −1)T, so gopt ∈ η. We used the same propensity models,
and, for (7), Q-function models as above, and fixed (η31, η21, η11) = (−1, −1, −1). To carry
out the maximizations, we used a genetic algorithm discussed by Goldberg (1989),
implemented in the rgenoud package in R (Mebane & Sekhon, 2011); see §7 of the
Supplementary Material for details.
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Table 3 show the results. Q-learning performs poorly, as expected. When the propensity
model is correctly specified, results for A-learning and the proposed methods are similar to
those in the second scenario, with the estimated regimes based on dr(η) and aipwe(η)
achieving near-optimal performance and associated reliable inference on the true achievable
mean outcome E{Y*(gη)}. When the propensity models are misspecified, the situation is
similar for these estimators in terms of performance; however, inference on E{Y*(gη)} is
markedly degraded. In both cases, performance of the estimator based on ipwe(η) is quite
poor. Intuitively, as the number of decisions K increases, it is not unexpected that all
methods can suffer from diminished performance. Research is needed on the design of
sequentially randomized trials to ensure adequate sample size for reliable inference on
multi-decision regimes.

In §8 of the Supplementary Material, we present results of a more complex scenario; the
qualitative conclusions are similar.

All simulations here, and others we have conducted, suggest that Q- and A-learning can
yield biased estimators for parameters defining the optimal regime if the Q-functions or Q-
contrast functions are misspecified. Under these conditions, the resulting estimated optimal
regimes can perform poorly in terms of achieving the expected potential outcome of the true
optimal regime. In contrast, the proposed approach using (6) or (7) exhibits robustness to
misspecification of either one of the outcome regression or propensity score models. Under
these circumstances, the estimators of regime parameters are relatively unbiased, and the
expected potential outcome under the estimated optimal regime approaches that of the true
optimal regime. Moreover, the proposed methods lead to reliable estimation of the expected
potential outcome under the true regime, with coverage probabilities close to the nominal
level. Even when both outcome regression and propensity models are misspecified, the
proposed methods can yield estimated optimal regimes that do not show substantial
degradation of performance in terms of achieved expected potential outcome relative to the
true optimal regime. In this case, inference on the expected outcome under the true optimal
regime can be compromised, although, interestingly, the methods performed well in this
regard under these conditions in the second simulation scenario. Collectively, our results
suggest that the proposed methods are attractive alternatives to Q- and A-learning owing to
their robustness to such model misspecification. As the estimator based on aipwe(η) is much
less computationally intensive than dr(η) and performs similarly, we recommend it for
practical use.

In §9 of the Supplementary Material, we report on application of the methods to a study to
compare treatment options in patients with nonpsychotic major depressive disorder.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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