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SUMMARY
This paper considers the problem of finding robust estimators of

population size in closed K-sample capture-recapture experimerts. Particular
attention is paid to models where heterogeneity of capture probabilities is
allowed. TFirst a general estimation procedure is given which does not depend

on assuming anything about the form of the distribution of capture probabilities.
This is followed by a detailed discussion of the usefulness of the generalized
jackknife technique to reduce bias. Numerical comparisons of the bias and
variance of various estimators are given. Finally a general discussion is

given with several recommendations on estimators to be used in practice.
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1. Introduction

In this paper we address the problem of finding robust estimators
of N, the population size, in a K-sample capture-recapture experiment with

closure assumed and where an animal's capture probability is constant over

sampling times except as influenced by trap response. The animals are also

assumed to behave independently with respect to capture. The specific models

considered are:

Mo: no heterogeneity, no trap response,

Mb: no heterogeneity, trap response,
Mh: heterogeneity, no trap response,
Mbh: heterogeneity, trap response,

with particular attention being paid to the models which allow heterogeneity
(Mh, Mbh)' These models have been considered in the senior author's unpublished
Ph.D. thesis and also in Pollock (1975, 1981). Otis et al. (1978) in an
important monograph gave a detailed discussion for biologists.
These models are likely to be uéeful in applied problems except that
often we may also have variability of capture probabilities over time which is
very difficult to deal with statistically unless there is no heterogeneity and
trap response. Sometimes it is also hard to guarantee closure of the population.
First we give a general estimation procedure for all the models. This
is followed by robust estimators for the heterogeheity models (Mh, A h), some
based on jackknife techniques to reduce bias. An extensive numerical comparison

of the bias and variance of the estimators is given for a wide range of capture



distributions. Finally there is a general discussion section which gives
recommendations on which estimator to use in practice,

2. Notation

The following notation will be used in this paper.

Parameters

N = the population size (assumed constant over the whole study).

pj = the probability of capture of the jth animal prior to its initial
capture, j =1, ..., N.

¢y = the probability of capture of the jth animal after its initial

capture, j =1, ..., N.
Various restrictions will be placed on the (pj, cj) depending on the model

under consideration.

Statistics

Mi = the number of tagged animals in the population at the time of the
i sample (1 =1, ..., K).

MK+1 = the number of distinct animals seen during the experiment.

o = the number of animals captured in the ith sample.

m, = the number of tagged animals captured in the ith sample.

uy =n, -m, the number of untagged animals captured in the ith sample.

X(u = the number of animals in the population with capture history w, for
example if K = 3, XlOl is the number of animals seen in the first and
third but not the second sample.

{Xw} = the vector of the numbers of animals with each possible capture history.

fi = the number of animals captured i times in the K samples.

f§2> = the members of fi with first capture in the ch sample (2 = 1, ..., K-i+1).



3. A General Estimation Procedure

. In this section a general estimation procedure is developed which
can be applied to all 4 models given in Section 1. Let us first consider
the joint probability distribution of {Xm}, the collection of all possible
capture histories, under the Model Mbh which allows heterogeneity and trap

response of the capture probabilities. We define

pj = the probability of capturing the jth individual
in any sample (1 = 1, ..., K) given it has not
previously been captured (j =1, ..., N).

cj = the probability of capturing the jth individual

in any sample (i 1, ..., K) given it has previously
been captured (j = 1, ..., N).
‘ The pairs of capture probabilities (pl,cl), cees (pN,cN) are assumed to be
a random sample from the multivariate distributiom F(p,c) p ¢ (0,11, ¢ ¢ (0, 13].

Thus the joint distribution of {Xw} for a given F(p,c) can then be written as

X

N-
g [ ¥ Yk+1
N! ngm E(1-p)

ng!(N - MK+1)! (1)

L(N) = P [{Xw}lF(p,c)] =

which is a multinomial distribution with Pw being the cell probability of the

capture history w. For example

11
p = £ = e lar(p,e)
w [e)e]

for w, the capture history of being captured in all K samples. It is important

to note that the basic multinomial form of (1) remains the same for all 4 models.



Let us suppose for a moment that F(p,c) is known exactly so that
E(l—p)K is a known constant. In this case considering Maximum Likelihood
(M.L.) Estimation of N using L(N)/L(N-1) = 1 for an approximate maximum we

obtain

A~

Ny E(1-p)X = 1

(Np = My y)

which can be rearranged to

oL Me+1

T 1 -Ee@pf 2)

Obviously in practical situations (2) is not really a M.L. estimator
of N because the capture probabilities are unknown. A practical estimator

would be

Mer1

EEEETASY (3)

Z >

. K
where we now need to focus on how to estimate E(l-p) under the four

different models.

3.1 No Heterogeneity (Models M0 and Mb)

Under M0 and Mb there is no heterogeneity of capture probabilities over
animals so that F(p,c) is degenerate to the constant probabilities of capture p,

for first time caught, and ¢ for recaptures. For these two models (3) becomes

k41

N=— X1
1 - (-p)¥ (4



and observe that the equation does not involve c. For these two models
the M.L. estimators of p (in terms of N) are

K A

Mo: p = ¢ giving p =i§lni/KN based on all captures,

and

~ ~ K
Mb: P # c giving p = MK+1/(KN —iglMi) based only on first captures.

Substitution in (4) gives a Kth dégree polynomial which has to be solved
iteratively.

The properties of these estimators have been discussed in detail in
the literature (see in particular Otis et al. (1978) and Seber (1973)).
These models are not considered further as we intend to concentrate on the

more difficult problems associated with estimation of N when heterogeneity

is present (Mh and Mbh)'

3.2 Heterogeneity (Model Mh and Mbh)

Under M and Mbh which have heterogeneity operating (3) depends on
K 1 K
E(1-p) =°f(1—p) f(p)dp
where f(p) is the marginal probability density function of p, the probability
of first capture which may vary over animals. Here we are interested in finding
a method of estimating N which does not require a specific form (for example

a Beta distribution) for f(p).
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Let fw(p) be the probability density function of first capture
probabilities of all animals captured. Then fw(p) is derived from
f(p) as a weighted distribution (see Patil and Rao (1978))with weight

w(p) = l—(l—p)K, the probability of capture at least once.

K
£(p)= w(p)i(p) = L=1=) JE(p)
! [1 - E(1-p)"] (5)

Equation (2) can be rewritten as

s K.-1
Ny =M [1 - E(1-p)"]

and we note that an unbiased estimator of [1 - E(l—p)K]_1 is

Mo+l

K--1
IoLl- Qep) T,

j=1

using the properties of weighted distributions. Thus it follows that

. M 1
YTl |- awept ©)
would be an unbiased estimator of N if the pj's were known exactly for all
animals captured. Overton (1969) first derived this result using a different
method based on a theorem of Horvitz and Thompson (1952).

To make use of (6) we now require point estimators of the pj's for
all animals captured. The form of these estimators and the resulting estimators

of N will depend on the specific model considered (Mh or Mbh) and are considered

in the next sectioms.



3.3 Robust Estimators Allowing for Heterogeneity

3.3.1 Model Mh

Under this model the number of times (i) a particular animal j is
captured follows a binomial distribution (Kpj) and hence pj = 1/K is the

obvious estimator of pj. Now (6) reduces to

N MK+1 -—————l-————i K fi
N = z 1 - (1-1/K) = z K
o j=1 =1 1 - (1-i/K) 7)

where fi is the number of animals captured i times. This estimator was first
derived by Overton (1969). See also Zarnoch (1979).

Note that this estimator is of the form

- K
N= I a, f. , (8)
i=1 iK1
a linear combination of the capture frequencies with the constants a,_ only

K iK

depending on 1 and K. Other estimators of this type are MK+1 = iélfi’ the

total number of animals captured at least once and Nj’ the jackknife estimator

of Burnham and Overton (1978). For all estimators of form (8) we have

- K
E(NJ] =N T a, T
j=1 1K1 (9)
and
. Koy 2
var [N] =N © a,; 0, - {E[N]}°/N, (10)
i=1 ik 1

K . .
where Hi= E (i) pl(l-p)K—l with the expectation over the distribution f£(p).

Further discussion of the properties of these estimators will be given in Section 5.



3.3.2 Model Mbh

Under this model only the time to first capture can be used to
estimate the pj's because the recaptures are influenced by trap response.
The number of trapping occasions to first capture (i) follows a geometric

distribution which for animal j is given by
i-1
P({) = p.(1-p. .
(1) pJ( pJ)
The M.L. estimator of pj = 1/i so that (6) now takes the form

u

>

i
1 1 - -1/9)f (11)

]
L e I

where u, is the number of unmarked animals captured in the ith sample.
In the above argument we have ignored uncaptured animals because we do not
need to estimate their capture probabilities for (6).

Note that this estimator is of the form

~ K
N = I b,, u, , (12)
i=1 iK i
a linear combination of the number of animals "removed" (by marking) in
K
each sample as is the estimator MK+1 = igl ug s the total number of animals

captured at least once in the K samples. All estimators of the form (12) have

E[N] = N L b, I, (13)

and
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K 2

var[ﬁ] =N iil bix Hi* - {E[N]_}Z/N (14)

% {—
the analogues of (9) and (10) in Model Mh. We have Hi = E[p(l—p)l l]
with the expectation over the distribution f£(p). Further discussion of
the properties of these estimators will be given in Section 5.

4, Jackknife Methods for Bias Reduction of Estimators

Application of the jackknife technique to bias reduction in capture-
recapture models has considerable potential. It was first considered by
Burnham in his unpublished Ph.D. thesis (Oregon State University, 1972) and
later in Burnham and Overton (1978, 1979) and Otis et al. (1978). Under
Model Mh and using MK+1’ the number of distinct animals seen, as the biased
initial estimator he developed a series of jackknife estimators and showed
that they were effective at reducing bias for a range of capture probability
distributions (£(p)) using simulation.

Here we give the definition and properties of the generalized jackknife
statistic (Gray and Schucany (1972, p. 2)). Then we consider the jackknife
technique for both models M and M, using M , as the initial (biased)
estimators. This is followed by use of the jackknife with &0 (7) and ﬁp (11)
as the initial (biased) estimators for Models Mh and Mbh respectively.

4.1 The Generalized Jackknife Statistic

Let us define the generalized jackknife estimator of population size

A

N,= (N - RN,)/(1-R) (15)

of Gray and Schucany (1972, p. 2) where Nl and N2 are consistent estimators

of N and R is any real number not equal to unity.
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Now let us consider the properties of this estimator (15). The
first property of consistency follows directly from Nl and N2 being consistent.
The potential bias reduction properties of this estimator become clear from

the following theorem (Gray and Schucany (1972, p. 2) Theorem 2.1). If

E[N,J=N+b, (N, 0, K) =1, 2

with O, a set of nuisance parameters which are functions of the pj's (capture

probabilities) then a choice of

R = bl(Ns 93 K) / bz(N, 9, K) (16)

~

makes NJ an unbiased estimator of population size. Of course, typically the
form (16) of R will not be known because it depends on the unknown N and the
nuisance parameters ©. However it may be possible to find approximations to

R which are known and give approximately unbiased estimators of N. As well

as bias reduction we need to consider the variance of (15)
var(NJ) = [var(Nl) + szar(Nz) - 2R Cov(Nl, Nz)] / (l—R)2 17

1
Within the class of estimators for which R is positive it is then clearly
desirable to choose N1 and N2 to be highly positively correlated. Quenouille
(1956) has given a general procedure for achieving this and also we give

another method specific to the capture-recapture problem.

1 Gray and Schucany (1972, p. 4) state '"On the other hand it would appear
that in the set of all NJ one would prefer to have R < 0 and N1 and N2
negatively correlated." Unfortunately there is no general way of achieving

this at the present time.
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The Quenouille (1956) method adapted to the capture-recapture problem
can be stated as follows. An initial (biased) estimator based on the whole

A A

study is computed and is regarded as Nl' Choice of NZ is then the averagé of
the K estimators which would result from using the information of only (K-1) of
the sampling periods. That is drop out each one of the sampling periods in
turn. Quenouille {1956) then shows that if the bias in ﬁl can be approximated
as a power series in (1/K) then R = (K-1)/K will give a generalized jackknife
estimator with bias of order 1/K2.

Another method which may sometimes be useful is to take an initial (biased)
estimator based on the whole study as ﬁl' ﬁz is then chosen to be the same
estimator but based only on the first (K-1) sampling periods. Once again
R = (K-1)/K could be used. The advantage of this method over the other is
that it does not require the form of estimator to be "symmetric" over the

sampling periods.

4.2 Jackknifing on the Number of Distinct Animals Seen (MK+1)

4.2,1 Model Mh

Burnham (unpublished thesis, Burnham and Overton (1978, 1979),
Otis et al. (1978)) suggested using the jackknife approach with MK+l as the
initial estimator and using the Quenouille (1956) approach which was described

in Section 4.1. He gave a series of estimators for eliminating bias up to

K
i1 2ixfs)- He

order (1/K)5. The estimators all have the form (8) (N =
also proposed an objective technique for choosing which one to use on a
particular data set. Using simulation he showed that this approach is

reasonably effective for a wide range of capture probability distributions.
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4.2.2 Model Mbh

Here we find it necessary to use the other method described in Section

4.1. N1 is chosen to be MK+1 and N2

samples) with R = (K-1)/K. If we note that

to be Mk (i.e., based on the first K-1

~ K PS K-l
N, = = I u and N, = = I u,
1" % T 2% s S
We obtain using (15)
- K~-1
Np = L ouy + Ry (18)
i=1
K
Notice that this estimator is of the form (12) (N = T biK ui) so that
i=1

expectation and variance can be calculated using (13) and (14).

4.2.3 Approximation of R

Here let us consider the form of R which results from use of Theorem 2.1

of Gray and Schucany (1972) which was discussed in Section 4.1.

E (MK+1) N - N E(1-p) and E (MK) N - N E(1-p)
. - : K K-1
Using the theorem we find for NJ unbiased that R = E(1-p) /E(1-p) which
depends on the nuisance parameters and is thus unknowm.
Let us now consider the form of R in more detail with the hope we may
be able to find a useful approximation which only depends on K. First suppose

that f(p) is uniform on (0, U) for which case

R

K[ 1-(1-0) ¥ 7 (®+1) C(1-1-0)%3

where 0 < U< 1., If U= 1 we have R = K/(K+1) whereas when U < 1 we have
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R < K/(K+1) but unless U is close to 0 R = K/(K+1l) so that a jackknife
estimator using R = K/(K+1l) should be highly effective at reducing bias.
It is interesting to note that Burnham's jackknife procedure, ﬁJl uses
R = (K~1)/K which will be "close to" R = K/(K+l) for reasonable size K
and he showed it to be most effective when f(p) was uniform.

Next consider f(p) to be Beta (d,B) (Johnson and Kotz (197Q, p. 37)).
In this case we have R = (B+K-1)/(o+8+K-1) which only reduces to K/(K+1)
when oo = 8 = 1, the uniform distribution on (0, 1). If a = 1, then f(p) is
a reverse J shaped distribution for B > 1 and it has been suggested this may
be a "typical" distribution in practice. For reasonable size K and 8 not too
large the jackknife with R = K/(K+1l) should do well with some underestimation.
If « > 1, then f£(p) is a unimodal distribution if 8 > 1. 1In this case we
find the jackknife using R = K/(K+1l) overshoots and gives a positive bias.

These results are confirmed by Burmham's simulation results.

The message from this brief analysis is that Burnham's jackknife and

]

the modification with R = K/(K+1) will work reasonably well for reverse J

shaped distributions (a = 1, B > 1) or the uniform distribution. It will
underestimate for severe heterogeneity (a < 1, 8 > 1) because too many animals
are essentially uncatchable and overestimate for small heterogeneity (a > 1, 8 > 1).

4,3 Jackknifing on N, under Model Mh

0

Here we use the Quenouille (1956) approach described in Section 4.1 with

NO of equation (7) as the basic estimator. We find
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2
v = _ _(R=1)"
Njo= %1 | Rk K 3g-1
+ § £ Ka, - Xliia + (K-1)a (19)
jop i 34K K 31-1KR~1 iR~
-1
LK
where a, = [1 - (1-i/K) ] .
iK

4.4 Jackknifing on NErunder Model Mbh

Here we use as the initial estimator (Nl) the estimator (11)

N R K ui K
N.=N.= = = I b.u
. K%
1l 4y 1-(1-1/9)% j=1 1

and for ﬁz we are the same form of estimate but for the first (K-1) samples

and R = (K-1)/K to give the generalized jackknife statistic

N = = K(b b

JP iK uy + Kbypue - (20)

ik-10 ¥ Pix-1

5. Comparison of Estimators

5.1 Model Mh

To begin with we compare the expectations and standard errors of 4
competing estimators of N for seven different trials originally used by
Otis et al (1978) when assessing their jackknife estimators (ﬁh) for Model Mh'
The description of the trials which have varying degrees of heterogeneity

is given in Table 1.

(Table 1 to appear here)
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The estimators are:

~

(i) Nh -~ This is Burnham's jackknife estimator which is recommended

for this model. The results presented for this model are taken

from Table N.4.6 of Otis et al (1978) and are based on at least
100 simulation runs.

(ii) MK+1 - The number of distinct animals seen.

A

(iii) No - Overton's estimator which is given in Equation (7).
(iv) NJo - The Jackknife version of Overton's estimator which is given

in equation (19).

It should be emphasized that the results presented in Table 2 are
exact and based on Equations (9) and (10) except for & , for which results
based on simulation are presented.

(Table 2 to appear here)

Next we carry out a systematic comparison of the same estimators as
above with the exception that we have used the first order jackknife estimator
of Burnham (ﬁJ) rather than the estimator given in Otis et al (1978) (ﬁh).
We use a population of 400 animals divided into 4 potentially different
subpopulations of 100 animals each. Five levels of heterogeneity from
nonexistent to extreme are considered together with a range of sampling
occasions (K =5, 10, 15, 20) and average capture probabilities (E(p) =
0.05, 0.10, 0.15, 0.20). The exact expectations and standard errors of the
estimators are presented in Tables 3a - 3d.

(Tables 3a - 3d to appear here)
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The results presented here support the use of Burnham's jackknife
estimator as recommended by Otis et al (1978). There is a tendency for
the estimator to be positively biased for situations where the heterogeneity
is moderate. Use of ﬁh’ which involves up to a 5 order jackknife in a
complex procedure, reduces this positive bias from that of ﬁJ, the first
order jackknife, but it can still be substantial.

The Overton estimator, ﬁo’ has a much smaller standard error than the
jackknife estimator but it is severely negatively biased when substantial
heterogeneity is present unless the average capture probability is high or
the number of samples is large. It can also have a positive bias for moderate
heterogeneity. Future research on modification of the coefficients in ﬁo
could be productive.

~

The jackknife version of the Overton estimator, N has a higher standard

Jo’
error than any other estimator. Also it can have a large positive bias unless
there is extreme heterogeneity. Use of a higher order jackknife might improve

this estimator's performance.

5.2 Model Mbh

To begin with we compare the expectations and standard errors of 5
competing estimators of N for seven different trials originally used by
Otis et al (1978) when assessing their generalized removal estimate (ﬁbh)
for Model Mbh' The description of the trials which have varying degrees
of heterogeneity is given in Table 4.

(Table 4 to appear here)
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The estimators are:
(1) ﬁbh - This is the generalized removal estimator which is
recommended by Otis et al (1978) and the results given are
taken from their Table N.6.b. and are based on at least 100
simulation rums.
(i) MK+1 - This is the number of distinct animals seen.
(iid) _g;:: This is a new "distribution free'" estimator derived here

and given in Equation (11).

(iv) NJb —~ The Jackknife version of MK+1 which is given in Equation (18).

A

(v) NJ ~ The Jackknife version of Np which is given in Equation (20).

It should be emphasized that the results presented in Table 5 are

exact and based on Equations (13) and (14) except for N for which results

bh’
based on simulation are presented.
(Table 5 to appear here)

Next we carry out a systematic comparison of the same 5 estimators
considered above. We use a population of 400 animals divided into 4
potentially different subpopulations of 100 animals each. Five levels of
heterogeneity from nonexistent to extreme are considered together with a
range of sampling occasions (K = 5, 10, 15, 20) and average capture probabilities
(E(p) = 0.10, 0.15, 0.20). The expectations and standard errors of the
estimators are presented in Tables 6a -~ 6¢c. Again the results for ﬁbh are

based on simulation while the other results are exact.

(Tables 6a - 6¢c to appear here)
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Consideration of these results shows very clearly that there is a
large loss in precision for estimators under Model Mbh compared to under
Model Mh' This is to be expected as estimators under Model Mbh only use
information from first captures whereas under Model Mh the estimators use
all captures (first captures and recaptures).

A simple clear cut recommendation on which estimator to use is not
feasible. The two superior estimators are the generalized removal estimator
(ﬁbh) recommended by Otis et al (1978) and the new jackknife estimator (ﬁJb).
The two estimators behave quite differently as the average capture probabilities
and the number of samples change. The generalized removal estimator typically
has a negative bias which can be large if there is a lot of heterogeneity of
the capture probabilities. The jackknife estimator has less negative bias
than the generalized removal estimator under high heterogeneity. If there
is small to moderate heterogeneity the jackknife estimator can have a positive
bias. The jackknife estimator (ﬁJb) has the same expectation as Burnham's
first order jackknife (ﬁJ) discussed in Section 5.1. In terms of standard
error the generalized removal estimator is greatly influenced by the number
of samples. For sample numbers of fifteen and twenty the standard errors
are very low. This decline in standard error with sample number is not
followed by the jackknife estimator. It has a standard error which usually
rises for five to ten samples and then stays constant. The typical situation
is that the generalized removal estimator has much worse precision than the
jackknife for five samples and much better for twenty samples. Overall we
tend to favor the jackknife estimator (ﬁJb) for practical use as there will

often be less than ten samples and heterogeneity will often be pronounced.
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Future research could look at using a higher order jackknife corresponding
to Burnham's ﬁh which was discussed in Section 5.1. |

The new estimator (ﬁp) usually has tbe smallest standard error of
all the estimators but it has a severe negative bias which renders it
impractical., Future research on modification of the coefficients in ﬁp
could be productive. The jackknife version of ﬁp (ﬁjp) tends to have a high
positive bias for moderate heterogeneity. Its standard error is usually the

highest of all the estimators.

6. Discussion

This paper has presented a range of new estimators for the heterogeneity
model (Model Mh) and the heterogeneity and trap response model (Model Mbh)'

The most dimportant results are under Model Mbh' We feel that the new jackknife
estimator (&Jb) should be seriously considered for use with this model rather
than the generalized removal estimator given by Otis et al (1978). However,

we emphasize that the results are not completely clear cut.

The jackknife estimator (ﬁh) is clearly the best of those presented for
Model Mh. However, it can have some positive bias for moderate heterogeneity.
We recommend its continued use.

The estimators §o and ﬁp both have too much negative bias to be used in
practice. However, in both cases it may be possible to find better estimates of
the capture probabilities (;j's) and provide further new estimators of importance.

One other point should be made. No estimator can account for extreme
heterogeneity where animals have capture probabilities very close to zero. An
animal with a capture probability of 0.01 is essentially "invisible" to the

sampling method and if the population has a lot of these animals all methods

will have a severe negative bias!
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TABLE 1

DESCRIPTION OF TRIALS USED FOR MODEL Mh ,

Trial N Pys i=1,2,...,N

‘l 400 pi=0.05,i=1,200; pi=0.15,i=201,300; pi=0.50,i=301,400

2 400 pi=0.01,i=l,100; pi=0.05,i=101,200; pi=0.10,i=201,300; pi=0.20,i=301,400
3 400 pi=0.10,i=l,100; pi=0.20,i=101,200; pi=0.25,i—201,300; pi=0.30,i=301,400
4 400 pi=0.01,i=1,50; pi=0.15,i=51,200; pi=0.25,i=201,300; pi=0.30,i=301,400

5 400 pi=0.20,i=1,100; pi=0.30,i=101,200; pi=0.40,1=201,300; pi=0.50,i=301,400
6 200 pi=0.05,i=1,50; pi=0.15,i=51,150; pi=0.25,i=151,200
7 200 pi=0.i5,i=1,50; pi=0.20,i=51,100; pi=0.25,i=101,150; pi=0.30,i=151,200




MODEL Mh - COMPARISONS WITH TABLE N.4.b

TABLE 2

Trial K N EQ)  o@)'  EGL,) o0f,) EM) o(N) E®N;) o)
1 5 400 331.06 23.99  197.75 10.00 248.81 12.97 337.73 22.33
2 5 400 298.06 24.52  135.71  9.47 186.52 13.19 294.33  23.42
3 5 400 461.22 32.64  267.65  9.41 347.89 12.72 485.86  24.38
4L 5 400 417.08 30.91  245.36  9.74 318.82 13.08 445.00  24.27
5 5 400 443.95 19.71  339.52  7.16 407.93 9.45 482.89  20.89
6 10 200 207.3¢ 16.14  147.56  6.22 185.91 8.32 232.45 17.14
7 7 200 226.78 19.82  162.69  5.51 203.17 7.44 251.22 16.52

1 These results for N, are based on simulation while the other results are exact.

h



TABLE 3a

MODEL zr - COMPARISON OF ESTIMATORS WITH E(p) = 0.05

* ~ A ~ ~ ~ ~
b, » Py P, K E0G)  o0f,) EN) o®)  EN)  o0N)  EN,) o)
0.05 0.05 0.05 0.05 5 90.5 8.4 130.9 12.2 155.6 14.6 229.3 22.1

10 160.5 9.8 231.7 14.3 273.9 17.4 389.1 27.1
15 214.7 10.0 302.9 14,4 351.2 17.5 474.9 28.2
20 256.6 9.6 352.4 13.7 400.0 16.7 513.5 28.0
0.04 0.04 0.06 0.06 5 90.1 8.4 130.3 12.1 154.8 14.5 227.8 22.1
10 159.3 9.8 229.5 14.3 271.1 17.3 384.0 27.0
15 212.5 10.0 299.2 14.4 346.4 17.5 467.0 28.1
20 253.6 9.6 374.4 13.7 393.9 16.7 504.5 27.9
0.03 0.04 0.06 0.07 5 89.6 8.3 129.3 12.1 153.5 14.5 225.4 22.0
10 157.5 9.8 226.3 14.2 266.7 17.2 376.3 26.8
15 209.3 10.0 293.5 14.3 339.1 17.4 455.0 27.9
20 249.0 9.7 339.9 13.7 384.6 16.7 490.6 27.7
0.02 0.03 0.07 0.08 5 88.3 8.3 126.8 12.0 150.1 14.3 219.1 21.7
10 152.7 9.7 217.6 14.0 255.0 16.9 355.5 26.3
15 200.5 10.0 278.2 14.2 319.4 17.2 422.3 27.3
20 236.6 9.8 319.2 13.7 359.1 16.6 451.9 27.1
0.01 0.02 0.08 0.09 5 86.2 8.2 123.0 11.8 145.0 14.1 209.7 21.3
10 145.5 9.6 204.4 13.7 237.4 16.5 324.0 25.4
15 187.2 10.0 254.9 13.0 289.0 16.6 371.3 26.1
20 217.4 10.0 287.0 13.6 318.7 16.2 388.9 25.7

*
There are 4 subpopulations each with 100 animals and potentially different capture probabilities.
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MODEL zr - COMPARISON OF ESTIMATORS WITH E(p) = 0.10

TABLE 3b

* ~ -~ A -~ -~ P
Py P, Py P, K sziv aEwi mAzov izov E(N)) a(N)) Ezuov izgoV
0.10 0.10 0.10 0.10 S 163.8 9.8 230.3 14.0 268.8 16.6 379.9 25.4

10 260.5 9.5 353.5 13.4 400.0 16.3 513.9 27.0
15 317.6 8.1 409.5 11.2 445.8 14.0 516.8 25.6
20 351.4 6.5 431.1 9.1 454,0 11.8 480.1 23.3
0.08 0.08 0.12 0.12 5 162.6 9.8 228.2 13.9 266.1 16.6 375.0 25.3
10 257.4 9.6 348.4 13.4 393.8 16.3 504.6 26.9
15 313.3 8.2 403.3 11.4 439,2 14.2 509.9 25.6
20 346.7 6.8 425.6 9.4 449.3 12.0 479.0 23.4
0.06 0.08 0.12 0.14 5 160.9 9.8 225.1 13.9 262.0 16.5 367.8 25.2
10 252.7 9.6 340.7 13.5 384.3 16.3 490,2 26.7
15 306.7 8.4 393.7 11.6 428.7 14,3 498.3 25.4
20 339.5 7.2 416.6 9.8 441.1 12.4 475.1 23.4
0.04 0.06 0.14 0.16 5 156.2 9.8 216.7 13.7 251.0 16.3 348.4 24,7
10 240.0 9.8 319.7 13.5 358.3 16.2 450.4 26.1
15 288.5 9.0 366.7 12.1 398.7 14.6 462.8 24.9
20 318.8 8.0 390.0 10.7 415.2 13.1 456.9 23.3
0.02 0.04 0.16 0.18 5 149.2 9.7 204.2 13.4 234.6 15.8 319.1 23.9
10 220.6 9.9 287.2 13.4 317.7 15.8 386.6 24.8
15 259.5 9.5 322.4 12.5 347.4 14.7 395.4 23.6
20 284.,1 9.1 341.8 11.6 363.9 13.7 403.6 22.4
*
There are

4 subpopulations each with 100 animals and pot

entially different capture probabilities.
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TABLE 3¢

MODEL Zr - COMPARISON OF ESTIMATORS WITH E(p) = 0.15

. P, Py B, K  EQ,) oM, ) E(N) o)  EN) o)  EN,)  o(N)
0.15 0.15 0.15 0.15 5 222.5 9.9 303.6 13.9 347.8 16.5 469.9 25.7
10 321.3 8.0 410.5 11.0 446.3 13.6 517.7 24.9
15 365.1 5.6 434.8 7.9 451.4 10.4 458.2 21.3
20 384.5 3.9 432.7 5.6 436.5 7.8 408.3 17.1
0.12 0.12 0.18 0.18 5 220.3 9.9 299.8 13.8 343.0 16.4 461.8 25.6
10 316.8 8.1 404.2 11.1 439.5 13.8 510.3 24.8
15 360.4 6.0 430.0 8.2 447.8 10.7 460.2 21.5
20 380.7 4.3 430.6 6.1 436.7 8.3 416.5 17.6
0.09 0.12 0.18 0.21 5 217.0 10.0 294.1 13.8 335.7 16.4 449.6 25.4
10 310.0 8.4 394.3 11.4 428.6 14.0 498.1 24.7
15 353.0 6.4 421.8 8.7 441.2 11.2 460.6 21.7
20 374.3 4.9 426.1 6.8 435.3 9.0 426.5 18.3
0.06 0.09 0.21 0.24 5 208.1 10.0 278.9 13.7 316.3 16.2 416.9 24.9
10 291.3 8.9 366.7 11.9 397.8 14.3 461.1 24,2
15 331.6 7.5 396.5 9.9 418.6 12.2 452.1 21.9
20 354.5 6.3 409.0 8.4 425.2 10.5 442.9 19.7
0.03 0.06 0.24 0.27 5 194.7 10.0 255.8 13.5 286.7 15.7 367.0 23.9
10 261.7 9.5 321.6 12.3 345.7 14.4 392.3 22.9
15 294.6 8.8 348.0 11.1 369.2 13.1 408.0 21.4
20 316.0 8.1 366.0 10.3 386.9 12.3 427.6 20.5

*
There are 4 subpopulations each with 100 animals and potentially different capture probabilities.
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TABLE 3d

MODEL zr - COMPARISON OF ESTIMATORS WITH E(p) = 0.20

P, P, Py B, K EM,)  o®M,) EN) o®)  EN)  o0N)  EN, ) o)
0.20 0.20 0.20 0.20 5 268.9 9.4 355.9 12.9 400.0 15.4 515.0 24.9
10 357.0 6.2 431.6 8.5 453.7 1.1 478.6 22.0
15 385.9 3.7 431.7 5.4 435.2 7.5 406.5 16.5
20 395.4 2.1 420.4 3.5 417.3 5.0 378.4 11.4
0.16 0.16 0.24 0.24 5 265.6 9.4 350.5 12.9 393.4 15.4 504.8 24.9
10 352.2 6.5 425.9 8.9 448.7 11.3 477.4 22.1
15 382.1 4.1 429.7 5.9 435.5 8.0 415.1 17.1
20 393.1 2.6 421.3 4.0 420.2 5.6 387.3 12.5
0.12 0.16 0.24 0.28 5 260.7 9.5 342.5 13.0 383.5 15.4 489.3 24.7
10 344.5 6.9 416.5 9.3 440.0 11.7 473.3 22.1
15 375.6 4.8 425.3 6.6 434.3 8.7 425.7 17.9
20 388.6 3.3 421.2 4.8 423.3 6.6 400.6 14.0
0.08 0.12 0.28 0.32 5 247.4 9.7 320.7 13.0 356.6 15.3 447.,2 24.2
10 322.9 7.9 388.9 10.3 413.1 12.6 454.1 22.1
15 355.6 6.3 408.4 8.2 424.5 10. 4 443.1 19.3
20 373.2 5.0 415.3 6.7 425.9 8.7 431.2 17.0
0.04 0.08 0.32 0.36 5 227.3 9.9 287.4 12.9 315.3 15.0 381.7 23.0
10 286.8 9.0 339.5 11.3 360.5 13.3 399.6 21.2
15 316.7 8.1 365.3 10.2 386.2 12.2 428.0 20.2
20 336.9 7.3 383.7 9.2 403.6 11.2 443.8 19.4

* .
There are 4 subpopulations each with 100 animals and potentially different capture probabilities.
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TABLE 4 -

DESCRIPTION OF TRIALS USED FOR MODEL Mbh

Trial N Py» i=1,2,...,N
1 400 pi=0.05,i=l,200; pi=0.15,i=201,300; pi=0.50,i=301,400
2 400 pi=0.01,i=l,50; pi=0.15,i=51,200; pi=0.25,i=201,300; pi=0.30,i=301,400
3 400 pi=0.10,i=1,100; pi=0.20,i=101,200; pi=0.25,i=201,300; pi=0.30,i=301,400
4 400 pi=0.20,i=1,100; pi=0.30,i=101,200; pi=0.40,i=201,300; pi=0.50,i=301,400
5 200 pi=0.05,i=l,50; pi=0.15,i=51,151; pi=0.25,i=151,200
6 200 pi=0.15,i=1,50; pi=0.20,i=51,100; pi=0.25,i=101,150; pi=0.30,i=151,200
7 100 pi=0.10,i=1,40; pi=0.20,i=41,80; pi=0.30,i=81,100




MODEL ZGS - COMPARISONS WITH TABLE N.6.b

TABLE 5

Trial K N mmﬁwvlzv o, )" EGL,) ol4,) E cwu p cmv ) EML) o(N,) E® w (N 5
1 5 400 246,59 38.04 197.75 10.00 220.97 11.39 274.15 21.64 301.28 31.20
2 5 400 340.83  57.57  245.36 9.74  278.43 11.34 354,71  24.23  394.39  35.96
3 5 400 366.43  41.87  267.65 9.41  303.76 11.01  387.11  24.69  430.48  37.07
4 5 400 383.00  21.30 339,52 7.16  373.12  8.31  434.34  20.90  460.26  32.26
5 10 200 175.51  16.26  147.56 6.22  164.72  7.20  201.46  23.18  217.06  35.89
6 7 200 193.72 13.90 162.69 5.51 181.37 6.45 219.33 19.37 235.78 30.09
7 5 100  94.14  43.26 59.91 4.90 68.48  5.75  89.28  12.51  100.43  18.60

L )

These results for N

bh are based on simulation while the other results are exact.



TABLE 6a

MODEL zvr — COMPARISON OF ESTIMATORS WITH E(p) = 0.10

* I S . - . g - ¢
Pl Py Py P K OEN oMY E(M) o4, EN) o) E(NL) o(Np)  BN) o)
0.10 0.10 0.10 0.10 5 343.3 83.8 163.8 9.8 191.7 11.7 268.8 24.8 313.0 36.2
10 457.5 133.1 260.5 9.5 299.2 11.3 400.0 37.3 449.0 57.7
15 404.2 37.0 317.6 8.1 357.5 9.5 445.8 43.3 482.8 67.9
20 398.8 17.4 351.4 6.5 388.3 7.7 454.0 44.6 476.2 70.4
0.08 0.08 o0.12 0.12 5 323.9 76.8 162.6 9.8 190.2 11.7 266.1 24.6 309.5 36.0
10 413.5 95.6 257.4 9.6 295.3 11.3 393.8 37.0 441.5 57.2
15 404.1 45.9 313.3 8.2 352.4 9.7 439.2 42.9 475.7 67.4
20 393.8 20.8 346.7 6.8 383.1 8.0 449.3 44,7 472.0 70.4
0.06 0.08 0.12 0.14 5 311.6 70.8 160.9 9.8 188.0 11.7 262.0 24.4 304.2 35.6
10 430.7 134.4 252.7 9.6 289.4 11.4 384.3 36.5 430.0 56.2
15 391.6 36.8 306.7 8.4 344.5 9.9 428.7 42.4 464.1 66.4
20  381.8 15.0 339.5 7.2 374.8 8.4 441.1 44.6 464.4 70.2
0.04 0.06 0.14 0.16 5 269.2 51.4 156.2 9.8 181.9 11.6 251.0 23.8 290.2 34.6
10  346.1 46.3 240.0 9.8 273.6 11.5 358.3 34.9 398.6 53.6
15 354.9 31.0 288.5 9.0 322.7 10.4 398.7 40.7 430.5 63.4
20 352.3 13.8 318.8 8.0 351.1 9.2 415.2 43.7 438.8 68.6
0.02 0.04 0.16 0.18 5 259.7 56.9 149.2 9.7 172.8 11.4 234.6 22.9 269.1 33.1
10 299.5 41.4 220.6 9.9 249.3 11.5 317.6 32.2 349.0 49.0
15 298.2 20.3 259.5 9.5 287.6 10.9 347.4 36.9 371.4 57.1
20 306.7 11.0 284.1 9.1 310.4 10.2 363.9 40.4 383.6 62.8

* There are 4 subpopulations each with 100 animals and potentially different capture probabilities.

+ These estimates are based on 100 simulation runs while other results are exact.
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TABLE 6b

MODEL Zvr -~ COMPARISON OF ESTIMATORS WITH E(p) = 0.15

PPy Py Py K OBMGT om)T BG4, o0, B o) EG) o0 BGR) oG )
0.15 0.15 0.15 0.15 5 401.8 85.8 222.5 9.9 255.7 11.8 347.8 25.9 398.0 38.5
10 406.9 37.4 321.3 8.0 360.9 9.4  446.3 34.6 483.1 54.2
15 396.3 11.7 365.1 5.6 399.2 6.7 451.4 35.2 465.9 55.6
20 397.9 5.7 384.5 3.9 411.2 4.8 436.5 31.6 435.6 50.1
0.12 0.12 0.18 0.18 5 409.9 103.2 220.3 9.9 254.6 11.8  343.0 25.7 392.0 38.2
10 396.3 31.6 316.8 8.1 355.6 9.5 439.5 34.4 475.6 53.7
15 391.9 12.8 360.4 6.0 394.1 7.1 447.9 35.5 463.6 56.0
20 394.2 5.7 380.7 4.3 407.7 5.2 436.7 32.8 438.3 52.0
0.09 0.12 0.18 0.21 5 361.9 65.2 217.0 10.0 250.4 11.8  335.7 25.4 382.9 37.7
10 379.4 29.9 310.0 8.4 347.4 9.8 428.6 34.0 463.6 53.0
15 383.6 13.7 353.0 6.4 386.0 7.5  441.2 35.7 458.5 56.3
20 388.0 5.9 374.3 4.9 401.4 5.8 435.3 34.4 440.3 54.3
0.06 0.09 0.21 0.24 5 343.6 79.3 208.1 10.0 239.0 11.7  316.3 24.6 358.4 36.2
10 346.4 26.4 291.3 8.9 325.0 10.3  397.8 32.7 428.9 50.5
15 361.0 13.1 331.6 7.5 362.0 8.6 418.6 35.9 438.3 56.2
20 368.8 8.1 354.5 6.3 381.1 7.3  425.2 37.2 437.7 58.6
0.03 0.06 0.24 0.27 5 265.5 27.5 194.7 10.0 221.8 11.6  286.7 23.3 321.2 33.9
10 295.8 17.5 261.7 9.5 289.0 10.8  345.7 29.8 368.8 45.5
15 314.9 12.1 294,6 8.8 319.4 9.8 369.2 33.9 387.4 52.4
20 326.5 9.5 316.0 8.1 339.0 9.0 386.9 37.8 404.3 59.1

* There are 4 subpopulations each with 100 animals and potentially different capture probabilities.

+ These estimates are based on 100 simulation runs while other results are exact.
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TABLE 6¢

MODEL zvr — COMPARISON OF ESTIMATORS WITH E(p) = 0.20

PPy Py Py KOBMG)T o) BOR,)  olhy,) BOY)  o®) EMG) o) B oG )
0.20 0.20 0.20 0.20 5 403.9 80.6 268.9 9.4 307.5 11.1  400.0 25.6  449.4 38.6
10 399.0 16.8 357.0 6.2 392.9 7.3  453.7 30.1  474.3 47.4
15 397.6 6.5 385.9 3.7 411.8 4.6  435.2 26.5 433.5 42.0
20 398.2 2.5 395.4 2.1 412.8 2.9  417.3 20.5 406.7 32.5
0.16 0.16 0.24 0.24 5 384.2 49.0 265.6 9.4 303.3 11.1 393.4 25.4  441.3 38.2
10 391.8 17.5 352.2 6.5 387.4 7.6 448.7 30.2  470.0 47.5
15 395.5 5.7 382.1 4.1 408.3 5.0 435.5 27.6  436.5 43.7
20 396.7 3.2 393.1 2.6 411.4 3.3 420.2 22.8 412.2 36.2
0.12 0.16 0.24 0.28 5 383.2 53.3 260.7 9.5 297.1 11.2  383.5 25.1  429.2 37.6
10 380.4 14.9 344.5 6.9 378.7 8.1 440.0 30.2  462.0 47.3
15 387.9 6.4 375.6 4.8 402.0 5.6  434.3 29.0 438.9 45.9
20 391.7 3.6 388.6 3.3 408.1 4.0 423.3 25.9  419.4 41.0
0.08 0.12 0.28 0.32 5 335.8 36.0 247.4 9.7 280.4 11.3  356.6 24,2 396.2 35.9
10 350.2 13.1 322.9 7.9 353.8 9.0 413.1 29.8 435.4 46.3
15 369.0 8.5 355.6 6.3 381.6 7.2 424.5 31.7 436.9 49.9
20 379.0 5.6 373.2 5.0 394.8 5.7 425.9 32.0 432.2 50.6
0.04 0.08 0.32 0.36 5 281.8 28.0 227.3 9.9 255.0 11.4  315.3 22.5 345.3 32.9
10 305.8 12.9 286.8 9.0 311.6 10.1 360.5 27.8 379.1 42.5
15 329.3 11.1 316.7 8.1 339.1 9.0 386.2 32.5  403.7 50.5
20 347.8 12.0 336.9 7.3 358.0 8.1 403.6 36.5  420.6 57.1

* There are 4 subpopulations each with 100 animals and potentially different capture probabilities.

+ These estimates are based on 100 simulation runs while other results are exact.



