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|Robust estimation of primaries by sparse inversion |

R-EPSI and Marchenko equation-based workflow for
multiple suppression in the case of a shallow water layer and
a complex overburden: a 2D case study in the Arabian Gulf

Myrna Staring®, Marcin Dukalski', Mikhail Belonosov', Rolf H. Baardman!, Jewoo Yoo,
Rob F. Hegge', Roald van Borselen', and Kees Wapenaart

ABSTRACT

Suppression of surface-related and internal multiples is an outstanding challenge in
seismic data processing. The former is particularly difficult in shallow water, whereas
the latter is problematic for targets buried under complex, highly scattering overbur-
dens. Here we propose a two-step, amplitude- and phase-preserving, inversion-based
workflow, which addresses these problems. We apply Robust Estimation of Primaries
by Sparse Inversion (R-EPSI) to solve simultaneously for the surface-related primaries
Green’s function and the source wavelet. A significant advantage of the inversion ap-
proach of the R-EPSI method is that it does not rely on an adaptive subtraction step
that typically limits other de-multiple methods such as SRME. The resulting Green’s
function is used as input to a Marchenko equation-based approach to predict the com-
plex interference pattern of all overburden-generated internal multiples at once. In
this approach, no a priori information about the subsurface is needed. In theory, the
interbed multiples can be predicted with correct amplitude and phase and, again, no
adaptive filters are required. We illustrate this workflow by applying it on an Arabian
Gulf field data example. It is crucial that all pre-processing steps are performed in
an amplitude preserving way to restrict any impact on the accuracy of the multiple
prediction. In practice, some minor inaccuracies in the processing flow may end up
as prediction errors that need to be corrected for. Hence, we did conclude that the
use of conservative adaptive filters were necessary to obtain the best results after in-
terbed multiple removal. The obtained results show promising suppression of both
surface-related and interbed multiples.

INTRODUCTION

Marine seismic processing and imaging can be very challenging in settings with shallow
water and complex overburden. Typically in these settings, many orders of strong surface-
related and internal multiples interfere with the primary reflections in the target area. This
interference results in an image that may no longer be suitable for structural or quantitative
interpretation. This is a well-recognized issue in various areas around the world, e.g., in
Norway (Renholt et al., 2014), the West Central Graben of the North Sea (Yanez et al.,
2018) or offshore Middle East (Belonosov et al., 2019). The multiple problem in the latter
area is particularly challenging due to a strongly scattering overburden (El-Emam et al.,
2011, 2015). Addressing this issue in a fit for purpose and practically achievable de-multiple
workflow poses important technical and practical challenges.
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Geophysicists discriminate between surface-related and internal multiples based on the
location of sources and receivers relative to the multiple generator (an interface creating
downward reflections) as well as on the amount of a priori assumed or available information.
Surface-related multiples have a known generator — a stationary and flat water-air interface
at z = 0 with a reflectivity of about rg = —1, with some deviations in rough sea conditions
(Kryvohuz and Campman, 2019). Internal multiples are generated by any reflector in the
subsurface, with unknown position and reflectivity.

These differences make the two kinds of multiples, depending on the geological setting,
very different in terms of their strength, character and removal in subsequent processing.
Surface-related multiples tend to be much stronger (the first order de-multiple problem).
However, internal multiples, though always individually weaker, are more numerous. Col-
lectively, they often result in a complex, hazy and, on occasion, strong interference pattern,
rather than individual, easy-to-discriminate events. In contrast, individual internal multi-
ples tend to stand out more when two dominant reflectors (e.g. water bottom or a salt body
interface) are present in the subsurface. A wide range of potential purpose- or area-specific
de-multiple approaches exist. One that is commonly applied to both is prediction and, in
the absence of a good wavelet estimate (a source and a receiver response), adaptive subtrac-
tion. The latter, however, does not offer any guarantees of successful multiple attenuation
(Verschuur, 2013) and should be applied with great care.

Many approaches exist aimed at tackling surface-related multiples. Move-out discrimi-
nation between high velocity primaries and lower velocity surface-related multiples is still
used frequently, although this approach is only applicable in simple enough geological set-
tings. These techniques result in many artifacts, damage to the primary reflections and
fail in shallow water where the water column does not result in a sufficient move-out dif-
ference between surface-related multiples and surface-related primaries (primary reflections
and internal multiples). Predictive deconvolution approaches, with their many intrinsic
assumptions about the medium, have been proposed and tested in a shallow water setting
(Biersteker, 2001). Unfortunately, they may be unsuitable in combination with more ad-
vanced internal de-multiple schemes, as they tend to artificially whiten (or otherwise alter)
the surface-related primaries output amplitude spectrum.

More sophisticated approaches aim to predict the multiples using either model-based
methods (Lokshtanov, 1999; Jahdhami et al., 2017) that require a priori knowledge of the
subsurface, or data-driven methods such as Surface-Related Multiple Elimination (SRME)
(Verschuur et al., 1992). Both of these rely on some implementation of adaptive subtraction,
and also may impact primary reflections and hence result in images that may not be suitable
for AVO analysis. An improved multiple model can be obtained if a good source wavelet
estimate is available. This estimate can be obtained explicitly by modeling airgun arrays, by
reading it off a simple and well consolidated water bottom reflection or by simultaneously
solving for it (van Groenestijn and Verschuur, 2009; Savels et al., 2011). Unfortunately,
these approaches no longer work in the shallow water environment (Hargreaves, 2006; Hung
et al., 2010; Barnes et al., 2014) due to interference (and thus inseparability) of primaries and
the first (few) order(s) of (short-period) surface-related multiples, and missing near-offset
data.

Internal multiple removal in general tends to be more challenging and to this day there
are only a few approaches with limited applicability. The use of move-out discrimination
between primary reflections and internal multiples is impossible in practice due to relatively
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small timing differences. Predictive deconvolution or filtering approaches (Lesnikov and
Owusu, 2011) can fail in sufficiently complex settings (Griffiths et al., 2011; Brookes, 2011)
as the periodicity they assume is not necessarily physical. Applications of post-stack dip
filtering tends to affect anticlines and low relief structures (Retailleau et al., 2014) for flat
strongly scattering overburdens. Model-based (Lokshtanov, 1999; Jahdhami et al., 2017),
or data-driven (e.g. Jakubowicz, 1998; Weglein et al., 1997) wave equation based methods
predict kinematically-accurate individual events. However, they rely on understanding the
interbed generation mechanisms or on the separability of individual primary reflections
(internal multiple generators). Failure to do so results not just in amplitude but more
importantly phase prediction errors. Layer stripping can be used to account for more
generation mechanisms, however this approach tends to be more computationally expensive
(even in 2.5-D media), and can result in amplitude damage to deeper primaries resulting
in a downward cascading, and likely cumulative, prediction-and-subtraction error. Ways of
partially mitigating this problem have been suggested by Ypma and Verschuur (2013).

Recently, two new de-multiple technologies have been proposed that aim to address
many of the aforementioned issues. First, Lin and Herrmann (2013) proposed Robust
Estimation of Primaries by Sparse Inversion (R-EPSI), which simultaneously solves for
the source wavelet and the surface-related primaries Green’s function. This approach had
been tested on field data (Czyczula-Rudjord et al., 2015) and was deemed well-suited for
shallow water (Belonosov and van Borselen, 2017). Second, recently proposed Marchenko
equation-based approaches (henceforth referred to as the Marchenko methods) could be
seen as a form of internal de-multiple, where the entire overburden is treated as a single
collective internal multiple generator (Slob et al., 2014; Wapenaar et al., 2014; van der Neut
and Wapenaar, 2016). The Marchenko methods, by solving an under-constrained inverse
problem, produce an inverse transmission response of the overburden. The latter are then
(indirectly) used in an Amundsen et al. (2001)-like multidimensional deconvolution (MDD)
to remove the effect of overburden-borne reverberations on the target primary reflections.
Thus far, the Marchenko equation-based approach had been tested in settings where source
signature estimation was not a limiting factor (Staring et al., 2018; Pereira et al., 2018,
2019). Alternatively, given multicomponent data, Ravasi et al. (2016) suggest deconvolving
the upgoing and downgoing wavefields, which results in data free from (a) surface-related
multiples and (b) the source signature.

Both de-multiple problems could in principle be handled by merging SRME- and Marchenko-
type methods. This requires some modifications to the Marchenko equation (Ware and Aki,
1969; Singh et al., 2016). Unfortunately, these approaches are not likely to work very well
in practice, since not only they struggle converging in the presence of strong multiples
(Dukalski and de Vos, 2017), but, more importantly, they still need a good wavelet estimate
on input. To address this point, Ravasi (2017) proposes an alternative approach that merges
the Amundsen et al. (2001)-MDD with the Marchenko equations. This approach, however,
requires both the up- and the down-going field measurement and relative hydrophone and
geophone amplitude calibration. Additionally, in a shallow water setting, this scheme might
be more difficult to implement due to limited (or saturated) dynamic range of the receivers
by the direct (down-going) wave. Having exhausted the list of available possibilities, per-
haps the combined R-EPSI and Marchenko equation-based approaches could work together
in theory and, more importantly, in practice?

This work is structured as follows. The theory section following this introduction briefly
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discusses a Marchenko equation-based method and studies its strengths and limitations.
For more detail, readers can refer to existing literature on the topic. We propose a practical
shortcut to predict (and later adaptively subtract) the internal multiples and avoid the
post-Marchenko equation MDD step. Next, we explain why R-EPSI output could be a
very good fit to be the input to the Marchenko equation. We then show how the proposed
workflow can be applied to field data from the Arabian Gulf. Lastly, we discuss the results
and some open questions.

THEORY

In a traditional processing workflow, surface-related multiples are treated first (to our knowl-
edge the only notable exception are deep water settings with sub-salt targets) and dominant
internal multiples are typically handled afterwards. This sequence is also often assumed by
most internal de-multiple schemes, the Marchenko method being no exception. At the
cost of stringent input data quality (i.e., the output of the surface-related de-multiple), the
Marchenko method can simultaneously handle internal multiples due to the entire overbur-
den. To better understand this process, we take an anti-chronological approach and first
explain the internal de-multiple before we show how the surface-related de-multiple of our
choice fits the Marchenko method.

Marchenko equation-based multiple elimination

The method proposed by van der Neut and Wapenaar (2016) removes the internal multiples
generated by the overburden from the surface reflection data. By staying at the surface,
this method is independent of background velocity information and helps in gaining a better
understanding of the imprint of internal multiples as compared to Marchenko redatuming
(Wapenaar et al., 2014). Moreover, much like Jakubowicz IME, it only uses convolutions,
correlations, and temporal windowing of the reflection data. We propose to combine the
method of van der Neut and Wapenaar (2016) with the double focusing approach proposed
by Staring et al. (2018). Moreover, we suggest a viable quality control (QC) step to increase
confidence in the data preprocessing.

The reflection data Ry contain the target reflection response Ry, past a specified source-
and receiver-dependent onset time to(z,,xs). Due to the overlying overburden, the latter
response is not only covered by overburden-only multiple reflections, but it is also dressed
with overburden-borne internal-multiple-coda reverberations, which we denote with (v)~!.
Van der Neut and Wapenaar (2016) and Elison et al. (2020) show that v™, a Marchenko
focusing function f1+ which is “propagated” or “projected” to the surface, is a solution to
the (here already reduced) coupled set of Marchenko equations

% [vF] — 6 [R§6! [Ryv*]] = 0. (1)

Above, we use a detail hiding notation, where ”"multiplications” denote Rayleigh integrals
(Berkhout, 1982; van der Neut et al., 2015). Moreover, ©2 is a source and receiver depen-
dent mute which preserves the signal inside the [, to(z,, z5)] time window, i.e., after a small
time interval e (discussed later) and before ¢2 i.e. the onset of target primaries from Ry,
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Given v} = vT — O% [vT], equation 1 is easily solved using the nested series

o= S0 o], @)
k=0

where Qi [A] = 022 [R{O2 [RoQ—1 [A]]], Q0 [A] = A, and in theory the first term in the
series v is given by an identity (in practice convolved with a user-defined wavelet — see
discussion on practical limitations below).

The aforementioned authors then proceed to derive auxiliary fields U*, where U~ is a
reflection response — one without overburden-only multiples and source-side reverberations.
The MDD inversion of U~ = Ry, U™ recovers a target-only reflection response (as if the
overburden was transparent). Van der Neut and Wapenaar (2016) calculate a low-order
series expansion to obtain Ri,,. However, Elison et al. (2020) show that in the presence of
more complex internal multiple scattering, more terms need to be computed in equation 2
and hence in U*. Note that in general each term provides amplitude and phase corrections
instead of predictions of individual events or their specific order. Individual terms may cor-
respond to predictions of individual events in cases where multiple scattering is dominated
by only a few reflectors. In such a case, only the leading order terms will be most relevant,
and then one could attempt to adaptively subtract them.

Here we propose an approach combining the strongest points of the methods by van der
Neut and Wapenaar (2016) with insights from the double-focusing method by Staring et al.
(2018). We propose a method called “double de-reverberation”, which evaluates

vTU™ =017 [Rov'], (3)

where left multiplication with v*7 (source-receiver swapped version of v*) amounts to
removing receiver-side reverberations, such that the result contains the target reflection
response R, and the later arriving internal multiples generated by scattering between the
overburden and the target. We can also isolate the multiples predicted by this scheme via

o [Rov™] — O [Ro (4)

which we later adaptively subtract, bearing in mind that the term on the right (left) needs
to be convolved (deconvolved) with the user-defined wavelet used inside the Marchenko
equation solver (equation 2). We wish to note that collecting the k£ < 1 terms in equation
2, plugging them into equation 3, and ignoring terms higher than third order in Ry, yields
two terms, where one conforms with that one suggested by van der Neut and Wapenaar

(2016).

There are two major, somewhat hidden, assumptions in the scheme presented above,
which are very likely to be violated by real complex finely layered overburdens. Firstly,
equation 1 (and hence its solution equation 2) only holds if the time pick t5 does not cut into
either a target or an overburden primary. In the event that this assumption is not satisfied,
the magnitude of the resultant artifact is expected to be proportional to the magnitude
of the cut-into primary event and will be spread over the entire multiple prediction rather
than localized. Secondly, the (infinitesimal in theory) e parameter delineating the boundary
between the initial guess v and the rest of the v+ solution, needs to be set to about half-
wavelet length when the scheme is applied to band-limited data. This means that in the
presence of short-period internal multiples (SPIMs-those generated by reflectors spaced by
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less than the dominant wavelength anywhere in the overburden), the estimate v} also needs
to contain part of the solution responsible for attenuating them (Slob et al., 2014). Although
the scheme is somewhat robust to these challenges (Elison et al., 2020) and currently no
suggestions have been proposed to address the first problem, the SPIMs challenge however
can be mitigated in cases where the overburden is sufficiently flat (Dukalski et al., 2019;
Elison et al., 2020), but this will not be considered here. Lastly, our Marchenko method
is acoustic and its extensions to include elastodynamic effects are even more sensitive to
the aforementioned effects (Reinicke et al., 2019). Even though we may express the extent
of the expected artifacts qualitatively and quantitatively (Reinicke et al., 2020a), they still
require further development and further tests on sufficiently complex synthetics.

Marchenko equation-based methods are made up of the same fundamental building
blocks as many other de-multiple methods, however the inverse-problem-type approach in-
volving summation of many terms (see equations 1- 3) requires a specific reflection data
format for the equation to hold. Ravasi et al. (2016) show that a reflection response Ry
satisfying the Marchenko equation requirements can be extracted from multicomponent
up- P" and down- P! separated measurements by inverting the MDD relation PT = RP*.
In other words, the data have to be defined on a grid of co-located sources and receivers
(with some spacing Az) at the same depth level. In addition, the data need to be wavelet-
free, dipole-source, monopole-receiver and multiplied by 2Az for equation 1 to be satisfied.
In the absence of reliable multicomponent data that had been accurately up- and down-
decomposed, this can be challenging. The main challenge therefore is finding the correct
wavelet. Its shape can be well approximated by modeling or by any of the methods men-
tioned in the introduction, however getting the correct scale tends to be much harder.
We know however that the series (equation 2) is unconditionally convergent (Dukalski and
de Vos, 2017), thus accidentally over-scaling the data might result in a divergent behavior
(run-away solutions). This helps impose an upper, but not a lower limit on a typically
unknown scaling. As first suggested in Elison et al. (2020), in the presence of additional
information (e.g., regional geology or well-log information), one can build a (well-log-based)
1-D synthetic, determine the expected convergence rate, and compare it to one obtained
using field data to approximately verify whether the data were appropriately scaled. This
however only helps to determine a single (for the whole data set) frequency-independent
scalar. In the next section, we show how the reflection response obtained on output from
R-EPSI fits the above requirements. In the case-study section, we show how this works
in practice and compare the Marchenko equation convergence curve against that obtained
from a synthetic showing a good match.

Basics of robust EPSI

R-EPSI estimates a surface-related primaries Green’s function directly from the data, with-
out any additional knowledge of the subsurface properties. In a very shallow water setting,
the method produces a high fidelity result and outperforms common practice approaches
(Belonosov et al., 2019). Hence, its output is a good candidate for input to the aforemen-
tioned Marchenko approach. In this section, we briefly outline the R-EPSI method.

The method assumes a grid of seismic dipole sources co-located with monopole receivers
at the sea surface, a water surface reflection coefficient of —1 and a source signature which
is the same for all sources. Then, a monochromatic component of the upgoing data R_4
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(the subscript denotes the reflection coefficient at the free surface) can be explained by
(Berkhout, 1982)

R_y = RyS — RyR_1, (5)

where Ry is the unknown surface-related primaries Green’s function i.e. the input for the
Marchenko method, while S is the unknown effective source wavelet. The first term on the
right hand side, RyS, represents primaries and internal multiples, and the second term the
surface-related multiples.

R-EPSI solves equation 5 in the time domain to find Ry and S given R_;. This problem
is unconstrained, and to tackle this issue, R-EPSI imposes conditions on the unknowns.
Sparsity is often used as an assumption in geophysical field data applications (van Groen-
estijn and Verschuur, 2009) and, as a good approximation of this assumption for the Green’s
function, the candidates for Ry are restricted to solutions with a Li-norm time-domain min-
imum. The source wavelet is estimated as a function that has a limited temporal support
i.e. the length of the wavelet.

To solve equation 5, R-EPSI applies an automatic iterative process with only one input
parameter which is the level of noise in the data. For the details of this iterative process, we
refer to Lin and Herrmann (2013). As mentioned, R-EPSI produces highly accurate surface-
related primaries in a very shallow water situation where conventional methods like SRME,
based on prediction plus subtraction, may fail (Hung et al., 2010). As a disadvantage, R-
EPSI is much more computationally expensive. For each iteration, the method takes the
computational runtime of several SRME processes (i.e., several convolutions). The output
Green’s function Ry is used directly as input for the Marchenko equation-based approach,
explained in the previous section.

CASE STUDY IN THE ARABIAN GULF

Data from the Arabian Gulf provide an excellent illustration of the challenges stemming
from a shallow water environment combined with a complex overburden. The water bot-
tom itself shows little variation in depth and contrast (Ald’i et al., 2002). The subsurface
consists of a fairly strong sea-bottom reflector at between 25 - 35m depth followed by a
thick package of thinly layered deposits of anhydrites, carbonates, and various clastic sed-
iments and subsequent high impedance contrasts (El-Emam et al., 2011), with just minor
undulations across larger distances. Hence, the velocities vary primarily vertically.

Acquisition of towed marine streamer data is difficult in shallow water and the associated
large gap in the near offsets would have presented an additional challenge for our de-multiple
workflow. However, in the area, a 3D wide-azimuth OBC dataset had been acquired with
minimum inline and crossline offsets of only 25 m. Extracting a single 2D line of shots and
inline receivers makes an ideal dataset for this test case. Further details of the acquisition
geometry are provided in Figure 1 where the red oval indicates the extracted 2D line. A raw
split-spread shot gather with the ground roll typical for the survey area and various kinds
of other noise is shown in Figure 3a (gained and clipped for display). Despite the noise,
the effects of shallow water depth and thin layering are already evident in the multitude of
similar reflection events in the background. Related images of shot gathers will be shown
for some key points of the processing workflow. Later, some RTM images will be shown.
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Figure 2 shows a workflow of the processing steps performed in this section. Preprocess-
ing stage 1 started with a standard debubble. The data were converted from 3D to 2D by
applying a v/t gain, followed by the application of water-column-related static corrections.
High-amplitude (linear) noise and mud-roll were filtered out in the frequency domain. The
data were decomposed in up- and down-going wavefields by a data-driven method similar
to that described in Soubaras (1996). The upgoing pressure wavefield is selected for further
processing to make this workflow also suitable for streamer data (in theory). An example of
the resulting upgoing pressure wavefield is shown in Figure 3b. The noise introduced above
the first break and the effects of one or more dead channels, as indicated by the arrow, needs
to be addressed. Nevertheless, the overall quality and continuity of the reflection events
has improved. Source ghosts were left in the data to mimic the effect of dipole sources
required by R-EPSI and Marchenko, which is reasonable given a source depth of 7 m and
mild weather conditions. However, the initial 100 m shot and 50 m receiver spacing along
the line did not fulfill their requirements. Hence, the data were regularized and interpolated
to a 25 m grid and fixed spread of 239 co-located sources and receivers, thereby removing
any acquisition related gaps (see Figure 3c), and muted. This step further reduces random
noise. During the full preprocessing sequence, particular attention was given to each step
to ensure amplitude and phase fidelity was maintained.

Stage 2 starts by applying a bandpass filter (2-6-38-42 Hz) to avoid aliasing related
effects during subsequent processing. The data are now suitable as input for surface-related
multiple suppression with R-EPSI. Before its application, and in order to suppress the
artefacts related to the limited aperture available, we also applied cosine-squared tapers for
15 traces at each edge. We tested this taper width and chose the smallest value for which
the artefacts became negligible. We used 80 ms as the wavelet length. This estimate is
based on interpretation of the first arrivals in the data as well as basic dominant frequency
analysis. In all our tests, R-EPSI was insensitive to small deviations in the range of about
20 ms to this parameter. As for the noise level in the data, we tried different values starting
from 20% and smaller. We noticed that the residual did not change below a noise level
of 15%. Hence, we set this parameter to this value. The method converged after about
250 iterations of the SPGL1 solver (van den Berg and Friedlander, 2008, 2019), i.e. mostly
updates of the Green’s function as the wavelet was updated only 30 times.

The effect of the method on the field data is illustrated by Figures 4 - 6. The shot gather
in Figure 4a shows the difficulty of identifying primaries when there is heavy contamination
by shallow water reverberations, which are of comparable strength. The result of R-EPSI in
Figure 4b is much improved in that respect. The surface-related multiples are generated by
the shallow water bottom and are thus present mostly in the near offsets before spreading
out as the difference panel in Figure 4c¢ shows. The multiples also appear to be concentrated
in a certain frequency band, which is clearly visible on the corresponding FK spectra shown
in Figure 5.

The RTM images in Figure 6 show that the local geology is almost horizontally layered.
The result after R-EPSI, Figure 6b, reveals likely primary reflection events which stand out
at later times. The upper shallow part appears to show a package of many thin layers.
Finally, note that in Arabian Gulf-like synthetics with a water layer depth of 25 m (water
depth varied between 25 m and 35 m in the field data), the R-EPSI primaries are almost
identical to the true primaries (Belonosov et al., 2019). This fact gives us a strong confidence
in the R-EPSI result obtained.
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Following the above preprocessing and correction steps, the output of stage 2 (the R~
EPSI method) satisfies the input data requirements of stage 3 (our Marchenko equation-
based method): the Green’s function is wavelet-free, its dipole sources and monopole re-
ceivers are co-located at the same datum, and the wavefield is properly scaled. We use the
effective wavelet output by R-EPSI such that the data can be compared with the other
stages of the processed workflow. Alternatively, for instance, a Ricker wavelet that fits the
frequency spectrum or bandwidth of the data can be used.

We were provided with a rough estimate of the top of the target area based on knowledge
of the regional geology and an initial stack. Subsequently, we identified a strong reflection
event on the shot gathers, which allows us to determine the traveltime curve to separat-
ing overburden and target. This event was hand-picked and auto-tracked on each gather,
whereby smoothing was applied to remove any remaining jumps in the traveltime curve
between shots. If a velocity model were available then this curve could also be modeled
instead of being picked. Finally, the curve was shifted up to exclude the event itself from
the truncation and to avoid cross-cutting into a target primary. Figure 8b shows the effect
of using the t5 curve to mute a shot gather in the middle of our 2D line. We also define
the time horizon e, which is simply a hyperbola with an apex at half the R-EPSI wavelet
length with a moveout approximately corresponding to the first event in the data.

Combining Ry with the mutes the series in equation 2 can be evaluated to obtain the
v*. The value of and change in the Ly norm of the individual terms, ||Q[v}]|],, is used
to determine convergence. Provided the Green’s function derived by R-EPSI was scaled
correctly, this value should decrease continuously. At some point, it will become negligible
and the corresponding term unlikely to be still relevant. In addition, the total required
number of terms or iterations will depend on the geological setting (Elison et al., 2020).
For example, Staring et al. (2018) only use two iterations to predict internal multiples for a
target area in deep water Brazil. In contrast, 20 iterations were needed in our case as Figure
7 shows. This (perhaps slow) convergence is supported by a well-log based synthetic test
and other synthetic studies from the Middle East (Elison et al., 2020). Since the subsurface
of the Arabian Gulf generates highly complex interference patterns, convergence is of the
utmost importance to avoid missing important amplitude and phase updates and thus to
ensure the internal multiple predictions match the data.

Once the operator v was obtained, we evaluate the right hand side of equation 3 to

obtain the target response without source- and receiver-side overburden-borne internal mul-
tiples. Next, those multiples are isolated according to equation 4 thereby providing us with
the prediction (similar to Figure 8d). Clearly, we observe a complex interference pattern,
instead of a multitude of distinct events. This matches the pattern in the data very well,
thus, only a very conservative or mild adaptive filter could be used to subtract the predic-
tions from the muted reflection response ©F Ry. The parameterization used a filter length
of just five samples, windows of 100 samples by 25 traces, and Lo minimization. Figure
8c shows the actual result after adaptive subtraction of the internal multiple predictions
given this parameterization. A clear difference is visible when compared to Figure 8b. Some
events that were not visible before have emerged and the continuity of the reflections has
improved. By studying the FK spectra in Figure 9, the effect of the subtraction of the
internal multiples is also noticeable. The FK spectrum after adaptive subtraction (Figure
9¢) does look more balanced, indicating that perhaps this complex overburden generates
mainly low-frequency internal multiples. Note that the internal multiple predictions seem
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to be even more concentrated in a shorter range of low frequencies when compared to the
surface-related multiples (Figure 9d vs 5c¢).

Figure 10 contains the RTM images corresponding to Figures 8a, 8c, and 8d. The
yellow boxes indicate the target, where a difference due to the removal of internal multiples
generated by the overburden can be observed. Note that a difference is also seen below the
area of interest. Internal multiples generated by the overburden itself are removed, however
those generated within the target or by scattering between the target and the overburden
remain in the data. Figures 1la-11c show a zoom of the target area to study some of its
details. A significant reduction of internal multiple energy is visible in the yellow circles.
In addition, conflicting seismic events have been resolved, leading to improved visibility
of certain known horizons (the green circles). Furthermore, the images now have a better
definition of faulty structures (the red circles). We studied the amplitude spectra of the
RTM images before and after internal multiple removal (Figure 12). These spectra confirm
that the removed interference pattern mainly had low frequencies, but that also some higher
frequencies were attenuated (which are perhaps not easily observed in the RTM images).
This observation is supported by detailed synthetic controlled experiments (Reinicke et al.,
2020b).

As final remarks, we did test two different target boundaries, but the effect was rather
insignificant suggesting that the separability issue is not too essential. We also tested a
variety of adaptive filter parameter settings, such as window sizes and filter lengths, which
had hardly any impact on the result; thus, we settled on the values considered the least
invasive or mildest.

DISCUSSION

We presented a case study, which introduced a two-step approach to handle both surface-
related and internal multiples in a shallow water environment with a complex overbur-
den. The R-EPSI method not only offers a solution to the shallow water surface-related
de-multiple problem, it also provides the correct Green’s function Rg required for the
Marchenko IME approach.

The results presented in this paper are encouraging for both the surface-related multiple
as well as for the interbed multiple attenuation. However, proper QC of the results on
this complex shallow-water field data example is very difficult since we did not have well
logs to which to tie our results. Part of ongoing work is to apply the proposed workflow
on data where well-log information is readily available. In parallel, additional controlled
experiments are being conducted to verify if and to what level the observations we gathered
from this initial field data experiment are valid. This will help us to understand if the
amount and complexity of the predicted multiple patterns are realistic, or if the observed
dominant low-frequency content of the interbed multiples can be explained better. On the
one hand, the amplitude- and phase-preserving characteristics of the approach are one of
its main advantages. These characteristics allow the removal of the complex interference
pattern of all overburden-generated internal multiples in a fully data-driven way and without
(too much) dependence on any a priori information (for instance generation mechanism
identification for multiple prediction). On the other hand, they also put stringent conditions
on all (pre-)processing steps to maintain amplitude and phase validity. Therefore, it makes
sense to revisit the processing flow used for the 2D field data exercise and discuss where
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more attention might be required for future projects.

First point of attention is the 3D-to-2D conversion, which could influence the correct
amplitude balance between primaries and multiples. In the future work, other approaches
can be used, which are expected to predict generally more reliable amplitudes, and produce
exact results for horizontally layered 1.5D media (Wapenaar et al., 1992). Sensitivity tests
were not part of the scope of work, but given the convergence of both the R-EPSI and
Marchenko methods, and a relatively flat vertical effective velocity profile, the impact is
believed to be minimal.

Another aspect that could affect the proposed amplitude- and phase-sensitive workflow
is the quality of the up-down decomposition, which is not always straightforward for complex
field-data situations as used in this paper. More synthetic and well-controlled field data
exercises are recommended to test how sensitive this will be on the final de-multiple results.
Also, instead of applying the up-down decomposition to the P and V, data, alternative
methods could be investigated. For instance, van Groenestijn and Ross (2011) discuss
how the upgoing wavefield can be obtained by applying EPSI to the hydrophone-only data
instead.

For this case study, a 2D subset of the data was selected. This subset was reasonably
regular (not many gaps in the acquisition), had only limited cross-line offsets, and was
bandpass filtered to avoid any aliasing effects. All this minimized the dependence of the
interpolation/regularization on our de-multiple results. Further research is needed to de-
termine how sensitive both the R-EPSI and Marchenko methods are to data regularization
in case of realistic scenarios where sparse crossline spacing, irregular sampling, larger and
more data gaps and higher frequencies will play a role of importance.

Finally, a few topics that were not addressed in the current paper are worth mentioning.
These topics were discussed already in other articles or are being addressed in ongoing
research projects. A known problem with the R-EPSI method is that the approximation of
the Green’s function sparsity with a L1-norm may lead to some scaling ambiguity between
the estimated wavelet and the Green’s function (Esser et al., 2015). Nevertheless, so far this
problem was not encountered in other R-EPSI applications (Belonosov and van Borselen,
2017). For the purpose of this paper, we expect that the potential impact of this scaling
ambiguity is limited since we saw that the Marchenko Neumann series expansion converged
at nearly identical rate to the synthetic based on the well log from the region.

The proposed Marchenko approach only attenuates internal multiples generated while
passing through the overburden and ignores the overburden-target reverberations. In many
cases, this will be sufficient to sweep the target area of most internal multiples thereby
leading to improved interpretation. It would therefore be worthwhile to compare the nu-
merical efficacy of this method on a larger section of field data using the MDD step as in
van der Neut and Wapenaar (2016) or by using an extended method proposed by Dukalski
and de Vos (2020).

In this paper, the short-period internal multiples have not been considered nor have
they been addressed by the here proposed method. Dukalski et al. (2019) and Elison et al.
(2020) discuss a method to handle these short-period multiples in 1D and for media with flat
overburdens, respectively. Part of ongoing work is on validating this method on synthetic
data sets. The relatively horizontal layered character of the Arabian Gulf area makes the
data example used in this paper also a good candidate for testing this method.
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CONCLUSION

We demonstrated an amplitude- and phase-preserving seismic processing workflow for shal-
low water environments with a complex overburden on an OBC data set acquired in the
Arabian Gulf. The workflow addresses the challenge of removing surface-related multiples
without using any a priori information about the subsurface when the water bottom and
shallow subsurface boundaries are not represented in the recorded data due to shallow wa-
ter depth. In addition, the proposed workflow provides a solution for predicting interbed
multiples at target level that have been generated by a complex, thin-layered overburden.
Robust Estimation of Primaries using Sparse Inversion (R-EPSI) proved to be successful
in simultaneously removing the surface-related multiples and predicting the source wavelet.
The double de-reverberation Marchenko method is subsequently applied to the resulting
surface-related primaries Green’s functions to suppress the interbed multiples generated by
the thin-layered overburden. The predictions contain a complex interference pattern as
opposed to a set of separate events that are typically observed when dealing with interbed
multiples for less complex, and generally deeper water, environments. Given the number of
closely spaced internal multiple generators in the complex overburden of the Arabian Gulf
and the interference of various dominant orders of these multiples, this predicted pattern
is very complex, demonstrating that this problem can only be fully addressed with truly
physics-based approaches such as the double de-reverberation Marchenko method.

In ongoing research we aim to work towards a better understanding of the robustness of
this method. One issue to address is the current use of, although very conservative, adap-
tive filters to better match the predicted interbed multiples with the data. Theoretically,
no adaptive filters are required. Sensitivity studies for the individual (pre-) processing steps
will help to obtain further understanding of the proposed workflow when applied to data
representing similar challenges as the Arabian Gulf data utilized in this paper. These stud-
ies should include controlled experiments on synthetic data from realistic complex models
and the use of various QC tools, like well-log matching, to verify whether the obtained
predictions on field data are accurate.
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LIST OF FIGURES

1 OBC acquisition geometry for the Arabian Gulf data. Receivers are located at the
sea-bottom, while sources reside just below the water surface. The oval indicates the 2D
line selected out of this 3D survey.

2 Workflow showing the different stages involved in the processing of our dataset.
Stage 1 deals with the preprocessing, stage 2 performs surface-related multiple suppression
and stage 3 uses the proposed Marchenko method for internal multiple suppression.

3 Shot gather of (a) raw hydrophone data (with a t'5 gain), (b) upgoing pressure, (c)
result after regularization of the wavefield in (b); The yellow arrows point to an aquisition
gap that was resolved by regularization.

4 Fixed spread common shot gather (a) before R-EPSI, (b) after R-EPSI (i.e. Ry),
(c) their difference.

5  FK spectra for each gather in Figure 4 (a) before R-EPSI, (b) after R-EPSI, (c)
their difference.

6  RTM of data (a) before R-EPSI, (b) after R-EPSI, (c) their difference.

7 Lo norm of the individual terms in the series of equation 2. Convergence curve
for acoustic synthetic in dashed blue, for elastic synthetic in continuous green and for the
Arabian Gulf field data in dotted red.

8  Shot gather of data (a) after R-EPSI (same as Figure 4b), (b) after the ¢ mute,
(c) after Marchenko, (d) the difference between (b) and (c).

9  FK spectra corresponding to Figure 8 of data (a) after R-EPSI, (b) after the to
mute, (c) after Marchenko, (d) their difference.

10  RTM of data (a) after R-EPSI (same as Figure 6b), (b) after Marchenko, (c) their
difference.

11 Zoom of RTM in Figure 10 (a) after R-EPSI, (b) after Marchenko, (c) their differ-
ence.

12 Spectral analysis of vertical wavenumbers for the zoomed area of RTMs of data
before and after Marchenko in red and black, respectively.
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Figure 1: OBC acquisition geometry for the Arabian Gulf data. Receivers are located at
the sea-bottom, while sources reside just below the water surface. The oval indicates the
2D line selected out of this 3D survey.
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Figure 2: Workflow showing the different stages involved in the processing of our dataset.
Stage 1 deals with the preprocessing, stage 2 performs surface-related multiple suppression
and stage 3 uses the proposed Marchenko method for internal multiple suppression.
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Figure 3: Shot gather of (a) raw hydrophone data (with a ¢!'5 gain), (b) upgoing pressure,
(c) result after regularization of the wavefield in (b); The yellow arrows point to an aquisition
gap that was resolved by regularization.
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Figure 4: Fixed spread common shot gather (a) before R-EPSI, (b) after R-EPSI (i.e. Ryp),
(c) their difference.
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Figure 5: FK spectra for each gather in Figure 4 (a) before R-EPSI, (b) after R-EPSI, (c)
their difference.
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Figure 6: RTM of data (a) before R-EPSI, (b) after R-EPSI, (c) their difference.
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Figure 7: Lo norm of the individual terms in the series of equation 2. Convergence curve
for acoustic synthetic in dashed blue, for elastic synthetic in continuous green and for the

Arabian Gulf field data in dotted red.
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Figure 8: Shot gather of data (a) after R-EPSI (same as Figure 4b), (b) after the ¢t mute,
(c) after Marchenko, (d) the difference between (b) and (c).
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Figure 9: FK spectra corresponding to Figure 8 of data (a) after R-EPSI, (b) after the o
mute, (c) after Marchenko, (d) their difference.
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Figure 10: RTM of data (a) after R-EPSI (same as Figure 6b), (b) after Marchenko, (c)
their difference.
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Figure 11: Zoom of RTM in Figure 10 (a) after R-EPSI, (b) after Marchenko, (c) their

difference.
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Figure 12: Spectral analysis of vertical wavenumbers for the zoomed area of RTMs of data
before and after Marchenko in red and black, respectively.



