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Summary 

Small area estimation techniques have typically relied on plug-in estimation based on models 

containing random area effects. More recently, regression M-quantiles have been suggested for 

this purpose, thus avoiding conventional Gaussian assumptions, as well as problems associated 

with the specification of random effects. However, the plug-in M-quantile estimator for the 

small area mean can be shown to be the expected value of this mean with respect to a generally 

biased estimator of the small area cumulative distribution function of the characteristic of 

interest. To correct this problem, we propose a general framework for robust small area 

estimation, based on representing a small area estimator as a functional of a predictor of this 

small area cumulative distribution function. Key advantages of this framework are that it 

naturally leads to integrated estimation of small area means and quantiles and is not restricted to 

M-quantile models. We also discuss mean squared error estimation for the resulting estimators, 

and demonstrate the advantages of our approach through model-based and design-based 

simulations, with the latter using economic data collected in an Australian farm survey. 

 

Key words: Australian farm data; Chambers-Dunstan estimator; finite population distribution 

function; M-quantile regression; Rao-Kovar-Mantel estimator; robust regression; small area 

estimation; smearing estimator. 
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1. Introduction 

Sample surveys provide a cost-effective way of obtaining estimates for population 

characteristics of interest. However, this estimation may become problematic when these 

characteristics relate to a particular sub-population or domain for which the sample size is small. 

The term ‘small areas’ is typically used to describe domains whose sample sizes are not large 

enough to allow sufficiently precise direct estimation, i.e. estimation based only on the sample 

data for the domain. When direct estimation is not possible, one has to rely upon alternative 

model-based methods for producing small area estimates. Such methods depend on the 

availability of population level auxiliary information related to the variable of interest, and are 

commonly referred to as indirect methods. 

The standard approach to small area estimation uses regression models to predict the small 

area characteristics of interest, and incorporates random area effects to account for between-area 

variation beyond that explained by the model covariates (Fay & Herriot 1979, Rao 2003). 

Typically, these random effects are assumed to be Gaussian, and the models themselves require 

formal specification of the random part of the model (i.e. those components of the model that 

capture unexplained heterogeneity caused by between-area variability). In contrast, Chambers & 

Tzavidis (2006, hereafter referred to as CT) proposed an alternative approach to small area 

estimation when the target variable is measured on a continuous scale and unit level covariate 

information is available. This approach is based on modelling the regression M-quantiles of the 

population-level conditional distribution of the target variable. It avoids the strong distributional 

assumptions implicit in the mixed model approach, and has the added benefit of not requiring 

formal specification of random area effects. Instead, between-area variability is captured by 

variation in the area-specific M-quantile coefficients. However, the estimator of the small area 

mean suggested in CT is essentially a plug-in estimator and, as we show in Section 3, 
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corresponds to the expected value of this mean under a biased estimator of the small area 

cumulative distribution function (CDF). Consequently, we propose an alternative framework for 

small area estimation that is based on representing an estimator of a small area characteristic of 

interest as an appropriate functional of the Chambers & Dunstan (1986, hereafter referred to as 

CD) smearing-type estimator of this CDF. More generally, we note that our framework also 

allows small area estimates to be defined in terms of functionals of alternative smearing-type 

estimators of the small area CDF, e.g. the outlier resistant CDF estimator suggested by Welsh & 

Ronchetti (1998) or the design-consistent CDF estimator proposed by Rao, Kovar & Mantel 

(1990). The framework is generally applicable to any small area estimator that substitutes 

predicted values for non-sampled units in the small area, including those that use an M-quantile 

model or a mixed model for this purpose. An important consequence of formulating the small 

area mean estimation problem as an extension of the problem of estimation of the small area 

CDF is that other small area distribution-related quantities, e.g. the small area quantiles, can also 

be estimated in a way that is consistent with estimation of the small area mean. This is especially 

useful if there are extreme values in the small area sample data, or if the small area distribution of 

the characteristic of interest is highly skewed. 

The structure of the paper is as follows: In the following section we briefly review the use of 

both unit-level linear models with random area effects and linear M-quantile models in small 

area estimation. Then in Section 3 we describe a general framework for small area estimation 

when unit-level covariates are available, based on representing the small area target of inference 

as a functional of the CD estimator of the corresponding small area CDF. This naturally leads to 

a bias-adjusted alternative to the M-quantile estimator of the small area mean proposed by CT, 

and, more generally, to any estimator of this mean that substitutes predicted values for the 

unknown non-sample values within the small area. We also extend this approach to estimation 
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of the corresponding small area quantiles. In Section 4 we describe linearization and bootstrap 

methods of mean squared error estimation for these bias adjusted estimators, and in Section 5 

we assess the performance of the different small area estimators considered in this paper via 

model-based and design-based simulation studies. Finally, in Section 6 we summarise our main 

findings. 

2. Unit-level models for small area estimation 

In what follows we assume that a vector x of p auxiliary variables is known for each of N units 

making up a population U, and that values of the variable of interest y are available for each of n 

units making up a sample s from U. We also assume that y is measured on a continuous scale and 

that U can be partitioned into d mutually exclusive and exhaustive domains, which we refer to as 

areas, indexed by j = 1,..., d, with area j containing jN  units, jn  of which comprise the sample 

js  in the area, with the remaining unsampled N
j

n
j
 units denoted by jr . The target is to use 

the sample values for y and the population values for x to estimate various area specific 

quantities, including (but not only) the area j mean jm  of y. 

The most popular method used for this purpose is based on linear mixed models. In general, 

such a model specifies that for unit i in area j, 

 
   
y

ij
= x

ij

T
+ z

ij

T

j
+

ij
, (1) 

where 
  
i = 1,…,n

j
 and   j = 1,…,d . Here 

 j
 denotes a vector of random effects and z

ij
 denotes 

a vector of auxiliary ‘contextual’ variables whose values are known for all units in the population. 

The role of the random effects in (1) is to characterise small area differences in the conditional 

distribution of y given x. The parameters that characterise the joint distribution of the area 

effects 
 j

 and the unit-level effects 
ij

 are usually referred to as the variance components 
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associated with (1). Under this model, jm  is typically estimated by the mixed-model (MX) 

estimator 

 

     

m̂
j

MX
= N

j

1
y

i

i s
j

+ x
ij

T
+ z

ij

T ˆ
j( )

i r
j

, (2) 

where ˆ  and 
  
ˆ

j
 are defined by ‘plugging in’ optimal (e.g. ML or REML) estimates of the 

variance components into the best linear unbiased estimator of  and the best linear unbiased 

predictor (BLUP) of 
 j

 respectively. Estimator (2) is often referred to as the empirical best 

linear unbiased predictor (EBLUP) of jm  (Henderson 1953). 

An alternative approach to small area estimation uses either quantile or M-quantile regression 

to characterise area effects. In the linear case, quantile regression leads to a family (or ‘ensemble’) 

of planes indexed by the value of the corresponding percentile coefficient q (0,1)  (Koenker & 

Bassett 1978, Koenker 2005). For each value of q, the corresponding model shows how the qth 

quantile of the conditional distribution of y given x, denoted Q
q
(x) , varies with x. A linear 

model for this conditional quantile is 
    
Q

q
(x) = x

T

q
. The vector 

q
 in this model is estimated by 

minimising 

 

    
y

i
x

i

T
b (1 q)I y

i
x

i

T
b 0( ) + qI y

i
x

i

T
b > 0( ){ }

i=1

n

 

with respect to b (Koenker & D’Orey, 1987). Here   I(a)  denotes the indicator function for the 

event a. M-quantile regression (Breckling & Chambers, 1988) provides a generalisation of 

quantile regression based on influence functions, with the M-quantile of order q of the 

conditional density of y given x defined as the function Q
q
(x; )  that satisfies the estimating 

equation 
q
( y Q) f ( y | x) dy = 0 . Here 

q
(t) = 2 (t) qI(t > 0) + (1 q)I(t 0){ }  and  
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is a user-specified influence function, e.g. the Huber Proposal 2 function 

  
(t) = t I( c t c) + csgn(t)I( t > c) , where c is a tuning constant. A linear M-quantile 

regression model is one where we assume that 
    
Q

q
(x; ) = x

T (q) . That is, we allow a different 

set of regression parameters for each value of q and for each choice of the influence function 

. For specified q and , an estimate ˆ (q)  of (q)  can be obtained by using iteratively 

reweighted least squares to solve 

 

    
w

iq
y

i
x

i

T ˆ (q)( )x i

i=1

n

= 0 , 

where 
    
w

iq
=

q
y

i
x

i

T ˆ (q)( )
1

q q

1
y

i
x

i

T ˆ (q){ } . Here 
 q

 is a suitable robust 

estimator of scale, e.g. the Median Absolute Deviation (MAD) estimator 

  q
= median r

iq
/ 0.6745 , with 

    
r

iq
= y

i
x

i

T ˆ (q) . In this paper we will always assume that 

 is the Huber Proposal 2 function, with its default tuning constant c = 1.345. 

Following the development in CT (see also Kokic et. al. 1997, Aragon et. al. 2005), we 

characterise the conditional variability across the population of interest by the M-quantile 

coefficients of the population units. For unit i with values i
y  and x

i
, this coefficient is the value 

i
 such that Q

i

(x
i
; ) = y

i
. Note that these M-quantile coefficients are determined at the 

population level. If a hierarchical structure does explain part of the variability in the population 

data, we expect units within the clusters defined by this hierarchy to have similar M-quantile 

coefficients. Consequently, we characterise a cluster by the location of the distribution of its 

associated unit-level M-quantile coefficients. In particular, we define 
 j

 as the mean of the unit-

level M-quantile coefficients within the jth cluster. When the conditional M-quantiles are 
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assumed to follow a linear model, with (q)  a sufficiently smooth function of q , CT 

suggested a plug-in M-quantile (MQ) estimator of jm  of the form 

 m̂
j

MQ
= N

j

1
y

ij

i s
j

+ x
ij

T ˆ ( ˆ
j
){ }

i r
j

. (3) 

Here ˆ
j
 is a suitable estimator of 

 j
. Provided sampling is non-informative given x in area j, 

  
ˆ

j
 

can be calculated as the sample mean of the estimated unit-level M-quantile coefficients in that 

area. 

Note that the M-quantile approach to small area estimation is not restricted to continuous 

influence functions like the Huber function defined above, since it can also be implemented 

using quantile regression models, in which case the influence function underpinning the method 

is the discontinuous function (t) = sgn(t) . In this paper we use M-quantile regression models 

instead of ‘standard’ quantile regression models for essentially practical reasons. Algorithms for 

fitting quantile regression models do not necessarily guarantee convergence or a unique solution. 

In contrast, the iteratively reweighted least squares algorithm used to fit an M-quantile regression 

model based on a continuous and monotone influence function converges to a unique solution 

(Kokic et al. 1997). Finally, results from sensitivity analyses show that the choice of influence 

function does not impact upon the performance of the M-quantile-based small area estimators. 

3. A general framework for small area estimation  

Given the finite population U, the area-specific empirical CDF of y in area j is 

 F
j
(t) = N

j

1
I( y

ij

i s
j

t) + I y
ij

t( )
i r

j

.  (4) 
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The problem of estimating F
j
(t)  given the sample data is therefore essentially one of predicting 

the non-sample sum of the zero-one values 
 
I y

ij
t( )  for the non-sampled units in small area j . 

One straightforward way of achieving this is to simply replace the unknown non-sample values 

of y in (4) by their predicted values 
  
ŷ

ij
 under an appropriate model, leading to a plug-in 

estimator of (4) of the form 

 F̂
j
(t) = N

j

1
I( y

ij

i s
j

t) + I ŷ
ij

t( )
i r

j

. (5) 

An estimator of the mean jm  of y in area j is then defined by the value of the mean functional 

defined by (5). This leads to the usual plug-in estimator of this mean, 

 

  

m̂
j
= t dF̂

j
(t)

+

= N
j

1
y

ij

i s
j

+ ŷ
ij

i r
j

. 

It immediately follows that the EBLUP (2) is the mean functional defined by (5) when 

    
ŷ

ij
= x

ij

T ˆ
+ z

ij

T ˆ
j
, while the M-quantile estimator (3) is also a mean functional corresponding to 

(5) but now with 
    
ŷ

ij
= x

ij

T ˆ ( ˆ
j
) . In both cases the predicted value of a non-sample unit i in 

area j corresponds to an estimate μ̂
ij
 of its expected value given that it is located in area j. 

We hereafter refer to small area estimators that can be expressed as functionals of (5), with 

non-sample predictions derived as estimates of expected values, as naïve. In particular, CT 

observed that the naïve M-quantile estimator (3) can be biased. The reason for this is now clear. 

The CDF estimator (5) underlying (3) is not consistent in general. When the non-sample 

predicted values in (5) are estimated expectations μ̂
ij
 that converge in probability to the actual 

expected values μ
ij
, we see that 
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I ŷ
ij

t( )
i r

j

= I μ̂
ij

t( )
i r

j

= I y
ij

( y
ij

μ̂
ij
) t{ }

i r
j

I y
ij

t +
ij( )

i r
j

I y
ij

t( )
i r

j

. 

Here 
ij
= y

ij
μ

ij
 is the actual regression error. If these errors are independently and identically 

distributed symmetrically about zero, we expect that the summation on the left hand side above 

will closely approximate the summation on the right for values of t near the median of the non-

sampled area j values of y but not anywhere else. More generally, for heteroskedastic and/or 

asymmetric errors, this correspondence will typically occur elsewhere in the support of y, 

although one would expect that in most reasonable situations it will be ‘close’ to the median of y. 

In other words, it is not advisable to use (5) to predict a quantile of the area j distribution of y 

that is far from the median. 

By combining a smearing argument (Duan, 1983) with a model for the finite population CDF 

of y, CD developed a model-consistent estimator for a finite population CDF. In the context of 

the small area CDF (4), and assuming that the residuals 
ij
= y

ij
μ

ij
 are homoskedastic within 

the small area of interest (an assumption satisfied by the linear mixed model), this is of the form 

 

  

F̂
j

CD (t) = N
j

1
I( y

ij

i s
j

t) + n
j

1
I μ̂

kj
+ y

ij
μ̂

ij( ) t{ }
k r

j
i s

j

. (6) 

In the Appendix we show that the mean functional defined by (6) takes the value 

 m̂
j

CD
= t  dF̂

j

CD (t) = N
j

1
y

ij

i s
j

+ μ̂
ij

i r
j

+ ( f
j

1 1) ( y
ij

μ̂
ij
)

i s
j

, (7) 

where f
j
= n

j
N

j

1  is the sampling fraction in area j. Under a linear M-quantile approach to small 

area estimation, (7) then defines a bias-adjusted estimator of jm  that represents an alternative to 

(3) when we substitute 
    
μ̂

ij
= x

ij

T ˆ ( ˆ
j
)  in (7). We note that a corresponding bias-adjusted 
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alternative to the EBLUP (2) is obtained when we substitute 
    
μ̂

ij
= x

ij

T ˆ
+ z

ij

T ˆ
j
 in (7). In the 

former case we refer to this estimator as the CD-based M-quantile estimator, or M-quantile/CD 

estimator, while in the latter case we refer to it as the CD-based EBLUP estimator, or 

EBLUP/CD estimator. Corresponding estimators based on (5) will be denoted M-

quantile/Naïve and EBLUP/Naïve respectively. 

Outliers in the sample data can lead to large errors in estimation for the small areas in which 

they occur. Chambers (1986) considered the general problem of outlier-robust prediction of 

finite population totals and means. Welsh & Ronchetti (1998) extended this approach to 

prediction of the finite population CDF in the presence of outliers. In the context of robust 

prediction of an area j specific CDF, these authors replace the CD estimator (6) by 

 

  

F̂
j

WR (t) = N
j

1
I( y

ij

i s
j

t) + n
j

1
I μ̂

kj

rob
+ v

ij jt
v

ij

1( y
ij

μ̂
ij

rob ){ } t
k r

j
i s

j

, (8) 

where μ̂
ij

rob  denotes an outlier-robust estimate of the expected value μ
ij
 of population unit i in 

area j, 
ij
 is a robust estimate of the scale of its residual y

ij
μ

ij
 and 

jt
 is an outlier-robust (i.e. 

bounded) influence function that can depend both on j and t. For the case 
jt
= , the estimator 

of the small area mean based on (8) is then 

 m̂
j

WR
= N

j

1
y

ij

i s
j

+ μ̂
ij

rob

i r
j

+ ( f
j

1 1)
ij ij

1( y
ij

μ̂
ij

rob ){ }
i s

j

. (9) 

Provided the influence function  used to define ˆ ( ˆ
j
)  in (3) is ‘more’ outlier-robust than , 

i.e. (t) (t) 0 , we can substitute 
    
μ̂

ij

rob
= x

ij

T ˆ ( ˆ
j
)  in (9) to define an outlier-robust 

estimator of the area j mean. In what follows, we denote (8), as well as functionals derived from 

it, e.g. (9), by M-quantile/WR. Note, however, that the cost of this robustness is inconsistency of 
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(9), reflecting the usual bias-variance trade-off in outlier-robust estimation. Similar 

robustification of the EBLUP (2) requires an outlier-robust methodology for fitting the mixed 

model (1). One approach in this situation is to substitute the EBLUP 
    
μ̂

ij
= x

ij

T ˆ
+ z

ij

T ˆ
j
 for μ̂

ij

rob  

in (8). We denote estimators, e.g. (9), based on (8) with this substitution by EBLUP/WR below. 

However, since the EBLUP μ̂
ij
 is clearly not outlier-robust, this is not a satisfactory solution, 

and a better one would be to use a robustified version of μ̂
ij
, building on the development in 

Richardson & Welsh (1995) and Richardson (1997). Although we do not pursue this idea further 

in this paper, a recent paper by Sinha & Rao (2009) is a step in this direction. 

Wang & Dorfman (1996) pointed out that the CD estimator (6) is model-consistent but 

design-inconsistent. Rao, Kovar & Mantel (1990) proposed an alternative to this estimator that is 

both design-consistent and model-consistent. Under simple random sampling within the small 

areas, the estimator of the finite population CDF suggested by these authors is 

 

F̂
j

RKM (t) = n
j

1
I( y

ij
t)

i s
j

+ N
j

1
n

1
I( y

ij
ŷ

ij
t ŷ

kj
)

i s
j

k r
j

(n
j

1
N

j

1) n
j

1
I( y

ij
ŷ

ij
t ŷ

kj
)

i s
j

k s
j

.
 (10) 

Chambers, Dorfman & Hall (1992) compared the large-sample mean squared errors of (6) and 

(10) and concluded that neither dominates the other. When the model is correctly specified, we 

expect (6) to outperform (10). However, Rao, Kovar & Mantel (1990) demonstrated that (6) can 

be substantially biased when model assumptions fail, while (10) is much less sensitive. Here we 

just note that, as with (6) and (8), (10) can be used to define an estimator of a small area 

characteristic that can be represented as a functional of the small area CDF. In general, the 

resulting estimators generated by (6) and (10) will not be the same. An exception is the estimator 

of the area j mean, which is the same under (6) and (10). See the Appendix for the proof of this 
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result. Following the notation already introduced, estimators based on (10) will be denoted M-

quantile/RKM if they define ŷ
ij

 via a linear M-quantile model, and by EBLUP/RKM if they use 

the linear mixed model (1) for this purpose. 

Turning now to the small area quantiles, we note that an estimator of the pth quantile of the 

distribution of y in area j is straightforwardly defined as the solution to the estimating equation 

 dF̂
j
(t)

m̂
pj

= p , (11) 

where F̂
j
(t)  is an estimator of the area j CDF of y. CT discussed median estimation based on 

(11) when F̂
j
(t)  is defined by (5), with 

    
ŷ

ij
= x

ij

T ˆ ( ˆ
j
) , i.e. naïve estimation. As the preceding 

discussion makes clear, we anticipate that a better approach for estimating quantiles other than 

the median is to use smearing-type estimators like (6), (8) or (10) for F̂
j
(t) , with μ̂

ij
 defined 

either by an M-quantile model or by a linear mixed model. Empirical results that address this 

issue are presented in Section 5. 

4. Mean squared error estimation  

4.1 Linearization-based MSE estimation for estimators of small area means 

A robust estimator of the mean squared error of the naïve M-quantile estimator ˆ MQ

jm  is 

described in CT. Here we extend this argument to define an estimator that is a first order 

approximation to the mean squared error of (7) when this is based on an M-quantile regression 

fit. A more detailed discussion of this approach to mean squared error estimation is set out in 

Chambers, Chandra & Tzavidis (2008). 

To start, we note that since an iteratively reweighted least squares algorithm is used to calculate 

the M-quantile regression fit at ˆ
j
, we can write 
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ˆ ( ˆ

j
) = X

s

T
W

sj
X

s( )
1

X
s

T
W

sj
y

s
 

where X
s
 and y

s
 are the matrix of sample x values and the vector of sample y values 

respectively, and W
sj

 is the diagonal weight matrix of order n that defines the estimator of the 

M-quantile regression coefficient with q = ˆ
j
. It immediately follows that (7) can be written as 

the weighted sum 

 
    
m̂

j

MQ /CD
= w

sj

T
y

sj
, (12) 

where 
  
y

sj
 denotes the vector of sample y values in area j and 

    
w

sj
= (w

ij
) = n

j

1

sj
+ (1 N

j

1
n

j
)W

sj
X

s
(X

s

T
W

sj
X

s
) 1

x
rj

x
sj( )  is a vector of implied area j 

specific sample weights. Here 
sj

 denotes the n-vector that ‘picks out’ the sample units from 

area j and x
sj

 and x
rj

 denote the vectors of sample and non-sample means of x respectively in 

area j. Note that the weights in (12) are ‘locally calibrated’ on x since 

 w
ij
x

i

i s

= x
sj
+ (1 f

j
)(x

rj
x

sj
) = x

j
. 

A first order approximation to the mean squared error of (12) treats the weights defining this 

representation as fixed, and applies standard methods of robust mean squared error estimation 

for linear estimators of population quantities (Royall & Cumberland 1978). With this approach, 

the prediction variance of /ˆ MQ CD

jm  is estimated by 

 

    
ijg

y
ig

x
ig

T ˆ ( ˆ
g
){ }

2

i s
g

g=1

d

, (13) 

where 
ijg
= (w

ij
1)2

+ (n
j

1) 1(N
j

n
j
){ } I(g = j) + w

ig

2
I(g j) . Note that this prediction 

variance estimator implicitly assumes a model where the regression of y on x varies between 
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areas. It also assumes that this variation is consistently estimated by the fit of the M-quantile 

regression model in each area. Furthermore, since the weights defining /ˆ MQ CD

jm  are locally 

calibrated on x, it follows that (12) is unbiased for 
 
m

j
 under the same model, and so (13) can be 

used as an estimator of the MSE of /ˆ MQ CD

jm . This can be compared with the estimator of the 

mean squared error of the naïve M-quantile estimator ˆ MQ

jm  described in CT, which includes a 

squared bias term. As an aside, we note that, since the estimator of the small area mean defined 

by (10) is the same as that defined by (6), the expression (13) also defines an estimator of the 

mean squared error of the mean estimator defined by (10) when small area samples are obtained 

by simple random sampling. 

4.2 Bootstrap MSE estimation for estimators of small area quantiles 

The linearization-based prediction variance estimator (13) is defined only when the estimator of 

interest can be written as a weighted sum of sample values. Consequently, it cannot be used with 

quantile estimators defined by solving (11). In this section we describe an alternative non-

parametric bootstrap approach to MSE estimation in this case, based on the approach of 

Lombardia, Gonzalez-Manteiga & Prada-Sanchez (2003). In particular, we define two bootstrap 

schemes that resample residuals from an M-quantile model fit. The first scheme draws samples 

from the empirical distribution of suitably re-centred residuals. The second scheme draws 

samples from a smoothed version of this empirical distribution. Using these two schemes, we 

generate a bootstrap population, from which we then draw bootstrap small area samples. In 

order to define the bootstrap population, we first calculate the M-quantile small area model 

residuals 
    
e

ij
= y

ij
x

ij

T ˆ ( ˆ
j
) . A bootstrap finite population 

    
U

*
= {y

ij

* ,x
ij
},i U , j = 1,…,d  

with 
    
y

ij

*
= x

ij

T ˆ ( ˆ
j
) + e

ij

*  is then generated, where the bootstrap residuals 
  
e

ij

*
 are obtained by 
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sampling from an estimator of the CDF   Ĝ(u)  of the 
 
e

ij
. In order to define   Ĝ(u) , we consider 

two approaches: (i) sampling from the empirical CDF of the residuals 
 
e

ij
 and (ii) sampling from 

a smoothed CDF of these residuals. In each case, sampling of the residuals can be done in two 

ways: (i) by sampling from the distribution of all residuals without conditioning on the small area 

(the unconditional approach); and (ii) by sampling from the conditional distribution of residuals 

within small area j (the conditional approach). The empirical CDF of the residuals is 

 

  

Ĝ(u) = n
1

I(e
ij

e
s

u)
i s

j
j=1

d

, 

where 
 
e

s
 is the sample mean of the 

 
e

ij
. Similarly, the empirical CDF of these residuals in area j 

is 

 

  

Ĝ
j
(u) = n

j

1
I(e

ij
e

sj
u)

i s
j

 

where 
 
e

sj
 is the sample mean of the 

 
e

ij
 in area j. A smoothed estimator of the unconditional 

CDF is 

 

  

Ĝ(u) = n
1

K h
1

u e
ij
+ e

s( ){ }
i s

j
j=1

d

, 

where  h  > 0 is a smoothing parameter and K is the CDF corresponding to a bounded 

symmetric kernel density k. Similarly a smoothed estimator of the conditional CDF in area j is 

 

  

Ĝ
j
(u) = n

j

1
K h

j

1
u e

ij
+ e

sj( ){ }
i s

j

, 

where 
  
h

j
> 0  and K are the same as above. In the empirical studies reported in Section 5, we 

define K in terms of the Epanechnikov kernel, 
  
k(u) = 3 / 4( ) 1 u

2( ) I u < 1( ) , while the 

smoothing parameters  h  and 
 
h

j
 are chosen so that they minimize the cross-validation criterion 
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suggested by Bowman, Hall & Prvan (1998). That is, in the unconditional case,  h  is chosen in 

order to minimize 

 

  

CV (h) = n
1

I (e
ij

e
s
) u{ } G

i
(u)

2

du
i s

j
j=1

d

, 

where 
  
G

i
(u)  is the version of   G(u)  that omits sample unit i, with the extension to the 

conditional case being obvious. It can be shown (Li & Racine, 2007, section 1.5) that choosing 

 h  and 
 
h

j
 in this way is asymptotically equivalent to using the MSE optimal values of these 

parameters. In the simulation studies reported in the next section, we compute both the 

conditional and unconditional smoothed distribution functions of residuals using the np package 

in the R software environment (R Development Core Team 2008) that implements the above 

approach. In either case, bootstrap samples 
  
s

j

*
 are then drawn, using simple random sampling 

without replacement within the small areas. In what follows we denote by 
  
F

j
(t)  the unknown 

true CDF of the finite population values in area j, by 
  
F̂

j

CD (t)  the CD estimator of 
  
F

j
(t)  based 

on sample 
 
s

j
, by 

  
F

j

*(t)  the known true CDF of the bootstrap population 
  
U

j

*
 in area j, and by 

  
F̂

j

CD (t)  the CD estimator of 
  
F

j

*(t)  based on bootstrap sample 
  
s

j

*
. Let 

  j
= (F

j
)  denote the 

functional defined by 
  
F

j
(t)  that corresponds to the small area characteristic of interest, with 

associated CD-based estimator 
  
ˆ

j

CD
= ( F̂

j

CD ) . The bootstrap population value of this functional 

is then 
  j

= (F
j
) , with associated CD-based estimator 

  
ˆ

j

CD
= ( F̂

j

CD ) . We then estimate the 

MSE of the CD-based estimator 
  
ˆ

j

CD
 as follows. Starting from the sample s, we generate B 

bootstrap populations,   U
*b

, using one of the four above-mentioned methods for estimating the 
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CDF of the residuals. From each bootstrap population,   U
*b

, we select L samples using simple 

random sampling without replacement within the small areas with 
  
n

j

*
= n

j
. The bootstrap 

estimator of the MSE of the CD-based estimator 
  
ˆ

j

CD
is then 

 

  

B
1
L

1 ˆ
j

CD*bl av
L
( ˆ

j

CD*bl ){ }
2

l=1

L

b=1

B

+ B
1
L

1 ˆ
j

CD*bl

j

*b( )
l=1

L

b=1

B
2

. (14) 

Here  
  j

*b
 is the area j value of the characteristic of interest for the bth bootstrap population and 

  
av

L
( ˆ

j

CD*bl ) = L
1 ˆ

j

CD*bl

l=1

L

, where 
  
ˆ

j

CD*bl
 is the CD-based estimator of this characteristic 

computed from the lth sample of the bth bootstrap population, (b = 1,…,B, l = 1,…,L). Note 

that this bootstrap procedure can also be used to construct confidence intervals for the value of 

 j
 by ‘reading off’ appropriate quantiles of the bootstrap distribution of 

  
ˆ

j

CD
. Finally, we 

observe that this bootstrap approach is not restricted to functionals defined by the CD-based 

estimator (6), but can also be used to estimate the MSEs of functionals defined by the alternative 

smearing-type CDF estimators (8) and (10). 

5. Simulation studies 

In this section we present results from two simulation studies that were used to compare the 

performance of the different small area estimators defined in the preceding sections. The first 

was a model-based simulation in which small area population and sample data were simulated 

based on a two-level linear mixed model with different parametric assumptions for the area and 

unit level random effects. The second was a design-based simulation in which actual sample 

survey data for a number of small areas were used to construct a synthetic population, which 

was then sampled repeatedly. The sampling design used in this case was stratified random 
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sampling, with the strata corresponding to the small areas of interest, and with stratum 

allocations set to the small area sample sizes in the original survey. 

5.1 Model-based simulations 

Two methods were used to simulate bivariate population values (y, x) in d = 30 small areas. In 

both, N = 232 500 with N
j
= 500 j  in area j. For each area j, we selected a simple random 

sample (without replacement) of size 30jn = , leading to an overall sample size of n = 900. The 

sample values of y and the population values of x were then used to estimate the small area 

target parameters, which were taken to be the small area means and selected quantiles of y. This 

process was repeated 1000 times. 

The first simulation experiment (scenario 1) generated population values of y using 

y
ij
= 5+ x

ij
+

j
+

ij
, with the 

 
x

ij
 generated as independently and identically distributed 

realisations from 
  
N (

j
,

j

2 / 36) . The small area x-means 
 j

 were themselves drawn at random 

from the uniform distribution on the interval (40, 120), and held fixed over the simulations. 

Similarly, the random effects 
 j

 and 
 ij

 were independently and identically generated as   N (0,1)  

and   N (0,64)  realisations respectively. The second simulation experiment (scenario 2) generated 

values of the target variable using the same linear model as in scenario 1, but in this case values 

of 
 
x

ij
were generated as independently and identically distributed realisations from 

  
2(d

j
) , with 

the 
 
d

j
 drawn at random from the integers 1 to 200, and held fixed over the simulations. Also, 

the random effects 
 j

 and 
 ij

 were independently and identically generated as mean-corrected 

 
2(1)  and  

2(3)  realisations respectively. The purpose of scenario 2 was to examine the effect 

of misspecification of the Gaussian assumptions of a mixed model. 
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Two different types of small area linear models were fitted to the sample data obtained in 

these Monte Carlo simulations. These were (a) a random intercepts specification of (1), and (b) a 

linear M-quantile regression specification. The random intercepts model used in (a) was fitted 

using the default settings of the lme function (Venables & Ripley, 2002, section 10.3) in the R 

software package. The M-quantile linear regression fit underpinning (b) was obtained using a 

modified version of the rlm function (Venables & Ripley, 2002, section 8.3) in R. Estimated 

model coefficients obtained from these fits were then used to compute a range of EBLUP and 

M-quantile-based estimators of means and quantiles in the different areas. 

Biases and mean squared errors over these simulations, averaged over the 30 areas, are set out 

in Table 1 (scenario 1) and in Table 2 (scenario 2). Under scenario 1 all estimators performed 

reasonably well. The differences between the estimators were much more pronounced under 

scenario 2 (area effects distributed as chi-squared). Here we see that the use of naïve estimators 

led to substantial biases as far as quantiles were concerned. In contrast, the estimators (both 

EBLUP and M-quantile) based on (6) and (10) were essentially unbiased, even for extreme 

quantiles, with the CD-based estimators somewhat more efficient. On the basis of these results 

it would appear that estimators that are defined as functionals of the CDF estimators (6) or (10) 

are preferable if there is concern about misspecification of the distribution of area effects. 

TABLE 1 ABOUT HERE 

TABLE 2 ABOUT HERE 

In order to evaluate the performance of the linearization-based MSE estimator (13) and the 

bootstrap MSE estimator (14), we carried out a further model-based simulation study. In this 

study we focussed on MSE estimation for the 25th, 50th and 75th percentiles using the 

bootstrap estimator (14), and for the mean using either the linearization-based estimator (13) or 

the bootstrap estimator (14). A total of 200 Monte Carlo simulations were carried out for each 
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percentile and 100 Monte Carlo simulations for the mean, with the bootstrap MSE estimation 

implemented by generating a single bootstrap population at each Monte Carlo simulation and 

taking L = 500 bootstrap samples from this population. The bootstrap population was generated 

unconditionally, with bootstrap population values obtained by sampling from the smoothed 

residual distribution generated by the sample data obtained in each Monte Carlo simulation. 

Although it would have been theoretically preferable to have generated multiple bootstrap 

populations from each Monte Carlo sample, computing limitations restricted our investigation to 

B = 1. Since the estimates generated by the bootstrap procedure were then averaged over the 

200 Monte Carlo simulations in our evaluation, this limitation is not as severe as it might appear 

to be, since the Monte Carlo simulations themselves serve as proxies for multiple bootstrap 

populations. Simulation results evaluating the resulting MSE estimators are set out in Tables 3 

and 4 and in Figure 1. Focusing first on Table 3, we note that under both simulation scenarios, 

the linearization-based and the bootstrap MSE estimators tracked the true MSEs of the small 

area mean estimators very well, and provided coverage rates that were close to the nominal 95%. 

TABLE 3 ABOUT HERE 

Focusing next on Table 4 and Figure 1 we see that the bootstrap MSE estimator also performed 

well in terms of approximating the true MSEs of the small area quantile estimators. Again, 

coverage rates generated by 95% prediction intervals based on these MSE estimates were close 

to their nominal level. 

TABLE 4 ABOUT HERE 

FIGURE 1 ABOUT HERE 

5.2 Design-based simulations 

The synthetic population data on which these simulations were based are the same as those 

discussed in CT. They were obtained by nonparametrically bootstrapping an initial sample of 
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1652 Australian farms that responded to the Australian Agricultural and Grazing Industries 

Survey (AAGIS) up to a population of N = 81 982 farms spread across 29 agricultural regions of 

Australia, and referred to as the AAGIS dataset below. The variable of interest y is the Total 

Cash Costs (TCC) of the farm business in the reference year of the original AAGIS. Auxiliary 

information available for each farm in the population included the farm’s sample weight, the 

total area of the farm in hectares (FarmArea) and the climatic zone in which the farm is situated. 

This information was used to classify the farms into six SizeZone strata on the basis of farm size 

and the climatic zone of the farm. The aim of this simulation study was to compare estimation 

of regional means of TCC under repeated sampling from the (fixed) AAGIS dataset using both 

linear mixed models and linear M-quantile models. Five hundred independent samples were 

selected for the simulation. See CT for further details on how this was done and on the stratified 

sampling procedure, which replicated the regional distribution of the original sample farms. As 

in CT, all models used the same set of x variables, defined by the main effects and interactions 

for the Farmarea and SizeZone variables. 

Estimated values of regional means were obtained using both naïve and CD-based estimators 

assuming either a linear mixed model with random intercepts (EBLUP/Naïve and EBLUP/CD) 

or a linear M-quantile model (M-quantile/Naïve and M-quantile/CD). Note that the CD-based 

estimators are identical to estimators based on the Rao, Kovar & Mantel (1990) CDF estimator 

(10) in this case. These simulation results are set out in Table 5, which shows relative bias and 

relative root mean squared error (both expressed in percentage terms) averaged over the 29 

regions. 

TABLE 5 ABOUT HERE 

We immediately see that the naïve M-quantile estimator of the mean is biased. However, this 

bias effectively disappears from the CD-based version of this estimator, which also records the 
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lowest average RMSE value. As noted in CT, this population contains some extreme outliers, 

and this is reflected in the naïve EBLUP exhibiting some bias. This may be due to the violation 

of the mixed model assumptions. To illustrate this we present normal probability plots of level 1 

(farm) and level 2 (Region) residuals that are based on fitting a two level linear mixed model to 

the original AAGIS sample data (Figure 2).  

FIGURE 2 ABOUT HERE 

These plots indicate that the model assumptions are not satisfied. Again we see that the bias of 

the naïve EBLUP estimator is corrected by using a CD version of the EBLUP estimator, though 

in this case there is no corresponding reduction in RMSE. Although we do not show these 

results, we also evaluated the EBLUP and M-quantile versions of the outlier-robust estimator 

(9), using ‘huberised’ residuals (based on a tuning constant of c = 5) to define the bias 

adjustment. As expected, both of these further improved on the RMSE performance of their 

corresponding ‘standard’ versions (7), but at the cost of increased negative bias. 

Figure 3 shows the regional distributions of coverage rates of nominal 95% confidence 

intervals for regional means derived using the weighted version (12) of the CD-based M-quantile 

estimator and the linearization-based MSE estimator (13). In general, these intervals display 

good coverage rates, with significant under-coverage only in one region that contained an 

extremely large outlier. In Table 6 we further summarise the performance of (13) as an estimator 

of the MSE of (12) by comparing key percentiles of the distribution across areas of the Monte 

Carlo average value of (13) with the true (i.e. simulation-based) MSE of (12).  

TABLE 6 ABOUT HERE 

FIGURE 3 ABOUT HERE 

These results indicate that (13) provides a good approximation to the true MSE of (12). In 

contrast, as reported in CT, the coverage rates of confidence intervals based on the naïve M-
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quantile estimator show extensive undercoverage in this situation, which in this case is 

attributable to the bias of this estimator. 

In addition to estimating regional means, we also estimated selected percentiles of the 

distribution of TCC within the different regions by numerically solving (11), using the estimators 

(5), (6), (8) and (10) of the within region CDF. Here we focus on the 10th percentile, the 50th 

percentile (the median) and the 90th percentile. Our results are summarized in Figure 4, where 

we see that, for both the 10th and the 90th percentile, the M-quantile and EBLUP versions of 

the naïve estimator (boxes 7 and 8) have larger absolute biases and root mean squared errors 

across the different regions than the corresponding estimators based on the smearing-type CDF 

estimators (6) and (10).  

FIGURE 4 ABOUT HERE 

As suggested in Section 3, the situation is reversed at the median, where the M-quantile/Naïve 

estimator performs the best. Generally, these results indicate that, for this population, using an 

estimator based on an M-quantile model (boxes 1 and 2) is preferable to using one based on a 

linear mixed model (boxes 3 and4), and that using the Rao, Kovar & Mantel (1990) estimator 

(10) (boxes 2 and 4) is preferable to using the CD-based estimator (boxes 1 and 3). The outlier-

robust version (8) of the CD estimator (boxes 5 and 6) seems to offer no worthwhile efficiency 

gains in this case. 

6. Summary and extensions  

In this paper we outline an integrated and robust methodology for estimating small area means 

and distributions. The basis of our approach is the use of smearing-type estimators of the small 

area CDF, which can then be used to define an estimator of the small area mean as well as 

estimators of the small area quantiles. Our empirical results indicate that this approach shows 

promise when applied to unit level models for small area estimation, particularly when it is 
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combined with the approach to small area estimation based on M-quantile regression modelling 

described in CT. However, the methodology described here has wider application, also leading 

to improvements in the efficiency of small area estimators based on mixed models. 

Although we have not investigated them in any depth so far, extensions to the CD estimator 

of the small area CDF that underpins our small area estimation framework are available, and lead 

to alternative estimators for small area characteristics. As we observed in Section 3, Welsh & 

Ronchetti (1998) have proposed an outlier robust version (8) of the CD estimator (6). A slightly 

different modification to (6) uses local (i.e. nonparametric) weighting in the smearing process, 

leading to 
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where the 
 
w

ik
 are ‘local’ weights that satisfy, for non-sample unit k in area j, 
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It is easy to show that the mean estimator implied by (15) is 
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where 

 

 

u
ij
= w

ik

k r
j

. 

We have not evaluated (16) in the context of small area estimation, but previous experience with 

it for robust population level estimation (Chambers, Dorfman & Wehrly 1993) indicates that it 

should also work well, particularly when there is significant non-linearity in the small area 

regression model. 
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Appendix 

For notational simplicity, we drop the small area index j. The mean estimator defined by the CD 

estimator (6) of the small area CDF is 
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since 
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i
. The expression (7) follows directly. Similarly, it is easy to see that, under 

simple random sampling, the estimator of the mean defined by the Rao, Kovar & Mantel CDF 

estimator (10) satisfies 
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Table 1. Model-based simulation results for Scenario 1 (Gaussian area effects) averaged over 30 

small areas. The target parameters are the small area means and selected percentiles of the small 

area distributions. 

Method Target Parameters 
 10th 25th 50th Mean 75th 90th 
 Relative Bias (%) 
EBLUP/Naïve 0.088 0.041 -0.002 -0.002 -0.036 -0.062 
EBLUP/CD 0.096 0.046  0.051 -0.002  0.072  0.160 
EBLUP/RKM 0.005 0.015 -0.024 -0.002 0.015 0.105 
M-quantile/Naïve 0.090 0.044  0.003  0.003  -0.030 -0.055 
M-quantile/CD 0.058 0.003 -0.003 -0.002  0.008 0.064 
M-quantile/RKM -0.011 0.002 0.008 -0.002 0.009 0.014 
 Relative RMSE (%) 
EBLUP/Naïve 0.29 0.23 0.20 0.23 0.19 0.19 
EBLUP/CD 0.34 0.25 0.22 0.24 0.21 0.26 
EBLUP/RKM 0.31 0.25 0.21 0.24 0.20 0.20 
M-quantile/Naïve 0.46 0.38 0.33 0.32 0.31 0.30 
M-quantile/CD 0.34 0.25 0.21 0.24 0.21 0.24 
M-quantile/RKM 0.32 0.25 0.22 0.24 0.21 0.22 

 

Table 2. Model-based simulation results for Scenario 2 (Chi-squared area effects) averaged over 

30 small areas. The target parameters are the small area means and selected percentiles of the 

small area distributions. 

Method Target Parameters 
 10th 25th 50th Mean 75th 90th 
 Relative Bias (%) 
EBLUP/Naïve 22.48 9.731 0.420 0.024 -4.708 -6.969 
EBLUP/CD 0.373 0.205 0.079 -0.018 -0.073 -0.186 
EBLUP/RKM 0.216 0.599 0.125 -0.018 -0.348 0.001 
M-quantile/Naïve 17.24 5.653 -2.641 -1.794 -7.021 -8.787 
M-quantile/CD 0.373 0.176 0.028 -0.018 -0.086 -0.188 
M-quantile/RKM 0.211 0.596 0.124 -0.018 -0.348 0.003 
 Relative RMSE (%) 
EBLUP/Naïve 22.56 9.99 2.86 1.97 4.93 7.03 
EBLUP/CD 3.23 3.08 3.01 2.01 3.32 3.90 
EBLUP/RKM 4.10 3.56 3.30 2.01 3.46 4.12 
M-quantile/Naïve 17.60 6.70 3.30 2.49 7.04 8.80 
M-quantile/CD 3.23 3.09 3.11 2.01 3.48 3.89 
M-quantile/RKM 4.11 3.56 3.36 2.01 3.46 4.12 
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Table 3. Across areas distribution of true (i.e. Monte Carlo) mean squared error and average 

over Monte Carlo simulations of estimated mean squared error and coverage rates of nominal 

95% confidence intervals for the M-quantile/CD estimator (12). Estimated mean squared errors 

based on (14) using the smoothed unconditional approach (Bootstrap) or (13) (Linearization). 

Intervals were defined as the M-quantile/CD estimator (12) plus or minus twice its estimated 

standard error, calculated as the square root of (13) or (14). 

MSE Percentiles of across areas distribution 
 Min 25th 50th Mean 75th Max 
 Gaussian area effects 

True 0.271 0.331 0.411 0.419 0.481 0.783 
Linearization 0.289 0.317 0.400 0.416 0.500 0.680 

Bootstrap 0.282 0.319 0.401 0.418 0.504 0.715 
Coverage Linearization 0.88 0.93 0.95 0.94 0.97 0.99 

Coverage Bootstrap 0.88 0.94 0.96 0.96 0.97 0.99 
 Chi-squared area effects 

True 0.344 0.453 0.549 0.589 0.736 1.051 
Linearization 0.411 0.453 0.552 0.592 0.689 0.980 

Bootstrap 0.398 0.444 0.559 0.589 0.706 1.003 
Coverage Linearization 0.87 0.89 0.92 0.93 0.96 0.98 

Coverage Bootstrap 0.92 0.95 0.96 0.96 0.97 1.00 
 

Table 4. Across areas distribution of the true (i.e. Monte Carlo) mean squared error and average 

over Monte Carlo simulations of estimated mean squared error for the CD estimates of 0.25, 

0.50 and 0.75 quantiles from (11). Estimated mean squared error for quantiles is based on (14) 

using smoothed unconditional approach. 

MSE   Percentiles of across areas distribution 
  Min 25th 50th Mean 75th Max 

  Gaussian area effects 
True 0.354 0.391 0.491 0.514 0.595 0.887 0.25 quantile 

Estimated 0.345 0.383 0.475 0.500 0.598 0.857 
True 0.311 0.353 0.444 0.469 0.547 0.761 0.50 quantile 

Estimated 0.314 0.348 0.433 0.455 0.543 0.774 
True 0.339 0.386 0.495 0.516 0.611 0.909 0.75 quantile 

Estimated 0.338 0.375 0.471 0.495 0.592 0.867 

  Chi-squared area effects 
True 0.289 0.357 0.454 0.471 0.569 0.919 0.25 quantile 

Estimated  0.314 0.346 0.437 0.458 0.554 0.795 
True 0.376 0.454 0.575 0.594 0.735 1.087 0.50 quantile 

Estimated 0.395 0.439 0.554 0.578 0.696 1.001 
True 0.594 0.678 0.848 0.893 1.035 1.727 0.75 quantile 

Estimated 0.592 0.666 0.843 0.877 1.058 1.579 
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Table 5. Design-based simulation results for the AAGIS data: Estimation of average TCC 

within regions. Entries show regional averages of Relative Bias (RB) and Relative RMSE 

(RRMSE) for different small area estimators. Both RB and RRMSE are expressed in percentage 

terms. 

Small Area Estimators RB RRMSE 
EBLUP/Naïve 4.04 19.60 
EBLUP/CD 1.43 20.84 
M-quantile/Naïve -16.17 20.41 
M-quantile/CD -0.20 18.23 

 

Table 6. AAGIS data: Percentiles of the across regions distribution of the true (i.e. Monte 

Carlo) mean squared error of the M-quantile/CD estimator (12) of mean TCC within regions 

and the corresponding distribution of the average (over the Monte Carlo simulations) of its 

estimated MSE computed using the linearization estimator (13). 

MSE Percentiles of across regions distribution 
 10th 25th 50th Mean 75th 90th 

True 7360 9847 17990 31550 30080 69454 
Linearization 7281 9940 18290 30170 30300 66081 
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Figure 1. Distribution of area-specific coverage rates of nominal 95% confidence intervals for 

small area quantiles in the model-based simulations. Intervals were defined as the M-quantile/ 

CD estimator (11) plus or minus twice its estimated standard error, calculated as the square root 

of (14). 

 

Figure 2. Normal probability plots of level 1 (left) and level 2 residuals (right) derived by fitting 

a two-level linear mixed model to the original AAGIS sample data. 

 

Figure 3. AAGIS data: Distribution of region-specific coverage rates of nominal 95% 

confidence intervals. Intervals were defined as the CD-based M-quantile estimator (12) plus or 

minus twice its estimated standard error, calculated as the square root of (13). 

 

Figure 4. AAGIS data: Box plots showing across-region distributions of average prediction 

error (left column) and root mean squared error (right column) for estimated percentiles (top = 

10th, middle = median, bottom = 90th) of the within-region distribution of TCC. Boxes 

correspond to different estimators: 1 = M-quantile/CD; 2 = M-quantile/RKM; 3 = 

EBLUP/CD; 4 = EBLUP/RKM; 5 = M-quantile /CDR (c = 5); 6 = EBLUP/CDR (c = 5); 7 = 

M-quantile/naïve; 8 = EBLUP/naïve. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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