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Abstract—Real-time information of tire friction forces is 
invaluable for vehicle control systems, such as ABS and the 
electronic stability program (ESP), to achieve better stability 
and maneuverability. To estimate tire forces on-line, this paper 
proposes a robust tire force estimation algorithm which is able 
to identify the longitudinal and lateral tire forces of each 
individual wheel. In addition, the estimation results are robust 
w.r.t variations in vehicle parameters. The dependency between 
the longitudinal and lateral tire forces is explicitly taken into 
account by incorporating friction ellipses into the estimation 
algorithm. Simulations based on a 14-degree-of-freedom 
nonlinear vehicle model are conducted and the results are 
satisfactory, even in the presence of sudden changes of the road 
conditions and variations in vehicle parameters. 

I. INTRODUCTION 

he interaction between the tire and the road is the primary 
mechanism that converts engine/steering torques to 
traction/cornering forces of ground vehicles; therefore 

real- time information of the tire friction forces is invaluable 
to the vehicle control systems since increasingly stringent 
requirements of safety and maneuverability are imposed on 
modern automobiles.  

Estimation of tire friction forces becomes an active 
research topic recently [1]. A variety of estimation techniques 
have been proposed in the literature. Most of them are based 
on either tire models or vehicle models. The simplest 
longitudinal tire model assumes that the longitudinal tire 
force is linearly proportional to the tire slip ratio, which is the 
relative difference between the translational velocity and the 
angular velocity of a wheel. Depending on the way to obtain 
the vehicle’s velocity and to estimate the “slip-slop”, i.e. the 
proportional constant between the longitudinal tire force and 
the slip ratio, various slip-based methods were proposed. For 
example, Gustafsson [2] used the undriven wheel’s speed as 
the reference velocity of the vehicle; however application is 
restricted to the cases of front- (or rear-) wheel drive vehicles 
in acceleration. Wang et al. used the differential global 
positioning systems (DGPS) to obtain more accurate estimate 
of the vehicle’s velocity and extend the slip-slop method to 

all-wheel drive vehicles for both accelerating and braking 
cases [3]. 

The linear slip-slop model is valid only in the low slip ratio 
region. To estimate the longitudinal tire force in high slip 
ratio conditions, nonlinear tire models must be considered. 
Burckhardt model and LuGre model were explored in [4] and 
[5] respectively along with steepest descent adaptive 
algorithms to identify the parameters of the tire models as 
well as the road friction coefficient. On the other hand, 
nonlinear tire models were also used in the estimation of 
lateral tire forces [6]. 

The inherent limitations of the tire-model-based 
approaches are the validity of the tire models in use. Note that 
a lot of tire models have been proposed in the literature, 
including various analytical/experimental and static/dynamic 
tire models [1]. These models differ in their degrees of 
accuracy and complexity; however none of them can 
completely describe all aspects of the tire behavior while 
keeps the model as simple as possible. Thus it is crucial to 
fully comprehend the restrictions imposed by a particular tire 
model before the associated tire-model-based approach is 
applied. Besides, many tire models are developed for the tire 
force in either the longitudinal or the lateral direction; 
however it is well-known that the tire forces in both directions 
are dependent. Generally speaking, the more the longitudinal 
tire force is established for traction/braking, the less the 
lateral tire force is available for cornering, and vice versa. 
Therefore a longitudinal (lateral) tire force estimation 
algorithm without considering the effects of the other 
direction may perform poorly when the vehicle is in a 
combined motion of traction/braking and cornering. 

To simultaneously estimate the longitudinal and lateral tire 
forces, the vehicle dynamics were exploited. Ray [7] set up an 
8-degree-of-freedom nonlinear vehicle model and treated tire 
forces in both directions of each wheel as additional state 
variables. Then all state variables were estimated by the 
extended Kalman filter (EKF). Furthermore, Bayesian 
hypotheses were used to classify the road condition based on 
the estimated tire forces. Note that no particular tire model 
was assumed in Ray’s method. In [8], the longitudinal tire 
force of each wheel was estimated using the moment balance 
equation of each wheel; then estimates of lateral tire forces 
were found through a simplified vehicle model; however, 
only the sums of the front and rear lateral tire forces can be 
identified. Baffet, Charara, and Lechner [9] proposed a 
sliding mode observer to estimate the longitudinal and lateral 
tire 
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forces simultaneously based on a simplified vehicle model; 
however the rear tires were assumed in pure rolling and hence 
their longitudinal tire forces were neglected. Besides, only the 
sums of the front and rear lateral tire forces can be obtained. 

Although the integrated estimation of the longitudinal and 
lateral tire forces has been addressed recently, identifying 
lateral tire forces of each individual wheel is still an open 
question. Moreover, vehicle-model-based methods are 
susceptible to model uncertainties. The contribution of this 
paper is that we propose a tire force estimation algorithm 
which is able to identify tire forces in both directions of each 
individual wheel and is robust w.r.t variations in vehicle 
parameters. The proposed algorithm consists of three 
consecutive steps: longitudinal tire force estimation, lateral 
tire force estimation, and vehicle parameter estimation. The 
estimation of the longitudinal tire force is based on the 
moment balance equation of each wheel. Then lateral tire 
forces are solved by using a simplified vehicle model and the 
friction ellipses which accounts for the dependency between 
the longitudinal and lateral tire forces. Finally, a maximum 
likelihood parameter estimator is implemented to estimate the 
critical vehicle parameters on-line such that the effects of 
parameter uncertainties on the tire force estimates are 
alleviated. Then we verify the performance of the proposed 
algorithm by simulations under various road conditions and 
parameter variations. 

This paper is organized as follows. Section II introduces 
the fundamental notions of tire models. The proposed 
algorithm is presented in Section III and simulation results are 
discussed in Section IV. Section V concludes this paper. 

I. NOTIONS OF TIRE FORCES 

Figure 1 illustrates the tire force decomposed in the 
longitudinal direction (Fa) and in the lateral direction (Fb). vw 
is the wheel’s velocity and  is the steering angle.  

 
Figure 1: Decomposition of the tire force into the longitudinal and lateral 
directions.  and  are the tire slip angle and steering angle respectively.. 

 

The longitudinal tire force is a function of the tire slip ratio, 
the normal tire force, and the road friction coefficient. The 
tire slip ratio is defined as follows:  

     
 
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max , cos
e w
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R v
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
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where Re is the effective tire radius and  is the angular 
velocity of the tire.  is called the tire slip angle, which is the 
angle between the tire’s heading direction and the direction of 

the tire velocity vw. See Figure 1. 
On the other hand, the lateral tire force is a function of the 

tire slip angle, the normal tire force, and the road friction 
coefficient. One of the commonly used tire models is the 
following “magic formula” [10]: 

     1 1( ) sin tan tani i i i i i iF D C B E B B           (2)

where Fi, i=a,b, is either the longitudinal or the lateral tire 
force. The independent variable  denotes the slip ratio for 
the longitudinal tire force, or the slip angle for the lateral tire 
force.  is the road friction coefficient. Bi, Ci, Di, and Ei are 
parameters of the magic formula whose values vary with the 
normal tire force. 

The graph of (2) is shown in Figure 2 for various normal 
tire forces and road friction coefficients. The upper (lower) 
rows of Figure 2 are the longitudinal (lateral) tire forces v.s. 
the slip ratio (slip angle) for different normal tire forces (left 
column) and road friction coefficients (right column). It can 
be seen that for a fixed road friction coefficient, if the slip 
ratio (slip angle) is small, the longitudinal (lateral) tire force is 
proportional to the slip ratio (slip angle), irrespective of the 
normal tire forces. 

 
Figure 2: (a) Longitudinal tire forces v.s. slip ratios for various normal tire 
forces when =0.85, and (b) various road friction coefficients when the 
normal tire force is 4263 Nt. (c) Lateral tire forces v.s. slip angles for various 
normal tire forces when =0.85, and (d) various road friction coefficients 
when the normal tire force is 4263 Nt. 

II. TIRE FORCE ESTIMATION 

The proposed tire force estimation algorithm consists of 
three steps in order: longitudinal tire force estimation, lateral 
tire force estimation, and parameter estimation. The block 
diagram is illustrated in Figure 3. 

 

 
Figure 3: The block diagram of the proposed robust tire force estimation 
algorithm 
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The inputs to the longitudinal tire force estimator include 
the torques applied to each wheel and the angular velocities of 
each wheel. These inputs are measurable by torque sensors 
and speed sensors respectively. To estimate the lateral tire 
forces, the proposed algorithm requires the vehicle’s yaw rate, 
steering angles of the two front wheels, longitudinal and 
lateral accelerations and velocities of the vehicle’s center of 
gravity (C.G.). The yaw rate and the accelerations are 
available through the on-board inertia navigation system. The 
velocity of the vehicle’s C.G. can be obtained if on-board 
DGPS is available [6]. These measured data along with the 
estimated tire forces are sent to the parameter estimator which 
updates the critical parameters used in the lateral tire force 
estimator in order to compensate for parameter variations. 

A. Longitudinal Tire Force Estimation 

The moment balance equation of each wheel is used to 
estimate the longitudinal tire force. The same approach was 
adopted in [8] too. Consider a tire rolling on a surface as 
shown in Figure 4. Then 
              w w e aI T R F                    (3) 

where Iw, , Re are the moment of inertia, angular velocity, 
and effective radius of the wheel respectively. Tw denotes the 
torque applied to the wheel due to braking or traction. 

 
Figure 4: Longitudinal Tire Force 

 

Suppose that Tw and  are measurable. The angular 
acceleration can be approximated by the backward difference 
of  when the proposed algorithm is implemented in the 
discrete-time domain: 

      
( ) ( 1)ˆ ( )

s

k k
k

T

   
              (4) 

where the index k denotes the kth time step and Ts is the 
sampling time. Assume that the deformation of the tire is 
negligible, i.e. ReR, where R is the undeformed tire radius. 
Then the longitudinal tire force is estimated by 

        
ˆ

ˆ w w
a

T I
F

R





             (5) 

Note that (5) depends on Iw and R which are properties of 
the tire and are assumed to be known exactly. Therefore (5) is 
immune to the variations in vehicle’s parameters introduced 
in subsequent subsections. 

B. Lateral Tire Force Estimation 

The longitudinal and lateral tire forces of all wheels of a 
vehicle are illustrated in Figure 5. For easy reference, the four 
wheels are labeled as 1, 2, 3, and 4, representing the front left, 
front right, rear right, and rear left wheels respectively. 1 and 

2, the steering angles of the front left and front right wheels 
respectively, satisfy the Ackerman steering geometry when 

the vehicle is negotiating a turn [11]: cot cot fb

o i l   , 

where i and o denote the steering angles of the inner front 
wheel and the outer front wheel respectively. l and bf are the 
wheelbase and the front track width respectively. 

Let Fxi and Fyi, i=1,2,3,4, denote the tire forces 
decomposed along the x and y axes of the vehicle’s body 
frame. Then 

 
Figure 5: Longitudinal and lateral tire forces of a vehicle 

 

Fxi=Faicosi-Fbisini,    Fyi=Faisini+Fbicosi,  i=1,2           
(6) 

Fxj=Faj,                        Fyj=Fbj,                        j=3,4      (7) 
The Newton’s 2nd law leads to 

  
4

1 ix xi
ma F


 , , 

4

1 iy yi
ma F


 z zI r M         (8) 

where m, Iz and Mz are the mass, the moment of inertia and the 
external moment around the z axis of the vehicle. ax and ay, 
are the accelerations of the vehicle’s C.G. along the x and y 
directions respectively. r is the yaw rate. It is obvious that   

       
1 3 4 2 32 12 2

f r
4z x x x x y y f y y

b b
rM F F F F F F l F F l         

lf and lr are the distances from the vehicle’s C.G. to the 
front and rear axles respectively. bf and br are the front and 
rear track widths respectively. See Figure 5. Suppose that the 
yaw rate is measurable. The first directive of the yaw rate can 
be approximated the backward difference of r: 

       
( ) ( 1)ˆ( )
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r k r k
r k

T

 
              (9) 

Rearrange (6), (7), (8), and (9) in a matrix form and replace 
the longitudinal tire forces with their estimates in (5). Then 

                         (10) b AF b

where Fb=[Fb1, Fb2, Fb3+Fb4]
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If 1 and 2 are sufficiently large, then A is nonsingular. 

Thus we can define . On the other hand, if 

12<<1, then A is nearly singular. In such a case, (10) 
degenerates to 

1ˆ d
b

F A

1 1

ˆ
f

r

b y

f r b z

F ma

l l F I r
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where Fbf=Fb1+Fb2 and Fbr=Fb3+Fb4. Hence the estimates of 
the front and rear lateral tire forces for a small steering angle 
are  

1ˆ 1 1
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l l I rF

                 
 

If the steering angle is small, the difference between Fb1 
and Fb2 is negligible; therefore we define 

ˆ ˆ

2 2
ˆ , ,bf bf

T
F Fs

b F  
F b̂r


 . Note that both  and ˆ d

bF ˆ s
bF  are 

estimates of Fb. The former is preferred in the case of large 
steering angles because Fb1 and Fb2 can be identified 
distinctly while the latter is applied in the case of small 
steering angles. To avoid discontinuity in the estimated Fb 

due to the switching between ˆ s
bF  and  as the steering 

angle changes, the following lateral tire force estimate is 
proposed:  

ˆ d
bF

                         (11) ˆ ˆ d
b d b sg g F F ˆ s

bF

where 
1 2

1
( , )dg    , 

0

1
sg  , and g1+g2=1. (1,2) is the 

condition number of A, which is a function of 1 and 2. 0 is 
a fixed number which is chosen in a way that the computation 
of A-1 suffers from no numerical problems as long as 
(1,2)<0.  

Note that the lateral tire forces of the two front wheels can 
be identified from (11); however only the sum of the two rear 
lateral tire forces is available. This is because solving Fbi, 
i=1,2,3,.4 from the set of equations (8) is an underconstrained 
problem. To add more constraints, we introduce the friction 
ellipse in the next subsection. 

C. Friction Ellipses 

 If a tire establishes longitudinal and lateral tire forces 
simultaneously, then the tire forces in both directions satisfy 
the following friction ellipse constraints [12]: 

     
2 2

1a bi i

a bi i

F F

F F
      
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 ,   i=1,2,3,4        (12) 

iaF  and 
ibF  are the longitudinal and lateral tire forces 

respectively when the vehicle is in a combined motion of 
traction/braking and concerning. Given the same normal tire 
forces, road friction coefficient, slip ratio and slip angle, 

iaF  

is the longitudinal tire force of the ith wheel if the vehicle is 

not negotiating a turn, and 
ibF  is the lateral tire force of the ith 

wheel if the vehicle is not accelerating or decelerating. Note 
that 

ia iaF F  and 
i ib bF F . 

(12) imposes explicit constraints on 
iaF  and 

ibF ; however 

more unknown variables 
iaF  and 

ibF  are introduced at the 

same time, leaving a set of underconstrained equations (8) 
and (12). To make the problem solvable, we assume that the 
slip ratios and slip angles of all wheels are small, and the road 
friction coefficients of all wheels are identical. Under these 
circumstances, we have observed in Figure 2 that the 
longitudinal (lateral) tire force is proportional to the slip ratio 
(slip angle) and is independent of the normal tire force. 
Therefore there exist constants Ka and Kb such that 
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i i=1,2,3,4, is the slip ratio defined in (1). The speed of the 
ith wheel is 

   
1

2 2

2
fb

w x y fv v r v l r    ,    
2

2 2

2
fb

w x y fv v r v l r     

   
3

2 2

2
rb

w x y rv v r v l r    ,    
4

2 2

2
rb

w x y rv v r v l r     

i, i=1,2,3,4, is the slip angle of the ith wheel and can be 
calculated as follows: 
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If we define  

    i

jijt 
  and i

jijn 
 , i,j=1,2,3,4,             (14) 

then from (13) we have  
   

i ja ij aF t F  and 
ib ij bj

F n F , i,j=1, 2,3,4.        (15) 

Direct computation based on (12), (14), and (15) yields 

     
 
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Note that tij and nij can be calculated from measured data. 
Also recall that 

        
3 4 rb b bF F F              (17) 

Substitute estimated Fai and Fbr into (16) and (17); then we 
can solve these two equations simultaneously to find out the 
estimates of the lateral tire forces of the rear wheels. 

D. Parameter Estimation 

The estimation of the lateral tire forces depends on the 
vehicle model whose parameters are uncertain. From (10) we 
recognize that uncertain parameters m, Iz, lf and lr, or 
equivalently the position of the vehicle’s C.G., are involved 
in the estimation of lateral tire forces. In order to enhance the 
robustness of the tire force estimation, we implement a 
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maximum likelihood parameter estimator to update these 
critical parameters on-line.  

Let  be the vector of the vehicle parameters, i.e. 

                    (18)

where s denotes the displacement of the vehicle’s C.G. from 
its nominal position towards the front of the vehicle. 
Therefore the external moment applied to the vehicle with the 
C.G. shifted by an amount of s is 
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Consequently, (8) can be rewritten as P=u, where 
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The value of u has been estimated in previous subsections. 
Now consider the following discrete-time “fictitious system”: 
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where 0<<1, so the system is stable. w(k) and v(k) are the 
process noise and measurement noise respectively. They are 
assumed to be Gaussian distributed with zero means and 
covariance matrices Q and Rv respectively. x(k) is the state of 
the fictitious system and is evaluated by filtering each 

element of u(k) through the discrete-time filter 
1

1
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Note that u(k)=P(k), and we would like to find an estimate 
of  with maximum likelihood. Let p() denote the probability 
density function and x(1:k) denote the set {x(1),…,x(k)}. 
Then the likelihood function up to time step k is: 

      
1

(0 : ) | (0) | ( ) | ( 1),
k

i
p k p p i i


 x θ x θ x x θ

where    11
2

(0) | exp (0) (0)Tp x θ x Q x  and 

   

 1

1
( ) | ( 1), exp ( ) ( 1) (1 ) ( 1)

2
         ( ) ( 1) (1 ) ( 1)

T
p i i i i i

i i i

 

 

        


    

x x θ x x u

Q x x u

 

Take the first derivative of the logarithm of  (0 : ) |p kx θ  

w.r.t.  and set the result to zero. Then we have 
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Therefore the maximum likelihood estimate of  is: 
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According to the estimated , we update the corresponding 
parameters in (10). Therefore the lateral tire force estimation 

at the next time step is based on the up-to-date vehicle 
parameters, so the estimation result is robust w.r.t parameter 
variations. 

III. SIMULATION 

In this section, we evaluate the performance and robustness 
of the proposed tire force estimation algorithm by simulations. 
First of all, a 14-degree-of-freedom (DOF) nonlinear vehicle 
model [13] and the magic formula are established to simulate 
the vehicle’s dynamics and tire forces. This nonlinear vehicle 
model includes the 6-DOF motion of the sprung mass of the 
vehicle, and the rolling and suspension displacements of the 4 
wheels. The following parameters are used in the nonlinear 
vehicle model:  

 m=1740Kg,  Iz=2961Kgm2,  lf=0.9m,  lr=1.55m,  
 bf=1.65m,    br=1.45m 
Gaussian noise is added to ax, ay, r, and i, i=1,2,3,4, to 

simulate measurement noise. The Gaussian noise is assumed 
to have zero mean and unit variance. 

  Because the backward difference in (4) and (9) tends to 
amplify high frequency noise, all sensor measurements are 
filtered through 2nd order lowpass Butterworth filters with 
cutoff frequency at 20 Hz before the sensor data are applied to 
tire force estimators. The proposed algorithm is implemented 
in the discrete-time domain with sampling time 1ms. 

  Now we consider the case that the vehicle is 
simultaneously braking and turning left. At the same time, the 
road condition changes. The braking torque applied to each 
wheel is 100 Nt. The steering angle is 0 before t=7sec, and 
increases to 0.1 rad at the next second. The road friction 
coefficient  is 0.85 for t=0~8 sec, 0.65 for t=8~14 sec, and 
0.45 for t=14~20 sec. The steering angle of the front right 
wheel and the road friction coefficient are shown in Figure 6. 

 
Figure 6: (a) the steering angle of the front right wheel. (b) the road friction 
coefficient 
 

For lateral tire force estimation, three cases are considered:  
 case (i):  (see (18)) is known exactly. 
 case (ii):  differs from its nominal value, but the 

parameter estimator is turned off.  
 case (iii):  differs from its nominal value, and the 

parameter estimator is turned on. 
In case (ii) and (iii), we assume that the parameters used in 

the lateral tire force estimator are  
  m=1940Kg,  Iz=3480 Kgm2,  lf=1.05m,  lr=1.4m. 
Note that if we choose s=0 for this pair of lf and lr, then the 

true lf and lr corresponds to s=0.15m. 
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The proposed algorithm starts at t=5 sec at which the 
vehicle’s transient response due to its initial conditions has 
vanished. Figure 7 demonstrates that the estimated 
longitudinal tire forces of all wheels closely follow the real 
tire forces, in spite of sudden changes of the road friction 
coefficient. 

 
Figure 7: Real (solid line) and estimated (dotted line) longitudinal tire forces 
for the front left (a), front right (b), rear left (c) and rear right (d) wheels. 

   

On the other hand, the estimated lateral tire forces are 
shown in Figure 8. Figure 8(a)(b)(d)(e) illustrate the results of 
case (i) and (iii), while the results of case (ii) are shown in 
Figure 8(c)(d). This separated demonstration is due to the 
huge difference in the scales of the estimated tire forces 
between case (ii) and the others. From Figure 8 we can see 
that the lateral tire force estimator is very sensitive to the 
vehicle parameters; however, the parameter estimation 
enhances the robustness. Note that the results of case (i) and 
(iii) are almost identical. 

 
Figure 8: Real and estimated lateral tire forces. The results of case (i) and (iii) 
are shown in (a)(b)(d)(e) while the results of case (ii) are shown in (c)(f).  
 

  Figure 9 shows the results of parameter estimation. The 
estimated mass converges to the true value immediately after 
the parameter estimator turns on at t=5sec. However the 
estimated moment of inertia and the displacement of C.G. do 
not converge to the true values. Although the estimation of Iz 
and s is poor, the inaccurate Iz and s have little effects on the 
lateral tire force estimation. Therefore we conclude that the 
lateral tire force estimator is sensitive to m, but not to Iz and s. 
Hence the tire force estimation is satisfactory as long as the 
vehicle mass is restored to the correct value.  

IV. CONCLUSION 

In this paper, we proposed a robust tire force estimation 

algorithm which is able to identify the longitudinal and lateral 
tire forces of each wheel and is robust w.r.t. variations in 
vehicle parameters. The dependency between the longitudinal 
and lateral tire forces were taken into account explicitly by 
introducing the friction ellipse into the tire force estimator. In 
addition, we proposed to estimate the vehicle’s parameters 
on- line to alleviate the influence of parameter variations on 
the lateral tire force estimation. Simulations were conducted 
to verify the proposed algorithm. The results showed that the 
estimation is satisfactory, even under parameter variations 
and sudden changes of road conditions. 

 
Figure 9: Estimated parameters (a) mass (b) moment of inertia, and (c) 
displacement of the vehicle’s C.G. Solid line: estimated value. Dotted line: 
true value. 

REFERENCES 

[1] L. Li, F.-Y. Wang, and Q. Zhou, "Integrated Longitudinal and Lateral 
Tire/Road Friction Modeling and Monitoring for Vehicle Motion 
Control," IEEE Transactions on Intelligent Transportation Systems, vol. 
7, pp. 1-19, 2006. 

[2] F. Gustaffson, "Slip-Based Tire-Road Friction Estimation," Automatica, 
vol. 33, pp. 1087-1099, 1997. 

[3] J. Wang, L. Alexander, and R. Rajamani, "Friction Estimation on 
Highway Vehicles Using Longitudinal Measurements," ASME 
Transactions on Journal of Dynamic Systems, Measurement, and 
Control, vol. 126, pp. 265-275, 2004. 

[4] J. Yi, L. Alvarez, and R. Horowitz, "Adaptive Emergency Braking 
Control with Underestimation of Friction Coefficient," IEEE 
Transactions on Control Systems Technology, vol. 10, pp. 381-392, 
2002. 

[5] L. Alvarez, J. Yi, and R. Horowitz, "Dynamic Friction Model-Based 
Tire-Road Friction Estimation and Emergency Braking Control," ASME 
Transactions on Journal of Dynamic Systems, Measurement, and 
Control, vol. 127, pp. 22-32, 2005. 

[6] J.-O. Hahn, R. Rajamani, and L. Alexander, "GPS-Based Real-Time 
Identification of Tire-Road Friction Coefficient," IEEE Transactions on 
Control Systems Technology, vol. 10, pp. 331-343, 2002. 

[7] L. R. Ray, "Nonlinear Tire Force Estimation and Road Friction 
Identification: Simulation and Experiments," Automatica, vol. 33, pp. 
1819-1833, 1997. 

[8] W. Cho, J. Yoon, S. Yim, B. Koo, and K. Yi, "Estimation of Tire Forces 
for Application to Vehicle Stability Control," IEEE Transactions on 
Vehicular Technology, vol. 59, pp. 638-649, 2010. 

[9] G. Baffet, A. Charara, and D. Lechner, "Estimation of Vehicle Sideslip, 
Tire Force and Wheel Cornering Stiffness," Control Engineering 
Practice, vol. 17, pp. 1255-1264, 2009. 

[10] H. B. Pacejka and E. Bakker, "The Magic Formula Tyre Model," Vehicle 
System Dynamics, vol. 21, pp. 1-18, 1993. 

[11] J. Y. Wong, Theory of Ground Vehicles, 3 ed.: John Wiley & Sons, Inc. , 
2001. 

[12] G. Genta, Motor Vehicle Dynamics : Modeling and Simulation: World 
Scientific, 1997. 

[13] P. S. Hingwe, Robustness and Performance Issues in the Lateral Control 
of Vehicles in Automated Highway Systems: Ph.D. Dissertation, 
University of California, Berkeley, 1997. 

5266


