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ROBUST ESTIMATION OF THE LOCATION OF A
VERTICAL TANGENT IN DISTRIBUTION

BY R. V. ERICKSON

Michigan State University

It is shown that the location of the set of m q 1 observations with
minimal diameter, within local data, is a robust estimator of the location
of a vertical tangent in a distribution function. The rate of consistency of
these estimators is shown to be the same as that of asymptotically

Ž .efficient estimators for the same model. Robustness means 1 only proper-
ties of the distribution local to the vertical tangent play a role in the

Ž .asymptotics, and 2 these asymptotics can be proven given approximate
information about just two parameters, the shape and quantile of the
vertical tangent.

ˆ1. Introduction. For each integer n G 1 let u be a measurable, realn
Ž .function of n independent observations from the distribution F ?, u , u real.

We call such functions estimators of u , and we say their sequence has
ˆ� Ž . 4consistency rate c if c u y u , n G 1 is tight. Under certain regularityn nn 'assumptions, there are n consistent estimators of u , but in some irregular

'cases it is possible to find estimators with c r n ª `.n
One of the first general results of this kind is given by Chernoff and Rubin

w x1 in their study of the location of a discontinuity in density. Under some
conditions, they prove consistency rate n for the maximum likelihood estima-

Ž .tor MLE . Perhaps of more interest is the fact that ‘‘quasi-maximum likeli-
Ž .hood estimators’’ qMLE’s are show to have the same asymptotic behavior as

MLE’s, where the qMLE is based only on local data, known to be close to the
point of discontinuity, and the likelihood that is maximized uses a simple
density that is a local approximation to the true density.

w xHall 4 considers the problem of estimating the endpoint of a distribution.
He, too, introduces qMLE’s and shows them to have consistency rate nr, some
r ) 1r2. Here, again, the asymptotic properties of the estimators are shown
to depend only on a few parameters associated with local properties of the
underlying density. Hall calls such estimators robust.

These two papers seem to indicate that, in the presence of irregularities
defined by local properties, robust local estimators may exist. The purpose of

Ž .this paper is to show this to be so for the location model, F ?y u , when F
has a vertical tangent at the origin. Let us look at what is known in this case.
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w xIbragimov and Has’minskii 5 suppose that F has a known Lebesgue
density f with a singularity of order a , y1 - a - 0, a condition that forces
Ž . < < af x to spike to ` near x s 0 like x , giving F a vertical tangent at the

origin; they show there exist asymptotically efficient estimators of location
r Ž . Žwith consistency rate n , r [ 1r1 q a ) 1. See pages 283, 314 and 394 for

.definition, asymptotics and history. But there are no robustness results, and,
in addition, it seems very difficult to evaluate the efficient estimators with
accuracy of order 1rnr. This raises the main problem: are there robust, easily
evaluated estimators of location, with the same consistency rate as the
optimal ones, when F has a vertical tangent?

A little thought leads to a possible solution: since the empirical distribu-
tion uniformly converges to the actual distribution, data points should be
very close together near a vertical tangent. The purpose of this paper is to
show that the location of the set of m q 1 observations with the smallest
diameter, within the local data, is a robust estimator with the appropriate
consistency rate. Since such estimators are very easy to evaluate, we have a
positive answer to the question above.

Here is the structure of the paper: In Section 2, we define weak singularity
and the relevant estimators, and then state the main theorem. In Sections 3
and 4, we recall a standard representation for order statistics and then prove
two conditions equivalent to weak singularity. Section 5 provides a key
decomposition, after which the main theorem is easily proved in the last
section.

2. Weak singularities and local estimators. Let F be a distribution
function and let r ) 1, r [ 1rr. We say that F has a weak singularity of

Ž .degree r at the origin if there are positive « and bounded, measurable f so
that

x
ry1< < < <F x y F 0 s f t r t dt , x F « ,Ž . Ž . Ž .H

0

and

c [ lim f "t exists, c q c ) 0.Ž ."1 y1 1
0-t x0

With such a distribution we associate length « and limits c ."1
This definition of singularity is quite similar to that given by Ibragimov

w xand Has’minskii 5 , page 283, except there, in addition, f must be continu-
Ž . Ž .ous in the intervals y« , 0 and 0, « and must satisfy a further integral

smoothness condition. They use the term order a while we use the term
Ž . Ž .degree r, where the relation is r s 1r 1 q a , a s 1rr y 1. We relate

distributions with a singularity to those with a vertical tangent in Section 4.
Ž .Our problem is to estimate u in the location model, F ?y u , when F is an

Ž .element of FF q , q , r , the set of all F such that F is a distribution with ay1 1 0
weak singularity of some degree r and length « for which

F y« - q - F 0 - q - F « , r ) r ) 1.Ž . Ž . Ž .y1 1 0
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Members of the family are said to have a singularity that is locally observable
Ž .and bounded below. In general, the parameters c , r, q [ F 0 and « are"1

unknown, but we estimate many of them. Notice that local observability
implies 0 - q - 1.

All of our estimators are defined in terms of X , . . . , X , the ordern: 1 n: n
Ž .statistics of n independent observations from F ?y u . Fix any positive

Ž .integer m ) 1r r y 1 and define the m-diameters d [ X y X0 n, k n: kqm n: k
and the local index of minimal m-diameter

K [ min k : D F D , nq - k , j - nq .� 4n n , k n , j y1 1

Our estimators of u , r and q are given by

û [ X , r [ yln D rln n , q [ K rn.ˆ ˆŽ .n n : K n n , K n nn n

The length parameter, « , has no asymptotic significance and is not esti-
mated.

The parameters C [ 1rc r , with 1r0 [ `, play a fundamental role in"1 "1
various asymptotic distributions obtained here, and they have interesting
estimators. To define them, introduce some notation: for any fixed t , 0 - t - 1,

Ž .yt 1yb nand n ) 1, let b [ ln n , k [ n , let k denote the integer part of kn n n n
and let

A [ X y X , A [ X y X ,y1 , n n : K n : K yk 1, n n : K qk n : Kn n n n n n

b r̂n nĈ [ n A ."1, n "1, n

Ž . Ž .THEOREM 2.1 Robust consistency . Let F g FF q , q , r and constructy1 1 0
Ž . Ž .estimators as above. If the data arise from F ?y u , q s F 0 and F has a

weak singularity of degree r with limits c , then the three sequences,"1

r ˆ 'n u y u , ln n r y r and n q y q ,Ž . Ž .ˆ ˆŽ .n n n

each converge in law to nontrivial variables; the distributions of the first two
depend only on r, c and c , while the latter is normal with mean 0 andy1 1

ˆŽ .variance q 1 y q . Also, C converges to C in probability; in addition, if"1, n "1
Ž .C - ` and there exist positive M, s and « - min « , 1r2 such that"1 0

< Ž . < Ž .ysf "t y c - M yln t , for 0 - t F « , and if we choose 0 - t - sr"1 0
Ž .1 q s , then

t ˆln n C y CŽ . Ž ."1, n "1

converges in law to a distribution depending only on r, c and c .y1 1

ˆ ˆClearly, u y u , q , r and C are independent of u , so there is no lossˆ ˆn n n "1, n
of generality in assuming u s 0. This we do from now on.

Ž .Our estimators of location are robust: 1 the asymptotic distribution
Ž .depends only on local parameters of the singularity, and 2 the asymptotics

Ž . w Ž .xare proven when the shape degree r and quantile q s F 0 are only
approximately known and the unknown limits satisfy c q c ) 0.y1 1
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3. Representation of order statistics. In this section we present
one well-known way of generating the order statistics X , . . . , X of nn: 1 n: n
independent observations from an arbitrary distribution F. This representa-
tion and the strong law of large numbers will allow us to prove almost sure
convergence rather than convergence in law in most cases. Of course, if the
order statistics are generated some other way, only convergence in law
continues to hold.

Ž .Given F with 0 - q s 1 y p [ F 0 - 1, define associated distributions

F x [ F 0 y F yx y rq, F x [ F x y F 0 rp, x G 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .y1 1

Let
Fy1 u [ inf x G 0: F x G u , u G 0,� 4Ž . Ž ."1 "1

denote the corresponding left-continuous inverses.
� 4Construct V , j s 0, " 1, " 2, . . . iid exponential random variables withj

mean 1, and define the partial sums
`

w x w xS [ k F j F 0 q 1 F j F k V ,Ž .Ýk j
jsy`

w xwhere ??? denotes the indicator function. Independently of all V constructj
random variables N which have binomial distribution with parameters nn
and q; let M [ n q 1 y N .n n

Ž .LEMMA 3.1 Representation . Introduce the variables of the previous three
paragraphs. The order statistics X are given by X s Y , wheren: k n: k n: kyNn

y1 w x y1 w xY [ yF U 1 y N F j F 0 q F U 1 F j F n y N ,Ž . Ž .n : j y1 n : j n 1 n : j n

and

w x w xU [ S rS 1 y N F j F 0 q S rS 1 F j F n y NŽ . Ž .n : j j yN n j M nn n

give the order statistics of N and n y N independent observations from then n
Ž .uniform distribution on 0, 1 .

Such a representation is well known, and it, and a variant, are used by
w x w x w xChernoff and Rubin 1 and Hall 4 . See Feller 3 , page 75, for a result

concerning order statistics from uniform observations.

4. Equivalent forms of weak singularity. In this section we show an
equivalence between singularity and the notion of a vertical tangent in
distribution. This result is important because it expresses singularity in a
way that can be used with the representation of order statistics given in the
previous section.

Ž .LEMMA 4.1 Equivalence . Let G be a nondecreasing, continuous function
w x Ž .on the interval 0, « , with G 0 s 0 and « ) 0. Form the left-continuous,

strictly increasing inverse

Gy1 u [ inf x G 0: G x G u , 0 F u F G « .� 4Ž . Ž . Ž .



LOCATION OF A VERTICAL TANGENT 1427

Ž . Ž .Let r ) 1 and r [ 1rr, and, for 0 - z F « , suppose a s a z - b s b z are
nonnegative numbers. The following are equivalent:

There is a measurable g so that
x

ry11 G x s g t r t dt , a F g t F b , 0 F t F z ,Ž . Ž . Ž . Ž .H
0

G r y y G r xŽ . Ž .
r r2 a F F b , 0 F x - y F z ,Ž .

y y x

v r y ur
r r3 a F F b , 0 F u - v F G z .Ž . Ž .y1 y1G v y G uŽ . Ž .

w xHence, if on interval 0, « , G has density g with respect to the measure
r t ry1 dt, then

v r y ur
r rUy1 y1g#(G v F F g (G v ,Ž . Ž .Ž . Ž .y1 y1G v y G uŽ . Ž .4Ž .

0 F u - v F G « ,Ž .
where

g# t [ inf g s , g U t [ sup g s .Ž . Ž . Ž . Ž .
0-sFt 0-sFt

If a and 0 F u - v satisfy v ª 0, a u ª L , a v ª L ) L G 0 andn n n n n n u n n v u

0 F g [ g# 0 q s g U 0 q - `Ž . Ž .0

then
Lr y Lr

v u r5 lim s g .Ž . 0r y1 y1n a G v y G uŽ . Ž .Ž .n n n

PROOF. The properties attributed to Gy1 are well known and follow easily
from its definition.

Ž . Ž .To prove the equivalence between 1 and 2 , use the change of variable
w xformula in 2 , 2.9.21, on the right sides of these expressions:

Ž . rŽ .G y G yr r ry1 ry1G y y G x s rt dt , G y y G x s r t dt .Ž . Ž . Ž . Ž .H H
rŽ . Ž .G x G x

Ž . r Ž . r Ž .Specifically, assuming 1 , it is clear that ax F G x F bx , and then 2
follows from the change of variable formula which gives

y
r r ry1 ry1G y y G x s rG t g t r t dt .Ž . Ž . Ž . Ž .H

x

Ž . rConversely, if 2 holds, then G [ G is absolutely continuous, so that the
derivative G

X exists a.e., with bounds

ar x F G x F b r x , ar F G
X x F b r a.e.Ž . Ž .

A change of variable gives
y y

Xry1 ry1G y y G x s rG t G t dt s g t r t dt ,Ž . Ž . Ž . Ž . Ž .H H
x x
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where a.e.
ry1 Xg t [ G t rt G tŽ . Ž . Ž .Ž .

Ž .is bounded between a and b, and 1 follows.
Ž . Ž X . y1Ž .Next, assume 2 . For each u, v, 0 F u - v F G « , let x [ G u and

y1Ž . Ž . Ž . Ž .y [ G v . Since G is continuous, x - y and u s G x , v s G y , and 3
Ž .follows by substitution in 2 .

Ž . Ž X. Ž . y1Finally, assume 3 . If a s a « ) 0, then 3 implies G is continuous, so
Ž .that G is strictly increasing, and 2 follows from substitution, as above. So

Ž .assume a s 0; then the lower bound in 2 is clear, and it remains to prove
X Ž . Ž .the upper bound. Fix x, y, 0 F x - y F « , and set u s G x , v s G y . Then

Ž . X X X2 is clear if u s v, so assume u - v and choose any u so that u F u - v [
Ž . X y1Ž X. X y1Ž X. Xv. As above, 2 holds at x [ G u and y [ G v . It also holds at x

and y, since y G yX and v s vX. Finally, let uX decrease to u, so that xX

Y Ž . Ydecreases to some x . Then 2 holds at x and y, and then also x and y,
Ž Y . Ysince u s G x and x F x .

Ž . Ž . Ž .Part 4 is now immediate, and 5 follows from 4 . I

5. Decomposition of K s J H N . In the general location problemn n n
where u is unknown, we cannot observe N , the number of observations lessn
than u . But we show now that N is finitely close to the observable statisticn
K . This is the key result, and it makes the proof of the main theorem fairlyn
easy.

Ž . Ž .Throughout the remainder of this paper we assume 1 F g FF q , q , r ,y1 1 0
Ž .2 order statistics from n independent observations are constructed as in the

Ž .representation lemma and 3 the estimators and notations are as given in
Section 2.

Ž . Ž .When we apply the equivalence lemma to G s F , we have g t s f t rp,1
g s c rp and C s 1rc r. For fixed j G 1,0 1 1 1

U ª 0, nU ª S rp a.s.n : j n : j j

Ž .Thus, from part 5 of the equivalence lemma, we have

6 nr Y y Y ª C S r y S r , j G 1, a.s.,Ž . Ž . Ž .n : jqm n : j 1 jqm j

where the limit is ` if c s 0. Similar results hold for j F 0.1
To decompose K , definen

d [ nrD s nr Y y Y ,Ž .n , j n , jqN n : jqm n : jn

so that K s J q N , wheren n n

J [ min j: d F d , nq y N - j, i - nq y N .� 4n n , j n , i y1 n 1 n

Ž .From the above limits 6 , with extension to the case of j F 0, it follows that,
for each fixed j, d ª d a.s., wheren, j j

r r w x r r w xd [ C S y S j F ym q C S q C S ym - j F 0Ž . Ž .j y1 j jqm y1 j 1 jqm

r r w xq C S y S j G 1 .Ž .1 jqm j
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Note that in this and similar expressions we use the conventions ` = 0 s 0
and ` = " a s "` for a ) 0.

We now show that J converges to finite J, where J locates the minimaln
d :j

J [ min j: d F d , j, i integer .� 4j i

Ž .LEMMA 5.1 Decomposition . Make the assumptions of this section.

Ž . Ž . Ž .a J is finite almost surely; if C s ` C s ` , then J F ym J G 1 ;1 y1
Ž .b J converges to J almost surely.n

Ž . < r r < Ž .ry1PROOF. a Define D [ S y S . For j ) 0, D ) r S rj W , wherej jqm j j j j
W [ j ry1Ý jqmV ; j ry1S . Since S has a gamma distribution, for anyj jq1 i m m

Ž . m mŽry1.positive w, P W F w F w rj , and by the Borel]Cantelli lemma, thej
Ž .strong law of large numbers and the choice of m such that m r y 1 ) 1, we

have W ª `, D ª ` and d ª ` a.s. as j ª `. A similar argument showsj j j
d ª ` a.s. as j ª y`. On the other hand, since c q c ) 0, d U [j y1 1

Ž .min d , d is finite. Hence,ym 1

< < U U < <J F J [ min t : d - d , j G t - ` a.s.� 4j

Ž .The last statement in a follows from the definitions of J and d .j
Ž .b From the definition of F and the local observability hypothesis,"1

there exists h ) 0 for which

h [ q y q rq q h - F « , h [ q y q rp q h - F « .Ž . Ž . Ž . Ž .y1 y1 y1 1 1 1

Ž . Ž .Let l k [ kq y N " m, so that l k rk ª q y q a.s. By the strong"1 "1 k "1 "1
Ž .law, U ª q y q rp a.s., with a similar result for the y1 case, andk : l Žk . 11

n [ min n G 1: ; k G n , U - h , U - h - ` a.s.� 41 k : l Žk . y1 k : l Žk . 1y1 1

Ž .Hence, inequalities of the type given in the equivalence lemma 3 hold for all
X Ž .local data when n G n . To give these explicitly, first choose « s min « , « ,1 y1 1

where « are so small that"1

a « [ inf f "t , 0 - t F « G c r2;� 4Ž . Ž ."1 "1 "1 "1

� Ž . 4take « s « if c s 0. Next, let b [ sup f t , y« F t F « . Finally, let"1 "1

n [ min n G 1: ; k G n , U - F « X , U - F « X ,� 4Ž . Ž .2 k :ym y1 k : m 1

n [ min n G 1: ; k G n , 1r2 - S rkq - 2, 1r2 - S rkp - 2 .� 43 yN Mk k

By the strong law, n [ n q n q n - ` a.s. Let B [ 1rb r and recall the1 2 3
U Ž .variables d , D introduced in the proof of part a . For n ) n ,j

d U [ min d , d F 4rd U ,Ž .n n , ym n , 1

d G 2yrBD if nq y N - j - nq y N .n , j j y1 n 1 n

Hence

< < UU r U < <n ) n « J F J [ min t : 8 d - BD , j G t - ` a.s.� 4n j
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� < < UU4Let m [ min d y d : j / J, j F J . Since the S ’s are continuous, m ) 0j J j
a.s. Let

< < < < UUn [ min n ) n : d y d - mr3, j F J .� 44 n , j j

Then n - ` a.s., and n ) n implies J s J. I4 4 n

6. Proof of Theorem 2.1. Clearly, using the results above, we have

r ˆ r r rw x w xn u y u s n Y ª yC S J F 0 q C S J G 1 a.s.,Ž .n n : J y1 J 1 Jn

and this limit is finite since C s ` implies J G 1, while C s ` impliesy1 1
J F ym. Next,

rU [ ln n r y r s yln D y r ln n s yln d ª rU [ yln d a.s.,Ž .ˆn n n , K n , J Jn n

and this last variable is finite since d is positive and finite almost surely.J
Notice that these limiting distributions depend only on r and c . Finally,"1' 'Ž . Ž .n q y q s J q N y nq r n certainly converges in law to a normaln̂ n n

Ž .variable with mean 0 and variance q 1 y q .
ˆWhen proving the results about C , we restrict attention to the ‘‘q1’’"1, n

case and, from now on, drop that subscript from C and A. Since
tU U Ub rnˆ ˆC [ C s exp b r n A and ln n exp b r y 1 ª r a.s.,Ž . Ž . Ž .Ž .n q1, n n n n n n

it suffices to study the convergence of mr A , where m [ n bn s nrk .n n n n
Introduce the notation I [ J q k . From the convergence given in then n n

first sentence of this section and the fact that I ) 0 eventually a.s., we seen
that

t r y1 w xln n m A y B ª 0 a.s., for B [ F U , U [ U I ) 0 .Ž . Ž . Ž .n n n n 1 n n n : I nn

Ž .Since U ª 0, m U ª 1rp a.s., from the equivalence lemma 5 we haven n n
mr B ª C a.s., giving simple consistency.n n

Now assume c [ c ) 0 and suppose there exist positive s and « and1 0
< Ž . < Ž .ysfinite M, so that f t y c - M yln t , 0 - t F « . Then0

ysr r< < < <7 c t y c s O c t y c s O yln t as t ª 0,Ž . Ž . Ž . Ž .Ž .
U Ž .for c s f or c s f#. If we choose 0 - t - sr 1 q s , we claim

t Uˆ8 ln n C y C ª Cr a.s.Ž . Ž . Ž .n

To prove this and thus complete the proof of the robust consistency theorem,
by the above results it suffices to show

t rln n m B y C ª 0 a.s.Ž . Ž .n n

r Ž .r Ž .rTo do this, introduce the notation h [ m B , z [ 1rp , z [ m U y z ,n n n n n n
Ž .j [ zrC, j [ z q z rh y j . Thenn n n

z q z znr< < < < < < < <m B y C s h y zrj s y s O z q j .Ž . Ž .n n n n nj q j jn
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Since the summands in S are exponentially distributed, it follows fromn
Ž w x .the Marcinkiewicz strong law see 6 , page 126 that

ty1r3 < <m U y 1rp s o k , thus ln n z s o 1 a.s.Ž . Ž . Ž .Ž .n n n n

Ž . Ž .To complete the proof of 8 , apply part 4 of the equivalence lemma with
Ž . y1Ž .G s F , g s frp, g s crp and u s 0. For small v, 4 implies G v F1 0

Ž .r U2vrg , and, because of the monotonicity of g and g#, we can substitute0
Ž .this bound into the extreme members of 4 and still retain the inequality.

r Ž .Next, subtract j s g from all terms in this new expression and use 7 to see0
that, if u ª 0 and m u ª 1rp,n n n

r
m uŽ .n n ys ysry g s O yln u s O ln mŽ . Ž .0 n nr y1m G uŽ .n n

ytŽ .ys 1yts O ln n s o ln n ,Ž . Ž .
Ž .1yt Ž .since ln m s b ln n s ln n and t y s 1 y t - 0. Thus,n n

t
< <ln n j s o 1 a.s. IŽ . Ž .n
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