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Abstract. The vector autoregressive model is very popular for modeling multi-
ple time series. Estimation of its parameters is typically done by a least squares
procedure. However, this estimation method is unreliable when outliers are present
in the data, and therefore we propose to estimate the vector autoregressive model
by using a multivariate least trimmed squares estimator. We also show how the
order of the autoregressive model can be determined in a robust way. The robust
procedure is illustrated on a real data set.
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1 Introduction

The use of autoregressive models for predicting and modelling univariate time
series is standard and well known. In many applications, one does not observe
a single time series, but several series, possibly interacting with each other.
For these multiple time series the vector autoregressive model became very
popular, and is described in standard textbooks on time series (e.g. Brockwell
and Davis 2003, Chapter 7). In this paper we propose a robust procedure to
estimate vector autoregressive models and to select their order.

Let {yt | t ∈ Z} be a p-dimensional stationary time series. The vector
autoregressive model of order k, denoted by VAR(k), is given by

yt = B′0 + B′1yt−1 + . . . + B′kyt−k + εt, (1)

with yt a p-dimensional vector, the intercept parameter B′0 a vector in Rp

and the slope parameters B1, . . . ,Bk being matrices in Rp×p. Throughout the
paper M ′ will stand for the transpose of a matrix M . The p-dimensional error
terms εt are supposed to be independently and identically distributed with
a density of the form

fεt(u) =
g(u′Σ−1u)
(detΣ)1/2

, (2)

with Σ a positive definite matrix, called the scatter matrix and g a pos-
itive function. If the second moment of εt exists, Σ will be (proportional
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to) the covariance matrix of the error terms. Existence of a second moment,
however, will not be required for the robust estimator. We focus on the un-
restricted VAR(k) model, where no restrictions are put on the parameters
B0,B1, . . . ,Bk.

Suppose that the multivariate time series yt is observed for t = 1, . . . , T .
The vector autoregressive model (1) can be rewritten as a multivariate re-
gression model

yt = B′xt + εt, (3)

for t = k+1, . . . , T and with xt = (1, y′t−1, . . . , y
′
t−k)′ ∈ Rq, where q = pk+1.

The matrix B = (B′0,B′1, . . . ,B′k)′ ∈ Rq×p contains all unknown regression
coefficients. In the language of regression, X = (xk+1, . . . , xT )′ ∈ Rn×q

is the matrix containing the values of the explanatory variables and Y =
(yk+1, . . . , yT )′ ∈ Rn×p the matrix of responses, where n = T − k. The clas-
sical least squares estimator for the regression parameter B in (3) is given by
the well known formula

B̂OLS = (X ′X)−1X ′Y,

and the scatter matrix Σ is estimated by

Σ̂OLS =
1

n− p
(Y −XB̂OLS)′(Y −XB̂OLS). (4)

In applied time series research, one is aware of the fact that outliers can
seriously affect parameter estimates, model specification and forecasts based
on the selected model. Outliers in time series can be of different nature,
the most well known types being additive outliers and innovational outliers.
With respect to the autoregressive model (1), an observation yt is an additive
outlier if only its own value has been affected by contamination. On the
other hand, an outlier is said to be innovational if the error term εt in (1) is
contaminated. Innovational outliers will therefore have an effect on the next
observations as well, due to the dynamic structure in the series. Additive
outliers have an isolated effect on the time series, but they still may seriously
affect the parameter estimates.

Several procedures to detect different types of outliers for univariate time
series have been proposed. For a detailed treatment of robust univariate time
series analysis we refer to Maronna, Martin and Yohai (2006, Chapter 8).
While most previous studies focus on a single series, this paper deals with
robust analysis of multivariate time series.

A common practice for handling outliers in a multivariate process is to
first apply univariate techniques to the component series in order to remove
the outliers, followed by treating the adjusted series as outlier-free and model
them jointly. But this procedure encounters several difficulties. First, in a
multivariate process, contamination in one component may be caused by
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an outlier in the other components. Secondly, a multivariate outlier cannot
always be detected by looking at the component series separately, since it can
be an outlier for the correlation structure only. Therefore it is better to cope
with outliers in a multivariate framework. Tsay, Peña and Pankratz (2000)
discuss the problem of multivariate outliers in detail.

The aim of this paper is to propose a robust estimation procedure for
the vector autoregressive model, the most popular model for multiple time
series analysis. Not much work has been done for the robust estimation of
multivariate time series. Franses, Kloek and Lucas (1999) used Generalized
M-estimators, which are known to have low robustness in higher dimensions.
Another approach was taken by Garćıa Ben, Mart́ınez and Yohai (1999), us-
ing so-called Residual Autocovariance (RA)-estimators, being an affine equiv-
ariant version of the estimators of Li and Hui (1989). Garćıa Ben et al. (1999)
showed, by means of a simulation study, that the RA-estimators are resis-
tant to outliers. Using an appropriate starting value, the RA-estimators are
iteratively computed as solutions of certain estimating equations.

Our proposal for obtaining a resistant estimator for the VAR model is
to replace the multivariate least squares estimator for (3) by a highly robust
estimator. We will use the Multivariate Least Trimmed Squares (MLTS) es-
timator, discussed in Agulló, Croux and Van Aelst (2008). This estimator is
defined by minimizing a trimmed sum of squared Mahalanobis distances, and
can be computed by a fast algorithm. The procedure also provides a natural
estimator for the scatter matrix of the residuals, which can then be used for
model selection criteria. This estimator is reviewed in Section 2. The robust-
ness of the estimator is studied by means of several simulation experiments
in Section 3, where a comparison with the RA-estimators is also made. In
Section 4 it is explained how to select the autoregressive order of the model
in a robust way. The robust VAR methodology is applied on real data sets
in Section 5, while Section 6 concludes.

2 The multivariate least trimmed squares estimator

The unknown parameters of the VAR(k) will be estimated via the multivari-
ate regression model (3). For this the Multivariate Least Trimmed Squares
estimator (MLTS), based on the idea of the Minimum Covariance Deter-
minant estimator (Rousseeuw and Van Driessen 1999), is used. The MLTS
selects the subset of h observations having the property that the determinant
of the covariance matrix of its residuals from a least squares fit, solely based
on this subset, is minimal.

Consider the data set Z = {(xt, yt), t = k + 1, . . . , T} ⊂ Rp+q. Let
H = {H ⊂ {k + 1, . . . , T} | #H = h} be the collection of all subsets of size
h. For any subset H ∈ H, let B̂OLS(H) be the classical least squares fit based
on the observations of the subset:

B̂OLS(H) = (X ′
HXH)−1X ′

HYH ,
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where XH and YH are submatrices of X and Y , consisting of the rows of
X, respectively Y , having an index in H. The corresponding scatter matrix
estimator computed from this subset is then

Σ̂OLS(H) =
1

h− p
(YH −XH B̂OLS(H))′(YH −XH B̂OLS(H)).

The MLTS estimator is now defined as

B̂MLTS(Z) = B̂OLS(Ĥ) where Ĥ = argmin
H∈H

det Σ̂OLS(H), (5)

and the associated estimator of the scatter matrix of the error terms is given
by

Σ̂MLTS(H) = cαΣ̂OLS(Ĥ). (6)

In definition (6), cα is a correction factor to obtain consistent estimation of
Σ at the model distribution (2) of the error terms, and α the trimming pro-
portion for the MLTS estimator, i.e. α ≈ 1−h/n. In the case of multivariate
normal error terms it has been shown (e.g. Croux and Haesbroeck 1999) that
cα = (1− α)/Fχ2

p+2
(qα). Here Fχ2

q
is the cumulative distribution function of

a χ2 distribution with q degrees of freedom, and qα = χ2
q,1−α is the upper

α-quantile of this distribution.
Equivalent characterizations of the MLTS estimator are given by Agulló,

Croux and Van Aelst (2008). They prove that any B̃ ∈ Rp×q minimizing the
sum of the h smallest squared Mahalanobis distances of its residuals (subject
to detΣ = 1) is a solution of (5). In mathematical terms,

B̂MLTS = argmin
B, Σ; |Σ|=1

h∑
s=1

d2
s:n(B, Σ).

Here d1:n(B, Σ) ≤ . . . ≤ dn:n(B, Σ) is the ordered sequence of the residual
Mahalanobis distances

ds(B, Σ) =
(
(yt − B′xt)′Σ−1(yt − B′xt)

)1/2
, (7)

for B ∈ Rp×q. We see that the MLTS-estimator minimizes the sum of the
h smallest squared distances of its residuals, and is therefore the multivari-
ate extension of the Least Trimmed Squares (LTS) estimator of Rousseeuw
(1984).

Since the efficiency of the MLTS estimator is rather low, the reweighted
version is used in this paper, to improve the performance of MLTS. The
Reweighted Multivariate Least Trimmed Squares (RMLTS) estimates are de-
fined as

B̂RMLTS = B̂OLS(J) and Σ̂RMLTS = cδΣ̂OLS(J), (8)

where J = {j ∈ {1, . . . , n} | d2
j (B̂MLTS, Σ̂MLTS) ≤ qδ} and qδ = χ2

q,1−δ.
The idea is that outliers have large residuals with respect to the initial ro-
bust MLTS estimator, resulting in a large residual Mahalanobis distance
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d2
j (B̂MLTS, Σ̂MLTS). If the latter is above the critical value qδ, then the obser-

vation is flagged as an outlier. The final RMLTS is then based on those ob-
servations not having been detected as outliers. In this paper, we set δ = 0.01
and take as trimming proportion for the initial MLTS estimator α = 25%.

3 Simulation experiments

In order to study the robustness of the estimators, we perform a simulation
study comparing the OLS estimator with the robust RMLTS and the RA
estimators. As in Garćıa Ben et al. (1999), RA estimators are computed as
iteratively reweighted maximum likelihood estimates, with a Tukey Biweight
weight function (tuned to have a 95% relative asymptotic efficiency for Gaus-
sian innovations). Since this weight function is redescending, it is important
to use a robust starting value to ensure convergence to the “right” solution.
In our implementation, the RMLTS was used as starting value.

We generate bivariate time series according to the VAR(2) model
(

y1,t

y2,t

)
=

(
.10
.02

)
+

(
.40 .03
.04 .20

)(
y1,t−1

y2,t−1

)
+

(
.100 .005
.010 .080

)(
y1,t−2

y2,t−2

)
+

(
ε1,t

ε2,t

)
, (9)

where εt ∼ N2(0, Σ) with

Σ =
(

1 .2
.2 1

)
. (10)

The aim is to look at the effect of the outliers on the parameter estimates.
There are 10 regression parameters to be estimated, and to summarize the
performance of the estimators, we calculate the total Bias and total Mean
Squared Error (MSE). The former is computed as

Bias =

√√√√√
q∑

i=1

p∑

j=1

(
1

nsim

nsim∑
s=1

B̂s
ij − Bij)2 ≈ ‖E[B̂ − B]‖,

where B̂s, for s = 1, ..., nsim, is the estimate obtained from the s-th gener-
ated series, B is the true parameter value and nsim= 1000 the number of
simulations. The MSE is given by

MSE =
q∑

i=1

p∑

j=1

[
1

nsim

nsim∑
s=1

(B̂s
ij − Bij)2].

After generating series of length T =500, according to model (9), m outliers
will be introduced. The classical and robust estimators are used to estimate
this VAR(2) model for the uncontaminated series (m = 0), and for the con-
taminated ones (m > 0), where several types of outliers are considered. Below
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we look at the effect of additive, innovational, and correlation outliers on the
different estimators. Note that other types of contamination do exist, like
level shifts and patches of outliers.

Additive outliers are introduced by randomly selecting m bivariate observa-
tions, and contaminating them by adding the value 10 to all the components
of the selected observations. We consider different contamination levels, rang-
ing from one single outlier up to 5% of additive outliers, i.e. m = 25. The
Bias and MSE for the OLS, RA and RMLTS estimator are given in Table 1,
as a function of the number m of additive outliers.

Both Bias and MSE grow with the number of outliers, the increase being
much faster for the non robust OLS. Using the robust estimators instead of
OLS leads to a very small loss in efficiency when no outliers are present.
When even only one outlier is present, the RA and RMLTS are already
more efficient, and this decrease in MSE becomes very substantial for larger
amounts of outliers. Comparing the robust procedures, RMLTS performs
slightly better as RA in this simulation setting.

Table 1. Simulated Bias and Mean Squared Error for the OLS, and the robust
RA and RMLTS estimator of a bivariate VAR(2) model, in presence of m additive
outliers in a series of length 500.

OLS RA RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.00 0.020 0.00 0.022 0.00 0.022
1 0.08 0.030 0.02 0.023 0.02 0.023
2 0.14 0.045 0.03 0.025 0.03 0.024
3 0.18 0.063 0.05 0.028 0.04 0.026
4 0.22 0.079 0.06 0.031 0.04 0.027
5 0.25 0.096 0.07 0.035 0.05 0.029
10 0.38 0.193 0.14 0.061 0.07 0.039
15 0.51 0.319 0.21 0.086 0.11 0.057
20 0.64 0.478 0.25 0.101 0.17 0.080
25 0.76 0.659 0.29 0.115 0.25 0.104

Innovational outliers are generated by first randomly selecting m innovation
terms εt in (9). Then add the value 10 to the first component of the in-
novations, yielding the contaminated innovations series εC

t . Bivariate series
are then simulated according to (9), but with εt replaced by εC

t . The Bias
and MSE when estimating the uncontaminated (m = 0) and contaminated
series are given in Table 2, for the classical as well as the robust estimation
procedures.

The Bias and MSE for OLS grow for an increasing number of outliers,
although at a smaller rate than for contamination with additive outliers. For
the robust estimator we see a small decrease of the MSE, implying that the
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Table 2. Simulated Bias and Mean Squared error for the OLS, and the robust RA
and RMLTS estimator of a bivariate VAR(2) model, in presence of m innovational
outliers in a series of length 500.

OLS RA RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.00 0.021 0.00 0.022 0.00 0.022
1 0.02 0.022 0.00 0.021 0.00 0.021
2 0.04 0.023 0.01 0.020 0.01 0.020
3 0.06 0.025 0.01 0.019 0.01 0.019
4 0.08 0.029 0.01 0.018 0.01 0.018
5 0.10 0.033 0.01 0.018 0.01 0.018
10 0.20 0.068 0.01 0.017 0.01 0.017
15 0.30 0.123 0.01 0.016 0.01 0.016
20 0.40 0.198 0.01 0.016 0.01 0.016
25 0.49 0.289 0.01 0.017 0.01 0.016

robust procedure is precise in presence than in absence of innovational out-
liers! This is due to the fact that an innovational outlier in the time series
results in a single vertical outlier, but also in several good leverage points
when estimating the autoregressive model. The robust method can cope with
the vertical outlier and takes profit of the good leverage points to decrease
the MSE. The OLS estimator gets biased due to the vertical outliers, but the
presence of the good leverage points explains why the effect of innovational
outliers is less strong than for additive outliers. Finally, note that the dif-
ference between the two robust approaches is not significant here, showing
again that RMLTS and RA perform very similarly. Hence, the RA method
does neither improves, neither deteriorates the initial RMLTS estimate.

Correlation outliers are generated as innovational outliers, but instead of
(10), we take

Σ =
(

1 .9
.9 1

)
(11)

and place the innovation outliers all at the same position (2,−2)′. By placing
the outliers in this way, they are only outlying for the correlation structure,
and not with respect to the marginal distributions of the innovations. This
type of outliers strongly influences results of a (robust) univariate analysis. To
illustrate this, we will estimate the VAR model (9) equation by equation, ap-
plying twice a univariate reweighted least trimmed squares estimator (RLTS)
instead of the RMLTS. Bias and MSE when estimating the uncontaminated
and contaminated series by OLS, the univariate RLTS and the multivariate
RMLTS, are given in Table 3.

When no outliers are present, there is hardly any difference between the
different estimation procedures: the robust procedures show only a marginal
loss in MSE. From Table 3 one can see that the univariate RLTS yields a
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Table 3. Simulated Bias and Mean Squared error for the OLS, robust univari-
ate (RLTS) and multivariate (RMLTS) estimators of a bivariate VAR(2) model in
presence of m correlation outliers in a series of length 500.

OLS RLTS RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.01 0.084 0.01 0.098 0.01 0.093
1 0.01 0.074 0.01 0.088 0.01 0.083
2 0.02 0.069 0.02 0.083 0.01 0.076
3 0.02 0.056 0.02 0.074 0.01 0.069
4 0.02 0.054 0.03 0.067 0.01 0.062
5 0.03 0.046 0.03 0.065 0.01 0.059
10 0.06 0.046 0.06 0.054 0.01 0.044
15 0.08 0.043 0.08 0.049 0.01 0.037
20 0.11 0.044 0.11 0.048 0.01 0.032
25 0.14 0.049 0.14 0.053 0.01 0.030

comparable Bias as for OLS, growing for an increasing number of correlation
outliers. On the other hand, the multivariate RMLTS approach offers protec-
tion against the correlation outliers, remaining almost without bias. As for
the previous simulation scheme, the MSE tends to decrease with the number
of outliers (because the latter introduce good leverage points). We conclude
from this simulation experiment that a fully multivariate robust approach is
necessary when estimating a VAR model.

4 Determining the autoregressive order

To select the order k of a vector autoregressive model, information criteria
are computed for several values of k and an optimal order is selected by
minimizing the criterion. Most information criteria are in terms of the value
of the log likelihood lk of the VAR(k) model. Using the model assumption
(2) for the distribution of the error terms, we get

lk =
T∑

t=k+1

g(ε′tΣ
−1εt)− n

2
log det Σ,

with n = T − k. When error terms are multivariate normal the above leads
to

lk = −n

2
log det Σ − np

2
log(2π)− 1

2

T∑

t=k+1

ε′tΣ
−1εt. (12)

The log likelihood will depend on the autoregressive order via the estimate
of the covariance matrix of the residuals. For the ordinary least squares esti-
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mator we have

Σ̂OLS =
1

n− p

T∑

t=k+1

ε̂t(k)ε̂′t(k),

where the ε̂t(k) are the residuals corresponding with the estimated VAR(k)
model. Using trace properties, the last term in (12) equals the constant −(n−
p)p/2 for the OLS estimator. To prevent that outliers might affect the optimal
selection of the information criteria, we estimate Σ by the RMLTS estimator:

Σ̂RMLTS =
cδ

m(k)− p

∑

t∈J(k)

ε̂t(k)ε̂′t(k),

with J(k) as in (8) and m(k) the number of elements in J(k). The last term
in (12) equals now −(m(k)− p)p/(2cδ).

The most popular information criteria to select the order of the autore-
gressive model are of the form

−2
n

lk + h(n)
(kp + 1)p

n
,

where (kp + 1)p is the number of unknown parameters, which penalizes for
model complexity, and where h(n) can take different forms. We will con-
sider the following three criteria: the popular Akaike information criterion,
corresponding to h(n) = 2, the Hannan-Quinn criterion, corresponding to
h(n) = 2 log(log(n)) and the Schwarz criterion, also called the Bayesian In-
formation Criterium), for which h(n) = log(n).

5 Example

As an example, we consider the bivariate time series of maturity rates (Tsay
2002, p. 324–325). The first series “GS1” is the 1-year Treasury constant
maturity rate, and the second series “N3” is the 3-year Treasury constant
maturity rate. The data are monthly and sampled from April 1953 to January
2001. As in the book of Tsay (2002), we work with the log-transformed version
of both series. We consider the series as stationary. From the plot of the series
(Figure 1), it can be seen that there might be some outliers around the years
1954 and 1958.

In Table 4 different lag length criteria, as discussed in Section 4, are
presented, once based on the OLS estimator, and once based on the RMLTS.
The information criteria clearly depend on the chosen estimator. For example,
when using the AIC the classical method suggests a VAR(8) model while the
robust indicates a VAR(6) model. On the other hand the Schwarz criterion
selects an optimal order 3 for both estimators. Since it is well known that the
latter criterion yields a consistent estimate of the optimal order we continue
the analysis with k = 3.
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Fig. 1. Time plot of the “maturity rate” series. The solid line represents the 1-Year
Treasury constant maturity rate and the dashed line the 3-Year Treasury constant
maturity rate, both in logs.

Table 4. Lag length criteria using the OLS and RMLTS estimator for the “maturity
rate” series.

k 1 2 3 4 5 6 7 8

Based on OLS estimation

AIC -7.35 -7.58 -7.61 -7.62 -7.61 -7.60 -7.62 -7.62
HQ -7.33 -7.55 -7.57 -7.57 -7.54 -7.53 -7.53 -7.52
SC -7.306 -7.50 -7.51 -7.48 -7.44 -7.40 -7.39 -7.36

Based on RMLTS estimation

AIC -7.43 -7.62 -7.67 -7.69 -7.69 -7.74 -7.69 -7.71
HQ -7.42 -7.59 -7.63 -7.64 -7.62 -7.67 -7.60 -7.61
SC -7.39 -7.55 -7.57 -7.564 -7.52 -7.55 -7.46 -7.45

After estimating the VAR(3) model with the robust RMLTS estimator,
the corresponding robust residual distances dt(B̂RMLTS, Σ̂RMLTS) are com-
puted as in (7), for t = k + 1, . . . , T . Figure 2 displays these distances with
respect to the time index, and high residual distances indicate outlying ob-
servations. It is important to compute these distances based on the robust
RMLTS, in order to avoid the well-known masking effect. Furthermore, it is
common to compare these distances with a critical value from the chi-square
distribution with p degrees of freedom, and we took χp,0.99. Figure 2 reveals
that several suspectable high residuals are detected, in particular around
the years 1954 and 1958. But there are also a couple of other, less extreme
outliers, which are more difficult to retrieve from the time series plot in Fig-
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ure 1. Due to the presence of outliers, it is appropriate to make use of robust
methods for further analysis of this data set.
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Fig. 2. Robust residual distances for the “maturity rate” series, based on RMLTS
estimator of a VAR(3) model. The dashed line represents the critical value at the
1% level.

6 Conclusions

For multivariate time series correlation outliers can be present, which are
not necessarily visible in plots of the single univariate series. Development
of robust procedures for multiple time series analysis is therefore even more
important than for univariate time series analysis.

In this paper we have shown how robust multivariate regression estimators
can be used to estimate Vector Autoregressive models. We use the reweighted
multivariate least trimmed squares estimator, but other robust multivariate
regression estimators could be used as well. Software to compute the MLTS
estimator is available at http://www.econ.kuleuven.be/christophe.croux/public.

The estimation of VAR models as multivariate regression models has one
major disadvantage. A fraction ε of outliers in the original series can produce
up to kε outliers for the regression model (1), due to the fact that k delayed
versions of the time series are used as explanatory variables. Hence, if a
robust regression estimator has a breakdown point of, for example, 1/2, this
reduces to 1/(2k) when estimating the VAR(k) model. To solve this problem
of propagation of outliers, it has been proposed to first filter the series with
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a robust filter, and then to apply a robust estimator on the robustly filtered
data (see Bianco et al. 2001, Maronna et al. 2006). Other types of robust
filters were proposed by Davies et al. (2004) and Fried et al. (2006). However,
while robust filters are available for univariate series, multivariate versions
have not been developed yet, up to our best knowledge, and we leave this for
future research.

In the simulation experiments the RMLTS estimators have been com-
pared with the residual autocovariance (RA) estimators of Garćıa Ben et al.
(1999). The RA estimates are computed iteratively, and we propose to use
the RMLTS as a starting value for computing the RA estimators. It turned
out that both robust estimators behave then similarly. If there are no outliers
in the data set present, the robust estimators perform almost as good as the
classical estimator. But if there are outliers, bias and MSE only remain under
control when using the robust estimator.
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