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Abstract

Consider jointly Gaussian random variables

whose conditional independence structure is spec-

ified by a graphical model. If we observe realiza-

tions of the variables, we can compute the covari-

ance matrix, and it is well known that the support

of the inverse covariance matrix corresponds to

the edges of the graphical model. Instead, sup-

pose we only have noisy observations. If the noise

at each node is independent, we can compute the

sum of the covariance matrix and an unknown

diagonal. The inverse of this sum is (in general)

dense. We ask: can the original independence

structure be recovered? We address this question

for tree structured graphical models. We prove

that this problem is unidentifiable, but show that

this unidentifiability is limited to a small class of

candidate trees. We further present additional con-

straints under which the problem is identifiable.

Finally, we provide an O(n3) algorithm to find

this equivalence class of trees.

1. Introduction

Graphical models are a way of efficiently representing the

conditional independence relationships satisfied by a collec-

tion of random variables. They form the starting point for

many efficient estimation and inference algorithms. Thus,

learning the graphical model of a collection of random vari-

ables is a fundamental, and very well-studied problem.

For jointly Gaussian random variables, the graphical model

is given by the non-zeros in the inverse of the covariance

matrix, also known as the precision matrix. We ask a natural

variant of this fundamental problem: suppose we observe the

random variables with independent additive noise. Thus, in

the infinite sample limit, rather than knowing the covariance
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matrix, Σ, we have access only to M = Σ + D, the sum

of the covariance matrix and a diagonal matrix. In general,

(Σ + D)−1 does not share the sparsity structure of Σ−1.

In the language of probability, if two random variables X
and Y are independent conditioned on Z, then we do not

expect that (X +W1) and (Y +W2) are independent when

conditioned on (Z +W3), even when W1, W2 and W3 are

independent.

We ask: when is it possible to recover the conditional in-

dependence structure (graphical model) of the underlying

variables, i.e., when can we recover the sparsity pattern of

Σ−1? Despite the voluminous literature on Gaussian graph-

ical models, to the best of our knowledge, there has been no

answer to this question.

Contributions of this paper. We show the following:

• A negative result of unidentifiability (Theorem 1):

Even for a simple Markov chain on three nodes, the

problem is unidentifiable even when an arbitrarily

small amount of independent noise is added. That is,

there are covariance matrices that differ only on their

diagonal entries, and yet whose inverses have different

sparsity patterns.

• A positive result of limited unidentifiability (Theorem

2): While unidentifiable, even for large independent

noise, the ambiguity is highly limited. Specifically,

we show that for tree-structured graphical models, dis-

tinguishing leaves from their immediate neighbors is

impossible, but the remaining structure of the graph is

identifiable (see Figure 1 for an illustration).

• Identifiability with Side Information:

– (Theorem 3) We characterize an upper bound

on the noise which, if given as side information,

makes the problem identifiable.

– (Theorem 4) If there is side information that in

the precision matrix, for a leaf node, the diagonal

entry is greater than the absolute value of the other

non-zero entry, the problem is identifiable.

– (Theorems 5, 6) Given a lower bound on the min-

imum eigenvalue of the true covariance matrix as

side information, we characterize the upper bound

on the noise for which the problem is identifiable.

We also characterize a lower bound on the noise

which makes the problem unidentifiable.
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• We provide, an O(n3) algorithm that identifies the

equivalence class of the underlying tree (Section 5).

Related Work

Estimating Gaussian graphical models has been a very

widely explored topic. Various algorithms based on the

ℓ1 penalized log likelihood maximization have been used in,

e.g., (Banerjee et al., 2008; Raskutti et al., 2009; Friedman

et al., 2008; Yuan & Lin, 2007; Rothman et al., 2008). A

parameter free Bayesian approach was presented in (Wong

et al., 2013). In (Meinshausen et al., 2006) and (Yuan, 2010),

another approach was proposed which finds conditional in-

dependence relations by regression using one random vari-

able as output and the remaining random variables as input.

The output variable is conditionally independent of the input

variables with regression coefficient zero.

For learning the special class of tree structured Gaussian

graphical models a classical algorithm is proposed in (Chow

& Liu, 1968), now known as the Chow-Liu algorithm. The

authors prove that the maximum likelihood estimate of

Markov tree structure is given by the maximum-weight span-

ning tree (MWST) where the edge weights are the empirical

mutual information. If the number of samples is infinite,

this algorithm provides the exact tree structure. This algo-

rithm inherently induces some robustness against additive

independent Gaussian noise. This is because the MWST

estimate remains the same if the ordering of mutual informa-

tion from smaller to larger remains the same. Therefore, if

the noise does not alter the order of mutual information, the

algorithm still correctly identifies the tree structure. How-

ever, this is not the case in general as we show in Section

4. Moreover, whether the noise has or has not altered the

MWST is not checkable from the data.

In (Tan et al., 2009), an error analysis of the Chow-Liu

algorithm is presented which considers the statistical error

due to finite samples. There are other papers which study the

class of tree structured Gaussian graphical models based on

the Chow-Liu algorithm (Choi et al., 2011; Li et al., 2016;

Mossel et al., 2013). None of these, however, are able to

offer guarantees in the face of noise.

There has been a lot of research on the robust estimation

of graphical models (Loh & Wainwright, 2011; Yang &

Lozano, 2015; Wang & Gu, 2017; Kolar & Xing, 2012;

Lounici, 2014; Wang & Lin, 2014; Liu et al., 2012). How-

ever, the robustness is against outliers or missing data or

Gaussian noise with known covariance or bounded noise.

To the best of our knowledge, there is no work that addresses

the natural setting of (unknown) additive independent Gaus-

sian noise. This is precisely the setting that we tackle in

this paper. In (Zhang et al., 2017) the authors address the

problem of measurement error in the directed graphical

models setting. These results do not extend to the setting of

undirected graphical models.

The algorithm in (Janzamin & Anandkumar, 2014) comes

closest to our setting, and in fact is complementary. In

that work, the goal is to recover the graph structure in the

presence of corruption in those off-diagonal terms of the

covariance matrix which are not conditionally independent.

Specifically, the results there do not consider (and cannot

address) noise in the diagonal elements. Thus, this setting

considers a perfectly complementary setting, as in this work

there is noise only in the diagonal elements of the covariance

matrix and not in the off diagonal elements. It would be

interesting to consider if these results can be merged to

obtain a general result.

2. Problem Statement

Let X = [X1, X2 . . . , Xn]
T denote a jointly Gaussian ran-

dom variable whose conditional independence structure is

given by a tree. We call this the true tree T ∗. We denote the

covariance matrix of X by Σ∗ and the precision matrix by

Ω∗. That is, X ∼ N (0,Σ∗). We denote the noise covari-

ance matrix by D∗. This is a non-negative diagonal matrix.

We denote the observed noisy covariance matrix by:

Σo = Σ∗ +D∗.

Given Σo as an input, recovering Σ∗ exactly is never possi-

ble. Consider, for instance, independent noise added only to

a leaf node. Instead, we would like to recover the underlying

tree T ∗. We show that in general, recovering T ∗ exactly is

not possible. However, we show that the ambiguity is lim-

ited. We characterize this explicitly. That is, we characterize

the set of possible trees T ′ that correspond to a covariance

matrix, Σ′, and a nonnegative diagonal matrix D′ such that

Σo = Σ′ +D′.

Notation

For any matrix Σ, (Σ)T represents the transpose of the

matrix. Σij denotes the element at the i, j position. Σ:,i

represents the ith column. Σ−i,−j represents the submatrix

after deleting row i and column j from Σ. Σ−i,j represents

the jth column without the ith element. Similarly, Σi,−j

represents the ith row without the jth element. We use

det(Σ) to represent the determinant of the matrix. For a

random vector X = [X1, X2, . . . , Xn]
T , Xi denotes the ith

component and X−i denotes the subvector after removing

the ith component.

3. Identifiability Result

Let the set of all the leaf nodes of T ∗ be L:

L = {a | node a is a leaf node in T ∗}.



Robust Estimation of Tree Structured Gaussian Graphical Models

Figure 1. For this T ∗, TT∗ is the set of all the trees obtained by

permuting the nodes within each of the dotted regions. We prove

that while T ∗ is unidentifiable, under our noise model, we can

recover TT∗ . In other words, the tree structure is recoverable up to

permutation of leaves with their neighbors.

Consider all the subsets of L such that no two nodes in the

subset share a common neighbor. Let p be the number of

such subsets. Let Sq be the qth subset. Let T q be the tree

obtained by exchanging the position of nodes in Sq with

their neighbor node in T ∗. Therefore, for every tree T q,

there is a corresponding set Sq. We define a set of these

trees as TT∗ .

TT∗ = {T q | q ∈ {1, 2, . . . p}}.

Figure 1 gives an example of TT∗ .

3.1. Identifiability Results without Side Information

Theorem 1. (Negative Result - Unidentifiability) Consider

a covariance matrix Σ∗ whose independence structure is

given by the tree T ∗. Suppose we are given a noisy covari-

ance matrix Σo = Σ∗ + D∗ where D∗
ii > 0 when i is a

neighbor of a leaf node. For any tree T q ∈ TT∗ , it is always

possible to decompose Σo = Σq+Dq where the conditional

independence for Σq is given by the tree T q and Dq is a

non-negative diagonal matrix.

Proof Outline. We give an explicit construction that demon-

strates that any tree T q ∈ TT∗ is achievable. Consider

any tree T q ∈ TT∗ and its corresponding leaf subset Sq.

The required decomposition of Σo = Σq +Dq is given as

follows:

Σq
ij =







Σ∗
ij −

1
Ω∗

ij

if i = j ∈ Sq

Σ∗
ij + ci1 if i = j ∈ Neighbor(Sq)

Σ∗
ij otherwise,

(1)

where Neighbor(Sq) is the set of neighbor nodes of all the

nodes in Sq . Also, ci1 is chosen such that 0 < ci1 ≤ D∗
ii.

Dq
ii =







D∗
ii +

1
Ω∗

ii

if i ∈ Sq

D∗
ii − ci1 if i ∈ Neighbor(Sq)

D∗
ii otherwise.

(2)

Figure 2. Examples of classification of 4 nodes as star shape or non

star shape. If they form a non star shape, the nodes are grouped in

pairs of 2.

The full proof which includes arriving at this decomposition

and showing that the conditional independence structure of

Σq is given by T q is in Appendix A.

Theorem 2. (Positive Result - Limit on unidentifiability)

Consider any decomposition Σo = Σ′ +D′ such that the

conditional independence for Σ′ is given by a tree T ′ and

D′ is a non-negative diagonal matrix. Then T ′ ∈ TT∗ .

Equations 1 and 2 provide a decomposition that results in

this T ′.

Proof Outline. The proof of the theorem relies on showing

that the off-diagonal terms of the covariance matrix suffice

to specify the structure of the underlying tree up to the

equivalence set TT∗ . Our proof is constructive, and hence

can be considered as a proto- or conceptual- algorithm for

recovering TT∗ . As any construction suffices to prove the

result, we ignore questions of computational complexity.

The ideas of this proof are then used and refined in order to

provide an efficient algorithm in Section 5.

The main building block of this proof and of the algorithm

presented in Section 5 is to categorize any set of 4 nodes

as a star-shape or a non-star-shape (we define this below).

Moreover, if it is a non star shape, we show that it is always

possible to partition the four nodes into two pairs that each

lie in separate connected components of the tree.

Definition 1. • Four nodes {i1, i2, i3, i4} form a non-

star shape if there exists a node ik in the tree T ∗1 such

that exactly two nodes among the four lie in the same

connected component of T ∗ \ ik.

• If {i1, i2, i3, i4} do not form a non-star shape, we say

they form a star shape.

It is easy to see that in the event that a set of 4 nodes forms

a non star, there exists a grouping such that the 2 nodes in

the same connected component form the first pair and the

other 2 nodes form the second pair. Figure 2 gives examples

of star shape and non star shape. This categorization is

done using only the off-diagonal elements of the covariance

matrix, hence this property remains invariant to diagonal

perturbations, that is, every set of 4 nodes falls in the same

1Note that nothing prevents ik to be one of the four nodes.
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category in any tree obtained from the decomposition of

Σo = Σ′ + D′ as Σ′
ij = Σ∗

ij ∀ i 6= j. The proof of this

theorem is split in 3 parts:

(i) Prove that it is possible to categorize any set of 4 nodes

as star shape or non star shape using only off diagonal

elements of the covariance matrix. Moreover, if the 4

nodes have a non star shape, we can find their grouping

in two halves.

(ii) Prove that this categorization of all the possible sets of

4 nodes completely defines all the possible partitions

of the original tree in 2 connected components such

that the connected components have at least 2 nodes.

(iii) Prove that these partitions of a tree into connected

components completely define the tree structure up to

the equivalence set TT∗ .

For part (i), we prove that a set of 4 nodes {i1, i2, i3, i4}
forms a non star shape such that nodes i1 and i2 form one

pair and i3 and i4 form the second pair if and only if:

Σ∗
i1i3

Σ∗
i1i4

=
Σ∗

i2i3

Σ∗
i2i4

,

Σ∗
i2i1

Σ∗
i3i1

6=
Σ∗

i2i4

Σ∗
i3i4

.

(3)

We also prove that a set of 4 nodes {i1, i2, i3, i4} forms a

star if and only if:

Σ∗
i1i3

Σ∗
i1i4

=
Σ∗

i2i3

Σ∗
i2i4

,

Σ∗
i2i1

Σ∗
i3i1

=
Σ∗

i2i4

Σ∗
i3i4

.

(4)

For part (ii), we first define a subtree.

Definition 2. Let A denote the set of all the nodes in T ∗.

A subtree B of a tree T ∗ is a set of nodes such that B and

A \ B both form connected components in T ∗. The pair of

subtrees B and A \ B are called complementary subtrees.

We prove that if we start with a set of nodes {i1, i2, i3, i4}
that form a non star such that nodes i1 and i2 form a pair, we

can get a partition of T ∗ into the smallest subtree containing

i1 and i2 and the remaining tree. This is done using the func-

tion SMALLESTSUBTREE(Σo, {i1, i2, i3, i4}), the details of

which are provided in Appendix B.2. Upon doing this for

different initializations, we get all the possible partitions of

the tree such that each partition has at least 2 nodes.

For part (iii) we define equivalence clusters and edges be-

tween equivalence clusters as follows:

Definition 3. A set containing an internal node and all the

leaf nodes connected to it forms an equivalence cluster. We

say that there is an edge between two equivalence clusters

Figure 3. (a) Suppose {i1, i2, i3, i4} = {7, 9, 5, 2}, part (ii) parti-

tions the nodes in group 1 and group 2. All the equivalence clusters

are also shown. (b) Edges between equivalence clusters.

if there is an edge between any node in one equivalence

cluster and any node in the other equivalence cluster.

The subtrees obtained from part (ii) completely specify the

equivalence clusters and the edges between the equivalence

clusters. This gives us the set TT∗ . Partitioning in part (ii)

and equivalence clusters in part (iii) are illustrated in Figure

3. The detailed proof of each part is presented in Appendix

B.

3.2. Identifiability Results with Side Information

Theorem 3. (Maximum Noise Identifiability Condition)

Suppose the noise is upper bounded by

D∗
aa <

1

Ω∗
aa

, ∀ a ∈ L (5)

and suppose that this upper bound is known as side infor-

mation. In this case, the decomposition of Σo = Σ′ +D′

results in Σ′ whose independence structure is given by T ∗.

Proof. From Equation 2, for a leaf node a to exchange

position with its neighbor, we need:

D′
aa ≥

1

Ω∗
aa

.

The constraint in Equation 5 makes this solution infeasi-

ble. Hence any feasible solution cannot have a leaf node

exchanged with its neighbor.

Theorem 4. (Leaf Diagonal Majorization Identifiability

Condition) Suppose Ω∗ satisfies the condition that for any

leaf node a and its neighbor node b in T ∗, Ω∗
aa > |Ω∗

ab|.
Then for any decomposition of Σo = Σ′+D′ which satisfies

the same property, the tree structure of Σ′ is the same as

that of Σ∗, that is, T ′ = T ∗.

Proof Outline. To prove this claim, we consider the de-

composition of Σo = Σ′ + D′ such that the conditional

independence structure T ′ for Σ′ has leaf node b and its

neighbor node a. We show that Ω′
bb < |Ω′

ab|, that is, the
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leaf node b in T ′ violates the constraint. Hence, any decom-

position of Σo which results in an exchange of a leaf node

with its neighbor is infeasible. Hence the problem becomes

identifiable.

Relabeling if necessary, assume that node n is a leaf node

connected to node n − 1 in T ∗. From Equation 1, the

decomposition of Σo = Σ′ +D′ to obtain a tree structure

T ′ in which node n− 1 is a leaf node connected to node n
is given by:

Σ′
ij =







Σ∗
ij −

1
Ω∗

ij

if i = j = n

Σ∗
ij + ci1 0 < ci1 < D∗

n−1n−1 if i = j = n− 1
Σ∗

ij otherwise.

We derive the expression of Ω′ = (Σ′)−1. We denote B1

and B2 as follows:

B1
ij =

{

ci1 0 < ci1 < D∗
n−1n−1 if i = j = n− 1

0 otherwise
,

B2
ij =

{

− 1
Ω∗

nn
if i = j = n

0 otherwise
.

This gives us Σ′ = Σ∗ + B1 + B2. The calculation of

Ω′ = (Σ′)−1 is presented in Appendix C. At positions

(n− 1, n− 1) and (n− 1, n) of Ω′, we get:

Ω′
n−1n−1 =

1

cn−1
1

,

Ω′
n−1n =

Ω∗
nn

cn−1
1 Ω∗

n−1n

.

By the original assumption we have Ω∗
nn > |Ω∗

n−1n|, hence

Ω′
n−1n−1 < |Ω′

n−1n|. Therefore any exchange of leaf node

with its neighbor gives an infeasible solution.

Theorem 5. (Minimum Eigenvalue Identifiability Condi-

tion) Suppose that a lower bound on the minimum eigen-

value λmin of Σ∗ is such that for every neighbor node b of a

leaf node a in T ∗, D∗
bb < λmin. Then for any decomposi-

tion of Σo = Σ′ +D′ such that the minimum eigenvalue of

Σ′ is at least λmin, the tree structure of Σ′ is the same as

that of Σ∗, i.e., T ′ = T ∗.

Corollary 1. If the smallest eigenvalue of Σ∗ is larger than

every element of the diagonal noise matrix D∗, and we

know that this fact holds as side information, then T ∗ is

identifiable.

Proof. Relabeling if necessary, assume that node n is a

leaf node and node n − 1 is its neighbor in T ∗. We again

consider the decomposition of Σo = Σ′ +D′ such that the

conditional independence structure T ′ for Σ′ has leaf node

n−1 and its neighbor node n. In order to prove this theorem

we first consider an intermediate matrix ΣI :

ΣI = Σ∗ +B2.

ΣI has minimum eigenvalue 0 (This is proved in the Ap-

pendix A during the proof of Theorem 1). Σ′ is obtained as

follows:

Σ′ = ΣI +B1.

We denote the minimum eigenvalue of Σ′ by λ′
min and ΣI

by λI
min. Using a standard result in matrix perturbation

theory for symmetric matrices (Stewart & Sun, 1990) we

have:

λ′
min ≤ λI

min + cn−1
1

= cn−1
1

≤ D∗
n−1n−1.

If D∗
n−1n−1 < λmin then λ′

min < λmin making this de-

composition infeasible. Hence any decomposition resulting

in the exchange of a leaf node a with its neighbor b is infea-

sible if D∗
bb < λmin.

Theorem 5 gives a sufficient condition on the noise for

identifiability if the minimum eigenvalue is lower bounded.

Next, we present a sufficient condition for unidentifiability

in the same setting.

Before the theorem statement, we define the following quan-

tities for any pair of a leaf node a and its neighbor b in

T ∗:

eab = 1 +
Ω∗

aa

|Ω∗
ab|

,

fab =
(Ω∗

aa)
2

(Ω∗
ab)

2
+

Ω∗
aa

|Ω∗
ab|

,

gab =
Ω∗

aa(Ω
∗
aaΩ

∗
bb − (Ω∗

ab)
2)

(Ω∗
ab)

2
+

n
∑

j=1
j 6=a,b

Ω∗
aa|Ω

∗
bj |

|Ω∗
ab|

,

hab = max
i=1...n
i 6=a,b

(

n
∑

j=1
j 6=a,b

|Ω∗
ij |+

Ω∗
aa|Ω

∗
bi|

|Ω∗
ab|

)

.

(6)

Theorem 6. (Minimum Eigenvalue Unidentifiability Con-

dition) Suppose that a lower bound on the minimum eigen-

value of Σ∗ is λmin. If for any decomposition of Σo =
Σ′ + D′, the same constraint holds, the problem will be

unidentifiable if, for a leaf node a and its neighbor b, the

noise in node b is lower bounded as follows:

D∗
bb ≥

{

eabλmin if λmin ≤ (eab−fab)
eabgab ,

fab

1/λmin−gab if
(eab−fab)
eabgab < λmin < 1

gab ,
1

hab .

If this holds, there exists a feasible Σ′ with conditional

independence structure T ′ which has node b as a leaf node

and node a as its neighbor.

Proof Outline. Suppose Σ′ has node b as leaf node and node

a as its neighbor and the rest of the structure is the same as
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T ∗. We provide a lower bound on the minimum eigenvalue

of Σ′ by upper bounding the maximum eigenvalue of Ω′

using Gerschgorin’s Theorem (Stewart & Sun, 1990). The

details are provided in Appendix D.

Note that a lower bound on the noise for unidentifiability

can be given only below a threshold of λmin. If λmin is

above this threshold, we cannot draw a conclusion about

identifiability using this theorem.

4. Examples and Illustrations

In this section we provide an example to illustrate the theo-

rem statements.

Consider a Markov Chain (MC) on 4 nodes whose covari-

ance matrix is given as follows:

Σ∗ =









1.1508 −0.1885 0.0548 −0.0069
−0.1885 0.2356 −0.0686 0.0086
0.0548 −0.0686 0.7472 −0.0934
−0.0069 0.0086 −0.0934 0.1367









,

Then its precision matrix is:

Ω∗ =









1 0.8 0 0
0.8 5 0.4 0
0 0.4 1.5 1
0 0 1 8









.

and T ∗ is given in Figure 4(a). Let the noise matrix be:

D∗ =









0.1 0 0 0
0 10 0 0
0 0 0.5 0
0 0 0 0.1









.

We have Σo = Σ∗ +D∗.

4.1. Example for Theorem 1

By Theorem 1, there exists a decomposition of Σo = Σ′ +
D′ such that the conditional independence structure of Σ′

is given by a tree T ′ with node 2 as a leaf node. A possible

decomposition is as follows:

Σ′ =









0.1508 −0.1885 0.0548 −0.0069
−0.1885 10.2356 −0.0686 0.0086
0.0548 −0.0686 0.7472 −0.0934
−0.0069 0.0086 −0.0934 0.1367









,

D′ =









1.1 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0.1









.

(7)

The precision matrix Ω′ is then:

Ω′ =









6.9687 0.1250 −0.5 0
0.1250 0.1 0 0
−0.5 0 1.5 1
0 0 1 8









. (8)

Figure 4. (a) T ∗ is a Markov Chain on 4 nodes. (b) T ′ is an element

of TT∗ , thus ∃Σ′, D′ such that Σo
= Σ

′
+D′, D′ is diagonal with

non-negative entries and the conditional independence structure

of Σ′ is given by T ′. (c) Running the Chow-Liu algorithm on the

Σ
o gives a tree which is not in TT∗ , hence it gives an infeasible

solution.

Thus, in the conditional independence structure of Σ′, node

2 is a leaf node attached to node 1 as shown in Figure 4(b).

Chow-Liu. We now note that running the Chow-Liu al-

gorithm on Σo gives a MC as shown in Figure 4(c). This

tree does not belong to TT∗ . This is an example of how the

Chow-Liu algorithm can give an infeasible solution.

4.2. Example of Theorem 3

The noise matrix D∗ satisfies the condition of Theorem 3:

D∗
11 <

1

Ω∗
11

, D∗
44 <

1

Ω∗
44

.

Hence by the theorem statement, with side information

that D′
11 < 1, the decomposition in Equation 7 is no

longer feasible. Similarly a decomposition with node 3 as

a leaf node is also not feasible. Hence the only feasible

solutions have the same structure as T ∗ and the problem is

identifiable.

4.3. Example of Theorem 4

Ω∗ satisfies the condition of Theorem 4, that is, for leaf

nodes 1 and 4:

Ω∗
11 > |Ω∗

12|,Ω
∗
44 > |Ω∗

34|.

In the presence of side information that for any leaf node b
connected to node a in T ′, Ω′

bb > |Ω′
ab|, the decomposition

in Equation 7 becomes infeasible as Ω′
22 < |Ω′

12|. Simi-

larly, exchanging nodes 3 and 4 also results in an infeasible

Σ′. Hence the problem becomes identifiable with this side

information.

4.4. Example of Theorem 5.

A lower bound on the minimum eigenvalue of Σ∗ is λmin =
0.6. The noise in node 2 does not satisfy the condition of

Theorem 5, that is:

D∗
22 > λmin.
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Therefore, we cannot say anything about the feasibility of

the decomposition when node 2 becomes a leaf node con-

nected to node 1. However, the condition of Theorem 5 is

satisfied by node 3, that is:

D∗
33 < λmin.

Therefore any decomposition which results in node 3 becom-

ing a leaf node violates the minimum eigenvalue constraint

(if Σ′ were such that node 3 were a leaf node, the minimum

eigenvalue of Σ′ could at most be 0.0046 < λmin).

4.5. Example of Theorem 6

In order to illustrate Theorem 6, we consider leaf node 1

and its neighbor node 2. The values e12, f12, g12, h12 for

the current example are:

e12 = 2.25, f12 = 2.8125, g12 = 7.3125, h12 = 9.

If λmin = 0.6, we cannot draw a conclusion about the iden-

tifiability of the problem using Theorem 6 as λmin > 1/h12.

If instead λmin = 0.1, it satisfies λmin < 1/h12, 1/g12.

Hence we can arrive at a lower bound on the noise for

unidentifiability using Theorem 5 which is given as follows:

D∗
22 > 1.0465.

5. Algorithm

In this section we present an algorithm which takes the

noisy covariance matrix Σo as an input and outputs TT∗ .

We use the classification of 4 nodes as a star shape or non

star shape, the concept of subtrees, complementary subtrees

and equivalence cluster (EC) that we introduced in the proof

of Theorem 2.

1. We start by obtaining a subtree B and a node from the

closest EC outside of this subtree ioutsideB . To do so:

(a) We partition all the nodes into complementary

subtrees B and B′ with at least 2 nodes using only

the off diagonal terms of Σo. This is implemented

in PARTITIONNODES(Σo).

(b) We pick any node iB in B.

(c) We find the EC in B′ that has an edge with a

node in B in T ∗ by calling GETCLOSESTEQUIV-

ALENCECLUSTER. We select one node from this

EC, ioutsideB .

2. We learn all the ECs and the edges between ECs in B
by calling LEARNEDGES which uses a node from the

closest EC outside B. The sets of ECs and edges are

initialized as null sets. We perform the following steps:

(a) We first call GETCLOSESTEQUIVALENCECLUS-

TER to obtain ECclose, the EC closest to ioutsideB .

We add this EC to the set of ECs and select one

node iclose.

Figure 5. One recursive step of LEARNEDGES.

(b) We add the edge between the EC containing

ioutsideB and ECclose in the edge set.

(c) We then call SPLITROOTEDTREE to split B \
ECclose into the subtrees B1, . . . ,Bk.

(d) For any Bj , iclose is a node from the closest EC.

We recursively call LEARNEDGES on all the sub-

trees.

3. We repeat 1.b) - 2.d) with B′ instead of B.

This is illustrated in Figure 5. We next present the imple-

mentation and proof overview of all the functions.

5.1. Algorithm to partition all the nodes into two

subtrees - PARTITIONNODES

The function PARTITIONNODES can be split in two parts:

(i) Find a set of 4 nodes which forms a non star. Let this

set be {i1, i2, i3, i4} such that nodes i1 and i2 form a

pair.

(ii) Call the function SMALLESTSUBTREE to obtain com-

plementary subtrees B and B′ such that B is the small-

est subtree containing i1 and i2.

For part (i), we fix two nodes and scan through all the pairs

of the remaining nodes. If there exists a set of 4 nodes which

forms a non star shape, this procedure finds that set. If there

is no such set, T ∗ has a single EC.

Part (ii) is the same as discussed in the proof of Theorem 2.

In Appendix E, we give the pseudo-code, proof of correct-

ness and prove that this function is O(n2)

5.2. Algorithm to find the closest equivalence cluster -

GETCLOSESTEQUIVALENCECLUSTER

As an input, GETCLOSESTEQUIVALENCECLUSTER takes

the set of the nodes of the subtree B, an external node

ioutsideB which belongs in A \ B, and the observed covari-

ance matrix Σo. It outputs the EC in B closest to ioutsideB .

We first find a node from the closest EC. We initialize

its estimate iclose to be the first node of B. We notice
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an important fact: if {ioutsideB , i2, i3, i4} forms a non-

star shape, nodes from the closest EC always pair with

ioutsideB . Therefore, we can compare two nodes iclose
and icandidate: if there exists a node j in B such that

{ioutsideB , iclose, icandidate, j} forms a non-star shape and

icandidate is paired with ioutsideB , then iclose is ruled out

and icandidate becomes the next estimate iclose. We use this

fact to find a node iclose in the closest EC to ioutsideB , by

scanning through all the values of icandidate and j.

Further, we find the remaining nodes in the EC of

iclose. A node iequivalent ∈ B is in the EC of iclose if

{ioutsideB , iclose, iequivalent, j} forms a star shape ∀j ∈
B \ {iclose}. In Appendix E, we give the pseudo-code,

proof of correctness and prove that this function is O(n2).

5.3. Algorithm to split a subtree - SPLITROOTEDTREE

As inputs, SPLITROOTEDTREE takes the subset B, an exter-

nal node ioutside, the EC to be removed ECclose, and the

observed covariance matrix Σo. It outputs a list of the largest

subtrees B1, . . . ,Bk containing all the nodes of B\ECclose.

Choose any iclose ∈ ECclose. To get these subtrees, we

notice an important fact: i1 and i2 belong in the same sub-

tree of B \ ECclose, if and only if {ioutside, iclose, i1, i2}
forms a non-star shape. Therefore, we pick any node of

B \ECclose, and use it to initialize B1. Then, for each new

node j in B, for each subset Bi containing a node iBi
we

check if {ioutside, iclose, j, iBi
} forms a non-star shape. If

it does, we add j to Bi. Otherwise, we create a new subset

containing only j. In Appendix E, we give the pseudo-code,

proof of correctness and prove that this function is O(n2)

5.4. Algorithm to find equivalence clusters and edges

between equivalence clusters - LEARNEDGES

We use GETCLOSESTEQUIVALENCECLUSTER and SPLIT-

ROOTEDTREE to find the ECs and the edges between the

ECs.

As inputs, LEARNEDGES takes a subtree B, an external

node ioutsideB which is a node in the EC in A \ B closest

to B and the observed covariance matrix Σo. The set of

ECs (equivalence clusters) and the edges between ECs

(cluster edges) are initialized as empty sets. This function

updates these sets.

This is done in the following steps:

1. Use GETCLOSESTEQUIVALENCECLUSTER to get the

equivalence cluster ECclose in B closest to ioutsideB .

Add ECclose to equivalence clusters and the edge

between ECclose and the EC containing ioutsideB in

cluster edges.

2. Use SPLITROOTEDTREE to split B \ ECclose into

subtrees B1, . . . ,Bk.

3. For each of these subtrees Bj , iclose ∈ ECclose is a

node from the closest EC in A \ Bj . Recursively call

LEARNEDGES with Bj , iclose and Σo as inputs.

5.5. Complete Algorithm - LEARNCLUSTERTREE

Finally, we describe LEARNCLUSTERTREE, the complete

algorithm which learns all the ECs of a tree T ∗ and the

edges between them from the observed covariance matrix

Σo.

As input, it takes the observed covariance matrix Σo. It

populates the ECs, equivalence clusters, and the edges

between ECs, cluster edges. LEARNCLUSTERTREE per-

forms the following steps:

1. Partition all the nodes in complementary subtrees B
and B′ using the PARTITIONNODES function.

2. Using the GETCLOSESTEQUIVALENCECLUSTER

function, it finds a node ioutsideB from the closest EC

(respectively ioutsideB′
) to B in B′ (respectively to B′

in B).

3. It finally learns all the ECs and the edges between ECs

by recursively calling LEARNEDGES(ioutsideB ,B,Σ
o)

followed by LEARNEDGES(ioutsideB′
,B′,Σo).

In Appendix E, we give the pseudo-code, proof of correct-

ness and prove that this function is O(n3), hence the algo-

rithm is O(n3).

6. Finite Sample Setting

If we have finite number of noisy samples, the algo-

rithm can be modified to use the sample covariance ma-

trix, Σ̂, by replacing the conditions in Equations 18 and

26 by |Σ̂i1i3Σ̂i2i4 − Σ̂i1i4Σ̂i2i3 | < ǫ and |Σ̂i1i3Σ̂i2i4 −
Σ̂i1i4Σ̂i2i3 | > ǫ. The resulting sample complexity is poly-

nomial in ǫ and logarithmic in the number of nodes. How-

ever, due to the exponential decay of the correlations with

the diameter of the tree, the parameter ǫ required could be

exponentially small in the diameter. Even for (near) bal-

anced trees, the sample complexity becomes polynomial in

the number of nodes, and in some settings (e.g., a chain),

this would result in an exponential sample complexity. We

believe it is possible to address this and recover logarithmic

sample complexity in the number of nodes, by using an

algorithm that only learns local structure (within a constant

diameter such that the covariance is bounded away from

zero), and then stitching the results together to form the

complete tree. This is left for future work.
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