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Abstract— We consider the problem of estimating on line the
nonlinear stiffness of flexible transmissions in robot joints, with
special reference to actuation devices with adjustable stiffness
in serial configuration. These joints are characterized by a
principal motor for controlling the link motion and secondary
motor for adjusting the stiffness. In this actuation configuration,
the flexible transmission undergoes relatively small deforma-
tions and the stiffness estimation problem is more challenging
due to poor excitation conditions. We improve our previous
general approach, combining a residual-based flexibility torque
estimator that uses also a kinematic Kalman filter to handle
discretization and quantization errors with an enhanced recur-
sive least squares algorithm that does not suffer from lack of
persistent excitation. As a result, stiffness is estimated in a more
robust way using only position measurements on the motor
sides and motor dynamic parameters. The performance of the
proposed estimation method is illustrated through simulations
and experiments on the AwAS joint developed at IIT.

I. INTRODUCTION

In the past, flexibility of the robot transmissions has been

considered mainly as an undesired mechanical behavior and a

source of control problems [1]. Driven by the recent research

in physical Human-Robot Interaction (pHRI), flexibility has

been introduced on purpose in the design of robot joints [2],

[3]. In particular, the desire of having safer compliant joints

while keeping high motion performance in natural and

energy efficient robot motion led to the new development

of variable stiffness actuation (VSA), where joint stiffness

can be varied on the fly during the commanded motion

by using two motors. Two different realization of the VSA

principle have been mainly investigated. The first consists

of using two nonlinear transmissions in agonistic-antagonist

arrangement [4]–[6]. Motion and stiffness actuation are then

strongly dynamically coupled, and a nonlinear decoupling

feedback law is necessary for their simultaneous and accurate

control [7]. Conceptually different are the actuators with

variable stiffness in serial configuration, in which there is a

single flexible transmission whose stiffness can be separately

controlled by a secondary motor [8]–[11].

Classical or advanced motion control laws for robots

with flexible joints of constant or variable compliance need

an accurate knowledge of the joint stiffness [5], [7], [12].

Since there are no available sensors for a direct measure

of stiffness, the device stiffness is usually computed from

position and/or joint torque sensor data, based on an accurate

mathematical model and static calibration procedures. This

method is especially critical for VSA-based manipulators,
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where: i) stiffness should explicitly set under control, ii)

the stiffness behavior is intrinsically nonlinear (and possibly

time-varying), and iii) its model may be a complex uncertain

function of the joint deformation. Therefore, quite recently

there has been a growing interest in the development of on-

line stiffness estimation methods.

In [13], a stiffness estimator has been introduced based

on the knowledge of the external torque which is explicitly

measured by a sensor. The estimator uses an extended

Kalman filter to estimate simultaneously the transmission

stiffness and the link inertia and damping. However, the

estimator uses the time derivative of the measured flexibility

torque, and there is an interaction loop between the two

used observers leading eventually to noise sensitivity and

poor excitation. The stiffness estimators presented in [14],

[15] are also based on the knowledge of the flexibility

torque and use similarly a joint torque sensor. In [16], we

have developed a two-stage stiffness estimator for single

flexible transmissions or for double flexible transmissions

in antagonist arrangement. In the first stage, the flexibility

torque of the transmission is obtained using a residual-based

estimator, while in the second stage the stiffness is estimated

using either a black-box regressor or a model-based least

squares algorithm. Assuming the knowledge of motor inertia

and damping, the main merit of this approach is that it

requires only the measure of motor position and velocity and

of link position, i.e., it uses sensors that are already necessary

for control. Moreover, since the stiffness estimator works on

the motor side of the flexible transmission, the case of VSA

with antagonist arrangements is easily dealt with by having

one independent estimator for each transmission and then

adding the results to obtain the total device stiffness. Finally,

in [17] we proposed a different approach for the second stage

where a recursive least squares (RLS) algorithm allows a

more efficient and accurate on-line stiffness estimation.

In this paper, we improve both stages of the method

presented in [16], [17]. In the first stage, the design of the

residual-based estimator of the transmission flexibility torque

takes into account also the encoder quantization, one of the

most critical problems in the implementation, by using a

modified version of the discrete-time kinematic Kalman filter.

In the second stage, we consider an enhanced version of

the RLS algorithm, based on [18], that improves robustness

and ensures convergence of the stiffness estimation also in

poor excitation conditions. In fact, we focus our study on

the case of actuators with adjustable stiffness [11], where

the smaller transmission deformations involved can cause

convergence problems. In addition, we need to suitably

modify the original stiffness estimation method developed
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for antagonistic VSA so as to cover the case of adjustable

stiffness in serial configuration. Figure 1 shows a schematic

representation of our stiffness estimator concept for this case.
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Fig. 1. Two-stage stiffness estimator for an actuator with adjustable
stiffness in serial configuration

The paper is organized as follows. The modeling frame-

work is introduced in Sect. II. In Sect. III, we revisit and

improve the stiffness estimation method proposed in [16],

[17] for a single flexible transmission (and thus also for an

antagonistic arrangement of two such transmissions). The

modifications needed for estimating the stiffness in joints

with adjustable stiffness in serial configuration are presented

in Sect. IV. In Sect. V, the problem of a lack of excitation

is addressed and a handy solution is provided. Simulation

and experimental results for the AwAS device developed at

IIT [11] are presented in Sect. VI.

II. DYNAMIC MODELING

Flexible joints are characterized by a deformable transmis-

sion that connects the driving motor with the driven link.

The deformation φ of the transmission is the difference

between the motor angle θ and the link angle q (φ = q− θ).

Being Ue(φ) ≥ 0 the potential function associated to the

deformation φ, with Ue(φ) = 0 iff φ = 0, the flexibility

torque across the transmission is τe(φ) = ∂Ue(φ)/∂φ. We

assume that

τe(0) = 0, τe(−φ) = −τe(φ), ∀φ, (1)

i.e., no torque is provided through the undeformed trans-

mission, and the transmission has the same behavior in

compression and extension.

For a single motor driving a rigid link subject to gravity

through a (nonlinear) flexible transmission, the dynamic

model takes the form

Mq̈ +Dq q̇ + τe(φ) + g(q) = τext (2)

Bγ θ̈ +Dθγ θ̇ −
1

γ
τe(φ) = τ, (3)

where M > 0 and B > 0 are the link and motor (rotor)

inertias, Dq ≥ 0 and Dθ ≥ 0 are the viscous friction

coefficients at the two sides of the transmission, γ > 1 is

the gear ratio, τ is the control torque on the motor axis,

and g(q) and τext are, respectively, the gravity and the

environment/disturbance torques acting on the link.

The stiffness of the transmission is defined as the variation

rate of the flexibility torque τe(φ) w.r.t. the deformation φ,

σ(φ) =
∂τe(φ)

∂φ
> 0. (4)

While slightly different definitions of stiffness can be found

in the literature, see e.g., [19], we consider in (4) the internal

stiffness of the transmission/flexible joint, usually called

passive stiffness. Passive stiffness refers thus to the torque

needed to deform the transmission.

The basic dynamic model (2–3) of a single motor-flexible

transmission unit is easily modified in order to obtain the

model of an actuator with variable stiffness in agonistic-

antagonistic mode. The two motor-transmission units are

modeled will two similar equations of the form (3), one for

each motor-transmission with deformation φi = q − θi, for

i = 1, 2; in the link equation (2), the sum of the two flexible

torques will appear in place of the single τe(φ). Since our

estimator works on the motor side, for an antagonistic VSA

joint we need simply to use a stiffness estimator for each

unit and then sum the resulting estimations [17].

The case of VSA with adjustable stiffness in serial con-

figuration, like the AwAS [11], is more challenging for the

estimation process. In this case, the principal motor will

control the link position through the flexible transmission

while the secondary motor is used to adjust the stiffness

by modifying the shape of the potential function associated

to the deformation. Stated differently, the position of the

secondary motor θc will affect the operating point in the

flexible transmission characteristics. For its role, we refer

to θc as the set-point variable, with a slight abuse of

terminology. The dynamic model of such class of variable

stiffness actuators takes the form

Mq̈ +Dq q̇ + τe(θc, φ) + g(q) = τext

Bγ θ̈ +Dθγ θ̇ −
1

γ
τe(θc, φ) = τ

Bcγc θ̈c +Dθc
γc θ̇c +

1

γc

ψe(θc, φ) = τc,

(5)

where, together with the notations inherited from (2–3),

Bc > 0 and Dθc
> 0 are, respectively, the (rotor) inertia

and the viscous friction coefficients of the secondary motor,

γc > 1 is its gear ratio and τc its torque (on the motor

axis). The function ψe(θc, φ) is the coupled flexibility torque,

representing how the transmission deformation acts on the

secondary motor as a function of its set-point variable.

Actually, this is an undesirable dynamic coupling behavior

and mechanical solutions that minimize this effect are usually

chosen.

For system (5), our goal will be to estimate the stiffness

σ(θc, φ) of the transmission without the need of additional

sensors beyond the encoders available at both the link and

motor sides to measure positions. While velocities of link

and motors will be obtained by a suitable numerical filtering

of position measures, we will not resort to acceleration

measurements (or to further derivation of data) nor to

force/torque sensing.
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III. STIFFNESS ESTIMATION FOR SINGLE OR DOUBLE

ANTAGONISTIC FLEXIBLE TRANSMISSIONS

In this section, the stiffness estimation method proposed

in [17] is summarized and some improvements are intro-

duced. With reference to eqs. (2–3), the process is performed

in two stages, first by estimating the flexibility torque τe(φ)
using a residual-based technique, then by using on line this

result to estimate the stiffness σ(φ) with a Recursive Least

Squares algorithm based on a general parametric model.

A. Residual for flexibility torque estimation

To estimate the unmeasured flexibility torque, a residual

signal can be generated that provides a filtered version of

τe(φ). Denoting as p = Bθ̇ the generalized momentum of

the motor, the residual is defined as

re = KI

(
pγ +Dθγ θ −

∫ t

0

(τ + re) ds

)
, (6)

where KI > 0 is a free design parameter. From eq. (3), it is

easy to check that the residual re satisfies

ṙe = KI

(
1

γ
τe(φ) − re

)
, (7)

resulting in a first-order, stable filter of the unknown flexible

torque scaled by the gear ratio γ. A discrete-time implemen-

tation of the residual (6) at t = kT is

Iτ (k) = Iτ (k − 1) +
τ(k) + τ(k − 1)

2
T

r(k) = KI

(
Bγ θ̇(k) +Dθγ θ(k) − Iτ (k)

)

re(k) =
2 − TKI

2 + TKI

re(k − 1) +
2 (r(k) − r(k − 1))

2 + TKI

,

(8)

where T is the sampling time.

It should be noted that the flexibility torque is estimated

using only the motor parameters B and Dθ, which can

be obtained by the motor data sheet. The motor torque τ
is obtained from the known commanded voltage/current,

using the motor electrical model and its data sheet. The

motor position θ is measured by an encoder and its velocity

θ̇ is obtained numerically. However, the discretization and

the presence of encoder quantization are problematic when

computing the angular velocity by numerical differentiation.

To address this issue, we propose a modified Kalman filter

based on a kinematic model (MKKF). Let x be an angular

position and ẋ the associated angular velocity. In order to

estimate ξ(k) = (x(k) ẋ(k))
T

with a kinematic Kalman filter

(KKF), the following system is considered

ξ(k) =

(
1 T
0 1

)
ξ(k − 1) + µ (9)

z(k) =
(

1 0
)
ξ(k) + ν, (10)

where z(k) is the noisy measure (the encoder angle in our

case) and the zero mean Gaussian noises µ and ν have,

respectively, covariance matrix Q and variance R. In the state

equation (9), acceleration is not considered and µ represents

the noise due also to this absence. Setting Γ =
(
T 2/2 T

)T
,

the covariance matrix of µ is Q = Va ΓΓ
T , where Va is the

variance associated to the state. While the variance R of the

measures is usually set to a constant value, in the proposed

modified KKF it is chosen as a function of the estimated

velocity, since the noise due to encoder quantization is

significant at low speed and negligible at high speed. In

particular, we used

R(k) =
Vmax − Vmin

1 + e(|ẋ(k)|ws−1)α
+ Vmin, (11)

where Vmax and Vmin are the maximum and minimum

variances considered, ws = (2π/∆)/T , being 2π/∆ the

encoder resolution, and α is a shaping factor (see Sect. VI-B

for the resulting effects). In the rest of the paper, whenever

we refer to an angular position and/or velocity, we will be

considering their evaluation obtained with the MKKF.

B. Stiffness estimation based on Recursive Least Squares

In this second stage, the flexibility torque τe(φ) is approx-

imated by a nonlinear parametric model function f(φ,α),
typically chosen as linear in the unknown n-dimensional

parameter vector α, using a Recursive Least Squares (RLS)

algorithm. From measured or computed data, we set the

relationship

τ̂e(φ(k)) = f(φ(k),α) = F T (k)α, (12)

where φ(k) is the deformation measured at time t = kT
and τ̂e(φ(k)) may be either the measured flexibility torque,

if a joint torque sensor is available, or otherwise its estimate

given by the residual re(k) in eq. (8). The n-dimensional

vector F , i.e., the Jacobian of f(φ,α) w.r.t. the parameter

α, is usually given by polynomial terms in φ.

The on-line minimization of the sum of the squares of the

estimation errors up to time t = kT

E(k) =

k∑

i=1

(
τ̂e(φ(i)) − F T (i)α

)2

, (13)

provides the current estimate α̂(k) by the RLS algorithm as

follows:

ǫ(k) = τ̂e(φ(k)) − F T (k)α̂(k − 1)

ρ(k) = F T (k)P (k − 1)F (k)

K(k) =
P (k − 1)F (k)

1 + ρ(k)
α̂(k) = α̂(k − 1) +K(k)ǫ(k)

P (k) = P (k − 1) − K(k)F T (k)P (k − 1).

(14)

The algorithm (14), initialized with an a priori estimate

α̂(0) of the parameters and a covariance matrix P (0) >
0, updates the previous estimation based on the current

error ǫ(k) between the residual/measure and the predicted

transmission flexibility torque. The larger the covariance, the

larger will be the update of the parameters. Therefore, the

covariance matrix P is initialized with large values in case

of poor a priori knowledge about the parameters. P typically

decreases at each step and there will be no significant

parameter updates when the updating factor becomes too

4028



small. The degree of the polynomial f(φ(k),α) should be

adequate for capturing the nonlinearity of the transmission

flexibility torque. Otherwise, the RLS algorithm will not

track efficiently the data or, even if it converges (P is small),

a non-negligible residual estimation error would result.

Finally, the stiffness estimation is obtained directly from

f(φ(k), α̂(k)) as

σ̂(φ(k)) =

(
∂F (k)

∂φ(k)

)T

α̂(k). (15)

For further details on the stiffness estimation for a single or

a double antagonistic flexible transmission, we refer to our

previous work [17].

IV. STIFFNESS ESTIMATION FOR ADJUSTABLE

STIFFNESS ACTUATORS

With reference to Fig. 1, consider now an adjustable stiffness

actuator modeled by eqs. (5). The estimation of the flexibility

torque τe(θc, φ) is obtained using eq. (6) as before, since the

principal motor side dynamics is identical and the depen-

dence of τe also on θc plays no role in the definition of the

residual. For stiffness estimation, the RLS algorithm (14) is

used but, departing from [17], the linear parameterization of

the flexibility torque should be introduced more carefully in

order to take into account the dependence from the position

of the secondary motor.

We assume that the presence of the secondary motor does

not affect assumption (1), or

τe(θc, 0) = 0, τe(θc,−φ) = −τe(θc, φ), ∀θc, φ. (16)

In fact, the set-point variable θc of the secondary motor does

not change the symmetric nature of the transmission, but will

affect the shape of the flexibility torque in a separable way

as

τe(θc, φ) = ℓ(θc)h(φ), (17)

i.e., with a positive functional factor that depends on θc

multiplying the flexibility term due to the deformation φ. A

behavior like the one in (17) is highly desirable in the design

of VSA systems and is observed in all adjustable stiffness

devices we are aware of. As a consequence, in the parametric

approximation of τe, we will consider the following two

polynomials for h(φ) and ℓ(θc):

h(φ,α) =
n−1∑

i=0

αi φ
2i+1, (18)

ℓ(θc,β) =

m−1∑

j=0

βj θ
j
c . (19)

For the sake of simplicity we do not force positivity of

the factor ℓ(θc), which would lead to the need of adding

constraints in the RLS algorithm without effective improve-

ment of the estimate. In the estimation process, we do not

need a separate (and non trivial) estimation of the n + m
unknown parameters in vectors α and β, but we linearly

re-parameterize the problem in terms of the n · m scalar

parameters

ηi,j = αi βj . (20)

Based on eq. (17), the function f fitting τe will thus be

f(θc, φ,η) =

n−1∑

i=0

m−1∑

j=0

ηi,j θ
j
c φ

2i+1 = F T (θc, φ) η. (21)

The Jacobian of f(θc, φ,η) w.r.t. the new parameter vector

η is given by

F T =
(

φ φ3 . . . φ2n−1

θcφ θcφ
3 . . . θcφ

2n−1

. . . . . . . . . . . .

θm−1
c φ θm−1

c φ3 . . . θm−1
c φ2n−1

)
.

(22)

Considering a discrete-time implementation, the estima-

tion of the unknown parameter η̂ is obtained using (14),

where α̂(k) is obviously replaced by η̂(k). Therefore, the

stiffness estimate at time t = kT is given again by the

relation (15) suitably modified, i.e.,

σ̂(θc(k), φ(k)) =
∂f(θc(k), φ(k))

∂φ(k)
=

(
∂F (k)

∂φ(k)

)T

η̂(k)

=

n−1∑

i=0

m−1∑

j=0

(2i+ 1) η̂i,j(k) θ
j
c(k)φ

2i(k).

(23)

V. HANDLING POOR EXCITATION CONDITIONS

For a robust parameter estimation, it is important that the

input signal changes sufficiently so that the collected data

contain enough information about the characteristics of the

function to be estimated. This is related to the concept of

persistent excitation of signals. Unlike the case of antago-

nistic VSA, where the deformation of the two transmissions

are significant in order to simultaneously control both link

motion and stiffness, in actuators with adjustable stiffness the

deformation is minimal, because stiffness is controlled using

the secondary motor. Therefore, in this case the persistent

excitation requirement is a very critical issue for stiffness

estimation. Since the RLS estimation may become unstable

in the presence of poor excitation, we propose a modified

RLS based on the results of [18], which are briefly recalled.

Assume that measured data y are generated at t = kT as

y(k) = F T (k)η, (24)

where η is the true but unknown parameter vector. In the

parameter estimation error η̃ = η̂ − η, it is possible to

discriminate a component η̃U that belongs to the so-called

unexcitation subspace and a component η̃E that belongs

to its orthogonal complement ΩE = Ω⊥
U , the excitation

subspace. Consider the following modification to the RLS

algorithm (14) used for the estimate η̂

η̂(k) = η̂(k − 1) + a(k)K(k)ǫ(k)

P (k) = P (k − 1) − a(k)K(k)F T (k)P (k − 1),
(25)

where the scalar a(k) is a time-varying function.
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Under the data generation assumption (24), it has been

proven in [18] that, if there exists a scalar c > 0 such that

a(k)

1 + ρ(k) − a(k)ρ(k)
≥ c, ∀k, (26)

then, for every given η̂(0) and P (0) > 0:

1) ‖η̃(k)‖ ≤ λ, ∀k, being λ a suitable constant;

2) limk→∞ η̃E(k) = 0.

Provided that a(k) can be chosen so as to verify con-

dition (26), we obtain thus practical convergence of the

parameter estimation even in poor excitation cases. Given

a constant c > 0, the stability factor a(k) is then simply

chosen as

a(k) =
c+ cρ(k)

1 + cρ(k)
. (27)

Summarizing, the enhanced RLS algorithm is obtained

from (14), with η̂ in place of α̂, by replacing the last two

equations therein with (25) and using (27).

VI. SIMULATIONS AND EXPERIMENTS ON THE AWAS

The stiffness estimation method has been tested through

simulations and experiments, using the Actuator with Ad-

justable Stiffness (AwAS) developed by the Italian Institute

of Technology (IIT) and presented in [11]. The relative sim-

plicity of the potential function associated to the transmission

deformation of the AwAS and the presence of a sensor to

measure the flexibility torque, which allows a validation of

the results, makes this actuator a useful benchmark for testing

our stiffness estimator.

A. Modeling the AwAS

The AwAS (Fig. 2) actuator adjusts the stiffness at the joint

through the variation of the relative distance between a pair

of springs and the center of rotation of the joint, using a

lever mechanism. The dynamics of the AwAS is described

a

b
c

d

ef

g

Fig. 2. CAD model of the Actuator with Adjustable Stiffness (AwAS): the
principal motor (a) adjusts the link (b) positioning; the secondary motor (c)
drives a ballscrew mechanism (d), which moves the relative position of a
pair of antagonistic springs (e) with respect to the center of rotation of the
joint (f); the springs connect both the output link (b) and the intermediate
link (g), which in turn is connected with the principal motor

by model (5), where the flexibility torque τe(r, φ) and the

stiffness σ(r, φ) are defined by

τe(r, φ) = ksr
2 sin 2φ (28)

and

σ(r, φ) = 2ksr
2 cos 2φ, (29)

being ks the stiffness of the springs and r the length of the

lever arm, which is the effective distance between the center

of rotation of the joint and the springs. The lever arm is

adjusted by the secondary motor as

r = r0 − bθc, (30)

where r0 is the initial length of the lever arm, θc is the

angular position of the motor, and b is the transmission ratio

between the secondary motor and the ballscrew. Finally, the

torque that the transmission applies back to the secondary

motor is

ψe(r, φ) = −2ksbr sin2 φ. (31)

We note that the lever arm r obtained from (30) can be

directly used in place of θc in the enhanced RLS estimation

algorithm. With reference to the model (5) and eqs. (28–31),

the nominal parameters of the AwAS are:

M = 0.1, B = 2.3 · 10−5, Bc = 1.29 · 10−7 [kg·m2],

Dq = 0.15, Dθ = 0.001, Dθc
= 0.0141 [N·m·s/rad],

γ = 50, γc = 23, ks = 14220 [N/m], r0 = 0.1 [m],

b = 0.0025/2π [m/rad].

B. Simulation results

The estimator has been tested first in realistic simulations

performed with Simulink. The AwAS model is represented

by (5), with the parameters of Sect. VI-A. We have included

in the simulations the presence of encoders with ∆ = 40000
pulses/turn for measuring q and θ, and with ∆c = 1024 for

θc. We considered also the effect of noise added to the motor

torque τ used in the residual computation (6) as well as to

the sensed torque τe, which can be used alternatively to the

residual as input τ̂e to the RLS algorithm. A tilda denotes

the noisy signals, i.e.,

τ̃ = τ + ντ , (32)

τ̃e(θc, φ) = τe(θc, φ) + ντe
, (33)

where ντ and ντe
are zero mean gaussian noises with

variance 10−5 and 10−3, respectively.

To show the robustness of our algorithm, we performed the

stiffness estimation in three modalities, using three different

signals as input τ̂e of the RLS algorithm. In the MODEL

modality, we used as input the flexibility torque obtained

from eq. (28) with the nominal system data1. In the SENSOR

modality, we used as input the flexibility torque measured

by a noisy joint torque sensor, see eq. (33). Finally, in

the RESIDUAL modality we fed the RLS algorithm with

the residual that estimates the flexibility torque. In this last

1In simulations, this flexibility torque is indeed also the actual one.
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modality, the residual (6) has been evaluated using the prin-

cipal motor position θ and velocity θ̇ obtained by processing

the encoder data with the MKKF presented in Sec. III-A, as

well as the noisy motor torque (32). Summarizing, for the

three modalities we have:

τ̂e(θc, φ) = τe(θc, φ) MODEL

τ̂e(θc, φ) = τ̃e(θc, φ) SENSOR

τ̂e(θc, φ) = γre RESIDUAL

(34)

The simulations were run with sampling time T = 1 ms,

using as torque inputs for the principal and secondary motor

τ = 0.3 sin 0.2π and τc = 8 sin 0.2π [Nm], from the initial

configuration q(0) = θ(0) = 0, θc(0) = −30/b [rad] and

with the system at rest. The chosen MKKF parameters in

eq. (11) were Vmax = 10, Vmin = 0.1, and α = 6,

obtained by considering a nominal minimum and maximum

velocity which rely on a minimum and maximum variance.

The remaining estimation parameters were: KI = 300, in

eq. (6), which represent the filter bandwidth of the residual;

P (0) = 1020In×m in eq. (14); n = 6 and m = 3 in eqs. (18)

and (19); and c = 10−20 in eq. (27). Therefore, the parameter

vector η has dimension n ·m = 18, and we set η̂(0) = 0.

The orders of the polynomial functions m and n are selected

on the basis of the nominal model. However, higher orders

can be selected to better fit the nonlinearities.

0 2 4 6 8 10 12 14 16 18 20
2.5

2

1.5

1

0.5

0

0.5

1
x 10

3

Time [s]

T
r
a
n
s
m

is
s
io

n
 d

e
fo

r
m

a
ti
o
n
 [
r
a
d
]

Fig. 3. Transmission deformation φ in simulation

Figure 3 shows the time behavior of the transmission

deformation φ during the simulation. Note that its maximum

value is very small (of the order 0.001 rad) and we are thus

in a situation of very poor excitation for the RLS algorithm.
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Fig. 4. Motor angular velocity θ̇: Actual (dot-dashed, red), obtained with
numerical differentiation (dotted, blue), estimated with MKKF (solid, green)

The need for MKKF processing of the encoder data fol-

lows from the results in Fig. 4. The principal motor velocity θ̇

obtained by numerical differentiation of the encoder position

data suffers from the presence of quantization.
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Fig. 5. Flexibility torque: Actual τe(θc, φ) (dashed, black), estimated
from the residual as γre (dotted, blue), measured by a noisy torque sensor
eτe(θc, φ) (dashed, red), obtained from RLS algorithm with residual input
as f(θc, φ, bη) (solid, green)

Figure 5 compares two different estimations and the noisy

measure of the flexibility torque τe(θc, φ) with its actual

(nominal) evolution. In particular, both the measured torque

and the estimation of the flexibility torque obtained directly

from the residual (6) are quite noisy under the assumed

operative conditions. However, a reliable (filtered and cen-

tered) flexibility torque estimation is obtained when feeding

the residual into the RLS algorithm and using the estimated

parameter vector η̂ in eq. (21).
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Fig. 6. Stiffness σ(θc, φ): Actual (dashed, red), SENSOR estimation (dot-
dashed, green), RESIDUAL estimation (solid, blue) [MODEL and SENSOR
estimation practically overlap, so the former is not shown]

Finally, the time evolutions of the stiffness estimated in

the different modalities are reported in Fig. 6, compared

to the actual evolution. To quantify the different stiffness

estimation, we have considered two performance indices,

namely the mean square error (MSE) and the mean square

relative error percentage (MSREP) over p samples,

MSE =

∑p

k=0

[
(σ(k) − σ̂(k))

2
]

p
, (35)

MSREP =

∑p

k=0

[(
σ(k)−bσ(k)

σ(k)

)2
]

p
100. (36)

From the results in Tab. I, all methods perform similarly

well. Being these simulation results, the MODEL stiffness

estimate is indeed very accurate despite the presence of
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TABLE I

PERFORMANCE OF STIFFNESS ESTIMATION IN SIMULATION

Estimation MSE MSREP

MODEL 24.1365 0.12 %

SENSOR 24.3630 0.12 %

RESIDUAL 128.1614 0.58 %

encoder quantization. The SENSOR estimation is also very

accurate, confirming the benefit of using anyway a processing

by the enhanced RLS algorithm. The RESIDUAL estimation

has a higher MSE, due to the propagation of input noise

through the two stages of the estimation process; however,

its MSREP is still less than 1% which allows us to state that

torque sensing seems not strictly needed.
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Fig. 7. Stability factor a(k) in the RESIDUAL estimation method (semi-
logarithmic scale)
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Fig. 8. Stiffness estimated by the RESIDUAL method, for different but
constant stability factors

The last issue analyzed in simulation concerns the use of

the stability factor a(k) of eq. (27) for stiffness estimation by

the RESIDUAL method. The time evolution of this factor is

shown on a semi-logarithmic scale in Fig. 7. By comparing

this with Fig. 3, one can see that the low peaks of a(k) are

associated to values of the transmission deformation close

to zero. In these cases, the Jacobian F contains very small

values, which imply a poor excitation for the estimator.

If a constant value were used for the stability factor, we

would obtain two possible behaviors: with a relatively small

stability factor, the stiffness estimation is not affected by

poor excitation but the convergence is very slow; with a large

stability factor, the convergence is faster but the estimation is

very sensitive to poor excitation conditions. These behaviors

are shown in Fig. 8, justifying the relevance of using the

enhanced RLS algorithm with time-varying stability factor.

C. Experimental results

In the experiments, the principal and secondary motors drive

the AwAS with sinusoidal torque signals. The obtained

transmission deformation and the lever arm position are

reported in Fig. 9 and Fig. 10, respectively.
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Fig. 9. Transmission deformation φ in experiment
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Fig. 10. Level arm position r in experiment

To validate our estimation algorithm, we take advantage

of the calibrated torque sensor available in the AwAS and

consider the flexibility torque measured by the torque sensor

as the ground truth. The actual difference between the

nominal flexibility torque and its measure by the torque

sensor is shown in Fig. 11.
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Fig. 11. Flexibility torque: nominal (dashed, blue), measured by the torque
sensor (solid, green)

Figure 12 shows the stiffness estimation results. As in

the simulations of Sect. VI-B, we consider three different

estimation modalities: MODEL, SENSOR, and RESIDUAL.
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Fig. 12. Estimated stiffness: with nominal data (dot-dashed, green), with
MODEL estimation method (dotted, red), with SENSOR estimation method
(dashed, green), with RESIDUAL estimation method (solid, blue)

Before proceeding, it is worth noting that the nominal

flexibility torque obtained using eq. (28) and the nominal

AwAS data given in Sect. VI-A can be different from the real

flexibility torque of the AwAS, due to unmodeled dynamics

and uncertain knowledge of the model parameters. This will

also be reflected in a difference between the real stiffness and

the nominal one. In fact, the MODEL estimation method

is very accurate in tracking the nominal stiffness (the two

traces are practically superposed in Fig. 12). Indeed, the

comparison of these two obtained results provides MSE =
9.36 and MSREP = 0.034% as performance indices. Stated

differently, if the nominal stiffness had been the real one the

MODEL estimation method would have worked properly.

However, the results from the SENSOR estimation method,

that we assume to provide the real ground truth stiffness,

show a sensible difference with respect to the nominal

stiffness and therefore the actual need for an independent

stiffness estimator. On the other hand, the stiffness estimation

by the RESIDUAL method is quite accurate in reproducing

the SENSOR estimation results. Their relative comparison

in terms of performance indices yields MSE = 63.02 and

MSREP = 1.55%.

VII. CONCLUSIONS

We have presented a robust stiffness estimator for robot

joints with flexible transmissions, in particular for joints

with a principal motor used to control link motion and a

secondary motor used to separately adjust stiffness. The esti-

mator is realized in two stages. The first stage estimates the

flexibility torque of the transmission with a residual-based

method, using only the parameters of the principal motor

and its position sensor. In our discrete-time implementation,

a modified kinematic Kalman filter reduces the effects of

encoder discretization and quantization. The second stage

completes the stiffness estimation based on a RLS algorithm,

taking as inputs the transmission deformation, the secondary

motor position, and the flexibility torque estimated in the

first stage. The RLS algorithm has been enhanced so as to

obtain convergence also under poor excitation conditions,

which arise in serial configuration variable stiffness devices

due to the limited transmission deformations involved. The

role of the different components of the estimator and the

robustness of the whole algorithm have been verified first by
simulations. The presented experiments with the IIT AwAS

joint have confirmed the necessity and the benefits of using

the proposed stiffness estimator, which is able to compensate

for uncertain parameters and unmodeled dynamics in the

flexible transmission.
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