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Abstract. We study high-dimensional distribution learning in an agnostic setting where an
adversary is allowed to arbitrarily corrupt an ε-fraction of the samples. Such questions have a rich
history spanning statistics, machine learning, and theoretical computer science. Even in the most
basic settings, the only known approaches are either computationally inefficient or lose dimension-
dependent factors in their error guarantees. This raises the following question: Is high-dimensional
agnostic distribution learning even possible, algorithmically? In this work, we obtain the first compu-
tationally efficient algorithms with dimension-independent error guarantees for agnostically learning
several fundamental classes of high-dimensional distributions: (1) a single Gaussian, (2) a product
distribution on the hypercube, (3) mixtures of two product distributions (under a natural balanced-
ness condition), and (4) mixtures of spherical Gaussians. Our algorithms achieve error that is inde-
pendent of the dimension, and in many cases scales nearly linearly with the fraction of adversarially
corrupted samples. Moreover, we develop a general recipe for detecting and correcting corruptions
in high-dimensions that may be applicable to many other problems.

Key words. robust learning, high-dimensions, Gaussian distribution, mixture models, product
distributions
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1. Introduction.

1.1. Background. A central goal of machine learning is to design efficient al-
gorithms for fitting a model to a collection of observations. In recent years, there has
been considerable progress on a variety of problems in this domain, including algo-
rithms with provable guarantees for learning mixture models [FOS08, KMV10, MV10,
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BS10, HK13], phylogenetic trees [CGG02, MR05], hidden Markov models [AHK12],
topic models [AGM12, AGHK13], and independent component analysis [AGMS15].
These algorithms crucially rely on the assumption that the observations were actu-
ally generated by a model in the family. However, this simplifying assumption is not
meant to be exactly true, and it is an important direction to explore what happens
when it holds only in an approximate sense. In this work, we study the following
family of questions.

Question 1.1. Let D be a family of distributions on R
d. Suppose we are given

samples generated from the following process: First, m samples are drawn from some
unknown distribution P in D. Then, an adversary is allowed to arbitrarily corrupt
an ε-fraction of the samples. Can we efficiently find a distribution P ′ in D that is
f(ε, d)-close, in total variation distance, to P?

This is a natural formalization of the problem of designing robust and efficient
algorithms for distribution estimation. We refer to it as (proper) agnostic distribution
learning, and we refer to the samples as being ε-corrupted. This family of problems
has its roots in many fields, including statistics, machine learning, and theoretical
computer science. Within computational learning theory, it is related to the agnostic
learning model of Haussler [Hau92] and Kearns, Schapire, and Sellie [KSS94], where
the goal is to learn a labeling function whose agreement with some underlying target
function is close to the best possible, among all functions in some given class. In the
even more challenging malicious noise model [Val85, KL93], an adversary is allowed
to corrupt both the labels and the samples. A major difference with our setting is
that these models apply to supervised learning problems, while here we will work in
an unsupervised setting.

Within statistics and machine learning, inference problems like Question 1.1 are
often termed “estimation under model misspecification.” The usual prescription is
to use the maximum likelihood estimator [Hub67, Whi82], which is unfortunately
hard to compute in general. Even when ignoring computational considerations, the
maximum likelihood estimator is only guaranteed to converge to the distribution P ′

in D that is closest (in Kullback–Leibler divergence) to the distribution from which
the observations are generated. This is problematic because such a distribution is not
necessarily close to P at all.

A branch of statistics—called robust statistics [HR09, HRRS86]—aims to tackle
questions like the one above. The usual formalization is in terms of breakdown point,
which (informally) is the fraction of observations that an adversary would need to
control to be able to completely corrupt an estimator. In low-dimensions, this leads
to the prescription that one should use the empirical median instead of the empirical
mean to robustly estimate the mean of a distribution, and interquartile range for
robust estimates of the variance. In high-dimensions, the Tukey median [Tuk75] is
a high-dimensional analogue of the median that, although provably robust, is hard
to compute [JP78]. Similar hardness results have been shown [Ber06, HM13] for
essentially all known estimators in robust statistics.

Is high-dimensional agnostic distribution learning even possible, algorithmically?
The difficulty is that corruptions are often hard to detect in high-dimensions and could
bias the natural estimator by dimension-dependent factors. In this work, we study
agnostic distribution learning for a number of fundamental classes of distributions: (1)
a single Gaussian, (2) a product distribution on the hypercube {0, 1}d, (3) mixtures of
two product distributions (under a natural balancedness condition), and (4) mixtures
of k Gaussians with spherical covariances. Prior to our work, all known efficient
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744 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

algorithms (e.g., [LT15, BD15]) for these classes required the error guarantee, f(ε, d),
to depend polynomially on the dimension d. Hence, previous efficient estimators
could only tolerate at most a 1/ poly(d)-fraction of errors. In this work, we obtain the
first efficient algorithms for the aforementioned problems, where f(ε, d) is completely
independent of d and depends polynomially (often, nearly linearly) on the fraction ε
of corrupted samples. Our work is just a first step in this direction, and there are
many exciting questions left to explore.

1.2. Our techniques. All of our algorithms are based on a common recipe. The
first question to address is the following: Even if we were given a candidate hypothesis
P ′, how could we test if it is ε-close in total variation distance to P? The usual way
to certify closeness is to exhibit a coupling between P and P ′ that marginally samples
from both distributions, where the samples produced from each agree with probability
1− ε. However, we have no control over the process by which samples are generated
from P , in order to produce such a coupling. And even then, the way that an adversary
decides to corrupt samples can introduce complex statistical dependencies.

We circumvent this issue by working with an appropriate notion of parameter
distance, which we use as a proxy for the total variation distance between two distri-
butions in the class D. Various notions of parameter distance underly several efficient
algorithms for distribution learning in the following sense. If θ and θ′ are two sets of
parameters that define distributions Pθ and Pθ′ in a given class D, a learning algo-
rithm often relies on establishing the following type of relation1 between dTV(Pθ, Pθ′)
and the parameter distance dp(θ, θ

′):

(1) poly(dp(θ, θ
′), 1/d) ≤ dTV(Pθ, Pθ′) ≤ poly(dp(θ, θ

′), d) .

Unfortunately, in our agnostic setting, we cannot afford for (1) to depend on the
dimension d at all. Any such dependence would appear in the error guarantee of
our algorithm. Instead, the starting point of our algorithms is a notion of parameter
distance that satisfies

(2) poly(dp(θ, θ
′)) ≤ dTV(Pθ, Pθ′) ≤ poly(dp(θ, θ

′)) ,

which allows us to reformulate our goal of designing robust estimators, with distribu-
tion-independent error guarantees, as the goal of robustly estimating θ according to
dp. In several settings, the choice of the parameter distance is rather straightforward.
It is often the case that some variant of the `2-distance between the parameters works.2

Given our notion of parameter distance satisfying (2), our main ingredient is an
efficient method for robustly estimating the parameters. We provide two algorithmic
approaches, which are based on similar principles. Our first approach is faster, requir-
ing only approximate eigenvalue computations. Our second approach relies on convex
programming and achieves slightly better sample complexity, in some cases matching

1For example, the work of Kalai, Moitra, and Valiant [KMV10] can be reformulated as showing
that for any pair of mixtures of two Gaussians (with suitably bounded parameters), the following
quantities are polynomially related: (1) discrepancy in their low-order moments, (2) their parameter
distance, and (3) their total variation distance. This ensures that any candidate set of parameters
that produce almost identical moments must itself result in a distribution that is close in total
variation distance.

2This discussion already points to why it may be challenging to design agnostic algorithms for
mixtures of arbitrary Gaussians or arbitrary product distributions: It is not clear what notion of
parameter distance is polynomially related to the total variation distance between two such mixtures,
without any dependence on d.
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the information-theoretic limit. Notably, either approach can be used to give all of
our concrete learning applications with nearly identical sample complexity and error
guarantees. In what follows, we specialize to the problem of robustly learning the
mean µ of a Gaussian whose covariance is promised to be the identity, which we will
use to illustrate how both approaches operate. We emphasize that what is needed to
learn the parameters in more general settings requires many additional ideas.

Our first algorithmic approach is an iterative greedy method that, in each itera-
tion, filters out some of the corrupted samples. Given a set of samples S′ that contains
a set S of uncorrupted samples, an iteration of our algorithm either returns the sam-
ple mean of S′ or finds a filter that allows us to efficiently compute a set S′′ ⊂ S′

that is much closer to S. Note the sample mean µ̂ =
∑N

i=1(1/N)Xi (even after we

remove points that are obviously outliers) can be Ω(ε
√
d)-far from the true mean in

`2-distance. The filter approach shows that either the sample mean is already a good
estimate for µ or else there is an elementary spectral test that rejects some of the
corrupted points and almost none of the uncorrupted ones. The crucial observation
is that if a small number of corrupted points are responsible for a large change in the
sample mean, it must be the case that many of the error points are very far from the
mean in some particular direction. Thus, we obtain our filter by computing the top
absolute eigenvalue of a modified sample covariance matrix.

Our second algorithmic approach relies on convex programming. Here, instead of
rejecting corrupted samples, we compute appropriate weights wi for the samples Xi,
such that the weighted empirical average µ̂w =

∑N
i=1 wiXi is close to µ. We work

with the convex set

Cδ =

{
wi | 0 ≤ wi ≤ 1/((1− ε)N),

N∑
i=1

wi = 1,

∥∥∥∥
N∑
i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥
2

≤ δ

}
.

We prove that any set of weights in Cδ yields a good estimate µ̂w =
∑N

i=1 wiXi in the
obvious way. The catch is that the set Cδ is defined based on µ, which is unknown.
Nevertheless, it turns out that we can use the same type of spectral arguments that
underlie the filtering approach to design an approximate separation oracle for Cδ.
Combined with standard results in convex optimization, this yields an algorithm for
robustly estimating µ.

The third and final ingredient is some new concentration bounds. In both of the
approaches above, at best we are hoping that we can remove all of the corrupted
points and be left with only the uncorrupted ones, and then use standard estimators
(e.g., the empirical average) on them. However, an adversary could have removed
an ε-fraction of the samples in a way that biases the empirical average of the re-
maining uncorrupted samples. What we need are concentration bounds that show for
sufficiently large N , for samples X1, X2, . . . , XN from a Gaussian with mean µ and
identity covariance, that every set of (1− ε)N samples produces a good estimate for
µ. In some cases, we can derive such concentration bounds by appealing to known
concentration inequalities and taking a union bound. However, in other cases (e.g.,
concentration bounds for degree-two polynomials of Gaussian random variables) the
existing concentration bounds are not strong enough, and we need other arguments
to prove that every set of (1− ε)N samples produces a good estimate.

1.3. Our results. We give the first efficient algorithms for agnostically learning
several important distribution classes with dimension-independent error guarantees.
Our first main result is for a single arbitrary Gaussian with mean µ and covariance
Σ, which we denote by N (µ,Σ). In the previous subsection, we described our convex
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programming approach for learning the mean vector when the covariance is promised
to be the identity. A technically more involved version of the technique can handle the
case of zero mean and unknown covariance. More specifically, consider the following
convex set, where Σ is the unknown covariance matrix and ‖·‖F is the Frobenius
norm:

Cδ =

{
wi | 0 ≤ wi ≤ 1/((1− ε)N),

N∑
i=1

wi = 1,

∥∥∥∥Σ
−1/2

(
N∑
i=1

wiXiX
T
i

)
Σ−1/2 − I

∥∥∥∥
F

≤ δ

}
.

We design an approximate separation oracle for this unknown convex set, by analyzing
the spectral properties of the fourth moment tensor of a Gaussian. Combining these
two intermediate results, we obtain our first main result (below). Throughout this

paper, we will abuse notation and writeN ≥ Ω̃(f(d, ε, τ)) when referring to our sample
complexity, to signify that our algorithm works if N ≥ Cf(d, ε, τ)polylog(f(d, ε, τ))
for a large enough universal constant C.

Theorem 1.2. Let µ,Σ be arbitrary and unknown, and let ε, τ > 0. There is
a polynomial-time algorithm which, given ε, τ, and an ε-corrupted set of N samples

from N (µ,Σ) with N ≥ Ω̃
(d2 log5(1/τ)

ε2

)
, produces µ̂ and Σ̂ such that with probability

1− τ we have dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ O(ε log3/2(1/ε)).

We can alternatively establish Theorem 1.2 via our filtering technique. See sec-
tion 5. In the first version of our paper, our analysis required N & d3 log2(1/τ)/ε2

samples. In [DKK+17], we showed that a simple adaptation of our algorithm and anal-
ysis achieves the improved sample complexity above, which is information-theoretically
optimal up to logarithmic factors. We have incorporated this modification (along with
the analysis) into this version of the paper, for the sake of completeness.

Our second agnostic learning result is for a product distribution on the hypercube—
arguably the most fundamental discrete high-dimensional distribution. We solve this
problem using our filter technique, though our convex programming approach would
also yield similar results. We start by analyzing the balanced case, when no coordi-
nate is very close to being deterministic. This special case is interesting in its own
right and captures the essential ideas of our more involved analysis for the general
case. The reason is that, for two balanced product distributions, the `2-distance be-
tween their means is equivalent to their total variation distance (up to a constant
factor). This leads to a clean and elegant presentation of our spectral arguments.
For an arbitrary product distribution, we handle the coordinates that are essentially
deterministic separately. Moreover, we use the χ2-distance between the means as the
parameter distance and, as a consequence, we need to apply the appropriate correc-
tions to the covariance matrix. Formally, we prove the following theorem.

Theorem 1.3. Let Π be an unknown binary product distribution, and let ε, τ > 0.
There is a polynomial-time algorithm which, given ε, τ, and an ε-corrupted set of N

samples from Π with N ≥ Ω
(d6 log(1/τ)

ε3

)
, produces a binary product distribution Π̃

such that with probability 1− τ , we have dTV(Π, Π̃) ≤ O(
√
ε log(1/ε)).

For the sake of simplicity in the presentation, we did not make an effort to optimize
the sample complexity of our robust estimators in the above setting. We note that
methods similar to the analysis of the Gaussian setting can lead to near-optimal
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sample complexity in this setting as well. We also remark that for the case of balanced
binary product distributions, our algorithm achieves an error of O(ε

√
log(1/ε)).

Interestingly enough, the above two distribution classes are trivial to learn in
the noiseless case, but in the agnostic setting the learning problem turns out to be
surprisingly challenging. Using additional ideas, we are able to generalize our agnostic
learning algorithms to mixtures of the above classes under some natural conditions.
We note that even in the noiseless case, learning mixtures of the above families is
nontrivial. First, we study 2-mixtures of c-balanced products, which stipulate that
the coordinates of the mean vector of each component are in the range (c, 1− c). We
prove the following theorem.

Theorem 1.4 (informal). Let Π be an unknown mixture of two c-balanced binary
product distributions, and let ε, τ > 0. There is a polynomial-time algorithm which,

given ε, τ, and an ε-corrupted set of N samples from Π with N ≥ Ω̃
(d4 log(1/τ)

ε13/6

)
,

produces a mixture of two binary product distributions Π̃ such that with probability
1−τ , we have dTV(Π, Π̃) ≤ Oc(ε

1/6), where the notation Oc(·) suppresses dependence
on c.

This generalizes the algorithm of Freund and Mansour [FM99] to the agnostic
setting. An interesting open question is to improve the ε-dependence in the above
bound to (nearly) linear, or to remove the assumption of balancedness and obtain an
agnostic algorithm for mixtures of two arbitrary product distributions.

Finally, we give an agnostic learning algorithm for mixtures of spherical Gaussians.

Theorem 1.5 (informal). Let k be a positive integer, and let ε, τ > 0 be constants.
LetM be a mixture of k Gaussians with spherical covariances. There is a polynomial-
time algorithm which, given ε, τ , and an ε-corrupted set of N samples from M with
N ≥ poly(k, d, 1/ε, log(1/τ)), outputs anM′ such that with probability 1− τ , we have
dTV(M,M′) ≤ Õ(poly(k) · √ε).

Our agnostic algorithms for (mixtures of) balanced product distributions and for
(mixtures of) spherical Gaussians are conceptually related, since in both cases the
goal is to robustly learn the means of each component with respect to `2-distance.

In total, these results give new robust and computationally efficient estimators
for several well-studied distribution learning problems that can tolerate a constant
fraction of errors independent of the dimension. This points to an interesting new di-
rection of making robust statistics algorithmic. The general recipe we have developed
here gives us reason to be optimistic about many other problems in this domain.

1.4. Discussion and related work. Our results fit in the framework of density
estimation and parameter learning which are both classical problems in statistics with
a rich history (see, e.g., [BBBB72, DG85, Sil86, Sco92, DL01]). While these problems
have been studied for several decades by different communities, the computational
complexity of learning is still not well understood, even for some surprisingly simple
distribution families. Most textbook estimators are hard to compute in general, es-
pecially in high-dimensional settings. In the past few decades, a rich body of work
within theoretical computer science has focused on designing computationally effi-
cient distribution learning algorithms. In a seminal work, Kearns et al. [KMR+94]
initiated a systematic investigation of the computational complexity of distribution
learning. Since then, efficient learning algorithms have been developed for a wide
range of distributions in both low- and high-dimensions [Das99, FM99, AK01, VW02,
CGG02, MR05, BV08, KMV10, MV10, BS10, DDS12, CDSS13, DDO+13, CDSS14a,
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CDSS14b, HP15, ADLS17, DDS15b, DDKT16, DKS16b, DKS16a].
We will be particularly interested in efficient learning algorithms for mixtures of

high-dimensional Gaussians and mixtures of product distributions, as this is the fo-
cus of our algorithmic results in the agnostic setting. In a pioneering work, Dasgupta
[Das99] introduced the problem of parameter estimation of a Gaussian mixture to
theoretical computer science, and gave the first provably efficient algorithms under
the assumption that the components are suitably well-separated. Subsequently, a
number of works improved these separation conditions [AK01, VW02, BV08] and
ultimately removed them entirely [KMV10, MV10, BS10]. In another line of work,
Freund and Mansour [FM99] gave the first polynomial-time algorithm for properly
learning mixtures of two binary product distributions. This algorithm was substan-
tially generalized to phylogenetic trees [CGG02] and to mixtures of any constant
number of discrete product distributions [FOS08]. Given the vast body of work on
high-dimensional distribution learning, there are a plethora of problems where one
could hope to reconcile robustness and computational efficiency. Thus far, the only
setting where robust and efficient algorithms are known is in one-dimensional distri-
bution families, where brute-force search or some form of polynomial regression often
works. In contrast, essentially nothing is known about efficient agnostic distribution
learning in the high-dimensional setting that we study here.

Question 1.1 also resembles learning in the presence of malicious errors [Val85,
KL93]. There, an algorithm is given samples from a distribution along with their
labels according to an unknown target function. The adversary is allowed to corrupt
an ε-fraction of both the samples and their labels. A sequence of works studied the
problem of learning a homogeneous halfspace with malicious noise in the setting where
the underlying distribution is a Gaussian [Ser01, Ser03, KLS09], culminating in the
work of Awasthi, Balcan, and Long [ABL17], who gave an efficient algorithm that
finds a halfspace with agreement O(ε). There is no direct connection between their
problem and ours, especially since one is a supervised learning problem and the other
is unsupervised. We note, however, that there is an interesting technical parallel in
that the work [KLS09] also uses spectral methods to detect outliers. Both their work
and our algorithm for agnostically learning the mean are based on the intuition that
an adversary can only substantially bias the empirical mean if the corruptions are
correlated along some direction. More specifically, the authors of [KLS09] produce
a “hard” filter which leads to errors that scale logarithmically with the dimension,
even in a weaker corruption model than ours. Our algorithms need to handle many
significant conceptual and technical complications that arise when working with higher
moments or other distribution families.

Another connection is to the work on robust principal component analysis (PCA).
PCA is a transformation that (among other things) is often justified as being able
to find the affine transformation Y = Σ−1/2(X − µ) that would place a collection
of Gaussian random variables in isotropic position. One can think of our results on
agnostically learning a Gaussian as a type of robust PCA that tolerates gross corrup-
tions, where entire samples are corrupted. This is different from other variants of the
problem where random sets of coordinates of the points are corrupted [CLMW11],
or where the uncorrupted points were assumed to lie in a low-dimensional subspace
to begin with [ZL14, LMTZ15]. Finally, Brubaker [Bru09] studied the problem of
clustering samples from a well-separated mixture of Gaussians in the presence of ad-
versarial noise. The goal of [Bru09] was to separate the Gaussian components from
each other, while the adversarial points are allowed to end up in any of clusters. Our
work is orthogonal to [Bru09], since even if such a clustering is given, the problem
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still remains to estimate the parameters of each component.

1.5. Concurrent and subsequent work. In concurrent and independent work,
Lai, Rao, and Vempala [LRV16] also study high-dimensional agnostic learning. Their
results were shown to apply for more general types of distributions, but our guar-
antees are stronger when learning a Gaussian. Our results are qualitatively similar
when the mean is unknown and the covariance is promised to be the identity. But
when the covariance is also unknown, their algorithm estimates the mean and co-
variance to within error O(

√
ε‖Σ‖2 log d) and O(

√
ε log d‖Σ‖2), measured in `2-norm

and Frobenius norm, respectively. However, such guarantees do not directly imply
bounds on the total variation distance (which is our main focus), because one needs to
estimate the parameters with respect to Mahalanobis distance. In contrast, by virtue
of being close in total variation distance, our estimates for the mean and covariance
are within Õ(ε

√
‖Σ‖2) and Õ(ε‖Σ‖2) of the true values, again measured in `2 norm

and Frobenius norm, respectively. An interesting open question is to bridge these two
works—what are the most general families of distributions for which one can obtain
nearly optimal agnostic learning guarantees?

After the initial publication of our results [DKK+16], there has been a flurry of
recent work on robust high-dimensional estimation. Diakonikolas, Kane, and Stewart
[DKS16c] studied the problem of learning the parameters of a graphical model in the
presence of noise, when given its graph theoretic structure. Charikar, Steinhardt,
and Valiant [CSV17] developed algorithms that can tolerate a fraction of corruptions
greater than a half, under the weaker goal of outputting a small list of candidate
hypotheses that contains a parameter set close to the true values. Balakrishnan, Du,
Li, and Singh (see [Li17, DBS17, BDLS17]) studied sparse mean and covariance esti-
mation in the presence of noise obtaining computationally efficient robust algorithms
with sample complexity sublinear in the dimension. Diakonikolas, Kane, and Stew-
art [DKS17] proved statistical query lower bounds providing evidence that the error
guarantees of our robust mean and covariance estimation algorithms are best possible,
within constant factors, for efficient algorithms. In a subsequent paper [DKK+17],
we obtained improved bounds on the sample complexity of our algorithms, which
are optimal up to polylogarithmic factors. For the sake of completeness, we include
these improved sample bounds in the present version of this paper. In the same
work [DKK+17], we showed that our algorithmic approach easily extends to obtain
dimension-independent robustness guarantees under much weaker distributional as-
sumptions, and gave a practical demonstration of the efficacy of our robust algorithms
on both real and synthetic data.

Since the initial submission of the journal version of this paper, there has been
a substantial amount of work on robust high-dimensional estimation in a variety
of settings. Diakonikolas, Kane, and Stewart [DKS18a] studied probably approx-
imately correct (PAC) learning of geometric concept classes (including low-degree
polynomial threshold functions and intersections of halfspaces) in the same corrup-
tion model as ours, obtaining the first dimension-independent error guarantees for
these classes. Steinhardt, Charikar, and Valiant [SCV18] focused on determinis-
tic conditions of a dataset which allow robust estimation to be possible. In our
initial publication, we gave explicit deterministic conditions in various settings; by
focusing directly on this goal, [SCV18] somewhat relaxed some of these assump-
tions. Meister and Valiant [MV17] studied learning in a crowdsourcing model, where
the fraction of honest workers may be very small (similar to [CSV17]). Qiao and
Valiant [QV18] considered robust estimation of discrete distributions in a setting
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where we have several sources (a fraction of which are adversarial) who each provide
a batch of samples. A number of simultaneous works [KSS18, HL18, DKS18b] in-
vestigated robust mean estimation in even more general settings, and we apply their
techniques to learning mixtures of spherical Gaussians under minimal separation con-
ditions. Finally, several concurrent results studied robustness in supervised learning
tasks [PSBR18, KKM18, DKK+18], including regression and support vector machine
(SVM) problems. Despite all of this rapid progress, there are still many interesting
theoretical and practical questions left to explore.

1.6. Organization. The structure of this paper is as follows: In section 2, we
introduce basic notation and a number of useful facts that will be required throughout
the paper, as well as the formal definition of our adversary model. In section 3,
we discuss several natural approaches to high-dimensional agnostic learning, all of
which lose polynomial factors that depend on the dimension, in terms of their error
guarantee.

The main body of the paper is in sections 4–8. Sections 4 and 6 illustrate our
convex programming framework, while sections 5, 7, and 8 illustrate our filter frame-
work. More specifically, in sections 4 and 5, we analyze the setting of a single Gaussian
with unknown mean and unknown covariance, using our convex programming and fil-
ter frameworks, respectively. In section 6, we generalize the convex programming
method to obtain an agnostic algorithm for mixtures of spherical Gaussians with
unknown means. In section 7, we apply our filter techniques to a binary product dis-
tribution, and generalize these in section 8 to obtain an agnostic learning algorithm
for a mixture of two balanced binary product distributions.

We note that for some of the more advanced applications of our frameworks,
the technical details can get in the way of the fundamental ideas. For the reader
who is interested in seeing the details of our most basic application of the convex
programming framework, we recommend reading the case of a Gaussian with unknown
mean in section 4.3. Similarly, for the filter framework, we suggest either the Gaussian
with unknown mean in section 5.1 or the balanced product distribution in section 7.1.

2. Preliminaries.

2.1. Basic notation. Throughout this paper, if v is a vector, we will let ‖v‖2
denote its Euclidean norm. If M is a matrix, we will let ‖M‖2 denote its spectral
norm, and ‖M‖F denote its Frobenius norm. We will also let � and � denote the
positive semidefinite (PSD) ordering on matrices. For a discrete distribution P , we
will denote by P (x) the probability mass at point x. For a continuous distribution, let
it denote the probability density function at x. Let S be a multiset over {0, 1}d . We
will write X ∈u S to denote that X is drawn from the empirical distribution defined
by S. Throughout the paper, we let ⊗ denote the Kronecker product of matrices.

As a measure of distance between distributions, we will use the notion of total
variation distance.

Definition 2.1. Let P,Q be two probability distributions on R
d. Then the total

variation distance between P and Q, denoted dTV(P,Q), is defined as

dTV(P,Q) = sup
A⊆Rd

|P (A)−Q(A)| .

2.2. Types of adversaries. In this paper, we will consider a powerful model
for agnostic distribution learning that generalizes many other existing models. The
standard setup involves an oblivious adversary who chooses a distribution that is close
in total variation distance to an unknown distribution in some class D.
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Definition 2.2. Given ε > 0 and a class of distributions D, the oblivious adver-
sary chooses a distribution P such that there is an unknown distribution D ∈ D with
dTV(P,D) ≤ ε. An algorithm is then given m independent samples X1, X2, . . . , Xm

from P .

The goal of the algorithm is to return the parameters of a distribution D̂ in D,
where dTV(D, D̂) is small. We refer to the above adversary as oblivious because
it fixes the model for noise before seeing any of the samples. In contrast, a more
powerful adversary is allowed to inspect the samples before corrupting them, both by
adding corrupted points and deleting uncorrupted points. We refer to this as the full
adversary.

Definition 2.3. Given ε > 0 and a class of distributions D, the full adver-
sary operates as follows: The algorithm specifies some number of samples m. The
adversary generates m samples X1, X2, . . . , Xm from some (unknown) distribution
D ∈ D. It then draws m′ from an appropriate distribution. This distribution is
allowed to depend on X1, X2, . . . , Xm, but when marginalized over the m samples sat-
isfies m′ ∼ Bin(m, ε). The adversary is allowed to inspect the samples, removes m′ of
them, and replaces them with arbitrary points. The set of m points is given (in any
order) to the algorithm.

We remark that there are no computational restrictions on the adversary. As
before, the goal is to return the parameters of a distribution D̂ in D, where dTV(D, D̂)
is small. The reason we allow the draw m′ to depend on the samples X1, X2, . . . , Xm

is because our algorithms will tolerate this extra generality, and it will allow us to
show that the full adversary is at least as strong as the oblivious adversary (this would
not necessarily be true if m′ were sampled independently from Bin(m, ε)).

We rely on the following well-known fact.

Fact 2.4. Let P,D be two distributions such that dTV(P,D) = ε. Then there
are distributions N1 and N2 such that (1 − ε1)P + ε1N1 = (1 − ε2)D + ε2N2, where
ε1 + ε2 = ε.

Now we can describe how the full adversary can corrupt samples from D to get
samples distributed according to P .

Claim 2.5. The full adversary can simulate any oblivious adversary.

Proof. We draw m samples X1, X2, . . . , Xm from D. We delete each sample Xi

independently with probability ε2 and replace it with an independent sample from
N2. This gives a set of samples Y1, Y2, . . . , Ym that are independently sampled from
(1 − ε2)D + ε2N2. Since the distributions (1 − ε1)P + ε1N1 and (1 − ε2)D + ε2N2

are identical, we can couple them to independent samples Z1, Z2, . . . , Zm from (1 −
ε1)P + ε1N1. Now we can delete and replace each sample Zi that came from N1 with
an independent sample from P . The result is a set of samples that are independently
sampled from P where we have made m′ edits and marginally m′ ∼ Bin(m, ε1 + ε2),
although m′ has and needs to have some dependence on the original samples from
D.

The challenge in working with the full adversary is that even the samples that
came from D can have biases. The adversary can now choose how to remove uncor-
rupted points in a careful way so as to compensate for certain other biases that he
introduces using the corrupted points.

Throughout this paper, we will make use of the following notation and terminol-
ogy.
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Definition 2.6. We say a set of samples X1, X2, . . . , Xm is an ε-corrupted set
of samples generated by the oblivious (resp., full) adversary if it is generated by the
process described above in the definition of the oblivious (resp., full) adversary. If
it was generated by the full adversary, we let G ⊆ [m] denote the indices of the
uncorrupted samples, and we let E ⊆ [m] denote the indices of the corrupted samples.

In this paper, we will give a number of algorithms for agnostic distribution learning
that work in the full adversary model. In our analysis, we will identify a set of events
that ensure the algorithm succeeds and will bound the probability that any of these
events does not occur when m is suitably large. We will often explicitly invoke the
assumption that |E| ≤ 2εm. We can do this even though the number of points that
are corrupted is itself a random variable, because by the Chernoff bound, as long as

m ≥ O
( log 1/τ

ε

)
, we know that |E| ≤ 2εm holds with probability at least 1 − O(τ).

Thus, making the assumption that |E| ≤ 2εm costs us an additional additive O(τ)
term in our union bound, when bounding the failure probability of our algorithms.

2.3. Distributions of interest. One object of study in this paper is the Gaus-
sian (or normal) distribution.

Definition 2.7. A Gaussian distribution N (µ,Σ) with mean µ and covariance
Σ is the distribution with probability density function

f(x) = (2π)−d/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

We will also be interested in binary product distributions.

Definition 2.8. A (binary) product distribution is a probability distribution over
{0, 1}d whose coordinate random variables are independent. Note that a binary product
distribution is completely determined by its mean vector.

We will also be interested in mixtures of such distributions.

Definition 2.9. A mixture P of distributions P1, . . . , Pk with mixing weights
α1, . . . , αk is the distribution defined by

P (x) =
∑

j∈[k]

αjPk(x),

where αj ≥ 0 for all j and
∑

j∈[k] αj = 1.

2.4. Bounds on TV distance. The Kullback–Leibler (KL) divergence (also
known as relative entropy, information gain, or information divergence) is a well-
known measure of distance between two distributions.

Definition 2.10. Let P,Q be two probability distributions on R
d. Then the KL

divergence between P and Q, denoted dKL(P‖Q), is defined as

dKL(P‖Q) =

∫

Rd

log
dP

dQ
dP .

The primary interest we have in this quantity is the fact that (1) the KL divergence
between two Gaussians has a closed form expression, and (2) it can be related (often
with little loss) to the total variation distance between the Gaussians. The first
statement is expressed in the fact below.
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Fact 2.11. Let N (µ1,Σ1) and N (µ2,Σ2) be two Gaussians such that det(Σ1),
det(Σ2) 6= 0. Then

dKL (N (µ1,Σ1)‖N (µ2,Σ2))(3)

=
1

2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)− d− ln

(
det(Σ1)

det(Σ2)

))
.

The second statement is encapsulated in the well-known Pinsker’s inequality.

Theorem 2.12 (Pinsker’s inequality). Let P,Q be two probability distributions
over R

d. Then

dTV(P,Q) ≤
√

1

2
dKL(P‖Q) .

With this we can show the following two useful corollaries, which allow us to
relate parameter distance between two Gaussians to their total variation distance.
The first corollary bounds the total variation distance between two Gaussians with
identity covariance in terms of the Euclidean distance between the means.

Corollary 2.13. Let µ1, µ2 ∈ R
d be arbitrary. Then dTV (N (µ1, I),N (µ2, I)) ≤

1√
2
‖µ2 − µ1‖2.
Proof. In the case where Σ1 = Σ2 = I, (3) simplifies to

dKL (N (µ1, I)‖N (µ2, I)) =
1

2
‖µ2 − µ1‖22.

Pinsker’s inequality (Theorem 2.12) then implies that

dTV (N (µ1, I),N (µ2, I)) ≤
√

1

2
dKL (N (µ1, I)‖N (µ2, I)) =

1√
2
‖µ2 − µ1‖2,

as desired.

The second corollary bounds the total variation distance between two mean 0
Gaussians in terms of the Frobenius norm of the difference between their covariance
matrices.

Corollary 2.14. Let δ > 0 be sufficiently small. Let Σ1,Σ2 such that ‖I −
Σ

−1/2
2 Σ1Σ

−1/2
2 ‖F = δ. Then,

dTV(N (0,Σ1)|| N (0,Σ2)) ≤ O(δ) .

Proof. Let M = Σ
−1/2
2 Σ1Σ

−1/2
2 . Then (3) simplifies to

dKL (N (µ1,Σ1)‖N (µ2,Σ2)) =
1

2
(tr(M)− d− ln det(M)) .

Since both terms in the last line are rotationally invariant, we may assume without loss
of generality that M is diagonal. Let M = diag(1+ λ1, . . . , 1+ λd). Thus, the KL di-

vergence between the two distributions is given exactly by 1
2

∑d
i=1 (λi − log(1 + λi)) ,

where we are guaranteed that (
∑d

i=1 λ
2
i )

1/2 = δ. By the second order Taylor approx-
imation to ln(1 + x), for x small we have that for δ sufficiently small,

d∑

i=1

λi − log(1 + λi) = Θ

(
d∑

i=1

λ2
i

)
= Θ(δ2) .
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Thus, we have shown that for δ sufficiently small, dKL (N (µ1,Σ1)‖N (µ2,Σ2)) ≤
O(δ2). The result now follows by an application of Pinsker’s inequality (Theorem
2.12).

Our algorithm for agnostically learning an arbitrary Gaussian will be based on
solving two intermediate problems: (1) We are given samples from N (µ, I) and our
goal is to learn µ. (2) We are given samples from N (0,Σ) and our goal is to learn
Σ. The above bounds on total variation distance will allow us to conclude that our
estimate is close in total variation distance to the unknown Gaussian distribution in
each of the two settings.

We note the following folklore sample complexity bounds for learning a Gaussian
in the nonagnostic setting.

Theorem 2.15. N = Θ
(d+log(1/τ)

ε2

)
samples are both necessary and sufficient to

learn a d-dimensional Gaussian with unknown mean and known covariance to total
variation distance ε with probability 1− τ .

Theorem 2.16. N = Θ
(d2+log(1/τ)

ε2

)
samples are both necessary and sufficient to

learn a d-dimensional Gaussian with unknown mean and covariance to total variation
distance ε with probability 1− τ .

We will also need the following lemma bounding the total variation distance
between two product distributions.

Lemma 2.17. Let P,Q be binary product distributions with mean vectors p, q ∈
(0, 1)d. We have that

d2TV(P,Q) ≤ 2

d∑

i=1

(pi − qi)
2

(pi + qi)(2− pi − qi)
.

Proof. We include the simple proof for completeness. By Kraft’s inequality (see,
e.g., Theorem 5.2.1 in [CT06]), for any pair of distributions, we have that d2TV(P,Q) ≤
2H2(P,Q), where H(P,Q) denotes the Hellinger distance between P,Q. Since P,Q
are product measures, we have that

1−H2(P,Q) =

d∏

i=1

(1−H2(Pi, Qi)) =

d∏

i=1

(
√
piqi +

√
(1− pi)(1− qi)) .

The elementary inequality 2
√
ab = a+ b− (

√
a−
√
b)2, a, b > 0, gives that

√
piqi +

√
(1− pi)(1− qi) ≥ 1− (pi − qi)

2

(pi + qi)(2− pi − qi)
.

Let

zi =
(pi − qi)

2

(pi + qi)(2− pi − qi)
.

We have

d2TV(P,Q) ≤ 2 ·
(
1−

d∏

i=1

(1− zi)

)
≤ 2

d∑

i=1

zi ,

where the last inequality follows from the union bound.
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2.5. Additional concentration lemmas. In this section, we list a number of
standard concentration inequalities for nice random variables which we will frequently
use throughout this paper. The proofs of these results are standard and omitted; see,
e.g., [Ver10] for a more thorough treatment of these results. The first is a Chernoff
bound for bounded random variables.

Theorem 2.18. Let Z1, . . . , Zd be independent random variables with Zi sup-
ported on [ai, bi]. Let Z =

∑d
i=1 Zi. Then for any T > 0,

Pr(|Z − E[Z]| > T ) ≤ 2 exp

(
−2T 2

∑d
i=1(bi − ai)2

)
.

We will also require the following tail bounds for Gaussians and quadratic forms
of Gaussians.

Lemma 2.19. Let n be a positive integer. Let D be a sub-Gaussian distribution
with mean 0 and covariance I. Let Yi ∼ D be independent, for i = 1, . . . , n. Let
v ∈ R

d be an arbitrary unit vector. Then, there exists a universal constant B > 0 so
that for all T > 0, we have

Pr

[∣∣∣∣∣
1

n

n∑

i=1

〈v, Yi〉
∣∣∣∣∣ > T

]
≤ 4 exp

(
−BnT 2

)
.

Lemma 2.20 (Hanson–Wright). Let n be a positive integer. Let D be a sub-
Gaussian distribution with mean 0 and covariance Σ � I. Let Yi ∼ D be independent,
for i = 1, . . . , n. Let U ∈ R

d×d satisfy U � 0 and ‖U‖F = 1. Then, there exists a
universal constant B > 0 so that for all T > 0, we have

Pr

[∣∣∣∣∣
1

n

n∑

i=1

tr(XiX
>
i U)− tr(U)

∣∣∣∣∣ > T

]
≤ 4 exp

(
−Bnmin(T, T 2)

)
.

By standard union bound arguments (see, e.g., [Ver10]), we obtain the following
concentration results for the empirical mean and covariance of a set of Gaussian
vectors.

Lemma 2.21. Let n be a positive integer. Let D be a sub-Gaussian distribution
with mean 0 and covariance I. Let Yi ∼ D be independent, for i = 1, . . . , n. Then,
there exist universal constants A,B > 0 so that for all t > 0 we have

Pr

[∥∥∥∥∥
1

n

n∑

i=1

Yi

∥∥∥∥∥
2

> t

]
≤ 4 exp

(
Ad−Bnt2

)
.

Lemma 2.22. With the same setup as in Lemma 2.21, there exist universal con-
stants A,B > 0 so that for all t > 0 we have

Pr

[∥∥∥∥∥
1

n

n∑

i=1

YiY
>
i − I

∥∥∥∥∥
2

> t

]
≤ 4 exp

(
Ad−Bnmin(t, t2)

)
.

2.6. Agnostic hypothesis selection. Several of our algorithms will return a
polynomial-sized list of hypotheses at least one of which is guaranteed to be close to
the target distribution. Usually (e.g., in a nonagnostic setting), one could use a poly-
nomial number of additional samples to run a tournament to identify the candidate
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hypothesis that is (roughly) the closest to the target distribution. In the discussion
that follows, we will refer to these additional samples as test samples. Such hypothesis
selection algorithms have been extensively studied [Yat85, DL96, DL97, DL01, DK14,
AJOS14, SOAJ14, DDS15a, DDS15b]. Unfortunately, against a strong adversary we
run into a serious technical complication: the training samples and test samples are
not necessarily independent. Moreover, even if we randomly partition our samples
into training and test, a priori there are an unbounded set of possible hypotheses that
the training phase could output, and when we analyze the tournament we cannot
condition on the list of hypotheses and assume that the test samples are sampled
anew. Our approach is to require our original algorithm to return only hypotheses
from some finite set of possibilities; we will see this mitigates the problem.

Lemma 2.23. Let C be a class of probability distributions. Suppose that for some
N, ε, τ > 0 there exists a polynomial-time algorithm that, given N independent samples
from some Π ∈ C, of which up to a 2ε-fraction have been arbitrarily corrupted, returns
a list L of M distributions whose probability density functions are explicitly computable
and which can be effectively sampled from such that with 1−τ/2 probability there exists
a Π′ ∈ L with dTV(Π

′,Π) < δ. Suppose, furthermore, that the distributions returned
by this algorithm are all in some fixed set M. Then there exists another polynomial-
time algorithm, which, given O(N + (log(|M|) + log(1/τ))/ε2) samples from Π, an
ε-fraction of which have been arbitrarily corrupted, returns a single distribution Π′

such that with 1− τ probability dTV(Π
′,Π) < O(δ + ε).

Remark 2.24. As a simple corollary of the agnostic tournament, observe that this
allows us to do agnostic learning without knowing the precise error rate ε. Throughout
the paper, we assume the algorithm knows ε, and guarantees that the output will
have error which is at most O(f(ε)). However, if the algorithm is not given this
information, and instead is given an η and asked to return something with error at
most O(f(ε + η)), we may simply grid over {η, (1 + γ)η, (1 + γ)2η, . . . , 1} (here γ is
some arbitrary constant that governs a tradeoff between runtime and accuracy), run
our algorithm with ε set to each element in this set, and perform hypothesis selection
via Tournament. Then it is not hard to see that we are guaranteed to output
something which has error at most O(f(ε+ (1 + γ)η)).

Proof. First, we randomly choose a subset of N of our samples and a disjoint
subset of C(log(|M|) + log(1/τ))/ε2 of our samples for some sufficiently large C.
Note that with high probability over our randomization, at most a 2ε-fraction of
samples from each subset are corrupted. Thus, we may instead consider the stronger
adversary who sees a set S1 of N independent samples from Π and another set, S2,
of C(log(|M|)+ log(1/τ))/ε2 samples from Π and can arbitrary corrupt a 2ε-fraction
of each, giving sets S′

1,S
′
2.

With probability at least 1−τ/2 over S1, the original algorithm run on S′
1 returns

a set L satisfying the desired properties.
For two distributions P and Q in M we let APQ be the set of inputs x where

PrP (x) > PrQ(x). We note that we can test membership in APQ as, by assumption,
the probability density functions are computable. We also note that dTV(P,Q) =
PrP (APQ)−PrQ(APQ). Our tournament will depend on the fact that if P is close to
the target and Q is far away, then many samples will necessarily lie in APQ.

We claim that with probability at least 1− τ/2 over the choice of S2, we have for
any P,Q ∈M,

Pr
x∈uS2

(x ∈ APQ) = Pr
x∼Π

(x ∈ APQ) +O(ε).
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This follows by Chernoff bounds and a union bound over the |M|2 possibilities for P
and Q. Since the total variation distance between the uniform distributions over S2

and S′
2 is at most 2ε, we also have for S′

2 that

Pr
x∈uS′

2

(x ∈ APQ) = Pr
x∼Π

(x ∈ APQ) +O(ε).

Suppose that dTV(P,Π) < δ and dTV(Q,Π) > 5δ + Cε. We then have that

Pr
x∈uS′

2

(x ∈ APQ) = Pr
x∼Π

(x ∈ APQ) +O(ε) ≥ Pr
x∼P

(x ∈ APQ) +O(ε)− δ

≥ Pr
x∼Q

(x ∈ APQ) + δ + Cε/5.

On the other hand, if dTV(Π, Q) < δ, then

Pr
x∈uS′

2

(x ∈ APQ) = Pr
x∼Π

(x ∈ APQ) +O(ε) < Pr
x∼Q

(x ∈ APQ) + δ + Cε/5.

Therefore, if we throw away any Q in our list for which there is a P in our list such
that

Pr
x∈uS′

2

(x ∈ APQ) ≥ Pr
x∼Q

(x ∈ APQ) + δ + Cε/5,

we have thrown away all the Q with dTV(Q,Π) > 5δ + Cε, but none of the Q with
dTV(Q,Π) < δ. Therefore, there will be a Q remaining, and returning it will yield an
appropriate Π′.

3. Some natural approaches, and why they fail. Many of the agnostic dis-
tribution learning problems that we study are so natural that one would immediately
wonder why simpler approaches do not work. Here we detail some other plausible
approaches, and what causes them to lose dimension-dependent factors (if they have
any guarantees at all). For the discussion that follows, we note that by Corollary
2.13 in order to achieve an estimate that is O(ε)-close in total variation distance
(for a Gaussian when µ is unknown and Σ = I), it is necessary and sufficient that
‖µ̂− µ‖2 = O(ε).

Learn each coordinate separately. One plausible approach for robust mean
estimation in high-dimensions is to agnostically learn along each coordinate separately.
For instance, if our goal is to agnostically learn the mean of a Gaussian with known
covariance I, we could try to learn each coordinate of the mean separately. But
since an ε-fraction of the samples are corrupted, our estimate can be off by ε in each
coordinate and would be off by ε

√
d in high-dimensions.

Maximum likelihood. Given a set of samples X1, . . . , XN and a class of distri-
butions D, the maximum likelihood estimator (MLE) is the distribution F ∈ D that

maximizes
∏N

i=1 F (Xi). Equivalently, F minimizes the negative log likelihood (NLL),
which is given by

NLL(F,X1, . . . , XN ) = −
N∑

i=1

logF (Xi) .

In particular, if D = {N (µ, I) : µ ∈ R
d} is the set of Gaussians with unknown mean

and identity covariance, we see that for any µ ∈ R
d, the NLL of the set of samples is
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given by

NLL(N (µ, I), X1, . . . , XN ) = −
N∑

i=1

log

(
1√
2π

e−‖Xi−µ‖2
2/2

)

= N log
√
2π +

1

2

N∑

i=1

‖Xi − µ‖22 ,

and so the µ which minimizes NLL(N (µ, I), X1, . . . , XN ) is the mean of the samples
Xi, since for any set of vectors v1, . . . , vN , the average of the vi’s is the minimizer of
the function h(x) =

∑N
i=1 ‖vi−x‖22. Hence, if an adversary places an ε-fraction of the

points at some very large distance, then the estimate for the mean would need to move
considerably in that direction. By placing the corruptions further and further away,
the MLE can be an arbitrarily bad estimate. That is, even though it is well known
[Hub67, Whi82] that the MLE converges to the distribution F ∈ D that is closest in
KL divergence to the distribution from which our samples were generated (i.e., after
the adversary has added corruptions), F is not necessarily close to the uncorrupted
distribution.

Geometric median. In one-dimension, it is well-known that the median pro-
vides a provably robust estimate for the mean in a number of settings. The mean
of a set of points a1, . . . , aN is the minimizer of the function f(x) =

∑N
i=1(ai − x)2,

and in contrast the median is the minimizer of the function f(x) =
∑N

i=1 |ai − x|. In
higher-dimensions, there are many natural definitions for the median that generalize
the one-dimensional case. The Tukey median is one such notion, but as we discussed
it is hard to compute [JP78], and the best-known algorithms run in time exponential
in d. Motivated by this, the geometric median is another high-dimensional notion of
a median. It often achieves better robustness than the mean and can be computed
quickly [CLM+16]. The formal definition is

geomed(S) , min
v

∑

x∈S

‖x− v‖2 .

Unfortunately, this notion of median still incurs an error containing a factor of O(
√
d).

Proposition 3.1 (Proposition 2.1 of [LRV16]). Given a set S of N = Ω
(d+log(1/τ)

ε2

)

samples from N (0, I), then with probability at least 1− τ , there exists a corruption S′

of S, such that

geomed(S′) = Ω(ε
√
d).

4. Agnostically learning a Gaussian, via convex programming. In this
section we give a polynomial-time algorithm to agnostically learn a single Gaussian
up to error Õ(ε). Our approach is based on the following ingredients: First, in section
4.1, we define the set SN,ε, which will be a key algorithmic object in our framework. In
section 4.2 we give key, new concentration bounds on certain statistics of Gaussians.
We will make crucial use of these concentration bounds throughout this section. In
section 4.3 we give an algorithm to agnostically learn a Gaussian with unknown mean
and whose covariance is promised to be the identity via convex programming. This
will be an important subroutine in our overall algorithm, and it also helps to illustrate
our algorithmic approach without many of the additional complications that arise in
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our later applications. In section 4.4 we show how to robustly learn a Gaussian with
mean 0 and unknown covariance again via convex programming. Finally, in section 4.5
we show how to combine these two intermediate results to get our overall algorithm.

4.1. The set SN,ε. An important algorithmic object for us will be the following
set.

Definition 4.1. For any 1
2 > ε > 0 and any integer N , let

SN,ε =

{
(w1, . . . , wN ) :

N∑

i=1

wi = 1 and 0 ≤ wi ≤
1

(1− 2ε)N
∀i
}

.

Next, we motivate this definition. For any J ⊆ [N ], let wJ ∈ R
N be the vector

which is given by wJ
i = 1

|J| for i ∈ J and wJ
i = 0 otherwise. Then, observe that

SN,ε = conv
{
wJ : |J | = (1− 2ε)N

}
,

and so we see that this set is designed to capture the notion of selecting a set of
(1− 2ε)N samples from N samples.

Given w ∈ SN,ε we will use the notation

wg =
∑

i∈G

wi and wb =
∑

i∈E

wi

to denote the total weight on good and bad points, respectively. The following facts
are immediate from |E| ≤ 2εN and the properties of SN,ε.

Fact 4.2. If w ∈ SN,ε and |E| ≤ 2εN , then wb ≤ 2ε
1−2ε . Moreover, the renormal-

ized weights w′ on good points, given by w′
i =

wi

wg
for all i ∈ G and w′

i = 0 otherwise,

satisfy w′ ∈ SN,4ε.

4.2. Concentration inequalities. Throughout this section and in section 6, we
will make use of various concentration bounds on low moments of Gaussian random
variables. Some are well-known, and others are new but follow from known bounds
and appropriate union bound arguments.

4.2.1. Empirical estimates of first and second moments of large subsets.

We will also be interested in how well various statistics of Gaussians concentrate
around their expectation, when we take the worst-case set of weights in SN,ε. This
is more subtle than standard settings such as Lemma 2.21 or 2.22 because as we
take more samples, any fixed statistic (e.g., taking the uniform distribution over the
samples) concentrates better, but the size of SN,ε (e.g., the number of sets of (1−2ε)N
samples) grows, too. We defer the proofs to Appendix A. The first concerns the
behavior of the empirical covariance.

Lemma 4.3. Fix ε ≤ 1/2 and τ ≤ 1. There is a δ1 = O(ε log 1/ε) such that if

Y1, . . . , YN are independent samples from N (0, I) and N = Ω
(d+log(1/τ)

δ21

)
, then

(4) Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wiYiY
T
i − I

∥∥∥∥∥
2

≥ δ1

]
≤ τ .

A nearly identical argument (using Hoeffding instead of Bernstein in the proof of
Theorem 5.50 in [Ver10]) yields the following lemma.
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Lemma 4.4. Fix ε and τ as above. There is a δ2 = O(ε
√
log 1/ε) such that if

Y1, . . . , YN are independent samples from N (0, I) and N = Ω
(d+log(1/τ)

δ22

)
, then

(5) Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wiYi

∥∥∥∥∥
2

≥ δ2

]
≤ τ .

Note that by Cauchy–Schwarz, this implies the following corollary.

Corollary 4.5. Fix ε and τ as above. There is a δ2 = O(ε
√

log 1/ε) such that

if Y1, . . . , YN are independent samples from N (0, I) and N = Ω
(d+log(1/τ)

δ22

)
, then

(6) Pr

[
∃v ∈ R

d, ∃w ∈ SN,ε :

∥∥∥∥∥

(
N∑

i=1

wiYi

)
vT

∥∥∥∥∥
2

≥ δ2‖v‖2
]
≤ τ .

We will also require the following, well-known concentration, which says that no
sample from a Gaussian deviates too far from its mean in `2-distance.

Fact 4.6. Fix τ > 0. Let X1, . . . , XN ∼ N (0, I). Then, with probability 1 − τ ,
we have that ‖Xi‖2 ≤ O

(√
d log(N/τ)

)
for all i = 1, . . . , N .

4.2.2. Estimation error in the Frobenius norm. Let X1, . . . , XN be N i.i.d.
samples from N (0, I). In this section we demonstrate a tight bound on how many
samples are necessary such that the sample covariance is close to I in Frobenius norm.
Let Σ̂ denote the empirical covariance, defined to be

Σ̂ =
1

N

N∑

i=1

XiX
T
i .

By self-duality of the Frobenius norm, we know that

‖Σ̂− I‖F = sup
‖U‖F=1

∣∣∣
〈
Σ̂− I, U

〉∣∣∣

= sup
‖U‖F=1

∣∣∣∣∣
1

N

N∑

i=1

tr(XiX
T
i U)− tr(U)

∣∣∣∣∣ .

Since there is a 1/4-net over all PSD matrices with Frobenius norm 1 of size

9d
2

(see, e.g., Lemma 1.18 in [RH17]), the Vershynin-type union bound argument
combined with Lemma 2.20 immediately gives us the following corollary.

Corollary 4.7. There exist universal constants A,B > 0 so that for all t > 0,
we have

Pr

[∥∥∥∥∥
1

N

N∑

i=1

XiX
>
i − I

∥∥∥∥∥
F

> t

]
≤ 4 exp

(
Ad2 −BN min(t, t2)

)
.

By the argument as used in the proof of Lemma 4.3, we obtain the following
corollary.

Corollary 4.8. Fix ε, τ > 0. There is a δ1 = O(ε log 1/ε) such that if X1, . . . , XN

are independent samples from N (0, I), with

N = Ω

(
d2 + log 1/τ

δ21

)
,
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then

Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wiXiX
>
i − I

∥∥∥∥∥
F

≥ δ1

]
≤ τ .

Since the proof is essentially identical to the proof of Lemma 4.3, we omit the
proof. However, we note that, in fact, the proof technique there can be used to show
something slightly stronger, which we will require later. The technique actually shows
that if we take any set of size at most εN , and take the uniform weights over that
set, then the empirical covariance is not too far away from the truth.

Corollary 4.9. Fix ε, τ > 0. There is a δ2 = O(ε log 1/ε) such that if X1, . . . , XN

are independent samples from N (0, I), with

N = Ω

(
d2 + log 1/τ

δ22

)
,

then

Pr

[
∃T ⊆ [N ] : |T | ≤ εN and

∥∥∥∥∥
∑

i∈T

1

|T |XiX
>
i − I

∥∥∥∥∥
F

≥ O

(
δ2

N

|T |

)]
≤ τ .

We prove this corollary in Appendix A.

4.2.3. Understanding the fourth moment tensor. Our algorithms will be
based on understanding the behavior of the fourth moment tensor of a Gaussian when
restricted to various subspaces. Let ⊗ denote the Kronecker product on matrices. We
will make crucial use of the following definition.

Definition 4.10. For any matrix M ∈ R
d×d, let M [ ∈ R

d2

denote its canonical

flattening into a vector in R
d2

, and for any vector v ∈ R
d2

, let v] denote the unique
matrix M ∈ R

d×d such that M [ = v.

We will also require the following definitions.

Definition 4.11. Let Ssym = {M [ ∈ R
d2

: M is symmetric}, let S ⊆ Ssym be the
subspace given by

S = {v ∈ Ssym : tr(v]) = 0} ,

and let ΠS and ΠS⊥ denote the projection operators onto S and S⊥, respectively.
Finally, let

‖v‖S = ‖ΠSv‖2 and ‖v‖S⊥ = ‖ΠS⊥v‖2 .

Moreover, for any M ∈ R
d2×d2

, let

‖M‖S = sup
v∈S −{0}

vTMv

‖v‖22
.

In fact, the projection of v = M [ onto S where M is symmetric can be written
out explicitly. Namely, it is given by

M =

(
M − tr(M)

d
I

)
+

tr(M)

d
I .
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By construction, the flattening of the first term is in S and the flattening of the second

term is in S⊥. The expression above immediately implies that ‖v‖S⊥ = |tr(M)|√
d

.

The key result in this section is the following theorem.

Theorem 4.12. Let X ∼ N (0,Σ). Let M be the d2 × d2 matrix given by M =
E[(X ⊗X)(X ⊗X)T ]. Then, as an operator on Ssym, we have

M = 2Σ⊗2 +
(
Σ[
) (

Σ[
)T

.

It is important to note that the two terms above are not the same; the first term
is high rank, but the second term is rank one. The proof of this theorem will require
Isserlis’ theorem, and is deferred to Appendix A.

4.2.4. Concentration of the fourth moment tensor. We also need to show
that the fourth moment tensor concentrates.

Theorem 4.13. Fix ε, τ > 0. Let Yi ∼ N (0, I) be independent, for i = 1, . . . , N ,
where we set

N = Ω̃

(
d2 log5 1/τ

δ23

)
.

Let Zi = Y ⊗2
i . Let M4 = E[ZiZ

T
i ] be the canonical flattening of the true fourth

moment tensor. There is a δ3 = O(ε log2 1/ε) such that if Y1, . . . , YN , and Z1, . . . , Zm

are as above, then we have

Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wiZiZ
T
i −M4

∥∥∥∥∥
S

≥ δ3

]
≤ τ .

To do so will require somewhat more sophisticated techniques than the ones used
so far to bound spectral deviations. At a high level, this is because fourth moments
of Gaussians have a sufficiently larger variance that the union bound techniques used
so far are insufficient. However, we will show that the tails of degree four polynomials
of Gaussians still sufficiently concentrate such that removing points cannot change
the mean by too much. The proof requires slightly fancy machinery and appears in
Appendix B.

4.3. Finding the mean, using a separation oracle. In this section, we con-
sider the problem of approximating µ given N samples from N (µ, I) in the full ad-
versary model. Our algorithm will be based on working with the following convex
set:

Cδ =

{
w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≤ δ

}
.

It is not hard to show that Cδ is nonempty for reasonable values of δ (and we will show
this later). Moreover, we will show that for any set of weights w in Cδ, the empirical
average

µ̂ =

N∑

i=1

wiXi

will be a good estimate for µ. The challenge is that since µ itself is unknown, there is
not an obvious way to design a separation oracle for Cδ even though it is convex. Our
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algorithm will run in two basic steps. First, it will run a very naive outlier detection
to remove any points which are more than O(

√
d) away from the good points. These

points are sufficiently far away that a very basic test can detect them. Then, with
the remaining points, it will use the approximate separation oracle given below to
approximately optimize with respect to Cδ. It will then take the outputted set of
weights and output the empirical mean with these weights. We will explain these
steps in detail below.

Our results will hold under the following deterministic conditions:

‖Xi − µ‖2 ≤ O
(√

d log(N/τ)
)
∀i ∈ G ,(7)

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI

∥∥∥∥∥
2

≤ δ1 ∀w ∈ SN,4ε, and(8)

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)

∥∥∥∥∥
2

≤ δ2 ∀w ∈ SN,4ε .(9)

The concentration bounds we gave earlier were exactly bounds on the failure proba-
bility of either of these conditions, albeit for SN,ε instead of SN,4ε.

4.3.1. Naive pruning. The first step of our algorithm will be to remove points
which have distance which is much larger than O(

√
d) from the mean. Our algorithm

is very naive; it computes all pairwise distances between points, and throws away all
points which have distance more than O(

√
d) from more than a 2ε-fraction of the

remaining points.

Algorithm 1 Naive pruning.

1: function NaivePrune(X1, . . . , XN )
2: For i, j = 1, . . . , N , define δi,j = ‖Xi −Xj‖2.
3: for i = 1, . . . , j do

4: Let Ai = {j ∈ [N ] : δi,j > Ω(
√
d log(N/τ))}.

5: if |Ai| > 2εN then

6: Remove Xi from the set.

7: return the pruned set of samples.

Then we have the following fact.

Fact 4.14. Suppose that (7) holds. Then NaivePrune removes no uncorrupted
points, and moreover, if Xi is not removed by NaivePrune, we have ‖Xi − µ‖2 ≤
O
(√

d log(N/τ)
)
.

Proof. That no uncorrupted point is removed follows directly from (7) and the
fact that there can be at most 2εN corrupted points. Similarly, if Xi is not removed
by NaivePrune, that means there must be an uncorrupted Xj such that ‖Xi −
Xj‖2 ≤ O(

√
d log(N/τ)). Then the desired property follows from (7) and a triangle

inequality.

Henceforth, for simplicity we shall assume that no point was removed by
NaivePrune, and that for all i = 1, . . . , N , we have ‖Xi − µ‖2 < O(

√
d log(N/τ)).

Otherwise, we can simply work with the pruned set, and it is evident that nothing
changes.
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4.3.2. The separation oracle. Our main result in this section is an approx-
imate separation oracle for Cδ. Throughout this section, let w ∈ SN,ε and set

µ̂ =
∑N

i=1 wiXi. Moreover, let ∆ = µ − µ̂. Our first step is to show that any
set of weights that does not yield a good estimate for µ cannot be in the set Cδ.

Lemma 4.15. Suppose that (8)–(9) holds. Suppose that ‖∆‖2 = Ω(
√
εδ1) =

Ω(ε log 1/ε). Then

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
ε

)
.

Proof. By Fact 4.2 and (9) we have ‖∑i∈G
wi

wg
Xi−µ‖2 ≤ δ2. Now by the triangle

inequality we have

∥∥∥∥∥
∑

i∈E

wi(Xi − µ)

∥∥∥∥∥
2

≥ ‖∆‖2 −
∥∥∥∥∥
∑

i∈G

wi(Xi − µ)− wgµ

∥∥∥∥∥
2

≥ Ω(‖∆‖2) .

Using the fact that the variance is nonnegative, we have

∑

i∈E

wi

wb
(Xi − µ)(Xi − µ)T �

(
∑

i∈E

wi

wb
(Xi − µ)

)(
∑

i∈E

wi

wb
(Xi − µ)

)T

,

and therefore,

∥∥∥∥∥
∑

i∈E

wi(Xi − µ)(Xi − µ)T

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
wb

)
≥ Ω

(‖∆‖22
ε

)
.

On the other hand,

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≤
∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI

∥∥∥∥∥
2

+ wb

≤ δ1 + wb,

where in the last inequality we have used Fact 4.2 and (8). Hence altogether this
implies that

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
ε

)
− wb − δ1 ≥ Ω

(‖∆‖22
ε

)
,

as claimed.

As a corollary, we find that any set of weights in Cδ immediately yields a good
estimate for µ.

Corollary 4.16. Suppose that (8) and (9) hold. Let w ∈ Cδ for δ = O(ε log 1/ε).
Then

‖∆‖2 ≤ O(ε
√
log 1/ε).

Our main result in this section is an approximate separation oracle for Cδ with
δ = O(ε log 1/ε).
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Theorem 4.17. Fix ε > 0, and let δ = O(ε log 1/ε). Suppose that (8) and (9)
hold. Let w∗ denote the weights which are uniform on the uncorrupted points. Then
there is a constant c and an algorithm such that the following hold:

1. (Completeness) If w = w∗, then it outputs “YES”.
2. (Soundness) If w 6∈ Ccδ, the algorithm outputs a hyperplane ` : R

N → R

such that `(w) ≥ 0 but `(w∗) < 0. Moreover, if the algorithm ever outputs a
hyperplane `, then `(w∗) < 0.

We remark that these two facts imply that for any τ > 0, the ellipsoid method
with this separation oracle will output a w′ such that ‖w−w′‖∞ < ε/(N

√
d log(N/τ)),

for some w ∈ Ccδ in poly(d, 1/ε, log 1/τ) steps.

Remark 4.18. The conditions satisfied by the separation oracle given here are
slightly weaker than the traditional guarantees given, for instance, in [GLS88]. How-
ever, the correctness of the ellipsoid algorithm with this separation oracle follows
because outside Ccδ, the separation oracle acts exactly as a separation oracle for w∗.
Thus, as long as the algorithm continues to query points outside of Ccδ, the action
of the algorithm is equivalent to one with a separation oracle for w∗. Moreover, the
behavior of the algorithm is such that it will never exclude w∗, even if queries are
made within Ccδ. From these two conditions, it is clear from the classical theory
presented in [GLS88] that the ellipsoid method satisfies the guarantees given above.

The separation oracle is given in Algorithm 2. Next, we prove correctness for our
approximate separation oracle:

Algorithm 2 Separation oracle subprocedure for agnostically learning the mean.

1: function SeparationOracleUnknownMean(w, ε,X1, . . . , XN )

2: Let µ̂ =
∑N

i=1 wiXi.
3: Let δ = O(ε log 1/ε).
4: For i = 1, . . . , N , define Yi = Xi − µ̂.
5: Let λ be the eigenvalue of largest magnitude of M =

∑N
i=1 wiYiY

T
i − I.

6: Let v be its associated eigenvector.
7: if |λ| ≤ c

2δ then

8: return “YES”.
9: else if λ > c

2δ then

10: return the hyperplane `(u) =
(∑N

i=1 ui〈Yi, v〉2 − 1
)
− λ.

11: else

12: return the hyperplane `(u) = λ−
(∑N

i=1 ui〈Yi, v〉2 − 1
)
.

Proof of Theorem 4.17. Again, let ∆ = µ − µ̂, and let M =
∑N

i=1 wiYiY
T
i − I.
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766 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

By expanding out the formula for M , we get

N∑

i=1

wiYiY
T
i − I =

N∑

i=1

wi(Xi − µ+∆)(Xi − µ+∆)T − I

=

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I +

N∑

i=1

wi(Xi − µ)∆T

+∆

N∑

i=1

wi(Xi − µ)T +∆∆T

=
N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −∆∆T .

Let us now prove completeness.

Claim 4.19. Suppose w = w∗. Then ‖M‖2 < c
2δ.

Proof. Recall that w∗ are the weights that are uniform on the uncorrupted points.
Because |E| ≤ 2εN we have that w∗ ∈ SN,ε. We can now use (8) to conclude that

w∗ ∈ Cδ1 . Now by Corollary 4.16 we have that ‖∆‖2 ≤ O(ε
√
log 1/ε). Thus

∥∥∥∥∥

N∑

i=1

w∗
i (Xi − µ)(Xi − µ)T − I −∆∆T

∥∥∥∥∥
2

≤
∥∥∥∥∥

N∑

i=1

w∗
i (Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

+ ‖∆∆T ‖2

≤ δ1 +O(ε2 log 1/ε) <
cδ

2
.

We now turn our attention to soundness.

Claim 4.20. Suppose that w 6∈ Ccδ. Then |λ| > c
2δ.

Proof. By the triangle inequality, we have

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −∆∆T

∥∥∥∥∥
2

≥
∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

−
∥∥∆∆T

∥∥
2
.

Let us now split into two cases. If ‖∆‖2 ≤
√
cδ/10, then the first term above is at

least cδ by definition and we can conclude that |λ| > cδ/2. On the other hand, if
‖∆‖2 ≥

√
cδ/10, by Lemma 4.15, we have that

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −∆∆T

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
ε

)
− ‖∆‖22 = Ω

(‖∆‖22
ε

)
,

(10)

which for sufficiently small ε also yields |λ| > cδ/2.

Now by construction `(w) ≥ 0. All that remains is to show that `(w∗) < 0 always
holds. We will only consider the case where the top eigenvalue λ of M is positive.
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The other case (when λ < − c
2δ) is symmetric. We will split the analysis into two

parts:
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ̂)(Xi − µ̂)T − I

∥∥∥∥∥
2

=

∥∥∥∥∥
1

|G|
∑

i∈G

(Xi − µ+∆)(Xi − µ+∆)T − I

∥∥∥∥∥
2

≤
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2︸ ︷︷ ︸

≤δ1

+2‖∆‖2
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ)

∥∥∥∥∥
2︸ ︷︷ ︸

≤2δ2‖∆‖2 since w∗
∈ Cδ2

+ ‖∆‖22 .(11)

Suppose ‖∆‖2 ≤
√

cδ/10. By (11) we immediately have

`(w∗) ≤ δ1 + 2δ2‖∆‖2 + ‖∆‖22 − λ ≤ cδ

5
− λ < 0 ,

since λ > cδ/2. On the other hand, if ‖∆‖2 ≥
√
cδ/10, then by (10) we have

λ = Ω
(‖∆‖2

2

ε

)
. Putting it all together we have

`(w∗) ≤
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ̂)(Xi − µ̂)T − I

∥∥∥∥∥
2︸ ︷︷ ︸

≤δ1+2δ2‖∆‖2+‖∆‖2
2

−λ ,

where in the last line we used the fact that λ > Ω
(‖∆‖2

2

ε

)
, and ‖∆‖22 ≥ Ω(ε2 log 1/ε).

This now completes the proof.

4.3.3. The full algorithm. This separation oracle, along with the classical
theory of convex optimization [GLS88], implies that we have shown the following
corollary.

Corollary 4.21. Fix ε, τ > 0, and let δ = O(ε
√

log 1/ε). Let X1, . . . , XN be an

ε-corrupted set of points satisfying (8)–(9), for δ1 ≤ δ and δ2 ≤ δ
√

log 1/ε. Let c be a
sufficiently large constant. Then, there is an algorithm LearnApproxMean(ε, τ,X1,
. . . , XN ) which runs in time poly(N, d, 1/ε, log 1/τ), and outputs a set of weights
w′ ∈ SN,ε such that there is a w ∈ Ccδ such that ‖w − w′‖∞ ≤ ε/(N

√
d log(N/τ)).

This algorithm, while an extremely powerful primitive, is technically not suffi-
cient. However, given this, the full algorithm is not too difficult to state: simply
run NaivePrune, then optimize over Ccδ using this separation oracle, and get some
w which is approximately in Ccδ. Then, output

∑N
i=1 wiXi. For completeness, the

pseudocode for the algorithm is given below. In the pseudocode, we assume that
Ellipsoid(SeparationOracleUnknownMean, ε′) is a convex optimization rou-
tine, which given the SeparationOracleUnknownMean separation oracle and a
target error ε′, outputs a w′ such that ‖w − w′‖∞ ≤ ε′. From the classical theory of
optimization, we know such a routine exists and runs in polynomial time.

Theorem 4.22. Fix ε, τ > 0, and let δ = O(ε
√
log 1/ε). Let X1, . . . , XN be an

ε-corrupted set of samples, where

N = Ω

(
d+ log 1/τ

δ2

)
.
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Algorithm 3 Convex programming algorithm for agnostically learning the mean.

1: function LearnMean(ε, τ,X1, . . . , XN )
2: Run NaivePrune(X1, . . . , XN ). Let {Xi}i∈I be the pruned set of samples.

/* For simplicity assume I = [N ] */
3: Let w′ ← LearnApproxMean(ε, τ,X1, . . . , XN ).

4: return
∑N

i=1 w
′
iXi.

Let µ̂ be the output of LearnMean(ε, τ,X1, . . . , XN ). Then with probability 1 − τ ,
we have ‖µ̂− µ‖2 ≤ δ.

Proof. By Fact 4.6 and Lemmas 4.3 and 4.4, we know that (7)–(9) hold with
probability 1− τ , with δ1, δ2 ≤ δ. Condition on the event that (7)–(9) simultaneously
hold. After NaivePrune, by Fact 4.14 we may assume that no uncorrupted points
are removed, and all points satisfy ‖Xi−µ‖2 ≤ O(

√
d log(N/τ)). Let w′ be the output

of the algorithm, and let w ∈ Ccδ be such that ‖w −w′‖∞ < ε/(N
√
d log(N/τ)). By

Corollary 4.16, we know that ‖∑N
i=1 wiXi − µ‖2 ≤ O(δ). Hence, we have

∥∥∥∥∥

N∑

i=1

w′
iXi − µ

∥∥∥∥∥
2

≤
∥∥∥∥∥

N∑

i=1

wiXi − µ

∥∥∥∥∥
2

+

N∑

i=1

|wi − w′
i| · ‖Xi − µ‖2 ≤ O(δ) + ε ,

so the entire error is at most O(δ), as claimed.

4.4. Finding the covariance, using a separation oracle. In this section, we
consider the problem of approximating Σ given N samples from N (0,Σ) in the full
adversary model. Let Ui = Σ−1/2Xi such that if Xi ∼ N (0,Σ), then Ui ∼ N (0, I).
Moreover let Zi = U⊗2

i . Our approach will parallel the one given earlier in section
4.3. Again, we will work with a convex set

Cδ =

{
w ∈ SN,ε :

∥∥∥∥∥Σ
−1/2

(
m∑

i=1

wiXiX
T
i

)
Σ−1/2 − I

∥∥∥∥∥
F

≤ δ

}
,

and our goal is to design an approximate separation oracle. Our results in this section
will rely on the following deterministic conditions:

‖Ui‖22 ≤ O (d log(N/τ)) ∀i ∈ G(12)
∥∥∥∥∥
∑

i∈G

wiUiU
T
i − wgI

∥∥∥∥∥
F

≤ δ1 ,(13)

∥∥∥∥∥
∑

i∈T

1

|T |UiU
T
i − I

∥∥∥∥∥
F

≤ O

(
δ2

N

|T |

)
, and(14)

∥∥∥∥∥
∑

i∈G

wiZiZ
T
i − wgM4

∥∥∥∥∥
S

≤ δ3(15)

for all w ∈ SN,ε, and all sets T ⊆ G of size |T | ≤ 2εN . As before, by Fact 4.2, the
renormalized weights over the uncorrupted points are in SN,4ε. Hence, we can appeal
to Fact 4.6, Corollaries 4.8 and 4.9, and Theorem 4.13 with SN,4ε instead of SN,ε to
bound the probability that this event does not hold. Let w∗ be the set of weights
which are uniform over the uncorrupted points; by (13) for δ ≥ Ω(ε

√
log 1/ε) we have

that w∗ ∈ Cδ.
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Theorem 4.23. Let δ = O(ε log 1/ε). Suppose that (13), (14), and (15) hold for
δ1, δ2 ≤ O(δ) and δ3 ≤ O(δ log 1/ε). Then, there are a constant c and an algorithm
such that, given any input w ∈ SN,ε, we have the following:

1. (Completeness) If w = w∗, the algorithm outputs “YES”.
2. (Soundness) If w 6∈ Ccδ, the algorithm outputs a hyperplane ` : Rm → R such

that `(w) ≥ 0 but we have `(w∗) < 0. Moreover, if the algorithm ever outputs
a hyperplane `, then `(w∗) < 0.

As in the case of learning an unknown mean, by the classical theory of convex
optimization this implies that we will find a point w such that ‖w − w′‖∞ ≤ ε

poly(N)

for some w′ ∈ Ccδ, using polynomially many calls to this oracle. We make this more
precise in the following subsubsection.

The pseudocode for the (approximate) separation oracle is given in Algorithm
4. Observe briefly that this algorithm does indeed run in polynomial time. Lines
2–6 require only taking top eigenvalues and eigenvectors, and so can be done in
polynomial time. For any ξ ∈ {−1,+1}, line 7 can be run by sorting the samples by

wi

(‖Yi‖2

√
d
−
√
d
)
and seeing if there is a subset of the top 2εN samples satisfying the

desired condition, and line 8 can be executed similarly.

Algorithm 4 Convex programming algorithm for agnostically learning the covari-
ance.
1: function SeparationOracleUnknownCovariance(w)

2: Let Σ̂ =
∑N

i=1 wiXiX
T
i .

3: For i = 1, . . . , N , let Yi = Σ̂−1/2Xi and let Zi = (Yi)
⊗2

.

4: Let v be the top eigenvector of M =
∑N

i=1 wiZiZ
T
i − 2I restricted to S, and

let λ be its associated eigenvalue.
5: if |λ| > Ω(ε log2 1/ε) then
6: Let ξ = sgn(λ) and return the hyperplane

`(u) = ξ

(
N∑

i=1

ui〈v, Zi〉2 − 2− λ

)
.

7: else if there exist a sign ξ ∈ {−1, 1} and a set T of samples of size at most
2εN such that

α = ξ
∑

i∈T

wi

(‖Yi‖22√
d
−
√
d

)
>

(1− ε)αδ

2

then

8: return the hyperplane

`(u) = ξ
∑

i∈T

ui

(‖Yi‖22√
d
−
√
d

)
− α .

9: return “YES”.

We now turn our attention to proving the correctness of this separation oracle.
We require the following technical lemmas.
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Claim 4.24. Let wi for i = 1, . . . , N be a set of nonnegative weights such that∑N
i=1 wi = 1, and let ai ∈ R be arbitrary. Then

N∑

i=1

a2iwi ≥
(

N∑

i=1

aiwi

)2

.

Proof. Let P be the distribution where ai is chosen with probability wi. Then
EX∼P [X] =

∑N
i=1 aiwi and EX∼P [X

2] =
∑N

i=1 aiw
2
i . Since VarX∼P [X] = EX∼P [X

2]−
EX∼P [X]2 is always a nonnegative quantity, by rearranging the desired conclusion fol-
lows.

Lemma 4.25. Fix δ < 1 and suppose that M is symmetric. If ‖M − I‖F ≥ δ,
then ‖M−1 − I‖F ≥ δ

2 .

Proof. We will prove this lemma in the contrapositive, by showing that if ‖M−1−
I‖F < δ

2 , then ‖M − I‖F < δ. Since the Frobenius norm is rotationally invariant, we
may assume that M−1 = diag(1+ ν1, . . . , 1+ νd), where by assumption

∑
ν2i < δ2/4.

By our assumption that δ < 1, we have |νi| ≤ 1/2 for all i. Thus

d∑

i=1

(
1− 1

1 + νi

)2

≤
d∑

i=1

4ν2i < δ ,

where we have used the inequality |1− 1
1+x | ≤ |2x| which holds for all |x| ≤ 1/2. This

completes the proof.

Lemma 4.26. Let M,N ∈ R
d×d be arbitrary matrices. Then ‖MN‖F ≤ ‖M‖2‖N‖F .

Proof. Let N1, . . . , Nd be the columns of N . Then

‖MN‖2F =

d∑

i=1

‖MN‖22 ≤ ‖M‖22
d∑

i=1

‖Ni‖22 = ‖M‖22‖N‖2F ,

so the desired result follows by taking square roots of both sides.

Lemma 4.27. Let M ∈ R
d×d. Then,

∥∥(M [
) (

M [
)T∥∥

S ≤ ‖M − I‖2F .
Proof. By the definition of ‖ · ‖S , we have

∥∥∥∥
(
M [
)(

M [
)T∥∥∥∥

S
= sup

A[∈S
‖A‖F=1

(
A[
)T (

M [
)(

M [
)T

A[ = sup
A∈S

‖A‖F=1

〈A,M〉2 .

By self-duality of the Frobenius norm, we know that

〈A,M〉 = 〈A,M − I〉 ≤ ‖M − I‖F ,

since I[ ∈ S⊥. The result now follows.

Proof of Theorem 4.23. Let us first prove completeness. Observe that by Theo-
rem 4.12, we know that restricted to S, we have that M4 = 2I. Therefore, by (15) we
will not output a hyperplane in line 6 of Algorithm 4. Moreover, by (14), we will not
output a hyperplane in line 7 of Algorithm 4. This proves completeness.

Thus it suffices to show soundness. Suppose that w 6∈ Ccδ. We will make use of
the following elementary fact.
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Fact 4.28. Let A = Σ−1/2Σ̂Σ−1/2 and B = Σ̂−1/2ΣΣ̂−1/2. Then

‖A−1 − I‖F = ‖B − I‖F .

Proof. In particular, A−1 = Σ1/2Σ̂−1Σ1/2. Using this expression and the fact
that all the matrices involved are symmetric, we can write

‖A−1 − I‖2F = tr
(
(A−1 − I)T (A−1 − I)

)

= tr
(
Σ1/2Σ̂−1ΣΣ̂−1Σ1/2 − 2Σ1/2Σ̂−1Σ1/2 − I

)

= tr
(
Σ̂−1/2ΣΣ̂−1ΣΣ̂−1/2 − 2Σ̂−1/2ΣΣ̂−1/2 − I

)

= tr
(
(B − I)T (B − I)

)
= ‖B − I‖2F ,

where in the third line we have used the fact that the trace of a product of matrices
is preserved under cyclic shifts.

This allows us to show the following claim.

Claim 4.29. Assume (13) holds with δ1 ≤ O(δ) and assume furthermore that

‖A− I‖F ≥ cδ. Then, if we let δ′ = (1−ε)c
2 δ = Θ(δ), we have

(16)

∥∥∥∥∥
∑

i∈E

wiZi − wbI
[

∥∥∥∥∥
S

+

∥∥∥∥∥
∑

i∈E

wiZi − wbI
[

∥∥∥∥∥
S⊥

≥ δ′ .

Proof. Let A,B be as in Fact 4.28. Combining Lemma 4.25 and Fact 4.28 we
have

(17) ‖A− I‖F ≥ cδ ⇒ ‖B − I‖F ≥
cδ

2
.

We can rewrite (13) as the expression
∑

i∈G wiXiX
T
i = wgΣ

1/2(I + R)Σ1/2, where

R is symmetric and satisfies ‖R‖F ≤ δ1. By the definition of Σ̂ we have that∑N
i=1 wiYiY

T
i = I, and so

∥∥∥∥∥
∑

i∈E

wiYiY
T
i − wbI

∥∥∥∥∥
F

=

∥∥∥∥∥
∑

i∈G

wiYiY
T
i − wgI

∥∥∥∥∥
F

= wg

∥∥∥Σ̂−1/2Σ1/2(I +R)Σ1/2Σ̂−1/2 − I
∥∥∥
F

.

Furthermore, we have
∥∥∥Σ̂−1/2Σ1/2RΣ1/2Σ̂−1/2

∥∥∥
F
≤ δ1

∥∥∥Σ̂−1/2ΣΣ̂−1/2
∥∥∥
2

by applying Lemma 4.26. And putting it all together we have
∥∥∥∥∥
∑

i∈E

wiYiY
T
i − wbI

∥∥∥∥∥
F

≥ wg

(∥∥∥Σ̂−1/2ΣΣ̂−1/2 − I
∥∥∥
F
− δ1

∥∥∥Σ̂−1/2ΣΣ̂−1/2
∥∥∥
2

)
.

It is easily verified that for c > 10, we have that for all δ, if ‖Σ̂−1/2ΣΣ̂−1/2−I‖F ≥ cδ,
then

‖Σ̂−1/2ΣΣ̂−1/2 − I‖F ≥ 2δ‖Σ̂−1/2ΣΣ̂−1/2‖2 .
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Hence all this implies that

∥∥∥∥∥
∑

i∈E

wiYiY
T
i − wbI

∥∥∥∥∥
F

≥ δ′ ,

where δ′ = c(1−ε)
2 δ = Θ(δ). The desired result then follows from the Pythagorean

theorem.

Claim 4.29 tells us that if w 6∈ Ccδ, we know that one of the terms in (17) must be
at least 1

2δ
′. We first show that if the first term is large, then the algorithm outputs

a separating hyperplane.

Claim 4.30. Assume that (13)–(15) hold with δ1, δ2 ≤ O(δ) and δ3 ≤ O(δ log 1/ε).
Moreover, suppose that

∥∥∥∥∥
∑

i∈E

wiZi − wbI
[

∥∥∥∥∥
S

≥ 1

2
δ′ .

Then the algorithm outputs a hyperplane in line 6, and moreover, it is a separating
hyperplane.

Proof. Let us first show that given these conditions, then the algorithm indeed
outputs a hyperplane in line 6. Since I[ ∈ S⊥, the first term is just equal to∥∥∑

i∈E wiZi

∥∥
S
. But this implies that there is some M [ ∈ S such that ‖M [‖2 =

‖M‖F = 1 and such that

∑

i∈E

wi〈M [, Zi〉 ≥
1

2
δ′ ,

which implies that

∑

i∈E

wi

wb
〈M [, Zi〉 ≥

1

2

δ′

wb
.

The wi/wb are a set of weights satisfying the conditions of Claim 4.24 and so this
implies that

∑

i∈E

wi〈M [, Zi〉2 ≥ O

(
δ′2

wb

)

≥ O

(
δ′2

ε

)
.(18)

Let Σ̃ = Σ̂−1Σ. By Theorem 4.12 and (15), we have that

∑

i∈G

wiZiZ
T
i = wg

((
Σ̃[
)(

Σ̃[
)T

+ 2Σ̃⊗2 +
(
Σ̃1/2

)⊗2

R
(
Σ̃1/2

)⊗2
)

,
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where ‖R‖2 ≤ δ3. Hence,

∥∥∥∥∥
∑

i∈G

wiZiZ
T
i − 2I

∥∥∥∥∥
S

= wg

∥∥∥∥
(
Σ̃[
)(

Σ̃[
)T

+ 2
(
Σ̃⊗2 − I

)

+ (1− wg)I +
(
Σ̃1/2

)⊗2

R
(
Σ̃1/2

)⊗2
∥∥∥∥
S

≤ ‖Σ̃− I‖2F + 2‖Σ̃− I‖2 + (1− wg) + ‖R‖‖Σ̃‖2

≤ 3‖Σ̃− I‖2F + δ‖Σ̃‖2 +O(ε) .

≤ O
(
δ′

2
+ δ′

)
,(19)

since it is easily verified that δ‖Σ̃‖2 ≤ O(‖Σ̃−I‖F ) as long as ‖Σ̃−I‖F ≥ Ω(δ), which
it is by (17).

Equations (18) and (19) then together imply that

N∑

i=1

wi(M
[)TZiZ

T
i (M

[)− (M [)T IM [ ≥ O

(
δ2

ε

)
,

and so the top eigenvalue of M is greater in magnitude than λ, and so Algorithm
4 will output a hyperplane in line 6. Letting ` denote the hyperplane output by
the algorithm, by the same calculation as for (19), we must have `(w∗) < 0, so
this is indeed a separating hyperplane. Hence in this case, the algorithm correctly
operates.

Moreover, observe that from the calculations in (19), we know that if we ever
output a hyperplane in line 6, which implies that λ ≥ Ω(ε log2 1/ε), then we must
have that `(w∗) < 0.

Now let us assume that the first term on the left-hand side (LHS) is less than 1
2δ

′,
such that the algorithm does not necessarily output a hyperplane in line 6. Thus, the
second term on the LHS of (16) is at least 1

2δ
′. We now show that this implies that

the algorithm will output a separating hyperplane in line 8.

Claim 4.31. Assume that (13)–(15) hold. Moreover, suppose that

∥∥∥∥∥
∑

i∈E

wiZi − wbI
[

∥∥∥∥∥
S⊥

≥ 1

2
δ′ .

Then the algorithm outputs a hyperplane in line 8, and moreover, it is a separating
hyperplane.

Proof. By the definition of S⊥, the assumption implies that

∣∣∣∣∣
∑

i∈E

wi
tr(Z]

i )√
d
−Mb

√
d

∣∣∣∣∣ ≥
1

2
δ′ ,

which is equivalent to the condition that

ξ
∑

i∈E

wi

(‖Yi‖22√
d
−
√
d

)
≥ (1− ε)δ′

2
,
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for some ξ ∈ {−1, 1}. In particular, the algorithm will output a hyperplane

`(w) = ξ
∑

i∈S

wi

(‖Yi‖22√
d
−
√
d

)
− λ

in step 8 of Algorithm 4, where S is some set of size at most εN , and λ = O(δ′).
Since it will not affect anything, without loss of generality let us assume that ξ = 1.
The other case is symmetrical.

It now suffices to show that `(w∗) < 0 always. Let T = S ∩G. By (14), we know
that

∑

i∈T

1

|T |YiY
T
i − I = Σ̃1/2 (I +A) Σ̃1/2 − I ,

where ‖A‖F = O
(
δ N
|T |
)
. Hence,

∥∥∥∥∥
∑

i∈T

1

(1− ε)N
YiY

T
i −

|T |
(1− ε)N

I

∥∥∥∥∥
F

=
|T |

(1− ε)N

∥∥∥Σ̃1/2 (I +A) Σ̃1/2 − I
∥∥∥
F

≤ |T |
(1− ε)N

(
‖Σ̃− I‖F + ‖A‖F ‖Σ̃‖2

)

≤ |T |
(1− ε)N

‖Σ̃− I‖F +O(δ)‖Σ̃‖2

≤ O(δδ′ + δ) ,

as long as δ′ ≥ O(δ). By self-duality of the Frobenius norm, using the test matrix
1√
d
I, this implies that

∣∣∣∣∣
∑

i∈T

1

(1− ε)N

(
‖Yi‖2 −

√
d
)∣∣∣∣∣ ≤ O(δδ′ + δ) < α

and hence `(w∗) < 0, as claimed.

These two claims in conjunction directly imply the correctness of Theorem 4.23.

4.4.1. The full algorithm. As before, this separation oracle and the classical
theory of convex optimization [GLS88] show that we have demonstrated an algorithm
FindApproxCovariance with the following properties.

Theorem 4.32. Fix ε, τ > 0, and let δ = O(ε log 1/ε). Let c > 0 be a uni-
versal constant which is sufficiently large. Let X1, . . . , XN be an ε-corrupted set of
points satisfying (13)–(15), for δ1, δ2 ≤ O(δ) and δ3 ≤ O(δ log 1/ε). Then we see that
FindApproxCovariance(ε, τ,X1, . . . , XN ) runs in time poly(N, d, 1/ε, log 1/τ), and
outputs a u such that there is some w ∈ Ccδ such that ‖w− u‖∞ ≤ ε/(Nd log(N/τ)).

As before, this is not quite sufficient to actually recover the covariance robustly.
Naively, we would just like to output

∑N
i=1 uiXiX

T
i . However, this can run into issues

if there are points Xi such that ‖Σ−1/2Xi‖2 is extremely large. We show here that
we can postprocess the u such that we can weed out these points. First, observe that
we have the following lemma.

Lemma 4.33. Assume X1, . . . , XN satisfy (13). Let w ∈ SN,ε. Then

N∑

i=1

wiXiX
T
i � (1−O(δ1))Σ .
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Proof. This follows since by (13), we have that
∑

i∈G wiXiX
T
i � wg(1− δ1)Σ �

(1−O(δ1))Σ. The lemma then follows since
∑

i∈E wiXiX
T
i � 0 always.

Now, for any set of weights w ∈ SN,ε, let w̃− ∈ R
N be the vector given by

w̃−
i = max(0, wi − ε/(Nd log(N/τ))), and let w− be the set of weights given by

renormalizing w̃−. It is a straightforward calculation that for any w ∈ SN,ε, we have
w− ∈ SN,2ε. In particular, this implies the following lemma.

Lemma 4.34. Let u be such that there is w ∈ Ccδ such that ‖u−w‖∞ ≤ ε/(Nd log

(N/τ)). Then,
∑N

i=1 u
−
i XiX

T
i � (1 +O(δ))Σ.

Proof. By the definition of Ccδ, we must have that
∑N

i=1 wiXiX
T
i � (1 + cδ)Σ.

Moreover, we must have ũ−
i ≤ wi for every index i ∈ [N ]. Thus we have that∑N

i=1 ũ
−
i wiXiX

T
i � (1 + cδ)Σ, and hence

∑N
i=1 u

−
i wiXiX

T
i � (1 + cδ)Σ, since

∑N
i=1

u−
i wiXiX

T
i � (1 +O(ε))

∑N
i=1 ũ

−
i wiXiX

T
i .

We now give the full algorithm. The algorithm proceeds as follows: first run
FindApproxCovariance to get some set of weights u which is close to some element
of Ccδ. We then compute the empirical covariance Σ1 =

∑N
i=1 uiXiX

T
i with the

weights u and remove any points which have ‖Σ−1/2
1 Xi‖22 which are too large. We

shall show that this removes no good points, and removes all corrupted points which
have ‖Σ−1/2Xi‖22 which are absurdly large. We then rerun FindApproxCovariance

with this pruned set of points, and output the empirical covariance with the output of
this second run. Formally, we give the pseudocode for the algorithm in Algorithm 5.

Algorithm 5 Full algorithm for learning the covariance agnostically.

1: function LearnCovariance(ε, τ,X1, . . . , XN )
2: Let u← FindApproxCovariance(ε, τ,X1, . . . , XN ).

3: Let Σ1 =
∑N

i=1 u
−
i XiX

T
i .

4: for i = 1, . . . , N do

5: if ‖Σ−1/2
1 Xi‖22 ≥ Ω(d logN/τ) then

6: Remove Xi from the set of samples.

7: Let S′ be the set of pruned samples.
8: Let u′ ← FindApproxCovariance(ε, τ, {Xi}i∈S′).

9: return
∑N

i=1 u
′
iXiX

T
i .

We now show that this algorithm is correct.

Theorem 4.35. Let 1/2 ≥ ε > 0, and let τ > 0. Let δ = O(ε log 1/ε). Let
X1, . . . , XN be a ε-corrupted set of samples from N (0,Σ) where

N = Ω̃

(
d2 log5 1/τ

ε2

)
.

Let Σ̂ be the output of LearnCovariance(ε, τ,X1, . . . , XN ). Then with probability

1− τ , ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ O(δ).

Proof. We first condition on the event that we satisfy (12)–(15) with δ1, δ2 ≤ O(δ)
and δ3 ≤ O(δ log 1/ε). By our choice of N , Fact 4.6, Corollaries 4.7 and 4.9, and
Theorem 4.13, and a union bound, we know that this event happens with probability
1− τ .

D
o
w

n
lo

ad
ed

 1
1
/1

4
/1

9
 t

o
 1

8
.1

0
.2

7
.6

3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

776 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

By Theorem 4.32 and Lemmas 4.33 and 4.34, we have that since ε is sufficiently
small,

1

2
Σ � Σ1 � 2Σ .

In particular, this implies that for every vector Xi, we have

1

2
‖Σ−1/2Xi‖22 ≤ ‖Σ−1/2

1 Xi‖22 ≤ 2‖Σ−1/2Xi‖22 .

Therefore, by (12), we know that in line 6 of Algorithm 5, we never throw out any un-
corrupted points, and moreover, if Xi is corrupted with ‖Σ−1/2Xi‖22 ≥ Ω(d logN/τ),
then it is thrown out. Thus, let S′ be the set of pruned points. Because no un-
corrupted point is thrown out, we have that |S′| ≥ (1 − 2ε)N , and moreover, this
set of points still satisfies (13)–(15),3 and moreover, for every i ∈ S′, we have
‖Σ−1/2Xi‖22 ≤ O(d logN/τ). Therefore, by Theorem 4.32, we have that there is some

u′′ ∈ Cc|I| such that ‖u′−u′′‖∞ < ε/(Nd log(N/τ)). But now if Σ̂ =
∑

i∈|I| u
′
iXiX

T
i ,

we have

‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤
∥∥∥∥∥
∑

i∈I

u′′
i Σ

−1/2XiX
T
i Σ

−1/2 − I

∥∥∥∥∥
F

+
∑

i∈I

|u′
i − u′

i|‖Σ−1/2Xi‖22

≤ cδ +O(ε) ≤ O(δ) ,

which completes the proof.

4.5. Learning an arbitrary Gaussian agnostically. We have shown how to
agnostically learn the mean of a Gaussian with known covariance, and we have shown
how to agnostically learn the covariance of a mean 0 Gaussian. In this section, we
show how to use these two in conjunction to agnostically learn an arbitrary Gaussian.
Throughout, let X1, . . . , XN be an ε-corrupted set of samples from N (µ,Σ), where
both µ and Σ are unknown. We will set

Ω̃

(
d2 log5 1/τ

ε2

)
.

4.5.1. From unknown mean, unknown covariance, to zero mean, un-

known covariance. We first show a simple trick which, at the price of doubling the
amount of error, allows us to assume that the mean is zero, without changing the
covariance. We do so as follows: for each i = 1, . . . , N/2, let X ′

i = (Xi−XN/2+i)/
√
2.

Observe that if both Xi and XN/2+i are uncorrupted, then X ′
i ∼ N (0,Σ). More-

over, observe that X ′
i is corrupted only if either Xi or XN/2+i is corrupted. Then

we see that if X1, . . . , XN is ε-corrupted, then the X ′
1, . . . , X

′
N/2 is an N/2-sized set

of samples which is 2ε-corrupted. Thus, by using the results from section 4.4, with
probability 1− τ , we can recover a Σ̂ such that

(20) ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ O(ε log 1/ε) ,

which, in particular by Corollary 2.14, implies that

(21) dTV(N (0, Σ̂),N (0,Σ)) ≤ O(ε log 1/ε) .

3Technically, the samples satisfy a slightly different set of conditions since we may have thrown
out some corrupted points, and so, in particular, the number of samples may have changed, but the
meaning should be clear.
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4.5.2. From unknown mean, approximate covariance, to approximate

recovery. For each Xi, let X
′′
i = Σ̂−1/2Xi. Then, for Xi which is not corrupted, we

have that X ′′
i ∼ N (Σ̂−1/2µ,Σ1), where Σ1 = Σ̂−1/2ΣΣ̂−1/2. By Corollary 2.14 and

Lemma 4.25, if (20) holds, then we have

dTV(N (Σ̂−1/2µ,Σ1),N (Σ̂−1/2µ, I)) ≤ O(ε log 1/ε) .

By Claim 2.5, this means that if (20) holds, the uncorrupted set of X ′′
i can be treated

as an O(ε log 1/ε)-corrupted set of samples from N (Σ̂−1/2µ, I). Thus, if (20) holds,
the entire set of samples X ′′

1 , . . . , X
′′
m is an O(ε log 1/ε)-corrupted set of samples from

N (Σ̂−1/2µ, I). Then, by using results from section 4.3, with probability 1− τ , assum-

ing that (20) holds, we can recover a µ̂ such that ‖µ̂− Σ̂−1/2µ‖2 ≤ O(ε log3/2(1/ε)).
Thus, by Corollary 2.13, this implies that

dTV(N (µ̂, I),N (Σ̂−1/2µ, I)) ≤ O(ε log3/2(1/ε)) ,

or equivalently,

dTV(N (Σ̂1/2µ̂, Σ̂),N (µ, Σ̂)) ≤ O(ε log3/2(1/ε)) ,

which in conjunction with (21), implies that

dTV(N (Σ̂1/2µ̂, Σ̂),N (µ,Σ)) ≤ O(ε log3/2(1/ε)) ,

and thus by following this procedure, whose formal pseudocode is given in Algorithm
6, we have shown in Theorem 4.36.

Algorithm 6 Algorithm for learning an arbitrary Gaussian robustly.

1: function RecoverRobustGuassian(ε, τ,X1, . . . , XN )
2: For i = 1, . . . , N/2, let X ′

i = (Xi −XN/2+i)/
√
2.

3: Let Σ̂← LearnCovariance(ε, τ,X ′
1, . . . , X

′
N/2).

4: For i = 1, . . . , N , let X ′′
i = Σ̂−1/2Xi.

5: Let µ̂← LearnMean(ε, τ,X ′′
1 , . . . , X

′′
N ).

6: return the Gaussian with mean Σ̂1/2µ̂, and covariance Σ̂.

Theorem 4.36. Fix ε, τ > 0. Let X1, . . . , XN be an ε-corrupted set of samples
from N (µ,Σ), where µ,Σ are both unknown, and

N = Ω̃

(
d2 log5 1/τ

ε2

)
.

There is a polynomial-time algorithm RecoverRobustGaussian(ε, τ,X1, . . . , XN )

which with probability 1− τ , outputs a Σ̂, µ̂ such that

dTV(N (Σ̂1/2µ̂, Σ̂),N (µ,Σ)) ≤ O(ε log3/2(1/ε)) .

5. Agnostically learning a Gaussian, via filters.
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5.1. Learning a Gaussian with unknown mean. In this section, we use our
filter technique to give an agnostic learning algorithm for an unknown mean Gaussian
with known covariance matrix. More specifically, we prove the following theorem.

Theorem 5.1. Let G be a Gaussian distribution on R
d with mean µG, covariance

matrix I, and ε, τ > 0. Let S′ be an ε-corrupted set of samples from G of size
Ω((d/ε2) poly log(d/ετ)). There exists an efficient algorithm that, on input S′ and
ε > 0, returns a mean vector µ̂ such that with probability at least 1 − τ we have
‖µ̂− µG‖2 = O(ε

√
log(1/ε)).

Notation. We will denote µS = 1
|S|
∑

X∈S X and MS = 1
|S|
∑

X∈S(X−µG)(X−
µG)T for the sample mean and modified sample covariance matrix of the set S.

We start by defining our notion of good sample, i.e., a set of conditions on the
uncorrupted set of samples under which our algorithm will succeed.

Definition 5.2. Let G be an identity covariance Gaussian in d dimensions with
mean µG and covariance matrix I, and ε, τ > 0. We say that a multiset S of elements
in R

d is (ε, τ)-good with respect to G if the following conditions are satisfied:
(i) For all x ∈ S we have ‖x− µG‖2 ≤ O(

√
d log(|S|/τ)).

(ii) For every affine function L : Rd → R such that L(x) = v ·(x−µG)−T , ‖v‖2 =
1, we have that |PrX∈uS [L(X) ≥ 0]− PrX∼G[L(X) ≥ 0]| ≤ ε

T 2 log(d log( d
ετ ))

.

(iii) We have that ‖µS − µG‖2 ≤ ε.
(iv) We have that ‖MS − I‖2 ≤ ε.

We show in Appendix B that a sufficiently large set of independent samples from
G is (ε, τ)-good (with respect to G) with high probability. Specifically, we prove the
following lemma.

Lemma 5.3. Let G be a Gaussian distribution with identity covariance, and ε, τ >
0. If the multiset S is obtained by taking Ω((d/ε2) poly log(d/ετ)) independent samples
from G, it is (ε, τ)-good with respect to G with probability at least 1− τ.

We require the following definition that quantifies the extent to which a multiset
has been corrupted.

Definition 5.4. Given finite multisets S and S′, we let ∆(S, S′) be the size of
the symmetric difference of S and S′ divided by the cardinality of S.

As in the convex program case, we will first use NaivePrune to remove points
which are far from the mean. Then, we iterate the algorithm whose performance
guarantee is given by the following proposition.

Proposition 5.5. Let G be a Gaussian distribution on R
d with mean µG, co-

variance matrix I, ε > 0 sufficiently small, and τ > 0. Let S be an (ε, τ)-good set
with respect to G. Let S′ be any multiset with ∆(S, S′) ≤ 2ε and for any x, y ∈ S′,
‖x − y‖2 ≤ O(

√
d log(d/ετ)). There exists a polynomial-time algorithm Filter-

Gaussian-Unknown-Mean that, given S′ and ε > 0, returns one of the following:
(i) a mean vector µ̂ such that ‖µ̂− µG‖2 = O(ε

√
log(1/ε)),

(ii) a multiset S′′ ⊆ S′ such that ∆(S, S′′) ≤ ∆(S, S′) − ε/α, where α
def
= d

log
(

d
ετ

)
log
(
d log( d

ετ )
)
.

We start by showing how Theorem 5.1 follows easily from Proposition 5.5.

Proof of Theorem 5.1. By the definition of ∆(S, S′), since S′ has been obtained
from S by corrupting an ε-fraction of the points in S, we have that ∆(S, S′) ≤ 2ε. By
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Lemma 5.3, the set S of uncorrupted samples is (ε, τ)-good with respect to G with
probability at least 1− τ. We henceforth condition on this event.

Since S is (ε, τ)-good, all x ∈ S have ‖x − µG‖2 ≤ O(
√

d log |S|/τ). Thus,
the NaivePrune procedure does not remove from S′ any member of S. Hence,
its output, S′′, has ∆(S, S′′) ≤ ∆(S, S′) and for any x ∈ S′′, there is a y ∈ S
with ‖x − y‖2 ≤ O(

√
d log |S|/τ). By the triangle inequality, for any x, z ∈ S′′,

‖x− z‖2 ≤ O(
√

d log |S|/τ) = O(
√
d log(d/ετ)).

Then, we iteratively apply the Filter-Gaussian-Unknown-Mean procedure
of Proposition 5.5 until it terminates returning a mean vector µ with ‖µ̂ − µG‖2 =
O(ε

√
log(1/ε)). We claim that we need at most O(α) iterations for this to hap-

pen. Indeed, the sequence of iterations results in a sequence of sets S′
i, such that

∆(S, S′
i) ≤ ∆(S, S′) − i · ε/α. Thus, if we do not output the empirical mean in the

first 2α iterations, in the next iteration there are no outliers left. Hence in the next
iteration it is impossible for the algorithm to output a subset satisfying condition (ii)
of Proposition 5.5, so it must output a mean vector satisfying (i), as desired.

5.1.1. Algorithm Filter-Gaussian-Unknown-Mean: Proof of Proposi-

tion 5.5. In this subsection, we describe the efficient algorithm establishing Proposi-
tion 5.5 and prove its correctness. Our algorithm calculates the empirical mean vector
µS′

and empirical covariance matrix Σ. If the matrix Σ has no large eigenvalues, it
returns µS′

. Otherwise, it uses the eigenvector v∗ corresponding to the maximum
magnitude eigenvalue of Σ and the mean vector µS′

to define a filter. Our efficient
filtering procedure is presented in detailed pseudocode below.

Algorithm 7 Filter algorithm for a Gaussian with unknown mean and identity co-
variance.
1: procedure Filter-Gaussian-Unknown-Mean(S′, ε, τ)

input: A multiset S′ such that there exists an (ε, τ)-good S with ∆(S, S′) ≤ 2ε
output: Multiset S′′ or mean vector µ̂ satisfying Proposition 5.5
2: Compute the sample mean µS′

= EX∈uS′ [X] and the sample covariance matrix
Σ , i.e., Σ = (Σi,j)1≤i,j≤d with Σi,j = EX∈uS′ [(Xi − µS′

i )(Xj − µS′

j )].
3: Compute approximations for the largest absolute eigenvalue of Σ − I, λ∗ :=
‖Σ− I‖2, and the associated unit eigenvector v∗.

4: if ‖Σ− I‖2 ≤ O(ε log(1/ε)) then return µS′

.

5: Let δ := 3
√
ε‖Σ− I‖2. Find T > 0 such that

Pr
X∈uS′

[
|v∗ · (X − µS′

)| > T + δ
]
> 8 exp(−T 2/2) + 8

ε

T 2 log
(
d log( d

ετ )
) .

6: return the multiset S′′ = {x ∈ S′ : |v∗ · (x− µS′

)| ≤ T + δ}.

By definition, there exist disjoint multisets L,E, of points in R
d, where L ⊂ S,

such that S′ = (S \L) ∪E. With this notation, we can write ∆(S, S′) = |L|+|E|
|S| . Our

assumption ∆(S, S′) ≤ 2ε is equivalent to |L| + |E| ≤ 2ε · |S|, and the definition of
S′ directly implies that (1 − 2ε)|S| ≤ |S′| ≤ (1 + 2ε)|S|. Throughout the proof, we
assume that ε is a sufficiently small constant.

We define µG, µS , µS′

, µL, and µE to be the means of G,S, S′, L, and E, respec-
tively.

Our analysis will make essential use of the following matrices:
• MS′ denotes EX∈uS′ [(X − µG)(X − µG)T ],
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• MS denotes EX∈uS [(X − µG)(X − µG)T ],
• ML denotes EX∈uL[(X − µG)(X − µG)T ], and
• ME denotes EX∈uE [(X − µG)(X − µG)T ].

Our analysis will hinge on proving the important claim that Σ−I is approximately
(|E|/|S′|)ME . This means two things for us. First, it means that if the positive errors
align in some direction (causing ME to have a large eigenvalue), there will be a large
eigenvalue in Σ− I. Second, it says that any large eigenvalue of Σ− I will correspond
to an eigenvalue of ME , which will give an explicit direction in which many error
points are far from the empirical mean.

Useful structural lemmas. We will use the following simple fact about the
concentration of Gaussian random variables.

Fact 5.6. If G is Gaussian on R
d with mean vector µ, then for any unit vector

v ∈ R
d we have that PrX∼G [|v · (X − µ)| ≥ T ] ≤ exp(−t2/2).

We begin by noting that we have concentration bounds on G and therefore on S,
due to its goodness.

Fact 5.7. Let w ∈ R
d be any unit vector. Then for any T > 0,

Pr
X∼G

[
|w · (X − µG)| > T

]
≤ 2 exp(−T 2/2)

and
Pr

X∈uS

[
|w · (X − µG)| > T

]
≤ 2 exp(−T 2/2) +

ε

T 2 log
(
d log( d

ετ )
) .

Proof. The first line is Fact 5.6, and the second follows from it using the goodness
of S.

By using the above fact, we obtain the following simple claim.

Claim 5.8. Let w ∈ R
d be any unit vector. Then for any T > 0, we have that

Pr
X∼G

[|w · (X − µS′

)| > T + ‖µS′ − µG‖2] ≤ 2 exp(−T 2/2)

and

Pr
X∈uS

[|w · (X − µS′

)| > T + ‖µS′ − µG‖2] ≤ 2 exp(−T 2/2) +
ε

T 2 log
(
d log( d

ετ )
) .

Proof. This follows from Fact 5.7 upon noting that |w·(X−µS′

)| > T+‖µS′−µG‖2
only if |w · (X − µG)| > T .

We can use the above facts to prove concentration bounds for L. In particular,
we have the following lemma.

Lemma 5.9. We have that ‖ML‖2 = O (log(|S|/|L|) + ε|S|/|L|).
Proof. Since L ⊆ S, for any x ∈ R

d, we have that

(22) |S| · Pr
X∈uS

(X = x) ≥ |L| · Pr
X∈uL

(X = x) .

Since ML is a symmetric matrix, we have ‖ML‖2 = max‖v‖2=1 |vTMLv|. So, to bound
‖ML‖2 it suffices to bound |vTMLv| for unit vectors v. By definition of ML, for any
v ∈ R

d we have that
|vTMLv| = E

X∈uL
[|v · (X − µG)|2].
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For unit vectors v, the right-hand side (RHS) is bounded from above as follows:

E
X∈uL

[
|v · (X − µG)|2

]

= 2

∫ ∞

0

Pr
X∈uL

[
|v · (X − µG)| > T

]
TdT

= 2

∫ O(
√

d log(d/ετ))

0

Pr
X∈uL

[|v · (X − µG)| > T ]TdT

≤ 2

∫ O(
√

d log(d/ετ))

0

min

{
1,
|S|
|L| · Pr

X∈uS

[
|v · (X − µG)| > T

]}
TdT

�
∫ 4
√

log(|S|/|L|)

0

TdT

+ (|S|/|L|)
∫ O(
√

d log(d/ετ))

4
√

log(|S|/|L|)

(
exp(−T 2/2) +

ε

T 2 log
(
d log( d

ετ )
)
)
TdT

� log(|S|/|L|) + ε · |S|/|L| ,

where the third line follows from the fact that ‖v‖2 = 1, L ⊂ S, and S satisfies
condition (i) of Definition 5.2; the fourth line follows from (22); and the fifth line
follows from Fact 5.7.

As a corollary, we can relate the matrices MS′ and ME , in spectral norm.

Corollary 5.10. We have that MS′ − I = (|E|/|S′|)ME +O(ε log(1/ε)), where
the O(ε log(1/ε)) term denotes a matrix of spectral norm O(ε log(1/ε)).

Proof. By definition, we have that |S′|MS′ = |S|MS −|L|ML+ |E|ME . Thus, we
can write

MS′ = (|S|/|S′|)MS − (|L|/|S′|)ML + (|E|/|S′|)ME

= I +O(ε) +O(ε log(1/ε)) + (|E|/|S′|)ME ,

where the second line uses the fact that 1 − 2ε ≤ |S|/|S′| ≤ 1 + 2ε, the goodness of
S (condition (iv) in Definition 5.2), and Lemma 5.9. Specifically, Lemma 5.9 implies
that (|L|/|S′|)‖ML‖2 = O(ε log(1/ε)). Therefore, we have that

MS′ = I + (|E|/|S′|)ME +O(ε log(1/ε)) ,

as desired.

We now establish a similarly useful bound on the difference between the mean
vectors.

Lemma 5.11. We have that µS′ − µG = (|E|/|S′|)(µE − µG) + O(ε
√
log(1/ε)),

where the O(ε
√
log(1/ε)) term denotes a vector with `2-norm at most O(ε

√
log(1/ε)).

Proof. By definition, we have that

|S′|(µS′ − µG) = |S|(µS − µG)− |L|(µL − µG) + |E|(µE − µG).

Since S is a good set, by condition (iii) of Definition 5.2, we have ‖µS −µG‖2 = O(ε).
Since 1−2ε ≤ |S|/|S′| ≤ 1+2ε, it follows that (|S|/|S′|)‖µS−µG‖2 = O(ε). Using the
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valid inequality ‖ML‖2 ≥ ‖µL − µG‖22 and Lemma 5.9, we obtain that ‖µL − µG‖2 ≤
O
(√

log(|S|/|L|) +
√
ε|S|/|L|

)
. Therefore,

(|L|/|S′|)‖µL − µG‖2 ≤ O
(
(|L|/|S|)

√
log(|S|/|L|) +

√
ε|L|/|S|

)
= O(ε

√
log(1/ε)) .

In summary,

µS′ − µG = (|E|/|S′|)(µE − µG) +O(ε
√
log(1/ε)) ,

as desired. This completes the proof of the lemma.

By combining the above, we can conclude that Σ−I is approximately proportional
to ME . More formally, we obtain the following corollary.

Corollary 5.12. We have Σ− I = (|E|/|S′|)ME +O(ε log(1/ε))+O(|E|/|S′|)2
‖ME‖2, where the additive terms denote matrices of appropriately bounded spectral
norm.

Proof. By definition, we can write Σ − I = MS′ − I − (µS′ − µG)(µS′ − µG)T .
Using Corollary 5.10 and Lemma 5.11, we obtain

Σ− I = (|E|/|S′|)ME +O(ε log(1/ε)) +O((|E|/|S′|)2‖µE − µG‖22) +O(ε2 log(1/ε))

= (|E|/|S′|)ME +O(ε log(1/ε)) +O(|E|/|S′|)2‖ME‖2 ,

where the second line follows from the valid inequality ‖ME‖2 ≥ ‖µE − µG‖22. This
completes the proof.

Case of small spectral norm. We are now ready to analyze the case that the
mean vector µS′

is returned by the algorithm in step 4 of Algorithm 7. In this case,

we have that λ∗ def
= ‖Σ− I‖2 = O(ε log(1/ε)). Hence, Corollary 5.12 yields that

(|E|/|S′|)‖ME‖2 ≤ λ∗ +O(ε log(1/ε)) +O(|E|/|S′|)2‖ME‖2 ,

which, in turn, implies that

(|E|/|S′|)‖ME‖2 = O(ε log(1/ε)) .

On the other hand, since ‖ME‖2 ≥ ‖µE − µG‖22, Lemma 5.11 gives that

‖µS′ − µG‖2 ≤ (|E|/|S′|)
√
‖ME‖2 +O(ε

√
log(1/ε)) = O(ε

√
log(1/ε)).

This proves part (i) of Proposition 5.5.
Case of large spectral norm. We next show the correctness of the algorithm

when it returns a filter in step 5 of Algorithm 7.

We start by proving that if λ∗ def
= ‖Σ− I‖2 > Cε log(1/ε), for a sufficiently large

universal constant C, then a value T satisfying the condition in step 5 of Algorithm
7 exists. We first note that ‖ME‖2 is appropriately large. Indeed, by Corollary 5.12
and the assumption that λ∗ > Cε log(1/ε) we deduce that

(23) (|E|/|S′|)‖ME‖2 = Ω(λ∗) .

Moreover, using the inequality ‖ME‖2 ≥ ‖µE − µG‖22 and Lemma 5.11 as above, we
get that

(24) ‖µS′ − µG‖2 ≤ (|E|/|S′|)
√
‖ME‖2 +O(ε

√
log(1/ε)) ≤ δ/2 ,
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where we used the fact that δ
def
=
√
ελ∗ > C ′ε

√
log(1/ε).

Suppose for the sake of contradiction that for all T > 0 we have that

Pr
X∈uS′

[
|v∗ · (X − µS′

)| > T + δ
]
≤ 8 exp(−T 2/2) + 8

ε

T 2 log
(
d log( d

ετ )
) .

Using (24), we obtain that for all T > 0 we have that

(25) Pr
X∈uS′

[
|v∗ · (X − µG)| > T + δ/2

]
≤ 8 exp(−T 2/2) + 8

ε

T 2 log
(
d log( d

ετ )
) .

Since E ⊆ S′, for all x ∈ R
d we have that |S′|PrX∈uS′ [X = x] ≥ |E|PrY ∈uE [Y = x].

This fact, combined with (25), implies that for all T > 0
(26)

Pr
X∈uE

[
|v∗ · (X − µG)| > T + δ/2

]
≤ C(|S′|/|E|)

(
exp(−T 2/2) +

ε

T 2 log
(
d log( d

ετ )
)
)

,

for some universal constant C ′′.
We now have the following sequence of inequalities:

‖ME‖2 = E
X∈uE

[
|v∗ · (X − µG)|2

]
= 2

∫ ∞

0

Pr
X∈uE

[
|v∗ · (X − µG)| > T

]
TdT

= 2

∫ O(
√

d log(d/ετ))

0

Pr
X∈uE

[
|v∗ · (X − µG)| > T

]
TdT

≤ 2

∫ O(
√

d log(d/ετ))

0

min

{
1,
|S′|
|E| · Pr

X∈uS′

[
|v∗ · (X − µG)| > T

]}
TdT

≤
∫ 4
√

log(|S′|/|E|)+δ

0

TdT + C ′′ |S′|
|E|

∫ O(
√

d log(d/ετ))

4
√

log(|S′|/|E|)+δ

(
exp(−T 2/2)

+
ε

T 2 log
(
d log( d

ετ )
)
)
TdT

≤
∫ 4
√

log(|S′|/|E|)+δ

0

TdT

+ C ′′ |S′|
|E|

(∫ ∞

4
√

log(|S′|/|E|)+δ

(
exp(−T 2/2)

)
TdT +O(ε)

)

≤ log(|S′|/|E|) + δ2 +O(1) +O(ε) · |S′|/|E|
≤ log(|S′|/|E|) + ελ∗ +O(ε) · |S′|/|E| .

Rearranging the above, we get that

(|E|/|S′|)‖ME‖2 � (|E|/|S′|) log(|S′|/|E|)+(|E|/|S′|)ελ∗+O(ε) = O(ε log(1/ε)+ε2λ∗).

Combining this with (23), we obtain λ∗ = O(ε log(1/ε)), which is a contradiction if
C is sufficiently large. Therefore, it must be the case that for some value of T the
condition in step 5 of Algorithm 7 is satisfied.

The following claim completes the proof of Proposition 5.5.

Claim 5.13. Fix α
def
= d log(d/ετ) log(d log( d

ετ )). We have that ∆(S, S′′) ≤ ∆(S, S′)
− 2ε/α .
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Proof. Recall that S′ = (S \ L) ∪ E, with E and L disjoint multisets such that
L ⊂ S. We can similarly write S′′ = (S \ L′) ∪ E′, with L′ ⊇ L and E′ ⊂ E. Since

∆(S, S′)−∆(S, S′′) =
|E \ E′| − |L′ \ L|

|S| ,

it suffices to show that |E \ E′| ≥ |L′ \ L| + ε|S|/α. Note that |L′ \ L| is the num-
ber of points rejected by the filter that lie in S ∩ S′. Note that the fraction of ele-
ments of S that are removed to produce S′′ (i.e., satisfy |v∗ · (x − µS′

)| > T + δ)
is at most 2 exp(−T 2/2) + ε/α. This follows from Claim 5.8 and the fact that
T = O(

√
d log(d/ετ)).

Hence, it holds that |L′ \L| ≤ (2 exp(−T 2/2)+ε/α)|S|. On the other hand, step 5
of Algorithm 7 ensures that the fraction of elements of S′ that are rejected by the
filter is at least 8 exp(−T 2/2) + 8ε/α. Note that |E \ E′| is the number of points
rejected by the filter that lie in S′ \ S. Therefore, we can write

|E \ E′| ≥ (8 exp(−T 2/2) + 8ε/α)|S′| − (2 exp(−T 2/2) + ε/α)|S|
≥ (8 exp(−T 2/2) + 8ε/α)|S|/2− (2 exp(−T 2/2) + ε/α)|S|
≥ (2 exp(−T 2/2) + 3ε/α)|S|
≥ |L′ \ L|+ 2ε|S|/α ,

where the second line uses the fact that |S′| ≥ |S|/2 and the last line uses the fact
that |L′ \ L|/|S| ≤ 2 exp(−T 2/2) + ε/α. Noting that log(d/ετ) ≥ 1, this completes
the proof of the claim.

5.2. Learning a Gaussian with unknown covariance. In this subsection,
we use our filter technique to agnostically learn a Gaussian with zero mean vector and
unknown covariance. By combining the algorithms of the current and the previous
subsections, as in our convex programming approach (section 4.5), we obtain a filter-
based algorithm to agnostically learn an arbitrary unknown Gaussian.

The main result of this subsection is the following theorem.

Theorem 5.14. Let G ∼ N (0,Σ) be a Gaussian in d dimensions with mean 0
and unknown covariance, and let ε, τ > 0. Let S be an ε-corrupted set of samples
from G of size Ω((d2/ε2) poly log(d/ετ)). There exists an efficient algorithm that,

given S and ε, returns the parameters of a Gaussian distribution G′ ∼ N (0, Σ̂) such

that with probability at least 1− τ , it holds that ‖I−Σ−1/2Σ̂Σ−1/2‖F = O(ε log(1/ε)).

As in the previous subsection, we will need a condition on S under which our
algorithm will succeed.

Definition 5.15. Let G be a Gaussian in R
d with mean 0 and covariance Σ. Let

ε > 0 be sufficiently small. We say that a multiset S of points in R
d is (ε, τ)-good

with respect to G if the following hold:
1. For all x ∈ S, xTΣ−1x < O(d log(|S|/τ)).
2. We have that ‖Σ−1/2Cov(S)Σ−1/2 − I‖F = O(ε).
3. For all even degree-2 polynomials p, we have that Var(p(S)) = Var(p(G))(1+

O(ε)).
4. For p an even degree-2 polynomial with E[p(G)] = 0 and Var(p(G)) = 1, and

for any T > 10 ln(1/ε) we have that

Pr
x∈uS

(|p(x)| > T ) ≤ ε/(T 2 log2(T )).
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Let us first note some basic properties of such polynomials on a normal distribu-
tion. The proof of this lemma is deferred to Appendix B.

Lemma 5.16. For any even degree-2 polynomial p : Rd → R, we can write p(x) =
(Σ−1/2x)TP2(Σ

−1/2x) + p0, for a d× d symmetric matrix P2 and p0 ∈ R. Then, for
X ∼ G, we have

1. E[p(X)] = p0 + tr(P2),
2. Var[p(X)] = 2‖P2‖2F , and
3. for all T > 1, Pr(|p(X)− E[p(X)]| ≥ T ) ≤ 2e1/3−2T/3Var[p(X)].
4. For all δ > 0, Pr(|p(X)| ≤ δ2) ≤ O(δ).

We note that if S is obtained by taking random samples from G, then S is good
with high probability. The proof of this lemma is also deferred to Appendix B.

Lemma 5.17. Let G be a d-dimensional Gaussian with mean 0, and let ε, τ > 0.
Let N be a sufficiently large constant multiple of d2 log5(d/ετ)/ε2. Then a set S of N
independent samples from G is (ε, τ)-good with respect to G with probability at least
1− τ .

As in Definition 5.4, ∆(S, S′) is the size of the symmetric difference of S and S′

divided by |S|.
The basic thrust of our algorithm is as follows: By Lemma 5.17, with high prob-

ability we have that S is (ε, τ)-good with respect to G. The algorithm is then handed
a new set S′ such that ∆(S, S′) ≤ 2ε|S|. The algorithm will run in stages. In each
stage, the algorithm will either output G′ or will return a new set S′′ such that
∆(S, S′′) < ∆(S, S′). In the latter case, the algorithm will recurse on S′′. We formal-
ize this idea below.

Proposition 5.18. There is an algorithm that, given a finite set S′ ⊂ R
d, such

that there is a mean 0 Gaussian G and a set S that is (ε, τ)-good with respect to G with
∆(S, S′) ≤ 2ε|S|, runs in time poly(d log(1/τ)/ε) and returns either the parameters of
a Gaussian G′ with dTV(G,G′) ≤ O(ε log(1/ε)) or a subset S′′ of Rd with ∆(S, S′′) <
∆(S, S′).

Given Proposition 5.18, the proof of Theorem 5.14 is straightforward. By Lemma
5.17 the original set S is (ε, τ)-good with respect to G with probability at least 1− τ .
Then, S′ satisfies the hypotheses of Proposition 5.18. We then repeatedly iterate the
algorithm from Proposition 5.18 until it outputs a distribution G′ close to G. This
must eventually happen because at every step the distance between S and the set
returned by the algorithm decreases by at least 1.

5.2.1. Analysis of filter-based algorithm: Proof of Proposition 5.18. We
now turn our attention to the proof of Proposition 5.18. We first define the matrix
Σ′ to be EX∈S′ [XXT ], and let G′ be the mean 0 Gaussian with covariance matrix
Σ′. Our goal will be to either obtain a certificate that G′ is close to G or to devise a
filter that allows us to clean up S′ by removing some elements, most of which are not
in S. The idea here is the following: We know by Corollary 2.14 that G and G′ are
close unless I −Σ−1/2Σ′Σ−1/2 has large Frobenius norm. This happens if and only if
there is some matrix M with ‖M‖F = 1 such that

tr(MΣ−1/2Σ′Σ−1/2 −M) = E
X∈uS′

[(Σ−1/2X)TM(Σ−1/2X)− tr(M)]

is far from 0. On the other hand, we know that the distribution of p(X) = (Σ−1/2X)T

M(Σ−1/2X) − tr(M) for X ∈u S is approximately that of p(G), which is a variance
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O(1) polynomial of Gaussians with mean 0. In order to substantially change the mean
of this function, while only changing S at a few points, one must have several points
in S′ for which p(X) is abnormally large. This, in turn, will imply that the variance
of p(X) for X from S′ must be large. This phenomenon will be detectable as a large
eigenvalue of the matrix of fourth moments of X ∈ S′ (thought of as a matrix over
the space of second moments). If such a large eigenvalue is detected, we will have a
p with p(X) having large variance. By throwing away from S′ elements for which |p|
is too large, we will return a cleaner version of S′. The algorithm is as follows.

Algorithm 8 Filter algorithm for a Gaussian with unknown covariance matrix.

1: procedure Filter-Gaussian-Unknown-Covariance(S′, ε, τ)
input: A multiset S′ such that there exists an (ε, τ)-good S with ∆(S, S′) ≤ 2ε
output: Either a set S′′ with ∆(S, S′′) < ∆(S, S′) or the parameters of a Gaussian

G′ with dTV(G,G′) = O(ε log(1/ε))
2: Let C > 0 be a sufficiently large universal constant.
3: Let Σ′ be the matrix EX∈uS′ [XXT ], and let G′ be the mean 0 Gaussian with

covariance matrix Σ′.
4: if there is any x ∈ S′ such that xT (Σ′)−1x ≥ Cd log(|S′|/τ) then
5: return S′′ = S′ \ {x : xT (Σ′)−1x ≥ Cd log(|S′|/τ)}.
6: Let L be the space of even degree-2 polynomials p such that EX∼G′ [p(X)] = 0.
7: Define two quadratic forms on L:

(i) QG′(p) = E[p2(G′)] ,
(ii) QS′(p) = EX∈uS′ [p2(X)] .

8: Computing maxp∈L\{0} QS′(p)/QG′(p) and the associated polynomial p∗(x)
normalized such that QG′(p∗) = 1 using Find-max-poly below.

9: if QS′(p∗) ≤ (1 + Cε log2(1/ε))QG′(p∗) then
10: return G′

11: Let µ be the median value of p∗(X) over X ∈ S′.
12: Find a T ≥ C ′ such that

Pr
X∈uS′

(|p∗(X)− µ| ≥ T + 3) ≥ Tail(T, d, ε, τ) ,

where Tail(T, d, ε, τ) = 3ε/(T 2 log2(T )) when T ≥ 10 ln(1/ε), and
Tail(T, d, ε, τ) = 1 when T < 10 log(1/ε).

13: return S′′ = {X ∈ S′ : |p∗(X)− µ| < T}.

The function Find-max-poly uses similar notation to SeparationOracle-

UnknownCovariance, such that Filter-Gaussian-Unknown-Covariance and
SeparationOracleUnknownCovariance can be more easily compared.

Let us first show that Find-max-poly is correct.

Claim 5.19. Algorithm Find-max-poly is correct and Filter-Gaussian-

Unknown-Covariance runs in time poly(d log τ/ε).

Proof. First, assume that we can compute all eigenvalues and eigenvectors exactly.
By Lemma 5.16 all even polynomials with degree-2 that have EX∼G[p(X)] = 0 can be
written as p(x) = (Σ′−1/2x)TP2(Σ

′−1/2x) − tr(P2) for a symmetric matrix P2. If we
take P2 = v]/

√
2 for a unit vector v such that v] is symmetric, then VarX∼G′ [p(X)] =

2‖P2‖F = ‖v2‖ = 1.
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Algorithm 9 Algorithm for maximizing QS′(p)/QG′(p).

1: function Find-max-poly(S′,Σ′)
input: A multiset S′ and a Gaussian G′ = N (0,Σ′)
output: The even degree-2 polynomial p∗(x) with EX∼G′ [p∗(X)] ≈ 0 and QG′(p∗) ≈

1 that approximately maximizes QS′(p∗) and this maximum λ∗ = QS′(p∗)
2: Compute an approximate eigendecomposition of Σ′ and use it to compute

Σ′−1/2.
3: Let x(1), . . . , x(|S′|) be the elements of S′.

4: For i = 1, . . . , |S′|, let y(i) = Σ′−1/2x(i) and z(i) = y⊗2
(i) .

5: Let TS′ = −I[I[T + (1/|S′|)∑|S′|
i=1 z(i)z

T
(i).

6: Approximate the top eigenvalue λ∗ and corresponding unit eigenvector v∗ of
TS′ .

7: Let p∗(x) = 1√
2
((Σ′−1/2x)T v∗](Σ′−1/2x)− tr(v∗])).

8: return p∗ and λ∗/2.

Note that since the covariance matrix of S′ is Σ′ , we have

E
X∼S′

[p(X)] = E
X∼S′

[(Σ′−1/2X)TP2(Σ
′−1/2X)− tr(P2)]

= E
X∼S′

[tr((XXT )Σ′−1/2P2Σ
′−1/2)]− tr(P2)

= tr( E
X∼S′

[(XXT )]Σ′−1/2P2Σ
′−1/2)− tr(P2)

= tr(Σ′Σ′−1/2P2Σ
′−1/2)− tr(P2) = 0 .

We let T ′ be the multiset of y = Σ−1/2x for x ∈ S′ and U ′ the multiset of z = y⊗2

for y in T ′. Recall that P [
2 =
√
2v. We thus have

QS′(p) := E
X∈uS′

[p(X)2] = E
Y∼T ′

[(Y TP2Y − tr(P2))
2]

= E
Y ∈uT ′

[(Y TP2Y )2] + tr(P2)
2 − 2tr(P2)

2

= E
Y ∈uT ′

[tr((Y Y T )P2)
2]−tr(P2I)

2 − 0

= E
Z∈uU ′

[(ZT v)2/2]−(vT I[)2/2

= E
Z∈uU ′

[vT (ZZT )v/2]−2vT (I[I[T )v/2

= vTTS′v/2 .

Thus, the p(x) that maximizes QS′(p) is given by the unit vector v that maximizes
vTTS′v subject to v] being symmetric.

Let v′ = v]T [. Note that vTTS′v = v′TTS′v′ by symmetries of TS′ . Thus, by
linearity, v′′ = v/2+v′/2 also has v′′TTS′v′′ = vTTS′v. However, if v] is not symmetric,
v′′ has ‖v′′‖2 < 1. Thus, the unit vector v′′/‖v′′‖2 achieves a higher value of the
bilinear form. Consequently, v∗] is symmetric.

Now we have that p∗(x) that maximizes QS′(p) is given by the unit vector v that
maximizes vTTS′v. Since QG′(p) := EX∼G′ [p(X)2] = 2‖P2‖F = ‖v‖2 = 1, this also
maximizes QS′(p)/QG′(p).

We note that we can achieve EX∼G′ [p∗(X)] = O(ε2) and EX∼G′ [(p∗(X))2] = 1 +
O(ε2) in time poly(ε/d) using standard algorithms to compute the eigendecomposition
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of a symmetric matrix. This suffices for the correctness of the remaining part of
Filter-Gaussian-Unknown-Covariance. The other steps in Filter-Gaussian-

Unknown-Covariance can be easily done in poly(|S′|d log(1τ)/ε) time.

In order to analyze algorithm Filter-Gaussian-Unknown-Covariance, we
note that we can write S′ = (S \ L) ∪ E, where L = S \ S′ and L = S′ \ S. It
is then the case that ∆(S, S′) = (|L| + |E|)/|S|. Since this is small we have that
|L|, |E| = O(ε|S′|). We can also write Σ′ and ΣS\L((|S| − |L|)/|S′|) + ΣE(|E|/|S′|) =
ΣS\L + O(ε)(ΣE − ΣS\L), where ΣS\L = EX∈uS\L[XXT ],ΣE = EX∈uE [XXT ]. A
critical part of our analysis will be to note that ΣS\L is very close to Σ, and thus that
either Σ′ is very close to Σ or else ΣE is very large in some direction.

Lemma 5.20. We have that

‖I − Σ−1/2ΣS\LΣ
−1/2‖F = O(ε log(1/ε)).

To prove Lemma 5.20, we will require the following lemma.

Lemma 5.21. Let p(x) be an even degree-2 polynomial with EX∼G[p(X)] = 0 and
VarX∼G[p(X)] = 1. Then, we have that |L|EX∈uL[p(X)2] = O(ε log2(1/ε)|S|) and
|L||EX∈uL[p(X)]| = O(ε log(1/ε)|S|).

Proof. This holds essentially because the distribution of p(X) for X ∈ S is close
to that for p(G), which has rapidly decaying tails. Therefore, throwing away an
ε-fraction of the mass cannot change the value of the variance by very much. In
particular, we have that

|L| E
X∈uL

[p(X)2] ≤
∫ ∞

0

|L| Pr
X∈uL

(|p(X)| > T )2TdT

≤
∫ ∞

0

|S|min

(
2ε, Pr

X∈uS
(|p(X)| > T )

)
2TdT

≤
∫ 10 ln(1/ε)

0

4ε|S|TdT +

∫ ∞

10 ln(1/ε)

6|S|εT/(T 2 log2(T ))dT

≤ O(ε|S| log2(1/ε)) +
∫ ∞

10 ln(1/ε)

6|S|ε/(T log2(T ))dT

= O(ε|S| log2(1/ε)) + 6ε|S|/ ln(10 ln(1/ε))
= O(ε log2(1/ε)|S|) .

By the Cauchy–Schwarz inequality, we have

(|L|/|S|)| E
x∈uL

[p(X)]| ≤ (|L|/|S|)
√

E
x∈uL

[p(X)2] ≤
√
|L|/|S| ·

√
O(ε log2(1/ε))

= O(ε log(1/ε) .

Now we can prove Lemma 5.20.

Proof of Lemma 5.20. Note that, since the matrix inner product is an inner prod-
uct,

‖I − Σ−1/2ΣS\LΣ
−1/2‖F = sup

‖M‖F=1

(
tr(MΣ−1/2ΣS\LΣ

−1/2)− tr(M)
)
.

We need to show that for any M with ‖M‖F = 1 that tr(MΣ−1/2ΣS\LΣ
−1/2)−tr(M)

is small.
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Since

tr(MΣ−1/2ΣS\LΣ
−1/2) = tr(MTΣ−1/2ΣS\LΣ

−1/2) = tr( 12 (M+MT )Σ−1/2ΣS\LΣ
−1/2)

and ‖ 12 (M + MT )‖F ≤ 1
2 (‖M‖F + ‖MT ‖F ) = 1, we may assume without loss of

generality that M is symmetric.
Consider such an M . We note that

tr(MΣ−1/2ΣS\LΣ
−1/2) = E

X∈uS\L
[tr(MΣ−1/2XXTΣ−1/2)]

= E
X∈uS\L

[(Σ−1/2X)TM(Σ−1/2X)].

Let p(x) denote the quadratic polynomial

p(x) = (Σ−1/2x)TM(Σ−1/2x)− tr(M).

By Lemma 5.16, EX∼G[p(X)] = 0 and VarX∼G[p(X)] = 2‖M‖2F = 2.
Since S is (ε, τ)-good with respect to G, we have that EX∈S [p(X)] =

ε
√
EX∼G[p2(X)] = O(ε). Therefore, it suffices to show that the contribution from

L is small. In particular, it will be enough to show that (|L|/|S|)|Ex∈uL[p(X)]| ≤
O(ε log(1/ε)). This follows from Lemma 5.21, which completes the proof.

As a corollary of this we note that Σ′ cannot be too much smaller than Σ.

Corollary 5.22. We present

Σ′ � (1−O(ε log(1/ε)))Σ.

Proof. Lemma 5.20 implies that Σ−1/2ΣS\LΣ
1/2 has all eigenvalues in the range

1±O(ε log(1/ε)). Therefore, ΣS\L � (1+O(ε log(1/ε)))Σ. Our result now follows from
noting that Σ′ = ΣS\L((|S| − |L|)/|S′|) + ΣE(|E|/|S′|), and ΣE = EX∈uE [XXT ] ≥
0.

The first step in verifying correctness is to note that if our algorithm returns on
step 5 of Algorithm 8 that it does so correctly.

Claim 5.23. If our algorithm returns on step 5 of Algorithm 8, then ∆(S, S′′) <
∆(S, S′).

Proof. This is clearly true if we can show that all x removed have x 6∈ S. However,
this follows because (Σ′)−1 ≤ 2Σ−1, and therefore, by (ε, τ)-goodness, all x ∈ S satisfy

xT (Σ′)−1x ≤ 2xTΣ−1x < Cd log(N/τ)

for C sufficiently large.

Next, we need to show that if our algorithm returns a G′ in step 10 of Algorithm
8, then dTV(G,G′) is small.

Claim 5.24. If our algorithm returns in step 10 of Algorithm 8, then dTV(G,G′) =
O(ε log(1/ε)).

Proof. By Corollary 2.14, it suffices to show that

‖I − Σ−1/2Σ′Σ−1/2‖F = O(ε log(1/ε)).
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However, we note that

‖I − Σ−1/2Σ′Σ−1/2‖F ≤ ‖I − Σ−1/2ΣS\LΣ
−1/2‖F + (|E|/|S′|)‖I − Σ−1/2ΣEΣ

−1/2‖F
≤ O(ε log(1/ε)) + (|E|/|S′|)‖I − Σ−1/2ΣEΣ

−1/2‖F .

Therefore, we will have an appropriate bound unless ‖I − Σ−1/2ΣEΣ
−1/2‖F =

Ω(log(1/ε)).
Next, note that there is a matrix M with ‖M‖F = 1 such that

‖I − Σ−1/2ΣEΣ
−1/2‖F = tr(MΣ−1/2ΣEΣ

−1/2 −M)

= E
X∈uE

[(Σ−1/2X)TM(Σ−1/2X)− tr(M)].

Indeed we can take M = (I − Σ−1/2ΣEΣ
−1/2)/‖I − Σ−1/2ΣEΣ

−1/2‖F . Thus, there
is a symmetric M such that this holds.

We let p(X) be the polynomial

p(X) = (Σ−1/2X)TM(Σ−1/2X)− tr(M).

Using Lemma 5.16, EX∼G[p(X)] = 0 and VarX∼G[p(X)] = 2. Therefore, p ∈ L
and QG′(p) = 2. We now compare this to the size of QS′(p). On the one hand, we
note that using methodology similar to that used in Lemma 5.20 we can show that
EX∈uS\L[p

2(X)] is not much less than 2. In particular,

E
X∈uS\L

[p2(X)] ≥
(

E
X∈uS

[p2(X)]−
∑

X∈L p2(X)

|S|

)
.

On the one hand, we have that

E
X∈uS

[p2(X)] ≤ E[p2(G)](1 + ε) = 2 +O(ε) ,

by assumption. On the other hand, by Lemma 5.21, we have |L|EX∈uL[p
2(X)]/|S| ≤

O(ε log2(1/ε)).
Therefore, we have that EX∈uS\L[p

2(X)] = 2 + O(ε log2(1/ε)). Since, by as-

sumption QS′(p) ≤ 2 + O(ε log2(1/ε)), this implies that (|E|/|S′|)EX∈uE [p
2(X)] =

O(ε log2(1/ε)). By Cauchy–Schwarz, this implies that

(|E|/|S′|) E
X∈uE

[p(X)] ≤
√

(|E|/|S′|)
√
(|E|/|S′|) E

X∈uE
[p2(X)] = O(ε log(1/ε)).

Thus,
(|E|/|S′|)‖I − Σ−1/2ΣEΣ

−1/2‖F = O(ε log(1/ε)).

This shows that if Algorithm 8 returns in this step, it does so correctly.

Next, we need to show that if Algorithm 8 reaches step 12, then such a T exists.

Claim 5.25. If Algorithm 8 reaches step 12, then there exists a T > 1 such that

Pr
X∈uS′

(|p(X)− µ| ≥ T ) ≥ 12 exp(−(T − 1)/3) + 3ε/(d log(N/τ))2.

Proof. Before we begin, we will need the following critical lemma.

Lemma 5.26. We present

Var
X∼G

[p(X)] ≤ 1 +O(ε log(1/ε)).
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Proof. We note that since VarX∼G′(p(G′)) = QG′(p) = 1, we just need to show
that the variance with respect to G instead of G′ is not too much larger. This will
essentially be because the covariance matrix of G cannot be much bigger than the
covariance matrix of G′ by Corollary 5.22.

Using Lemma 5.16, we can write

p(x) = (Σ′−1/2x)TP2(Σ
′−1/2x) + p0 ,

where ‖P2‖F = 1
2 VarX∼G′(p(G′)) = 1

2 and p0 = µ+tr(P2). We can also express p(x)

in terms of G as p(x) = (Σ−1/2x)TM(Σ−1/2x)+p0, and have VarX∼G[p(X)] = ‖M‖F .
Here, M is the matrix Σ1/2Σ′−1/2P2Σ

′−1/2Σ1/2. By Corollary 5.22, it holds that
Σ′ ≥ (1 − O(ε log(1/ε)))Σ. Consequently, Σ1/2Σ′−1/2 ≤ (1 + O(ε log(1/ε)))I, and so
‖Σ1/2Σ′−1/2‖2 ≤ 1 +O(ε log(1/ε)). Similarly, ‖Σ′−1/2Σ1/2‖2 ≤ 1 +O(ε log(1/ε)).

We claim that if A,B are matrices, then ‖AB‖F ≤ ‖A‖2‖B‖F . If Bj are the
columns of B, then we have ‖AB‖2F =

∑
j ‖ABj‖22 ≤ ‖A‖22

∑
j ‖Bj‖22 = (‖A‖2‖B‖F )2.

Similarly for rows, we have ‖AB‖F ≤ ‖A‖F ‖B‖2.
Thus, we have

Var
X∼G

[p(X)] = 2‖M‖F ≤ 2‖Σ1/2Σ′−1/2‖2‖P2‖F ‖Σ′−1/2Σ1/2‖2 ≤ 1 +O(ε log(1/ε)) .

Next, we need to consider µ. In particular, we note that by the similarity of S
and S′, µ must be between the 40 and 60 percentiles of values of p(X) for X ∈ S.
However, since S is (ε, τ)-good, this must be between the 30 and 70 percentiles of
p(G). Therefore, by Cantelli’s inequality,

(27) |µ− µ̂| ≤ 2
√

Var
X∼G

[p(X)] ≤ 3 ,

where µ̂ = EX∼G[p(X)]. We are now ready to proceed. Our argument will follow by
noting that while QS′(p) is much larger than expected, very little of this discrepancy
can be due to points in S \ L. Therefore, the points of E must provide a large
contribution. Given that there are few points in E, much of this contribution must
come from there being many points near the tails, and this will guarantee that some
valid threshold T exists.

In particular, we have that VarX∈uS′(p(X)) = QS′(p) ≥ 1 + Cε ln2(1/ε), which
means that ∑

X∈S′ |p(X)− µ̂|2
|S′| ≥ 1 + Cε ln2(1/ε).

Now, because S is good, we know that
∑

X∈S |p(X)− µ̂|2
|S| = E[|p(G)− µ̂|2](1 +O(ε))

= Var
X∼G

[p(X)](1 +O(ε)) ≤ 1 +O(ε log(1/ε)).

Therefore, using (27), we have that
∑

X∈S\L |p(X)− µ̂|2
|S′| ≤ 1 +O(ε log(1/ε)).

Hence, for C sufficiently large, it must be the case that
∑

X∈E

|p(X)− µ̂|2 ≥ (C/2)ε ln2(1/ε)|S′| ,
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and therefore, ∑

X∈E

|p(X)− µ|2 ≥ (C/3)ε ln2(1/ε)|S′| .

On the other hand, we have that

∑

X∈E

|p(X)− µ|2 =

∫ ∞

0

{X ∈ E : |p(X)− µ| > t}2tdt

≤
∫ C1/4 ln(1/ε)

0

O(tε|S′|)dt+
∫ ∞

C1/4 ln(1/ε)

{X ∈ E : |p(X)− µ| > t}2tdt

≤ O(C1/2ε log2(1/ε)|S′|) + |S′|
∫ ∞

C1/4 ln(1/ε)

Pr
X∈uS′

(|p(X)− µ| > t)2tdt .

Therefore, we have that

(28)

∫ ∞

C1/4 ln(1/ε)

Pr
X∈uS′

(|p(X)− µ| > t)2tdt ≥ (C/4)ε log2(1/ε) .

Assume for the sake of contradiction that

Pr
X∈uS′

(|p(X)− µ| ≥ T + 3) ≤ Tail(T, d, ε, τ)

for all T > 1.
Thus, we have that
∫ ∞

10 ln(1/ε)+3

Pr
X∈uS′

(|p(X)− µ| > T )2TdT ≤
∫ ∞

10 ln(1/ε)

6(T + 3)ε/(T 2 log2 T )dT

=

∫ ∞

10 ln(1/ε)

8ε/(T log2 T )dT

= 8ε/ ln(10 ln(1/ε)) .

For a sufficiently large C, this contradicts (28).

Finally, we need to verify that if Algorithm 8 returns output in step 13, then it
is correct.

Claim 5.27. If Algorithm 8 returns during step 13, then ∆(S, S′′) ≤ ∆(S, S′) −
ε/(d log(N/τ))2.

Proof. We note that it is sufficient to show that |E \ S′′| > |(S \ L) \ S′′|. In
particular, it suffices to show that

|{X ∈ E : |p(X)− µ| > T + 3}| > |{X ∈ S \ L : |p(X)− µ| > T + 3}| .

For this, it suffices to show that

|{X ∈ S′ : |p(X)− µ| > T + 3}| > 2|{X ∈ S \ L : |p(X)− µ| > T + 3}| ,

or that

|{X ∈ S′ : |p(X)− µ| > T + 3}| > 2|{X ∈ S : |p(X)− µ| > T + 3}| .

By assumption, we have that

|{X ∈ S′ : |p(X)− µ| > T + 3}| > 3|S′|ε/(T 2 log2 T ) .
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On the other hand, using (27) and the ε-goodness of S, we have that

|{X ∈ S : |p(X)− µ| > T + 3}| ≤ |{X ∈ S : |p(X)− µ̂| > T}|
≤ |S|ε/(T 2 log2 T ) .

This completes our proof.

6. Agnostically learning a mixture of spherical Gaussians, via convex

programming. In this section, we give an algorithm to agnostically learn a mixture
of k Gaussians with identical spherical covariance matrices up to error Õ(poly(k)·√ε).
LetM =

∑
j∈[k] αjN (µj , σ

2I) be the unknown k Gaussian, each of whose components

are spherical. Throughout this section we shall refer to such a distribution as a k-
Gaussian mixture model (or k-GMM for short). For X ∼M, we write X ∼j M if X
was drawn from the jth component ofM.

Our main result of this section is the following theorem.

Theorem 6.1. Fix ε, τ > 0, and k ∈ N. Let X1, . . . , XN be an ε-corrupted set
of samples from a k-GMM M =

∑
j∈[k] αjN (µj , σ

2
j I), where all αj , µj, and σ2

j are
unknown, and

N = Ω̃ (poly (d, k, 1/ε, log(1/τ))) .

There is an algorithm which, with probability 1 − τ , outputs a distribution M′ such
that

dTV(M,M′) ≤ Õ(poly(k) · √ε) .

The running time of the algorithm is poly(d, 1/ε, log(1/τ))k
2

.

Our overall approach will be a combination of our method for agnostically learn-
ing a single Gaussian and recent work on properly learning mixtures of multivariate
spherical Gaussians [SOAJ14, LS17]. At a high level, this recent work relies upon
the empirical covariance matrix giving an accurate estimate of the overall covariance
matrix in order to locate the subspace in which the component means lie. However,
as we have already observed, the empirical moments do not necessarily give good
approximations of the true moments in the agnostic setting. Therefore, we will use
our separation oracle framework to approximate the covariance matrix, and the rest
of the arguments follow similarly to those of previous methods.

The organization of this section will be as follows. We define some of the notation
we will be using and the Schatten top-k norm in section 6.1. Section 6.2 states the
various concentration inequalities we require. In section 6.3, we go over our overall
algorithm in more detail. Section 6.4 describes a first naive clustering step, which
deals with components which are very well separated. Section 6.5 contains details
on our separation oracle approach, allowing us to approximate the true covariance.
Section 6.6 describes our spectral clustering approach to cluster components with
means separated more than Ωk(log 1/ε). In section 6.7, we describe how to exhaus-
tively search over a particular subspace to obtain a good estimate for the component
means. In section 6.8, we go over how to limit the set of hypotheses in order to satisfy
the conditions of Lemma 2.23. For clarity of exposition, all of the above describe the
algorithm assuming all σ2

j are equal. In section 6.9, we discuss the changes to the
algorithm which are required to handle unequal variances.

For conciseness, many of the proofs are deferred to Appendix C.
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6.1. Notation and norms. Recall the definition of SN,ε from section 4.1, which
we will use extensively in this section. We will use the notation µ =

∑
j∈[k] αjµj to

denote the mean of the unknown GMM. Also, we define parameters γj = αj‖µj−µ‖22
and let γ = maxj γj . And for ease of notation, let

f(k, γ, ε) = k1/2ε+ kγ1/2ε+ kε2

and

h(k, γ, ε) = k1/2ε+ kγ1/2ε+ kγε+ kε2 = f(k, γ, ε) + kγε.

Finally, we use the notation

(29) Q =
∑

j∈[k]

αj(µj − µ)(µj − µ)T

to denote the covariance of the unknown GMM. Our algorithm for learning spherical
k-GMMs will rely heavily on the following, nonstandard norm.

Definition 6.2. For any symmetric matrix M ∈ R
d×d with singular values σ1 ≥

σ2 ≥ · · · ≥ σd, let the Schatten top-k norm be defined as

‖M‖Tk
=

k∑

i=1

σi ;

i.e., it is the sum of the top-k singular values of M .

It is easily verified that ‖ · ‖Tk
has a dual characterization

‖M‖Tk
= max

X∈Rd×k
Tr(XT

√
MTMX) ,

where the maxima is taken over all X with orthonormal columns. From this, it is
easy to see that the Schatten top-k norm is indeed a norm, as its name suggests.

Fact 6.3. ‖M‖Tk
is a norm on symmetric matrices.

6.2. Concentration inequalities. In this section, we will establish some con-
centration inequalities that we will need for our algorithm for agnostically learning
mixtures of spherical Gaussians. Recall the notation as described in section 6.1. The
following two concentration lemmas follow from the same proofs as for Lemmas 42
and 44 in [LS17].

Lemma 6.4. Fix ε, δ > 0. If Y1, . . . , YN are independent samples from the GMM

with PDF
∑

j∈[k] αjN (µj ,Σj) where αj ≥ Ω(ε) for all j, and N = Ω
(d+log (k/δ)

ε2

)
,

then with probability at least 1−O(δ),
∥∥∥∥∥
1

N

N∑

i=1

(Yi − µ)(Yi − µ)T − I −Q

∥∥∥∥∥
2

≤ O (f(k, γ, ε)) ,

where Q is defined as in (29).

Lemma 6.5. Fix ε, δ > 0. If Y1, . . . , YN are independent samples from the GMM

with PDF
∑

j∈[k] αjN (µj ,Σj) where αj ≥ Ω(ε) for all j, and N = Ω
(d+log (k/δ)

ε2

)
,

then with probability at least 1−O(δ),
∥∥∥∥∥
1

N

N∑

i=1

Yi − µ

∥∥∥∥∥
2

≤ O
(
k1/2ε

)
.
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From the same techniques as before, we get the same sort of union bounds as
usual over the weight vectors.

Lemma 6.6. Fix ε ≤ 1/2 and τ ≤ 1. There is a δ = O(ε
√
log 1/ε) such that

if Y1, . . . , YN are independent samples from the GMM with PDF
∑

j∈[k] αjN (µj ,Σj)

where αj ≥ Ω(ε) for all j, and N = Ω
(d+log (k/τ)

δ21

)
, then

(30) Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wi(Yi − µ)(Yi − µ)T − I −Q

∥∥∥∥∥
2

≥ f(k, γ, δ1)

]
≤ τ ,

where Q is defined as in (29).

Lemma 6.7. Fix ε ≤ 1/2 and τ ≤ 1. There is a δ = O(ε
√
log 1/ε) such that

if Y1, . . . , YN are independent samples from the GMM with PDF
∑

j∈[k] αjN (µj ,Σj)

where αj ≥ Ω(ε) for all j, and N = Ω
(d+log (k/τ)

δ22

)
, then

(31) Pr

[
∃w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wiYi − µ

∥∥∥∥∥
2

≥ k1/2δ2

]
≤ τ.

6.3. Algorithm. Our approach is based on a tournament, as used in several
recent works [DK14, SOAJ14, DDS15a, DDS15b, DKT15, DDKT16]. We will generate

a list S of candidate hypotheses (i.e., of k-GMMs) of size |S| = poly(d, 1/ε, log(1/τ))k
2

with the guarantee that there is someM∗ ∈ S such that dTV(M,M∗) ≤ Õ(poly(k) ·√
ε). We then find (roughly) the best candidate hypothesis on the list. It is most

natural to describe the algorithm as performing several layers of guessing. We will
focus our discussion on the main steps in our analysis, and defer a discussion of
guessing the mixing weights, the variance σ2, and performing naive clustering until
later. For reasons we justify in section 6.8, we may assume that the mixing weights
and the variance are known exactly, and that the variance σ2 = 1.

Our algorithm is based on the following deterministic conditions:

|{Xi ∈ G,Xi ∼j M : ‖Xi − µj‖22 ≥ Ω(d log k/ε)}|
|{Xi ∈ G,Xi ∼j M}|

≤ ε/k ∀j = 1, . . . , N ,

(32)

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI − wgQ

∥∥∥∥∥
2

≤ f(k, γ, δ1) ∀w ∈ SN,4ε, and(33)

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)

∥∥∥∥∥
2

≤ k1/2δ2 ∀w ∈ SN,4ε .(34)

Equation (32) follows from basic Gaussian concentration, and (33) and (34) follow
from the results in section 6.2 for N sufficiently large. Note that these trivially imply
similar conditions for the Schatten top-k norm, at the cost of an additional factor of
k on the RHS of the inequalities. For the rest of this section, let δ = max(δ1, δ2).

At this point, we are ready to apply our separation oracle framework. In partic-
ular, we will find a weight vector w over the points such that

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≤ η,
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for some choice of η. The set of such weights is convex, and concentration implies
that the true weight vector will have this property. Furthermore, we can describe a
separation oracle given any weight vector not contained in this set (as long as η is
not too small). At this point, we use classical convex programming methods to find
a vector which satisfies these conditions. Further details are provided in section 6.5.

After this procedure, Lemma 6.13 shows that the weighted empirical covariance
is spectrally close to the true covariance matrix. We are now in the same regime as
[SOAJ14], which obtains their results as a consequence of the empirical covariance
concentrating on the true covariance matrix. Thus, we will appeal to their analysis,
highlighting the differences between our approach and theirs. We note that [LS17] also
follows a similar approach and the interested reader may also adapt their arguments
instead.

First, if γ is sufficiently large (i.e., Ωk(log(1/ε))), this implies a separation con-
dition between some component mean and the mixture’s mean. This allows us to
cluster the points further, using a spectral method. We take the top eigenvector of
the weighted empirical covariance matrix and project in this direction, using the sign
of the result as a classifier. In contrast to previous work, which requires that no points
are misclassified, we can tolerate poly(ε/k) misclassifications, since our algorithms are
agnostic. This crucially allows us to avoid a dependence on d in our overall agnostic
learning guarantee. Further details are provided in section 6.6.

Finally, if γ is sufficiently small, we may perform an exhaustive search. The
span of the means is in the span of the top k − 1 eigenvectors of the true covariance
matrix, which we can approximate with our weighted empirical covariance matrix.
Since γ is small, by trying all points within a sufficiently tight mesh, we can guess a
set of candidate means which are sufficiently close to the true means. Combining the
approximations to the means with Corollary 2.13 and the triangle inequality, we can
guarantee that at least one of our guesses is sufficiently close to the true distribution.
Additional details are provided in section 6.7.

To conclude our algorithm, we can apply Lemma 2.23. We note that this hy-
pothesis selection problem has been studied before (see, e.g., [DL01, DK14]), but we
must adapt it for our agnostic setting. This allows us to select a hypothesis which is
sufficiently close to the true distribution, thus concluding the proof. We note that the
statement of Lemma 2.23 requires the hypotheses to come from some fixed finite set,
while there are an infinite number of GMM. In section 6.8, we discuss how to limit
the number of hypotheses based on the set of uncorrupted samples in order to satisfy
the conditions of Lemma 2.23.

6.4. Naive clustering. We give a very naive clustering algorithm, the gener-
alization of NaivePrune, which recursively allows us to cluster components if they
are extremely far away. The algorithm is very simple: for each Xi, add all points
within distance O(d log(k/ε)) to a cluster Si. Let C be the set of clusters which con-
tain at least 4εN points, and let the final clustering be C1, . . . , Ck′ be formed by
merging clusters in C if they overlap, and stopping if no clusters overlap. We give the
pseudocode in Algorithm 10.

We prove here that this process (which may throw away points) throws away
only at most an ε-fraction of good points, and moreover, the resulting clustering only
misclassifies at most an O(ε)-fraction of the good points, assuming (32).

Theorem 6.8. Let X1, . . . , Xm be a set of samples satisfying (32). Let C1, . . . , Ck′

be the set of clusters returned. For each component j, let `(j) be the ` such that C`

contains the most points from j. Then the following hold:
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Algorithm 10 Naive clustering algorithm for spherical GMMs.

1: function NaiveClusterGMM(X1, . . . , Xn)
2: for i = 1, . . . , N do

3: Let Si = {i′ : ‖Xi −Xi′‖22 ≤ Θ(dk log 1/ε)}.
Let C = {Si : |Si| ≥ 4εN}.

4: while ∃C,C ′ ∈ C such that C 6= C ′ and C ∪ C ′ 6= ∅ do

5: Remove C,C ′ from C.
6: Add C ∪ C ′ to C.
7: return the set of clusters C.

1. Then, for each `, there is some j such that `(j) = `.
2. For all j, we have

|{Xi ∈ G,Xi ∼j M}| − |{Xi ∈ G,Xi ∼j M, Xi ∈ C`(j)}|
≤ O

( ε
k
|{Xi ∈ G,Xi ∼j M}|

)
.

3. For all j, j′, we have that if `(j) = `(j′), then ‖µj − µj′‖22 ≤ O(dk log k/ε).
4. If Xi, Xj ∈ C`, then ‖Xi −Xj‖22 ≤ dk log 1/ε.

Thus, we have that by applying this algorithm, given an ε-corrupted set of samples
from M, we may cluster them in a way which misclassifies at most an ε/k-fraction
of the samples from any component, and such that within each cluster, the means of
the associated components differ by at most dk log k/ε. Thus, each separate cluster is
simply an ε-corrupted set of samples from the mixture restricted to the components
within that cluster; moreover, the number of components in each cluster must be
strictly smaller than k. Therefore, we may simply recursively apply our algorithm on
these clusters to agnostically learn the mixture for each cluster, since if k = 1, this is
a single Gaussian, which we know how to learn agnostically.

Thus, for the remainder of this section, let us assume that for all j, j′, we have
‖µj − µ′

j‖22 ≤ O(dk log 1/ε). Moreover, we may assume that there are no points j, j′

(corrupted or uncorrupted), such that ‖Xj −Xj′‖22 ≥ Ω(dk log 1/ε).

6.5. Estimating the covariance using convex programming. In this sec-
tion, we will apply our separation oracle framework to estimate the covariance matrix.
While in the nonagnostic case, the empirical covariance will approximate the actual
covariance, this is not necessarily true in our case. As such, we will focus on deter-
mining a weight vector over the samples such that the weighted empirical covariance
is a good estimate for the true covariance.

We first define the convex set for which we want an interior point:

Cη =



w ∈ SN,ε :

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≤ η



 .

In section 6.5.1, we prove lemmas indicating important properties of this set. In
section 6.5.2, we give a separation oracle for this convex set. We conclude with Lemma
6.13, which shows that we have obtained an accurate estimate of the true covariance.

6.5.1. Properties of our convex set. We start by proving the following lemma,
which states that for any weight vector which is not in our set, the weighted empirical
covariance matrix is noticeably larger than it should be (in Schatten top-k norm).
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Lemma 6.9. Suppose that (33) holds, and w 6∈ Cckh(k,γ,δ). Then

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
Tk

≥
∑

j∈[k]

γj +
3ckh(k, γ, δ)

4
.

We also require the following lemma, which shows that if a set of weights poorly
approximates µ, then it is not in our convex set.

Lemma 6.10. Suppose that (33) and (34) hold. Let w ∈ Sm,ε and set µ̂ =∑m
i=1 wiXi and ∆ = µ− µ̂. Furthermore, suppose that ‖∆‖2 ≥ Ω(h(k, γ, δ)). Then

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≥ Ω

(‖∆‖22
ε

)
.

By contraposition, if a set of weights is in our set, then it provides a good ap-
proximation for µ.

Corollary 6.11. Suppose that (33) and (34) hold. Let w ∈ Ch(k,γ,δ) for δ =
Ω(ε log 1/ε). Then

‖∆‖2 ≤ O(ε
√
log 1/ε).

6.5.2. Separation oracle. In this section, we provide a separation oracle for
Cη. In particular, we have the following theorem.

Theorem 6.12. Fix ε > 0, and let δ = Ω(ε log 1/ε). Suppose that (33) and (34)
hold. Let w∗ denote the weights which are uniform on the uncorrupted points. Then
there is a constant c and an algorithm such that the following hold:

1. (Completeness) If w = w∗, then it outputs “YES”.
2. (Soundness) If w 6∈ Cckh(k,γ,δ), the algorithm outputs a hyperplane ` : Rm → R

such that `(w) ≥ 0 but `(w∗) < 0.
These two facts imply that the ellipsoid method with this separation oracle will termi-
nate in poly(d, 1/ε) steps, and moreover, will with high probability output a w′ such
that ‖w − w′‖∞ ≤ ε/(Ndk log 1/ε) for some w ∈ Cckh(k,γ,δ). Moreover, it will do so
in polynomially many iterations.

The proof is deferred to Appendix C.1.

Algorithm 11 Separation oracle subprocedure for agnostically learning the span of
the means of a GMM.
1: function SeparationOracleGMM(w)

2: Let µ̂ =
∑N

i=1 wiXi.
3: For i = 1, . . . , N , define Yi = Xi − µ̂.
4: Let M =

∑N
i=1 wiYiY

T
i − I.

5: if ‖M‖Tk
<
∑

j∈[k] γj +
ckh(k,γ,δ)

2 then

6: return “YES”.
7: else

8: Let Λ = ‖M‖Tk
.

9: Let U be a d× k matrix with orthonormal columns which span the top k
eigenvectors of M .

10: return the hyperplane `(w) = Tr
(
UT

(∑N
i=1 wiYiY

T
i − I

)
U
)
− Λ > 0.
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After running this procedure, we technically do not have a set of weights in
Cckh(k,γ,δ). But by the same argument as in section 4.3, because the maximum distance
between two points within any cluster is bounded, and we have the guarantee that
‖Xi − Xj‖2 ≤ O(dk log 1/ε) for all i, j, we may assume we have a set of weights
satisfying

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≤ 2ckh(k, γ, δ).

We require the following lemma, describing the accuracy of the empirical covari-
ance matrix with the obtained weights.

Lemma 6.13. Let µ̂ =
∑N

i=1 wiXi. After running the algorithm above, we have a
vector w such that

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ̂)(Xi − µ̂)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≤ 3ckh(k, γ, δ).

Proof. By the triangle inequality and Corollary 6.11,
∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ̂)(Xi − µ̂)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
2

+ ‖∆‖22

≤ 2ckh(k, γ, δ) +O(δ) ≤ 3ckh(k, γ, δ).

6.6. Spectral clustering. Now that we have a good estimate of the true co-
variance matrix, we will perform spectral clustering while γ is sufficiently large. We
will adapt Lemma 6 from [SOAJ14], giving the following lemma.

Lemma 6.14. Given a weight vector w as output by Algorithm 11, if γ ≥ Ω(poly(k)·
log 1/ε), there exists an algorithm which produces a unit vector v with the following
guarantees:

• There exists a nontrival partition of [k] into S0 and S1 such that vTµj > 0
for all j ∈ S0 and vTµj < 0 for all j ∈ S1.

• The probability of a sample being misclassified is at most O(poly(ε/k)), where
a misclassification is defined as a sample X generated from a component in
S0 having vTX < 0, or a sample generated from a component in S1 having
vTX > 0.

The algorithm will be as follows. Let v be the top eigenvector of

N∑

i=1

wi(Xi − µ̂)(Xi − µ̂)T − I.

For a sample X, cluster it based on the sign of vTX. After performing this clustering,
recursively perform our algorithm from the start on the two clusters.

The proof is very similar to that of Lemma 6 in [SOAJ14]. The authors’ main
concentration lemma is Lemma 30 in [SOAJ14], which states that they obtain a
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good estimate of the true covariance matrix, akin to our Lemma 6.13. Lemma 31
in [SOAJ14] argues that the largest eigenvector of this estimate is highly correlated
with the top eigenvector of the true covariance matrix. Since γ is large, this implies
there is a large margin between the mean and the hyperplane. However, by standard
Gaussian tail bounds, the probability of a sample landing on the opposite side of this
hyperplane is small.

We highlight the main difference between our approach and theirs. For their
clustering step, they require that no sample is misclustered with high probability.
As such, they may perform spectral clustering while γ = Ω(poly(k) · log(d/ε)). We
note that, in the next step of our algorithm, we will perform an exhaustive search.
This will result in an approximation which depends on the value of γ at the start of
the step, and as such, using the same approach as theirs would result in an overall
approximation which depends logarithmically on the dimension.

We may avoid paying this cost by noting that our algorithm is agnostic. They
require that no sample is misclustered with high probability, while our algorithm
tolerates that a poly(ε/k)-fraction of points are misclustered. As such, we can continue
spectral clustering until γ = O (poly(k) · log(1/ε)).

6.7. Exhaustive search. The final stage of the algorithm is when we know that
all γi’s are sufficiently small. We can directly apply the following lemma.

Lemma 6.15 (Lemma 7 of [SOAJ14]). Given a weight vector w as output by Al-
gorithm 11, then the projection of

µj−µ
‖µj−µ‖2

onto the space orthogonal to the span of

the top k − 1 eigenvectors of

∥∥∥∥∥

N∑

i=1

wi(Xi − µ̂)(Xi − µ̂)T − I

∥∥∥∥∥
2

has magnitude at most

O
(
poly(k) ·

√
h(k, γ, δ)/γ

1/2
i

)
= O

(
poly(k) ·

√
ε log(1/ε)

γ
1/2
i

)
.

At this point, our algorithm is identical to the exhaustive search of [SOAJ14].
We find the span of the top k − 1 eigenvectors by considering the (k − 1)-cube with
side length 2γ centered at µ̂. By taking an η-mesh over the points in this cube
(for η = poly(ε/dk) sufficiently small), we obtain a set of points M̃ . Via identical
arguments as in the proof of Theorem 8 of [SOAJ14], for each j ∈ [k] there exists
some point µ̃j ∈ M̃ such that

‖µ̃j − µj‖2 ≤ O

(
poly(k) ·

√
ε log(1/ε)
√
αj

)
.

By taking a k-wise Cartesian product of this set, we are guaranteed to obtain a vector
which has this guarantee simultaneously for all µj .

6.8. Applying the tournament lemma. In this section, we discuss details
about how to apply our hypothesis selection algorithm. First, in section 6.8.1, we
describe how to guess the mixing weights and the variance of the components. Then in
section 6.8.2, we discuss how to ensure our hypotheses come from some fixed finite set,
in order to deal with technicalities which arise when performing hypothesis selection
with our adversary model.
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6.8.1. Guessing the mixing weights and variance. The majority of our
algorithm is focused on generating guesses for the means of the Gaussians. In this
section, we guess the remaining parameters: the mixing weights and the variance.
While most of these guessing arguments are standard, we emphasize that we reap an
additional benefit because our algorithm is agnostic. In particular, most algorithms
must deal with error incurred due to misspecification of the parameters. Since our
algorithm is agnostic, we can pretend the misspecified parameter is the true one,
at the cost of increasing the value of the agnostic parameter ε. If our misspecified
parameters are accurate enough, the agnostic learning guarantee remains unchanged.

Guessing the mixing weights is fairly straightforward. For some ν = poly(ε/k)
sufficiently small, our algorithm generates a set of at most (1/ν)k = poly(k/ε)k possi-
ble mixing weights by guessing the values {0, ε, ε+ ν, ε+2ν, . . . , 1− ν, 1} for each αj .
Note that we may assume each weight is at least ε, since components with weights
less than this can be specified arbitrarily at a total cost of O(kε) in total variation
distance.

Next, we need to guess the variance σ2 of the components. To accomplish this,
we will take k + 1 samples (hoping to find only uncorrupted ones) and compute the
minimum distance between any pair of them. Since we assume k � 1/ε, we can
repeatedly draw k + 1 samples until we have the guarantee that at least one set is
uncorrupted. If none of the k + 1 samples are corrupted, then at least two of them
came from the same component, and in our high-dimensional setting the distance
between any pair of samples from the same component concentrates around

√
2dσ.

After rescaling this distance, we can then multiplicatively enumerate around this value
with granularity poly(ε/dk) to get an estimate for σ2 that is sufficiently good for our
purposes. Applying Corollary 2.14 bounds the cost of this misspecification by O(ε).
By rescaling the points, we may assume that σ2 = 1.

6.8.2. Pruning our hypotheses. In this section, we describe how to prune our
set of hypotheses in order to apply Lemma 2.23. Recall that this lemma requires our
hypotheses to come from some fixed finite set, rather than the potentially infinite set
of GMM hypotheses. We describe how to prune and discretize the set of hypotheses
obtained during the rest of the algorithm to satisfy this condition. For the purposes
of this section, a hypothesis will be a k-tuple of d-dimensional points, corresponding
only to the means of the components. While the candidate mixing weights already
come from a fixed finite set (so no further work is needed), the unknown variance
must be handled similarly to the means. The details for handling the variance are
similar to (and simpler than) those for handling the means, and are omitted.

More precisely, this section will describe a procedure to generate a set of hypothe-
sesM, which is exponentially large in k and d, efficiently searchable, and comes from
a finite set of hypotheses which are fixed with respect to the true distribution. Then,
given our set of hypotheses generated by the main algorithm (which is exponentially
large in k but polynomial in d), we iterate over this set, either replacing each hypoth-
esis with a “close” hypothesis fromM (i.e., one which is within O(ε) total variation
distance), or discarding the hypothesis if none exists. Finally, we run the tournament
procedure of Lemma 2.23 on the resulting set of hypotheses.

At a high level, the approach will be as follows. We will take a small set of
samples, and remove any samples from this set which are clear outliers (due to having
too few nearby neighbors). This will give us a set of points, each of which is within
a reasonable distance from some component mean. Taking a union of balls around
these samples will give us a space that is a subset of a union of (larger) balls centered
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at the component centers. We take a discrete mesh over this space to obtain a fixed
finite set of possible means, and round each hypothesis such that its means are within
this set.

We start by taking N = O(k log(1/τ)/ε2) samples, which is sufficient to ensure
that the number of (uncorrupted) samples from component j will be (wj ± Θ(ε))N
for all j ∈ [k] with probability 1−O(τ). Recall that we are assuming that wj = Ω(ε)
for all j, as all other components may be defined arbitrarily at the cost of O(kε) in
total variation distance. This implies that even after corruption, each component has
generated at least εN uncorrupted samples.

By standard Gaussian concentration bounds, we know that if N samples are taken
from a Gaussian, the maximum distance between a sample and the Gaussian’s mean
will be at most ζ = O(

√
d log(N/τ)) with probability 1 − τ . Assume this condition

holds, and thus each component’s mean will have at least εN points within distance ζ.
We prune our set of samples by removing any point with fewer than εN other points
at distance less than 2ζ. This will not remove any uncorrupted points by the above
assumption and triangle inequality. However, this will remove any corrupted points
at distance at least 3ζ from all component means, due to the fact that the adversary
may only move an ε-fraction of the points, and reverse triangle inequality.

Now, we consider the union of the balls of radius 3ζ centered at each of the
remaining points. This set contains all of the component means, and is also a subset
of the union of the balls of radius 6ζ centered at the component means. We discretize
this set by taking its intersection with a lattice of side-length ε

k
√
d
. We note that any

two points in this discretization are at distance at most ε/k. By a volume argument,

the number of points in the intersection is at most k
(
12ζk

√
d

ε

)d
. Each hypothesis will

be described by the k-wise Cartesian product of these points, giving us a setM of at

most kk
(
12ζk

√
d

ε

)kd
hypotheses.

Given a set of hypotheses H from the main algorithm, we prune it usingM as a
reference. For each h ∈ H, we see if there exists some h′ ∈ M such that the means
in h are at distance at most ε/k from the corresponding means in h′.4 If such an
h′ exists, we replace h with h′; otherwise, h is simply removed. By Corollary 2.13
and the triangle inequality, this replacement incurs a cost of O(ε) in total variation
distance. At this point, the conditions of Lemma 2.23 are satisfied and we may run
this procedure to select a sufficiently accurate hypothesis.

6.9. Handling unequal variances. In this section, we describe the changes
required to allow the algorithm to handle different variances for the Gaussians. The
main idea is to find the minimum variance of any component and perform clustering so
we only have uncorrupted samples from Gaussians with variances within some known,
polynomially-wide interval. This allows us to grid within this interval in order to guess
the variances, and the rest of the algorithm proceeds with minor changes.

The first step is to locate the minimum variance of any component. Again using
standard Gaussian concentration, in sufficiently high-dimensions, if N samples are
taken from a Gaussian with variance σ2I, the distance between any two samples will
be concentrated around σ(

√
2d − Θ(d1/4)). With this in hand, we use the following

procedure to estimate the minimum variance. For each sample i, record the distance
to the (εN + 1)st closest sample. We take the (εN + 1)st smallest of these values,

4We observe that the complexity of this step is polynomial in d and k, not exponential, if one
searches for the nearest lattice point in the sphere surrounding each unpruned sample, rather than
performing a naive linear scan over the entire list.
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rescale it by 1/
√
2d, and similar to before, guess around it using a multiplicative

(1 + poly(ε/kd)) grid, which will give us an estimate σ̂2
min for the smallest variance.

We note that discarding the smallest εN -fraction of the points prevents this statistic
from being grossly corrupted by the adversary. For the remainder of this section,
assume that σ2

min is known exactly.
At this point, we partition the points into those that come from components

with small variance, and those with large variance. We will rely upon the following
concentration inequality from [SOAJ14], which gives us the distance between samples
from different components.

Lemma 6.16 (Lemma 34 from [SOAJ14]). Given N samples from a collection of
Gaussian distributions, with probability 1−O(τ), the following holds for every pair of
samples X,Y :

‖X − Y ‖22 ∈
(
d(σ2

1 + σ2
2) + ‖µ1 − µ2‖22

)

1± 4

√
log N2

τ

d


 ,

where X ∼ N (µ1, σ
2
1I) and Y ∼ N (µ2, σ

2
2I).

Assume the event that this condition holds. Now, let H` be the set of all points

with at least εN points at squared-distance at most 2
(
1 + 1

k

)`−1
σ2
min

(
1+4

√
log N2

τ

d

)
,

for ` ∈ [k]. Note that H` ⊆ H`+1. Let `
∗ be the minimum ` such that H` = H`+1, or k

if no such ` exists, and partition the set of samples into H`∗ and H`∗ . This partition
will contain all samples from components with variance at most some threshold t,
where t ≤ eσ2

min in H`∗ . All samples from components with variance at least t will
fall into H`∗ . We continue running the algorithm with H`∗ , and begin the algorithm
recursively on H`∗ .

5

This procedure works due to the following argument. When we compute H1, we
are guaranteed that it will contain all samples from components with variance σ2

min,
by the upper bound in Lemma 6.16. However, it may also contain samples from other
components—in particular, those with variance at most γσ2

min, for

γ ≤


1 + 16

√
log N2

τ

d



/
1− 4

√
log N2

τ

d


 ≤ 1 +

1

k
,

where the second inequality follows for d sufficiently large. Therefore, we compute
H2, which contains all samples from such components. This is repeated for at most
k iterations, since if a set H`+1 is distinct from H`, it must have added at least one

component, and we have only k components. Note that
(
1 + 1

k

)k ≤ e, giving the
upper bound on variances in H`∗ .

After this clustering step, the algorithm follows similarly to before. The main
difference is in the convex programming steps and concentration bounds. For instance,

5We require an additional guess of “k1 and k2”: the split into how many components are within
H`∗ and H`∗ , respectively.

D
o
w

n
lo

ad
ed

 1
1
/1

4
/1

9
 t

o
 1

8
.1

0
.2

7
.6

3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

804 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

before we considered the set

Cη =

{
w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − σ2I

−
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥
2

≤ η

}
.

Now, to reflect the different expression for the covariance of the GMM, we replace
σ2I with

∑
j∈[k] αjσ

2
j I; for example,

Cη =

{
w ∈ SN,ε :

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T

−
∑

j∈[k]

αjσ
2
j I −

∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥
2

≤ η

}
.

We note that since all variances in each cluster are off by a factor of at most e, this
will only affect our concentration and agnostic guarantees by a constant factor.

7. Agnostically learning binary product distributions, via filters. In this
section, we study the problem of agnostically learning a binary product distribution.
Such a distribution is entirely determined by its coordinatewise mean, which we denote
by the vector p, and our first goal is to estimate p within `2-distance Õ(ε). Recall
that the approach for robustly learning the mean of an identity covariance Gaussian,
sketched in the introduction, was to compute the top absolute eigenvalue of a modified
empirical covariance matrix. Our modification was crucially based on the promise
that the covariance of the Gaussian is the identity. Here, it turns out that what we
should do to modify the empirical covariance matrix is subtract a diagonal matrix
whose entries are p2i . These values seem challenging to directly estimate. Instead, we
directly zero out the diagonal entries of the empirical covariance matrix. Then the
filtering approach proceeds as before, and allows us to estimate p within `2-distance
Õ(ε), as we wanted. In the case when p has no coordinates that are too biased towards

either zero or one, our estimate is already Õ(ε) close in total variation distance. We
give an agnostic learning algorithm for this so-called balanced case (see Definition 7.2)
in section 7.1.

However, when p has some very biased coordinates, this need not be the case.
Each coordinate that is biased needs to be learned multiplicatively correctly. Never-
theless, we can use our estimate for p that is close in `2-distance as a starting point
for handling binary product distributions that have imbalanced coordinates. Instead,
we control the total variation distance via the χ2-distance between the mean vectors.
Let P and Q be two product distributions whose means are p and q, respectively.
From Lemma 2.17, it follows that

dTV(P,Q)2 ≤ 4
∑
i

(pi − qi)
2

qi(1− qi)
.

So, if our estimate q is already close in `2-distance to p, we can interpret the RHS
above as giving a renormalization of how we should measure the distance between
p and q such that being close (in χ2-distance) implies that our estimate is close in
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total variation distance. We can then set up a corrected eigenvalue problem using our
initial estimate q as follows. Let χ2(v)q =

∑
i v

2
i qi(1− qi). Then, we compute

max
χ2(v)q=1

vTΣv ,

where Σ is the modified empirical covariance. Ultimately, we show that this yields an
estimate that is Õ(

√
ε) close in total variation distance. See section 7.2 for further

details.

7.1. The balanced case. The main result of this section is the following theo-
rem.

Theorem 7.1. Let P be a binary product distribution in d dimensions and ε, τ >
0. Let S be a multiset of Θ(d4 log(1/τ)/ε2) independent samples from P , and S′ be a
multiset obtained by arbitrarily changing an ε-fraction of the points in S. There exists
a polynomial-time algorithm that returns a product distribution P ′ such that, with
probability at least 1− τ , we have ‖p− p′‖2 = O(ε

√
log(1/ε)), where p and p′ are the

mean vectors of P and P ′, respectively.

Note that Theorem 7.1 applies to all binary product distributions, and its perfor-
mance guarantee relates the `2-distance between the mean vectors of the hypothesis
P ′ and the target product distribution P . If P is balanced, i.e., it does not have
coordinates that are too biased towards 0 or 1, this `2-guarantee implies a similar
total variation guarantee. Formally, we have the following definition.

Definition 7.2. For 0 < c < 1/2, we say that a binary product distribution is
c-balanced if the expectation of each coordinate is in [c, 1− c].

For c-balanced binary product distributions, we have the following corollary of
Lemma 2.17.

Fact 7.3. Let P and Q be c-balanced binary product distributions with mean vec-
tors p and q. Then, we have that dTV(P,Q) = O

(
c−1/2 · ‖p− q‖2

)
.

That is, for two c-balanced binary product distributions, where c is a fixed con-
stant, the `2-distance between their mean vectors is a good proxy for their total
variation distance. Using Fact 7.3, we obtain the following corollary of Theorem 7.1.

Corollary 7.4. Let P be a c-balanced binary product distribution in d dimen-
sions, where c > 0 is a fixed constant, and ε, τ > 0. Let S be a multiset of Θ(d4 log(1/τ)
/ε2) independent samples from P , and S′ be a multiset obtained by arbitrarily chang-
ing an ε-fraction of the points in S. There exists a polynomial-time algorithm that re-
turns a product distribution P ′ such that with probability at least 1− τ , dTV(P

′, P ) =
O(ε

√
log(1/ε)/

√
c).

We start by defining a condition on the uncorrupted set of samples S, under which
our algorithm will succeed.

Definition 7.5 (good set of samples). Let P be an arbitrary distribution on
{0, 1}d and ε > 0. We say that a multiset S of elements in {0, 1}d is ε-good with
respect to P if for every affine function L : {0, 1}d → R we have |PrX∈uS(L(X) ≥
0)− PrX∼P (L(X) ≥ 0)| ≤ ε/d.

The following simple lemma shows that a sufficiently large set of independent
samples from P is ε-good (with respect to P ) with high probability.
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Lemma 7.6. Let P be an arbitrary distribution on {0, 1}d and ε, τ > 0. If the
multiset S is obtained by taking Ω((d4 + d2 log(1/τ))/ε2) independent samples from
P, it is ε-good with respect to P with probability at least 1− τ.

Proof. For a fixed affine function L : {0, 1}d → R, an application of the Chernoff
bound yields that after drawing N samples from P, we have that |PrX∈uS(L(X) ≥
0)−PrX∼P (L(X) ≥ 0)| > ε/d with probability at most 2 exp(−Nε2/d2). Since there

are at most 2d
2

distinct linear threshold functions on {0, 1}d, by the union bound,
the probability that there exists an L satisfying the condition |PrX∈uS(L(X) ≥ 0)−
PrX∼P (L(X) ≥ 0)| > ε/d is at most 2d

2+1 exp(−Nε2/d2), which is at most τ for
N = Ω((d4 + d2 log(1/τ))/ε2).

Recall (see Definition 5.4) that ∆(S, S′) is the size of the symmetric difference of
S and S′ divided by the cardinality of S.

Our agnostic learning algorithm establishing Theorem 7.1 is obtained by repeated
application of the efficient procedure whose performance guarantee is given in the
following proposition.

Proposition 7.7. Let P be a binary product distribution with mean vector p and
ε > 0 be sufficiently small. Let S be ε-good with respect to P , and S′ be any multiset
with ∆(S, S′) ≤ 2ε. There exists a polynomial-time algorithm Filter-Balanced-

Product that, given S′ and ε > 0, returns one of the following:
(i) a mean vector p′ such that ‖p− p′‖2 = O(ε

√
log(1/ε)),

(ii) a multiset S′′ ⊆ S′ such that ∆(S, S′′) ≤ ∆(S, S′)− 2ε/d.

We start by showing how Theorem 7.1 follows easily from Proposition 7.7.

Proof of Theorem 7.1. The proof of Theorem 7.1 is very similar to that of Theo-
rem 5.1; however, we include it here for completeness. By the definition of ∆(S, S′),
since S′ has been obtained from S by corrupting an ε-fraction of the points in S, we
have that ∆(S, S′) ≤ 2ε. By Lemma 7.6, the set S of uncorrupted samples is ε-good
with respect to P with probability at least 1 − τ. We henceforth condition on this
event.

Our algorithm iteratively applies the Filter-Balanced-Product procedure
of Proposition 7.7 until it terminates returning a mean vector p′ with ‖p − p′‖2 =
O(ε

√
log(1/ε)). We claim that we need at most d + 1 iterations for this to happen.

Indeed, the sequence of iterations results in a sequence of sets S0 = S′, S′
1, . . . , such

that ∆(S, S′
i) ≤ ∆(S, S′) − i · (2ε/d). Thus, if the algorithm does not terminate in

the first d iterations, we have S′
d = S, and in the next iteration we output the sample

mean of S.

7.1.1. Algorithm filter-balanced-product: Proof of Proposition 7.7. In
this section, we describe the efficient procedure establishing Proposition 7.7 followed
by its proof of correctness. Our algorithm Filter-Balanced-Product is very sim-
ple: We consider the empirical distribution defined by the (corrupted) sample multiset
S′. We calculate its mean vector µS′

and covariance matrix M . If the matrix M has
no large eigenvalues, we return µS′

. Otherwise, we use the eigenvector v∗ correspond-
ing to the maximum magnitude eigenvalue λ∗ of M and the mean vector µS′

to define
a filter. We zero out the diagonal elements of the covariance matrix for the following
reason: The diagonal elements could contribute up to Ω(1) to the spectral norm, even

without noise. This would prevent us from obtaining the desired error of Õ(ε). Our
efficient filtering procedure is presented in detailed pseudocode below.
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Algorithm 12 Filter algorithm for a balanced binary product distribution.

1: procedure Filter-Balanced-Product(ε, S′)
input: A multiset S′ such that there exists an ε-good S with ∆(S, S′) ≤ 2ε
output: Multiset S′′ or mean vector p′ satisfying Proposition 7.7
2: Compute the sample mean µS′

= EX∈uS′ [X] and the sample covariance M
with zeroed diagonal, i.e., M = (Mi,j)1≤i,j≤d withMi,j = EX∈uS′ [(Xi−µS′

i )(Xj−
µS′

j )], i 6= j, and Mi,i = 0.
3: Compute approximations for the largest absolute eigenvalue of M , λ∗ :=
‖M‖2, and the associated unit eigenvector v∗.

4: if ‖M‖2 ≤ O(ε log(1/ε)) then return µS′

.

5: Let δ := 3
√

ε‖M‖2.
6: Find T > 0 such that

Pr
X∈uS′

(|v∗ · (X − µS′

)| > T + δ) > 8 exp(−T 2/2) + 8ε/d.

7: return the multiset S′′ = {x ∈ S′ : |v∗ · (x− µS′

)| ≤ T + δ}.

Tightness of our analysis. We remark that the analysis of our filter-based
algorithm is tight, and more generally our bound of O(ε

√
log(1/ε)) is a bottleneck

for filter-based approaches.
More specifically, we note that our algorithm will never successfully add points

back to S after they have been removed by the adversary. Therefore, if an ε-fraction
of the points in S are changed, our algorithm may be able to remove these outliers
from S′, but will not be able to replace them with their original values. These changed
values can alter the sample mean by as much as Ω(ε

√
log(1/ε)).

To see this, consider the following example. Let P be the product distribution
with mean p, where pi = 1/2 for all i. Set ε = 2−(d−1). We draw a Θ(d4 log(1/τ)/ε2)
size multiset S which we assume is ε-good. The fraction of times the all-zero vector
appears in S is less than 2−(d−1). So, the adversary is allowed to corrupt all such
zero-vectors. More specifically, the adversary replaces each occurrence of the all-
zero vector with fresh samples from P, repeating if any all-zero vector is drawn.
In effect, this procedure generates samples from the distribution P̃ , defined as P
conditioned on not being the all-zero vector. Indeed, with high probability, the set
S′ is ε-good for P̃ . So, with high probability, the mean of S′ in each coordinate is at
least 1/2+ 2−(d+2). Thus, the `2-distance between the mean vectors of P and P̃ is at
least

√
d2−(d+2) = Θ(ε

√
log(1/ε)). Note that for any affine function L, we have that

PrX∈uS′(L(X) ≥ 0) ≤ PrX∈uS(L(X) ≥ 0)/(1− ε) + 2ε/d, which means that no such
function can effectively distinguish between S′ \ S and S, as would be required by a
useful filter.

The rest of this section is devoted to the proof of correctness of algorithm Filter-

Balanced-Product.

7.1.2. Setup and basic structural lemmas. By definition, there exist disjoint
multisets L,E, of points in {0, 1}d, where L ⊂ S, such that S′ = (S \L)∪E. With this

notation, we can write ∆(S, S′) = |L|+|E|
|S| . Our assumption ∆(S, S′) ≤ 2ε is equivalent

to |L|+ |E| ≤ 2ε · |S|, and the definition of S′ directly implies that (1−2ε)|S| ≤ |S′| ≤
(1 + 2ε)|S|. Throughout the proof, we assume that ε is a sufficiently small constant.
Our analysis will make essential use of the following matrices:

D
o
w

n
lo

ad
ed

 1
1
/1

4
/1

9
 t

o
 1

8
.1

0
.2

7
.6

3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

808 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

• MP denotes the matrix with (i, j)-entry EX∼P [(Xi − µS′

i )(Xj − µS′

j )], but 0
on the diagonal.

• MS denotes the matrix with (i, j)-entry EX∈uS [(Xi − µS′

i )(Xj − µS′

j )], but 0
on the diagonal.

• ME denotes the matrix with (i, j)-entry EX∈uE [(Xi − µS′

i )(Xj − µS′

j )].

• ML denotes the matrix with (i, j)-entry EX∈uL[(Xi − µS′

i )(Xj − µS′

j )].
Our first claim follows from the Chernoff bound and the definition of a good set.

Claim 7.8. Let w ∈ R
d be any unit vector; then for any T > 0,

Pr
X∈uS

(|w · (X − µS′

)| > T + ‖µS′ − p‖2) ≤ 2 exp(−T 2/2) + ε/d

and
Pr

X∼P
(|w · (X − µS′

)| > T + ‖µS′ − p‖2) ≤ 2 exp(−T 2/2).

Proof. Since S is ε-good, the first inequality follows from the second one. To
prove the second inequality, it suffices to bound the probability that |w · (X − µS′

)−
E[w · (X−µS′

)]| > T , X ∼ P , since the expectation in question is w · (p−µS′

), whose
absolute value is at most ‖µS′ − p‖2, by Cauchy–Schwarz. Note that w · (X − µS′

) is
a sum of independent random variables wi(Xi − µS′

i ), each supported on an interval
of length 2|wi|. An application of the Chernoff bound completes the proof.

The following sequence of lemmas is bound from above the spectral norms of
the associated matrices. Our first simple lemma says that the (diagonally reduced)
empirical covariance matrix MS , where S is the set of uncorrupted samples drawn
from the binary product distribution P, is a good approximation to the matrix MP ,
in spectral norm.

Lemma 7.9. If S is ε-good, ‖MP −MS‖2 ≤ O(ε).

Proof. It suffices to show that |(MP )i,j − (MS)i,j | ≤ O(ε/d) for all i 6= j. Then,
we have that

‖MP −MS‖2 ≤ ‖MP −MS‖F ≤ O(ε).

Let ei denote the standard basis vector in the ith direction in R
d . For i 6= j we have

(MP )i,j = E
X∼P

[(Xi − µS′

i )(Xj − µS′

j )]

= E
X∼P

[XiXj ]− µS′

i E
X∼P

[Xj ]− µS′

j E
X∼P

[Xi] + µS′

j µS′

i

= Pr
X∼P

((ei + ej) ·X ≥ 2)− µS′

i Pr
X∼P

(ej ·X ≥ 1)

− µS′

j Pr
X∼P

(ei ·X ≥ 1) + µS′

j µS′

i .

A similar expression holds for MS except with probabilities for X ∈u S. Since S is
ε-good with respect to P , we have |(MP )i,j−(MS)i,j | ≤ ε/d+µS′

i ε/d+µS′

j ε/d ≤ 3ε/d.
This completes the proof.

As a simple consequence of the above lemma, we obtain the following claim.

Claim 7.10. If S is ε-good, ‖M − (1/|S′|)(|S|MP + |E|ME − |L|ML)‖2 = O(ε).

Proof. First note that we can write |S′|M = |S|MS + |E|M0
E−|L|M0

L, where M
0
E

and M0
L are obtained from ME and ML by zeroing out the diagonal. Observe that

|E| + |L| = O(ε)|S′|. This follows from the assumption that ∆(S, S′) ≤ 2ε and the
definition of S′. Now note that the matrices ME −M0

E and ML −M0
L are diagonal
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with entries at most 1, and thus have spectral norm at most 1. The claim now follows
from Lemma 7.9.

Recall that if µS′

= p, MP would equal the (diagonally reduced) covariance
matrix of the product distribution P, i.e., the identically zero matrix. The following
simple lemma bounds from above the spectral norm of MP by the `22-norm between
the corresponding mean vectors.

Lemma 7.11. We have that ‖MP ‖2 ≤ ‖µS′ − p‖22.
Proof. Note that (MP )i,j = (µS′

i − pi)(µ
S′

j − pj) for i 6= j and 0 otherwise.

Therefore, MP is the difference of (µS′ − p)(µS′ − p)T and the diagonal matrix with
entries (µS′

i − pi)
2. This, in turn, implies that

(µS′ − p)(µS′ − p)T �MP � Diag(−(µS′

i − pi)
2) .

Note that both bounding matrices have spectral norm at most ‖µS′ − p‖22, hence so
does MP .

The following lemma, bounding from above the spectral norm of ML, is the main
structural result of this section. This is the core result needed to establish that the
subtractive error cannot change the sample mean by much.

Lemma 7.12. We have that ‖ML‖2 = O(log(|S|/|L|) + ‖µS′ − p‖22 + ε · |S|/|L|),
hence

(|L|/|S′|) · ‖ML‖2 = O(ε log(1/ε) + ε‖µS′ − p‖22).
Proof. Since L ⊆ S, for any x ∈ {0, 1}d, we have that

(35) |S| · Pr
X∈uS

(X = x) ≥ |L| · Pr
X∈uL

(X = x) .

Since ML is a symmetric matrix, we have ‖ML‖2 = max‖v‖2=1 |vTMLv|. So, to bound
‖ML‖2 it suffices to bound |vTMLv| for unit vectors v. By definition of ML, for any
v ∈ R

d we have that
|vTMLv| = E

X∈uL
[|v · (X − µS′

)|2].

The RHS is, in turn, bounded from above as follows:

E
X∈uL

[|v · (X − µS′

)|2]

= 2

∫ √
d

0

Pr
X∈uL

(
|v · (X − µS′

)| > T
)
· TdT

≤ 2

∫ √
d

0

min

{
1, |S|/|L| · Pr

X∈uS

(
|v · (X − µS′

)| > T
)}

TdT

�
∫ 4
√

log(|S|/|L|)+‖µS′−p‖2

0

TdT

+ (|S|/|L|)
∫ √

d

4
√

log(|S|/|L|)+‖µS′−p‖2

(
exp(−(T − ‖µS′ − p‖2)2/2)T + εT/d

)
dT

� log(|S|/|L|) + ‖µS′ − p‖22 + ε · |S|/|L| ,

where the second line follows from (35) and the third line follows from Claim 7.8.
This establishes the first part of the lemma.
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810 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

The bound (|L|/|S|)‖ML‖2 = O(ε log(1/ε) + ε‖µS′ − p‖22) follows from the pre-
viously established bound using the monotonicity of the function x log(1/x), and the
fact that |L|/|S| ≤ 2ε. The observation |S|/|S′| ≤ 1 + 2ε ≤ 2 completes the proof of
the second part of the lemma.

Claim 7.10 combined with Lemmas 7.11 and 7.12 and the triangle inequality yield
the following corollary.

Corollary 7.13. We have that ‖M − (|E|/|S′|)ME‖2 = O(ε log(1/ε) + ‖µS′ −
p‖22).

We are now ready to analyze the two cases of the algorithm Filter-Balanced-

Product.

7.1.3. The case of small spectral norm. We start by analyzing the case
where the mean vector µS′

is returned. This corresponds to the case that the spectral
norm of M is appropriately small, namely ‖M‖2 ≤ O(ε log(1/ε)). We start with the
following simple claim.

Claim 7.14. Let µE , µL be the mean vectors of E and L, respectively. Then,
‖µE − µS′‖22 ≤ ‖ME‖2 and ‖µL − µS′‖22 ≤ ‖ML‖2.

Proof. We prove the first inequality, the proof of the second being identical. Note
that ME is a symmetric matrix, so ‖ME‖2 = max‖v‖2=1 |vTMEv|. Moreover, for any
vector v we have that

vTMEv = E
X∈uE

[|v · (X − µS′

)|2] ≥ |v · (µE − µS′

)|2.

Let w = µE − µS′

and take v = w/‖w‖2. We conclude that ‖ME‖2 ≥ ‖w‖22, as
desired.

The following crucial lemma, bounding from above the distance ‖µS′ − p‖2 as a
function of ε and ‖M‖2, will be important for both this and the following subsections.

Lemma 7.15. We have that ‖µS′ − p‖2 ≤ 2
√
ε‖M‖2 +O(ε

√
log(1/ε)).

Proof. First, we observe that the mean vector µS of the uncorrupted sample set
S is close to p. Since S is ε-good, this follows from the fact that for any i ∈ [d], we
have

|µS
i − pi| = | Pr

X∈uS
[ei ·X ≥ 1]− Pr

X∼P
[ei ·X ≥ 1]| ≤ ε/d.

Therefore, we get that ‖µS − p‖2 ≤ ε/
√
d.

Consider µE and µL, the mean vectors of E and L, respectively. By definition,
we have that

|S′|µS′

= |S|µS + |E|µE − |L|µL ,

and thus by the triangle inequality we obtain

‖µS′ − p‖2 ≤ ‖(|E|/|S′|)(µE − p)− (|L|/|S′|)(µL − p)‖2 + ε/
√
d .

Therefore, we have the following sequence of inequalities:

‖µS′ − p‖2
≤ (|E|/|S′|) · ‖µE − µS′‖2 + (|L|/|S′|) · ‖µL − µS′‖2 +O(ε) · ‖µS′ − p‖2 + ε/

√
d

≤ (|E|/|S′|) ·
√
‖ME‖2 + (|L|/|S′|) ·

√
‖ML‖2 +O(ε) · ‖µS′ − p‖2 + ε/

√
d

≤ O(ε
√
log(1/ε)) + (3/2)

√
ε‖M‖2 +O(

√
ε) · ‖µS′ − p‖2

≤ O(ε
√
log(1/ε)) + (3/2)

√
ε‖M‖2 + ‖µS′ − p‖2/4 ,
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where the first line follows from the triangle inequality, the second uses Claim 7.14,
while the third uses Lemma 7.12 and Corollary 7.13. Finally, the last couple of lines
assume that ε is sufficiently small. The proof of Lemma 7.15 is now complete.

We can now deduce the correctness of step 4 of Algorithm 12, Filter-Balanced-

Product, since for ‖M‖2 ≤ O(ε log(1/ε)), Lemma 7.15 directly implies that ‖µS′ −
p‖2 = O(ε

√
log(1/ε)).

7.1.4. The case of large spectral norm. We next show the correctness of the
algorithm Filter-Balanced-Product if it returns a filter (rejecting an appropriate
subset of S′) in step 5. This corresponds to the case that ‖M‖2 ≥ Cε log(1/ε), for a
sufficiently large universal constant C > 0. We will show that the multiset S′′ ⊂ S′

computed in step 5 satisfies ∆(S, S′′) ≤ ∆(S, S′)− 2ε/d.
We start by noting that, as a consequence of Lemma 7.15, we have the following

claim.

Claim 7.16. We have that ‖µS′ − p‖2 ≤ δ := 3
√
ε‖M‖2.

Proof. By Lemma 7.15, we have that ‖µS′−p‖2 ≤ 2δ/3+O(ε
√
log(1/ε)). Recall-

ing that ‖M‖2 ≥ Cε log(1/ε), if C > 0 is sufficiently large, the term O(ε
√
log(1/ε))

is at most δ/3.

By construction, v∗ is the unit eigenvector corresponding to the maximum mag-
nitude eigenvalue of M. Thus, we have (v∗)TMv∗ = ‖M‖2 = δ2/(9ε). We thus obtain
that

(36) E
X∈uE

[|v∗ · (X − µS′

)|2] = (v∗)TMEv
∗ ≥ δ2|S′|

20ε|E| ,

where the equality holds by definition, and the inequality follows from Corollary 7.13
and Claim 7.16 using the fact that ε is sufficiently small and the constant C is suffi-
ciently large (noting that the constant in the RHS of Corollary 7.13 does not depend
on C).

We show that (36) implies the existence of a T > 0 with the properties specified
in step 5 of Algorithm 12, Filter-Balanced-Product. More specifically, we have
the following crucial lemma.

Lemma 7.17. If ‖M‖2 ≥ Cε log(1/ε), for a sufficiently large constant C > 0,
there exists a T > 0 satisfying the property in step 5 of Algorithm 12, Filter-

Balanced-Product, i.e., such that

Pr
X∈uS′

(|v∗ · (X − µS′

)| > T + δ) > 8 exp(−T 2/2) + 8ε/d .

Proof. Assume for the sake of contradiction that this is not the case, i.e., that for
all T > 0 we have that

(37) Pr
X∈uS′

(|v∗ · (X − µS′

)| ≥ T + δ) ≤ 8 exp(−T 2/2) + 8ε/d .

Since E ⊆ S′, for all x ∈ {0, 1}d, we have that |S′|PrX∈uS′ [X = x] ≥ |E|PrY ∈uE [Y =
x]. This fact, combined with (37), implies that for all T > 0

(38) Pr
Y ∈uE

(|v∗ · (Y − µS′

)| ≥ T + δ)� (|S′|/|E|)(exp(−T 2/2) + ε/d) .
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Using (36) and (38), we have the following sequence of inequalities:

δ2|S′|/(ε|E|)� E
Y ∈uE

[|v∗ · (Y − µS′

)|2]

= 2

∫ ∞

0

Pr
Y ∈uE

(
|v∗ · (Y − µS′

)| ≥ T
)
· TdT

� (|S′|/|E|)
∫ O(

√
d)

0

min
{
|E|/|S′|, exp(−(T − δ)2/2) + ε/d

}
TdT

�
∫ 4
√

log(|S′|/|E|)+δ

0

Tdt

+

∫ ∞

4
√

log(|S′|/|E|)+δ

(|S′|/|E|) exp(−(T − δ)2/2)TdT +

∫ O(
√
d)

0

ε|S′|
d|E|TdT

� log(|S′|/|E|) + δ2 +
ε|S′|
|E| .

This yields the desired contradiction recalling that the assumption ‖M‖2 ≥ Cε log(1/ε)
and the definition of δ imply that δ ≥ C ′ε

√
log(1/ε) for an appropriately large

C ′ > 0.

The following simple claim completes the proof of Proposition 7.7.

Claim 7.18. We have that ∆(S, S′′) ≤ ∆(S, S′)− 2ε/d .

Proof. Recall that S′ = (S \ L) ∪ E, with E and L disjoint multisets such that
L ⊂ S. We can similarly write S′′ = (S \ L′) ∪ E′, with L′ ⊇ L and E′ ⊂ E. Since

∆(S, S′)−∆(S, S′′) =
|E \ E′| − |L′ \ L|

|S| ,

it suffices to show that |E \E′| ≥ |L′ \ L|+ 2ε|S|/d. Note that |L′ \ L| is the number
of points rejected by the filter that lie in S ∩ S′. By Claims 7.8 and 7.16, it follows
that the fraction of elements x ∈ S that are removed to produce S′′ (i.e., satisfy
|v∗ · (x−µS′)| > T + δ) is at most 2 exp(−T 2/2)+ ε/d. Hence, it holds that |L′ \L| ≤
(2 exp(−T 2/2) + ε/d)|S|. On the other hand, step 5 of Algorithm 12 ensures that the
fraction of elements of S′ that are rejected by the filter is at least 8 exp(−T 2/2)+8ε/d.
Note that |E \ E′| is the number of points rejected by the filter that lie in S′ \ S.
Therefore, we can write

|E \ E′| ≥ (8 exp(−T 2/2) + 8ε/d)|S′| − (2 exp(−T 2/2) + ε/d)|S|
≥ (8 exp(−T 2/2) + 8ε/d)|S|/2− (2 exp(−T 2/2) + ε/d)|S|
≥ (2 exp(−T 2/2) + 3ε/d)|S|
≥ |L′ \ L|+ 2ε|S|/d ,

where the second line uses the fact that |S′| ≥ |S|/2 and the last line uses the fact
that |L′ \ L|/|S| ≤ (2 exp(−T 2/2) + ε/d). This completes the proof of the claim.

7.2. Agnostically learning arbitrary binary product distributions. In
this subsection, we build on the approach of the previous subsection to show the
following theorem.

Theorem 7.19. Let P be a binary product distribution in d dimensions and ε, τ >
0. There is a polynomial-time algorithm that, given ε and a set of Θ(d6 log(1/τ)/ε3)
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independent samples from P, an ε-fraction of which have been arbitrarily corrupted,
outputs (the mean vector of) a binary product distribution P̃ such that, with probability

at least 1− τ , dTV(P, P̃ ) ≤ O(
√

ε log(1/ε)).

By Lemma 2.17, the total variation distance between two binary product distri-
butions can be bounded from above by the square root by the χ2-distance between the
corresponding means. For the case of balanced product distributions, the χ2-distance
and the `2-distance are within a constant factor of each other. Unfortunately, this does
not hold in general, hence the guarantee of our previous algorithm is not sufficient to
get a bound on the total variation distance. Note, however, that the χ2-distance and
the `2-distance can be related by rescaling each coordinate by the standard deviation
of the corresponding marginal. When we rescale the covariance matrix in this way, we
can use the top eigenvalue and eigenvector as before, except that we obtain bounds
that involve the χ2- in place of the `2-distance. The concentration bounds we obtain
with this rescaling are somewhat weaker, and as a result, our quantitative guarantees
for the general case are correspondingly weaker than in the balanced case. As in
the filter algorithm for approximating the mean under second moment assumptions in
[DKK+17], to handle this weaker concentration, we will choose a threshold at random,
weighted towards larger thresholds instead of looking for a violation of a concentration
inequality. This gives a filter that rejects more corrupted than uncorrupted samples
in expectation and we will show that with high probability we still only throw away
an O(ε)-fraction of samples in the course of the algorithm.

Similar to the case of balanced product distributions, we will require a notion of
a “good” set for our distribution. For technical reasons, the definition in this setting
turns out to be more complicated. Roughly speaking, this is to allow us to ignore
coordinates for which the small fraction of errors is sufficient to drastically change the
sample mean.

Definition 7.20 (good set of samples). Let P be a binary product distribution
and ε, η > 0. We say that a multiset S of elements in {0, 1}d is (ε, η)-good with respect
to P if for every affine function L : {0, 1}d → R and every subset of coordinates
T ⊆ [d] satisfying

∑
i∈T pi(1 − pi) < η the following holds: Letting ST be the subset

of points in S that have their ith coordinate equal to the most common value under P
for all i ∈ T, and letting PT be the conditional distribution of P under this condition,
then ∣∣∣∣ Pr

X∈uST

(L(X) ≥ 0)− Pr
X∼PT

(L(X) ≥ 0)

∣∣∣∣ ≤ ε3/2/d2 .

We note that a sufficiently large set of samples from P will satisfy the above
properties with high probability.

Lemma 7.21. If S is obtained by taking Ω(d6 log(1/τ)/ε3) independent samples
from P, it is (ε, 1/5)-good with respect to P with probability at least 9/10.

The proof of this lemma is deferred to Appendix D.
We will also require a notion of the number of coordinates on which S nontrivially

depends.

Definition 7.22. For S a multiset of elements in {0, 1}d, let supp(S) be the
subset of [d] consisting of indices i such that the ith coordinate of elements of S is not
constant.

Similar to the balanced case, our algorithm is obtained by repeated application
of an efficient filter procedure, whose precise guarantee is described below.
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Proposition 7.23. Let P be a binary product distribution in d dimensions and
ε > 0. Suppose that S is an (ε, η)-good multiset with respect to P with η > 10ε and S′

be any multiset with ∆(S, S′) ≤ 20ε. There exists a polynomial-time algorithm which,
given ε and S′, returns one of the following:

(i) The mean vector of a product distribution P ′ with dTV(P, P
′) = O(

√
ε log(1/ε)).

(ii) A multiset S′′ ⊂ S′ of elements of {0, 1}d such that there exists a product

distribution P̃ with mean p̃ and a multiset S̃ that is (ε, η − ‖p − p̃‖1)-good
with respect to P̃ such that

E[∆(S̃, S′′)] + ‖p− p̃‖1/6 ≤ ∆(S, S′) .

Our agnostic learning algorithm is then obtained by iterating this procedure. We
can prove Theorem 7.19 given Proposition 7.23.

Proof of Theorem 7.19. We draw N = Θ(d6/ε3) samples forming a set S, which
is (ε, 1/5)-good with probability 9/10 by Lemma 7.21. We condition on this event.
The adversary corrupts an ε-fraction of S producing a set S′ with ∆(S, S′) ≤ 2ε.
The iterations of the algorithm produce a sequence of sets S0 = S, S1, . . . , Sk, where
Si is (ε, ηi)-good for some binary product distribution Pi and some sets S′

i. We note
that ∆(Si, S

′
i) is monotonically decreasing in expectation. Since |µPi − µPi+1 | ≤

dTV(Pi, Pi+1), in the ith iteration, we have that E[∆(Si+1, S
′
i+1) − dTV(Pi, Pi+1)] ≤

∆(Si, S
′
i), as long as ∆(Si, S

′
i) ≤ 20ε.

We need to show that the probability that we will ever have ∆(Si, S
′
i) > 20ε is

small. Indeed we show that the probability that ∆(Si, S
′
i) +

∑i−1
j=0 dTV(Pi, Pi+1) is

ever large is 1/10.
We analyze the following procedure: We iteratively run Filter-Product. We

stop if we output an approximation to the mean or if ∆(Si, S
′
i)+
∑i−1

j=0 dTV(Pi, Pi+1) >
20ε|S|. Proposition 7.23 gives that E[∆(Si+1, S

′
i+1) − dTV(Pi, Pi+1)/6] ≤ ∆(Si.S

′
i).

This expectation is conditioned on the state of the algorithm after previous iterations,
which is determined by S′

i. Thus, if we consider the random variablesXi = ∆(Si, S
′
i)+∑i−1

j=0 dTV(Pi, Pi+1)/6, then we have E[Xi+1|S′
i] ≤ Xi, i.e., the sequence Xi is a sub-

martingale with respect to S′
i. Using the convention that S′

i+1 = S′
i, if we stop

in fewer than i iterations, since we must terminate N iterations as every iteration
removes at least one sample, the algorithm fails if and only if |XN | > 20ε. By a
simple induction or standard results on submartingales, we have E[XN ] ≤ X0. Now
X0 = ∆(S0, S

′
0) ≤ 2ε|S′

0|. Thus, E[XN ] ≤ 2ε|S|. By Markov’s inequality, except with
probability 1/10, we have XN ≤ 20ε|S|. Therefore, the probability that we will ever
have |Xi| > 20ε is at most 1/10.

By a union bound, using Lemma 7.21, S0 is (ε, 1/5)-good and we have |Xi| ≤
20ε with probability at least 4/5. We assume that this holds. By induction, Si is

(ε, 1/5−∑i−1
j=0 dTV(Pi, Pi+1))-good, and so is (ε, 1/5−100ε)-good, which suffices since

1/5− 100ε ≥ 10ε.
When it terminates, the algorithm outputs a product distribution P ′ with dTV

(Pk, P
′) = O(

√
ε log(1/ε)). By the triangle inequality, we have that

dTV(P, P
′) ≤ dTV(Pk, P

′) +
k−1∑

j=0

dTV(Pi, Pi+1) ≤ O(
√

ε log(1/ε))

+ 100ε ≤ O(
√
ε log(1/ε)) .

When τ ≤ 1/5, we will need to draw fresh ε-corrupted samples and repeat this
procedure O(log(1/τ)) times, and then one of the resulting output distributions is
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within total variation distance O(
√
ε log(1/ε)) with probability at least 1−τ/2. Then

we use the agnostic hypothesis selection procedure of Lemma 2.23.

7.2.1. Algorithm filter-product: Proof of Proposition 7.23. In this sec-
tion, we describe and analyze the efficient routine establishing Proposition 7.23. Our
efficient filtering procedure is presented in detailed pseudocode below.

Algorithm 13 Filter algorithm for an arbitrary binary product distribution.

1: procedure Filter-Product(ε, S′)
input: ε > 0 and multiset S′ such that there exists an ε-good S with ∆(S, S′) ≤ 2ε
output: Multiset S′′ or mean vector p′ satisfying Proposition 7.23
2: Compute the sample mean µS′

= EX∈uS′ [X] and the sample covariance matrix
M , i.e., M = (Mi,j)1≤i,j≤d with Mi,j = EX∈S′ [(Xi − µS′

i )(Xj − µS′

j )].

3: if there exists i ∈ [d] with 0 < µS′

i < ε/d or 0 < 1− µS′

i < ε/d then

4: Let S′′ be the subset of elements of S′ in which those coordinates take their
most common value.

5: return S′′.
/* For the later steps, we ignore any coordinates not in supp(S′). */

6: Compute approximations for the largest magnitude eigenvalue λ′ of DMD,
λ′ := ‖DMD‖2, where D = Diag(1/

√
µS′

i (1− µS′

i )), and the associated unit
eigenvector v′.

7: if ‖DMD‖2 < O(log(1/ε)) then return µS′

(reinserting all coordinates af-
fected by step 5).

8: Draw Z from the distribution on [0, 1] with probability density function 2x.
9: Let T = Zmax{|v∗ · (x− µS′

)| : x ∈ S′}, where v∗ := Dv′.
10: return the multiset S′′ = {x ∈ S′ : |v∗ · (x− µS′

)| < T} .

This completes the description of the algorithm. We now proceed to prove cor-
rectness.

7.2.2. Chi-squared distance and basic reductions. As previously men-
tioned, our algorithm will use the χ2-distance between the mean vectors as a proxy
for the total variation distance between two binary product distributions. Since the
mean vector of the target distribution is not known to us, we will not be able to use
the symmetric definition of the χ2-distance used in Lemma 2.17. We will instead
require the following asymmetric version of the χ2-distance.

Definition 7.24. The χ2-distance of x, y ∈ R
d is defined by χ2(x, y)

def
=
∑d

i=1
(xi−yi)

2

xi(1−xi)
.

The next fact follows directly from Lemma 2.17.

Fact 7.25. Let P,Q be binary product distributions with mean vectors p, q, re-
spectively. Then, dTV(P,Q) = O(

√
χ2(p, q)).

There are two problems with using the χ2-distance between the mean vectors as
a proxy for the total variation distance. The first is that the χ2-distance between the
means is a very loose approximation of the total variational distance when the means
are close to 0 or 1 in some coordinate. To circumvent this obstacle, we remove such
coordinates via an appropriate preprocessing in step 5 of Algorithm 13. The second
is that the above asymmetric notion of the χ2-distance may be quite far from the
symmetric definition. To overcome this issue, it suffices to have that qi = O(pi) and
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816 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

1− qi = O(1− pi). To ensure this condition is satisfied, we appropriately modify the
target product distribution (that we aim to be close to). Next, we will show how we
deal with these problems in detail.

Before we embark on a proof of the correctness of algorithm Filter-Product,
we will make a few reductions that we will apply throughout. First, we note that if
some coordinate in step 5 of Algorithm 13 exists, then removing the uncommon values
of that coordinate increases ∆(S, S′) by at most ε/d but decreases |supp(S′)| by at
least 1. We also note that if N is the set of coordinates outside of the support of S′, the
probability that an element in S′ has a coordinate in N that does not take its constant
value is 0. Note that this is at most O(ε) away from the probability that an element
taken from P has this property, and thus we can assume that

∑
i∈N min{pi, 1−pi} =

O(ε). Therefore, after step 5 of Algorithm 13, we can assume that all coordinates i
have ε/d ≤ pi ≤ 1− ε/d.

The next reduction will be slightly more complicated and depends on the following
idea: Suppose that there is a new product distribution P̃ with mean p̃ and an (ε, η−
‖p− p̃‖1)-good multiset S̃ for P̃ such that

∆(S̃, S′) + ‖p− p̃‖1/5 ≤ ∆(S, S′).

Then, it suffices to show that our algorithm works for P̃ and S̃ instead of P and S
(note that the input to the algorithm, S′ and ε, is the same in either case). This is
because the conditions imposed by the output in this case would be strictly stronger.
In particular, we may assume that µS′

i ≥ pi/3 for all i.

Lemma 7.26. There is a product distribution P̃ whose mean vector p̃ satisfies
µS′

i ≥ p̃i/3 and 1−µS′

i ≥ (1− p̃i/3) for all i, and a set S̃ ⊆ S that is (ε, η−‖p− p̃‖1)-
good for P̃ and satisfies

∆(S̃, S′) + ‖p− p̃‖1/5 ≤ ∆(S, S′).

Proof. If all coordinates i have µS′

i ≥ pi/3 and 1− µS′

i ≥ (1− pi/3), then we can

take P̃ = P and S̃ = S.
Suppose that the ith coordinate has µS′

i < pi/3. Let P̃ be the product whose mean

vector p̃ has p̃i = 0 and p̃j = pj for j 6= i. Let S̃ be obtained by removing from S all

of the entries with 1 in the ith coordinate. Then, we claim that S̃ is (ε, η − pi)-good

for P̃ and has ∆(S̃, S′) + pi/5 ≤ ∆(S, S′). Note that here we have ‖p− p̃‖1 = pi.

First, we show that S̃ is (ε, η − pi)-good for P̃ . For any affine function L(x) and
set T ⊆ [d] with

∑
j∈T p̃j(1− p̃j) ≤ η − pi, we need to show that

∣∣∣∣ Pr
X∈uS̃T

(L(X) > 0)− Pr
X∼P̃T

(L(X) > 0)

∣∣∣∣ ≤ ε3/2/d2 .

Let T̃ = T ∪ {i}. We may or may not have i ∈ T but, from the definition of p̃,

∑

j∈T

p̃j(1− p̃j) =
∑

j∈T\{i}
p̃j(1− p̃j) =

∑

j∈T\{i}
pj(1− pj).

Thus,

∑

j∈T̃

pj(1− pj) = pi(1− pi) +
∑

j∈T

p̃j(1− p̃j) ≤ η − pi + pi(1− pi) ≤ η.
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Since S is good for P , we have that

∣∣∣∣ Pr
X∈uST̃

(L(X) ≥ 0)− Pr
X∼PT̃

(L(X) ≥ 0)

∣∣∣∣ ≤ ε3/2/d2 .

Moreover, note that ST̃ = S̃T and PT̃ = P̃T . Thus, S̃ is (ε, η − pi)-good for P̃ .

Next, we show that ∆(S̃, S′) + pi/5 ≤ ∆(S, S′). We write S = S̃ \ L̃ ∪ Ẽ. We
write S1, L1, S

′
1 for the subset of S,L, S′, respectively, where the ith coordinate is

1. Since S is (ε, η)-good for P, we have that |µS
i − pi| ≤ ε3/2/d2. Recall that we

are already assuming that p̃i ≥ ε/d. Thus, µS
i ≥ 29pi/30. Therefore, we have that

|S1| ≥ 29pi|S|/30. On the other hand, we have that |S′
1| ≤ pi|S′|/3 ≤ 11pi|S|/30.

Thus, |L1| = |S1 \ S′
1| ≥ 18pi|S|/30. This means that pi = O(∆(S̃, S′)) = O(ε).

However, Ẽ = E ∪ S′
1 and L̃ = L \ L1. This gives

∆(S̃, S′) =
|Ẽ|+ |L̃|
|S̃|

≤ |E|+ |S
′
1|+ |L| − |L1|
|S̃|

≤ |E|+ |L| − 7pi/30

|S̃|
=
|E|+ |L| − 7pi|S|/30

|S|(1− µS
i )

≤ ∆(S, S′)− 7pi/30

1− 31pi/30
= ∆(S, S′)− 7pi/30 +O(εpi)

≤ ∆(S, S′)− pi/5 .

Similarly, suppose that instead the ith coordinate has 1−µS′

i < (1−pi)/3. Let P̃ be the

product whose mean vector p̃ has p̃i = 1 and p̃j = pj for j 6= i. Let S̃ be obtained by
removing from S all of the entries with 0 in the ith coordinate. Then, by a similar proof
we have that S̃ is (ε, η− (1−pi))-good for P̃ and has ∆(S̃, S′)+(1−pi)/5 ≤ ∆(S, S′).
Note that here we have ‖p− p̃‖1 = 1− pi.

By an easy induction, we can set all coordinates i with µS′

i ≥ p̃i/3 and 1− µS′

i ≥
(1−p̃i/3) to 0 or 1, respectively, giving an S̃ and P̃ such that S̃ is (ε, η−‖p−p̃‖1)-good
for P̃ and

∆(S̃, S′) + ‖p− p̃‖1/5 ≤ ∆(S, S′) ,

as desired.

In conclusion, throughout the rest of the proof we may and will assume that for
all i,

• ε/d ≤ µS′

i ≤ 1− ε/d.

• µS′

i ≥ pi/3 and 1− µS′

i ≥ (1− pi)/3.

7.2.3. Setup and basic structural lemmas. As in the balanced case, we can
write S′ = (S \L)∪E for disjoint multisets L and E. Similarly, we define the following
matrices:

• MP to be the matrix with (i, j)-entry EX∼P [(Xi − µS′

i )(Xj − µS′

j )],

• MS to be the matrix with (i, j)-entry EX∈uS [(Xi − µS′

i )(Xj − µS′

j )],

• ME to be the matrix with (i, j)-entry EX∈uE [(Xi − µS′

i )(Xj − µS′

j )], and

• ML to be the matrix with (i, j)-entry EX∈uL[(Xi − µS′

i )(Xj − µS′

j )].
Note that we no longer zero out the diagonals of MP and MS . This will turn out
to allow us to more naturally relate spectral properties of these matrices to the χ2-
distance between the means. We start with the following simple claim.
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Claim 7.27. For any v ∈ R
d satisfying

∑d
i=1 v

2
i µ

S′

i (1 − µS′

i ) ≤ 1, the following
statements hold:

(i) VarX∼P [v ·X] ≤ 9 and |v · (p− µS′

)| ≤
√
χ2(µS′ , p), and

(ii) PrX∼P

(
|v ·X − µS′ | ≥ T +

√
χ2(µS′ , p)

)
≤ 9/T 2 .

Proof. Recall that p denotes the mean vector of the binary product P. To show
(i), we use the fact that Xi ∼ Ber(pi) and the Xi’s are independent. This implies
that

Var
X∼P

[
d∑

i=1

viXi

]
=

d∑

i=1

v2i Var[Xi] =

d∑

i=1

v2i pi(1− pi) ≤ 9

d∑

i=1

v2i µ
S′

i (1− µS′

i ) ≤ 9 ,

where we used that pi ≤ 3µS′

i , (1− pi) ≤ 3(1−µS′

i ), and the assumption in the claim
statement. For the second part of (i), note that

|v · (p− µS′

)| =
∣∣∣∣∣

d∑

i=1

vi

√
µS′

i (1− µS′

i ) · pi − µS′

i√
µS′

i (1− µS′

i )

∣∣∣∣∣

≤

√√√√
d∑

i=1

v2i µ
S′

i (1− µS′

i ) ·
√

χ2(µS′ , p) ≤
√
χ2(µS′ , p) ,

where the first inequality is Cauchy–Schwarz, and the second follows from the as-
sumption in the claim statement that

∑d
i=1 v

2
i µ

S′

i (1− µS′

i ) ≤ 1. This proves (i).
To prove (ii), we note that Chebyshev’s inequality gives

Pr
X∼P

(|v · (X − p)| ≥ T ) ≤ Var
X∼P

[v ·X]/T 2 ≤ 9/T 2 ,

where the second inequality follows from (i). To complete the proof note the inequality

|v · (X − µS′

)| ≥ T +
√

χ2(µS′ , p)

implies that
|v · (X − p)| ≥ |v · (X − µS′

)| − |v · (p− µS′

)| ≥ T ,

where we used the triangle inequality and the second part of (i).

Let Cov[S] denote the sample covariance matrix with respect to S, and Cov[P ]
denote the covariance matrix of P. We will need the following lemma.

Lemma 7.28. We have the following:

(i)
∣∣∣
√

χ2(µS′ , µS)−
√

χ2(µS′ , p)
∣∣∣ ≤ O(ε/d), and

(ii) ‖D (Cov[S]− Cov[P ])D‖2 ≤ O(
√
ε) .

Proof. For (i): Since S is good, for any i ∈ [d], we have

|µS
i − pi| =

∣∣∣∣ Pr
X∈uS

(ei ·X ≥ 1)− Pr
X∼P

(ei ·X ≥ 1)

∣∣∣∣ ≤ ε3/2/d2 .

Therefore, by the triangle inequality we get

∣∣∣∣
√
χ2(µS′ , µS)−

√
χ2(µS′ , p)

∣∣∣∣ ≤

√√√√
d∑

i=1

(µS
i − pi)2

µS′

i (1− µS′

i )
≤
√

d · (ε3/d4)
ε/(2d)

≤ O(ε/d) ,
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where the second inequality uses the fact that µS′

i (1− µS′

i ) ≥ ε/(2d).
For (ii): Since S is good, for any i, j ∈ [d], we have

∣∣∣∣ E
X∈uS

[XiXj − pipj ]

∣∣∣∣ =
∣∣∣∣ Pr
X∈uS

[(ei + ej) ·X ≥ 1]− Pr
X∼P

[(ei + ej) ·X ≥ 1]

∣∣∣∣ ≤ ε3/2/d2 .

Combined with the bound |µS
i − pi| ≤ ε3/2/d2 above, this gives

|Cov[S]i,j − Cov[P ]i,j | ≤ O(ε3/2/d2) .

We thus obtain

‖Cov[S]− Cov[P ]‖2 ≤ ‖(Cov[S]− Cov[P ])‖F ≤ O(ε3/2/d) .

Note that ‖D‖2 = maxi
(
1/
√
µS′

i (1− µS′

i )
)
≤
√
2d/ε. Therefore,

‖D (Cov[S]− Cov[P ])D‖2 ≤ O(
√
ε) .

Combining Claim 7.27 and Lemma 7.28 we obtain the following corollary.

Corollary 7.29. For any v ∈ R
d with

∑d
i=1 v

2
i µ

S′

i (1− µS′

i ) ≤ 1, we have

(i) VarX∈uS [v ·X] ≤ 10 and |v · (µS − µS′

)| ≤
√
χ2(µS′ , p) +O(ε/d), and

(ii) PrX∈uS

(
|v ·X − µS′ | ≥ T +

√
χ2(µS′ , p)

)
≤ 9/T 2 + ε3/2/d2 .

Proof. We have that
∣∣∣∣ VarX∈uS

[v ·X]− Var
Y∼P

[v · Y ]

∣∣∣∣ = vT (Cov[S]− Cov[P ]) v

≤ ‖D−1v‖22 · ‖D (Cov[S]− Cov[P ])D‖2
≤ O(

√
ε)

≤ 1 ,

where the second line uses Lemma 7.28 (ii), and the assumption ‖D−1v‖22 =
∑d

i=1 v
2
i µ

S′

i

(1−µS′

i ) ≤ 1, and the third line holds for small enough ε. Thus, using Claim 7.27 (i),
we get that

Var
X∈uS

[v ·X] ≤ Var
Y∼P

[v · Y ] + 1 ≤ 10 .

By the Cauchy–Schwarz inequality and Lemma 7.28, we get

|v · (µS − µS′

)| ≤
√
χ2(µS′ , µS) ≤

√
χ2(µS′ , p) +O(ε/d) .

This proves (i).
Part (ii) follows directly from Claim 7.27 (ii) and the assumption that S is good

for P.

Lemma 7.30. We have that ‖D(MS −MP )D‖2 ≤ O(
√
ε).

Proof. We can show that |(MS)i,j − (MP )i,j | ≤ O(ε3/2/d2) for all i, j ∈ [d], by
expanding the LHS in terms of the differences of linear threshold functions on S and
P in the same way as in the proof of Lemma 7.28. Thus,

‖MS −MP ‖22 ≤ ‖MS −MP ‖2F ≤
∑

i,j

|(MS)i,j − (MP )i,j |2 ≤ O(ε3/d2) .

Finally, note that ‖D‖2 = maxi
(
1/
√

µS′

i (1− µS′

i )
)
≤
√
2d/ε, and so

‖D(MS −MP )D‖2 ≤ ‖D‖22‖MS −MP ‖2 ≤ 2d/ε ·O(ε3/2/d) = O(
√
ε) .
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Combining the above we obtain the following corollary.

Corollary 7.31. We have that ‖D(|S′|M − |S|MP − |E|ME + |L|ML)D‖2 =
O(|S′| · √ε) .

Proof. The proof follows from Lemma 7.30 combined with the fact that |S′|M =
|S|MS + |E|ME − |L|ML and the observation |S| ≤ |S′|/(1− 2ε) ≤ 2|S′|.

We have the following lemma.

Lemma 7.32. We have that ‖DMPD‖2 ≤ 9 + χ2(µS′

, p).

Proof. Note that MP = (µS′ − p)(µS′ − p)T + Diag(pi(1 − pi)). For any v′ with

‖v′2‖ ≤ 1, the vector v = Dv′ satisfies
∑d

i=1 v
2
i µ

S′

i (1 − µS′

i ) ≤ 1. Therefore, we can
write

v′TDMPDv′ = vTMP v = (v · (µS′ − p))2 + vTDiag(pi(1− pi))v .

Using Claim 7.27 (i), we get

(v · (µS′ − p))2 ≤ χ2(µS′

, p)

and

|vTDiag(pi(1− pi))v| = | Var
X∼P

(v · (X − p))| ≤ 9 .

This completes the proof.

The following crucial lemma bounds from above the contribution to the error
from L.

Lemma 7.33. The spectral norm ‖DMLD‖2 = O(|S′|/|L|+ χ2(µS′

, p)).

Proof. Similarly, we need to bound from above the quantity |v′TDMLDv′| for all
v′ ∈ R

d with ‖v′‖2 ≤ 1. Note that |v′TDMLDv′| = |vTMLv| = EX∈uL[|v ·(X−µS′

)|2],
where the vector v = Dv′ satisfies

∑d
i=1 v

2
i µ

S′

i (1−µS′

i ) ≤ 1. The latter expectation is
bounded from above as follows:

E
X∈uL

[(v · (X − µS′

))2] ≤ 2 E
X∈uL

[(v · (X − p))2] + 2(v · (µS′ − p))2

≤ 2 E
X∈uL

[(v · (X − p))2] + 2χ2(µS′

, p)

≤ (2|S|/|L|) · E
X∈uS

[(v · (X − p))2] + 2χ2(µS′

, p)

≤ 20|S|/|L|+ 2χ2(µS′

, p)

≤ 21|S′|/|L|+ 2χ2(µS′

, p) ,

where the first line uses the triangle inequality, the second line uses Claim 7.27 (i),
the third line follows from the fact that L ⊆ S, the fourth line uses Corollary 7.29 (i),
and the last line uses the fact that ε is small enough.

The above lemmas and the triangle inequality yield the following corollary.

Corollary 7.34. We have that ‖D (M − (|E|/|S′|)ME)D‖2 = O(1+χ2(µS′

, p)) .

We are now ready to analyze the two cases of the algorithm Filter-Product.

7.2.4. The case of small spectral norm. We start by considering the case
where the vector µS′

is returned. It suffices to show that in this case dTV(P, P
′) =

O(
√
ε log(1/ε)).
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Let N be the set of coordinates not in supp(S′). We note that only an ε-fraction
of the points in S could have that any coordinate in N does not have its most common
value. Therefore, at most a 2ε-fraction of samples from P have this property. Hence,
the contribution to the variation distance coming from these coordinates is O(ε). So,
it suffices to consider only the coordinates not in N and show that dTV(PN , P ′

N
) =

O(
√
ε log(1/ε)). Thus, we may assume for the sake of the analysis below that N = ∅.
We begin by bounding various χ2-distances by the spectral norm of appropriate

matrices.

Lemma 7.35. Let µE , µL be the mean vector of E and L, respectively. Then,
χ2(µS′

, µE) ≤ ‖DMED‖2 and χ2(µS′

, µL) ≤ ‖DMLD‖2.
Proof. We prove the first inequality, the proof of the second being very similar.
Note that for any vector v, vTMEv = EX∈uE [|v · (X − µS′

)|2] ≥ |v · (µE − µS′

)|2.
Let v ∈ R

d be the vector defined by

vi =
µE
i − µS′

i

µS′

i (1− µS′

i )
√
χ2(µS′ , µE)

.

We have that

‖D−1v‖22 =

d∑

i=1

v2i µ
S′

i (1− µS′

i ) =
1

χ2(µS′ , µE)

d∑

i=1

(µE
i − µS′

i )2

µS′

i (1− µS′

i )
= 1.

Therefore,

‖DMED‖2 ≥ vTMEv ≥ |v · (µE − µS′

)|2 = χ2(µS′

, µE) .

We can now prove that the output in step 7 of Algorithm 13 has the desired
guarantee.

Lemma 7.36. We have that
√
χ2(µS′ , p) ≤ 2

√
ε‖DMD‖2 +O(

√
ε).

Proof. Since S′ = (S \ L) ∪ E, we have that |S′|µS′

= |S|µS + |E|µE − |L|µL.
Recalling that L,E are disjoint, the latter implies that

(39) (|S|/|S′|)
√

χ2(µS′ , µS) ≤ (|E|/|S′|)
√
χ2(µS′ , µE) + (|L|/|S′|)

√
χ2(µS′ , µL) .

First note that, by Lemma 7.28, |
√
χ2(µS′ , µS)−

√
χ2(µS′ , p)| ≤ O(ε/d). Lemma

7.35 and Corollary 7.34 give that

(|E|/|S′|)2χ2(µS′

, µE) ≤ (|E|/|S′|)2‖DMED‖2 +O(ε)

≤ (|E|/|S′|)‖DMD‖2 +O(ε(1 + χ2(µS′

, p))) .

Thus,

(|E|/|S′|)
√
χ2(µS′ , µE) ≤

√
(|E|/|S′|)‖DMD‖2 +

√
ε ·O

(
1 +

√
χ2(µS′ , p)

)
.

Lemmas 7.33 and 7.35 give that

(|L|/|S′|)2χ2(µS′

, µL) ≤ (|L|/|S′|)2‖DMLD‖2 ≤ O((|L|/|S′|)2χ2(µS′

, p) + ε) .
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Thus,

(|L|/|S′|)
√
χ2(µS′ , µL) ≤ O((|L|/|S′|)

√
χ2(µS′ , p)) +O(

√
ε) .

Substituting these into (39) yields

(|S|/|S′|)
√

χ2(µS′ , p) ≤
√
(|E|/|S′|)‖DMD‖2 +O

(√
ε

(
1 +

√
χ2(µS′ , p)

))
.

For ε sufficiently small, we have that the
√
χ2(µS′ , p) terms satisfy

(|S|/|S′|)−O(
√
ε) ≥ 1− 2ε−O(

√
ε) ≥ 1√

2
.

Recalling that |E|/|S′| ≤ ∆(S, S′)|S|/|S′| ≤ (5/2)ε, we now have

√
χ2(µS′ , p) ≤ (5/2)

√
ε‖DMD‖2 +O(

√
ε) ,

as required.

Corollary 7.37. Let δ := 3
√
ε|λ|. For some universal constant C, if δ ≤

C
√
ε log(1/ε), then

√
χ2(µS′ , p) ≤ O(

√
ε log(1/ε)). Otherwise, we have

√
χ2(µS′ , p) ≤

δ.

Proof. By Lemma 7.36, we have that

√
χ2(µS′ , p) ≤ 5

6
δ +O(

√
ε) .

If C is sufficiently large, when δ > C
√
ε log(1/ε), this O(

√
ε) is at most C

√
ε log(1/ε)

/6.

Claim 7.38. If the algorithm terminates at step 7 of Algorithm 13, then we have
dTV(P, P

′) ≤ O(
√
ε log(1/ε)), where P ′ is the product distribution with mean vector

µS′

.

Proof. By Corollary 7.37, we have that
√
χ2(µS′ , p) ≤ O(

√
ε log(1/ε)). Thus, by

Fact 7.25, the total variation distance between the product distributions with means
p and µS′

is O(
√
ε log(1/ε)).

7.2.5. The case of large spectral norm. We next need to show the cor-
rectness of the algorithm if it returns a filter. If we reach this step, then we have
‖DMD‖2 = Ω(1), indeed |v′DMDv′T | = Ω(1), and by Corollary 7.37, it follows that√
χ2(µS′ , p) ≤ δ, where δ := 3

√
ε‖DMD‖2.

Since ‖v′‖2 = 1, Dv′ satisfies
∑d

i=1(Dv′)2iµ
S′

i (1− µS′

i ) =
∑m

i=1 v
′2
i = 1. Thus, we

can apply Corollary 7.29 to it.

Lemma 7.39. We have EZ [∆(S, S′′)] ≤ ∆(S, S′).

Proof. Let a = maxx∈S′ |v∗ · x − µS′ |. First, we look at the expected number of
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samples we reject:

E
Z
[|S′′|]− |S′| = E

Z

[
|S′| Pr

X∈uS′
[|X − µS′ | ≥ aZ]

]

= |S′|
∫ 1

0

Pr
X∈uS′

[
|v∗ · (X − µS′

)| ≥ ax
]
2xdx

= |S′|
∫ a

0

Pr
X∈uS′

[
|v∗ · (X − µS′

)| ≥ T
]
(2T/a)dT

= |S′| E
X∈uS′

[
(v∗ · (X − µS′

))2
]
/a

= (|S′|/a) · v∗TMv∗ = (|S′|/a)λ′ .

Next, we look at the expected number of false positive samples we reject. If we write
S′′ = S∪L′ \E′ for disjoint multisets L′ and E′, then these are the elements of L′ \L.
We have

E
Z
[|L′|]− |L| = E

Z

[
(|S| − |L|) Pr

X∈uS\L

[
|X − µS′ | ≥ T

]]

≤ E
Z

[
|S| Pr

X∈uS
[|v∗ · (X − µS′

)| ≥ aZ]

]

= |S|
∫ 1

0

Pr
X∈uS

[|v∗ · (X − µS′

)| ≥ ax]2x dx

= |S|
∫ a

0

Pr
X∈uS

[|v∗ · (X − µS′

)| ≥ T ](2T/a) dT

≤ |S|
∫ ∞

0

Pr
X∈uS

[|v∗ · (X − µS′

)| ≥ T ](2T/a) dT

= |S| E
X∈uS

[
(v∗ · (X − µS′

))2
]
/a

= (|S′|/a) · v∗TMSv
∗ = (|S′|/a) · v′TDMSDv′

≤ (|S′|/a) · ‖DMSD‖2
≤ (|S′|/a) · ‖DMPD‖2 + (|S′|/a) · ‖D(MP −MS)D‖2
≤ (|S′|/a) · (√ε+ 9 + χ2(µS′

, p))

≤ (|S′|/a) ·O(1 + δ2) ≤ (|S′|/a) ·O(1 + ελ′) ,

where the penultimate line uses Lemmas 7.30 and 7.32. When λ′ is at least a
sufficiently large constant, λ′ is bigger than 2 · O(1 + ελ′), and so EZ [S

′′] − S′ ≥
2(EZ [L

′]−L). Now consider that |S′′| = |S|+ |E′|−|L′| = |S′|−|E|+ |E′|+ |L|−|L′|,
and thus |S′′| − |S′| = |E| − |E′| + |L′| − |L|. This yields that |E| − EZ [|E′|] ≥
(EZ [L

′]−L), which can be rearranged to EZ [|E′|+ |L′|] ≤ |E|+ |L| or in other terms
EZ [∆(S, S′′)] ≤ ∆(S, S′).

8. Agnostically learning mixtures of two balanced binary products, via

filters. In this section, we study the problem of agnostically learning a mixture of
two balanced binary product distributions. Let p and q be the coordinatewise means
of the two product distributions. Let u = p

2 −
q
2 . Then, when there is no noise, the

empirical covariance matrix is Σ = uuT + D, where D is a diagonal matrix whose

entries are pi+qi
2 − (pi−qi)

2

4 . Thus, it can already have a large eigenvalue. Now in the
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presence of corruptions it turns out that we can construct a filter when the second
absolute eigenvalue is also large. When it is the case that only the top absolute
eigenvalue is large, we know that both p and q are close to one-dimensional affine
subspace (a.k.a. line) {µ+ cv : c ∈ R}, where µ is the empirical mean and v is the top
eigenvector. And by performing a grid search over c, we will find a good candidate
hypothesis.

Unfortunately, bounds on the top absolute eigenvalue do not translate as well
into bounds on the total variation distance of our estimate to the true distribution,
as they did in all previous cases (e.g., if the top absolute eigenvalue is small in the
case of learning the mean of a Gaussian with identity covariance, we can just use the
empirical mean, etc.). In fact, an eigenvalue λ could just mean that p and q differ
by
√
λ along the direction v. However, we can proceed by zeroing out the diagonals.

If uuT has any large value along the diagonal, this operation can itself produce large
eigenvalues. So, this strategy only works when ‖u‖∞ is appropriately bounded. When
‖u‖∞ is large, there is a separate strategy to deal with large entries in u by guessing
a coordinate whose value is large and conditioning on it, and once again setting up
a modified eigenvalue problem. Our overall algorithm then follows from balancing all
of these different cases, and we describe the technical components in more detail in
the next subsection.

8.1. The full algorithm. This section is devoted to the proof of the following
theorem.

Theorem 8.1. Let Π be a mixture of two c-balanced binary product distributions
in d dimensions. Given ε > 0 and poly(d, 1/ε) log(1/τ) independent samples from
Π, an ε-fraction of which have been arbitrarily corrupted, there is a polynomial-time
algorithm that, with probability at least 1− τ , outputs a mixture of two binary product
distributions Π′ such that dTV(Π,Π′) = O(ε1/6/

√
c).

Recall that our overall approach is based on two strategies that succeed under
different assumptions. Our first algorithm (section 8.2) assumes that there exists a
coordinate in which the means of the two component product distributions differ by
a substantial amount. Under this assumption, we can use the empirical mean vectors
conditioned on this coordinate being 0 and 1. We show that the difference between
these conditional mean vectors is almost parallel to the difference between the mean
vectors of the product distributions. Considering eigenvectors perpendicular to this
difference will prove a critical part of the analysis of this case. Our second algorithm
(section 8.3) succeeds under the assumption that the mean vectors of the two product
distributions are close in all coordinates. This assumption allows us to zero out the
diagonal of the covariance matrix without introducing too much error.

Both of these algorithms give an iterative procedure that produces filters which
improve the sample set until they produce an output. We note that these algorithms
essentially only produce a line in R

d such that both mean vectors of the target product
distributions are guaranteed to be close to this line in `2-distance. The assumption
that our product distributions are balanced implies that Π is close in variation distance
to some mixture of two products whose mean vectors lie exactly on the given line.
Given this line, we can exhaustively compare Π to a polynomial number of such
mixtures and run a tournament to find one that is sufficiently close.

We note that together these algorithms will cover all possible cases. Our final
algorithm runs all of these procedures in parallel, obtaining a polynomial number of
candidate hypothesis distributions, such that at least one is sufficiently close to Π.
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We then run the tournament described by Lemma 2.23 in order to find a particular
candidate that is sufficiently close to the target. To ensure that all of the distributions
returned are in some finite set M, we round each of the probabilities of each of the
products to the nearest multiple of ε/d, and similarly round the mixing weight to the
nearest multiple of ε. This introduces at most O(ε) additional error.

Algorithm 14 Filter algorithm for agnostically learning a mixture of two balanced
products.

1: procedure LearnProductMixture(ε, τ, S′)
input: a set of poly(d, 1/ε) log(1/τ) samples of which an ε-fraction have been cor-

rupted
output: a mixture of two balanced binary products that is O(ε1/6)-close to the target
2: Run the procedure Filter-Balanced-Product(2ε1/6, S′

1) for up to d + 1
iterations on a set S′

1 of corrupted samples of size Θ(d4 log(1/τ)/ε1/3).
3: for each 1 ≤ i∗ ≤ d do

4: Run the procedure Filter-Product-Mixture-Anchor(i∗, ε, S′
2,i∗) for

up to d + 1 iterations on a set S′
2,i∗ of corrupted samples of size

Θ(d4 log(1/τ)/ε13/6).

5: Run the procedure Filter-Product-Mixture-Close(ε, S′
3, δ := ε1/6) for

up to d+1 iterations on a set S′
3 of corrupted samples of size Θ(d4 log(1/τ)/ε13/6).

6: Run a tournament among all mixtures output by any of the previous steps.
Output the winner.

8.2. Mixtures of products whose means differ significantly in one co-

ordinate. We will use the following notation. Let Π be a mixture of two c-balanced
binary product distributions. We will write Π as αP+(1−α)Q, where P,Q are binary
product distributions with mean vectors p, q, and α ∈ [0, 1]. In this subsection, we
prove the following theorem.

Theorem 8.2. Let Π = αP + (1 − α)Q be a mixture of two c-balanced binary
product distributions in d dimensions, with ε1/6 ≤ α ≤ 1 − ε1/6, such that there
exists 1 ≤ i∗ ≤ d with pi∗ ≥ qi∗ + ε1/6. There is an algorithm that, given i∗, ε > 0,
and Θ(d4 log(1/τ)/ε3) independent samples from Π, an ε-fraction of which have been
arbitrarily corrupted, runs in polynomial time and, with probability at least 1 − τ ,
outputs a set R of candidate hypotheses such that there exists Π′ ∈ R satisfying
dTV(Π,Π

′) = O(ε1/6/
√
c).

For simplicity of analysis, we will assume without loss of generality that i∗ = d,
unless otherwise specified. First, we determine some conditions under which our
sample set will be sufficient. We start by recalling our condition of a good set for a
balanced binary product distribution.

Definition 8.3. Let P be a binary product distribution in d dimensions, and let
ε > 0. We say that a multiset S of elements of {0, 1}d is ε-good with respect to P if
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826 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

for every affine function L : Rd → R it holds that

∣∣∣∣ Pr
X∈uS

(L(X) > 0)− Pr
X∼P

(L(X) > 0)

∣∣∣∣ ≤ ε/d.

We will also need this to hold after conditioning on the last coordinate.

Definition 8.4. Let P be a binary product distribution in d dimensions, and let
ε > 0. We say that a multiset S of elements of {0, 1}d is (ε, i)-good with respect to

P if S is ε-good with respect to P , and Sj def
= {x ∈ S : xi = j} is ε-good for the

restriction of P to xi = j, for j ∈ {0, 1}.

Finally, we define the notion of a good set for a mixture of two balanced products.

Definition 8.5. Let Π = αP + (1 − α)Q be a mixture of two binary product
distributions. We say that a multiset S of elements of {0, 1}d is (ε, i)-good with
respect to Π if we can write S = SP ∪ SQ, where SP is (ε, i)-good with respect to P ,

SQ is (ε, i)-good with respect to Q, and | |SP |
|S| − α| ≤ ε/d2.

We now show that taking random samples from Π produces such a set with high
probability.

Lemma 8.6. Let Π = αP +(1−α)Q be a mixture of binary product distributions,
where P,Q are binary product distributions with mean vectors p, q. Let S be a set
obtained by taking Ω(d4 log(1/τ)/ε13/6) independent samples from Π. Then, with
probability at least 1− τ , S is (ε, i)-good with respect to Π for all i ∈ [d].

The proof of this lemma is deferred to section E.
We claim that given a good set with an ε-fraction of its entries corrupted, we can

still determine Π from it. In particular, this is achieved by iterating the following
proposition.

Proposition 8.7. Let Π = αP + (1−α)Q be a mixture of two c-balanced binary
products, with pd ≥ qd+ε1/6 and ε1/6 < α < 1−ε1/6. Let S be an (ε, d)-good multiset
for Π, and let S′ be any multiset with ∆(S, S′) ≤ 2ε. There exists an algorithm which,
given S′ and ε > 0, runs in polynomial time and returns either a multiset S′′ with
∆(S, S′′) ≤ ∆(S, S′) − 2ε/d, or returns a list of mixtures of two binary products S
such that there exists a Π′ ∈ S with dTV(Π,Π′) = O(ε1/6/

√
c).

We note that iteratively applying this algorithm until it outputs a set R of mix-
tures gives Theorem 8.2.

Notation. All vectors in this section should be assumed to be over the first d−1
coordinates only. We will write p−d and q−d for the first d − 1 coordinates of p and
q, but for other vectors we will use notation similar to that used elsewhere to denote
(d− 1)-dimensional vectors.

The algorithm, written in terms of i∗ instead of d for generality, is as follows.
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Algorithm 15 Filter algorithm for a mixture of two binary products whose means
differ significantly in some coordinate.

1: procedure Filter-Product-Mixture-Anchor(i∗, ε, S′)
2: Let µ be the sample mean of S′ without the i∗ coordinate. Let Σ be the sample

covariance matrix of S′ without the i∗ row and column.
3: Let S′

0 and S′
1 be the subsets of S′ with a 0 or 1 in their i∗ coordinates,

respectively.
4: Let µ(j) be the sample mean of S′

j without the i∗ coordinate.

5: Let u = µ(1) − µ(0). Compute the unit vector v∗ ∈ R
d−1 with v∗ · u = 0 that

maximizes vTΣv and let λ = v∗TΣv∗.
/* Note that v∗ is the unit vector maximizing the quadratic form vTΣv over

the subspace u · v = 0, and thus can be approximated using standard eigenvalue
computations.*/

6: if λ ≤ γ then

/* γ is some absolute constant to be determined in the course of the analysis*/
7: Let L be the set of points µ + i(ε1/6/‖u‖2)u truncated to be in [c, 1 − c]d

for i ∈ Z with |i| ≤ 1 +
√
d/ε1/6.

8: return the set of distributions Π′ = α′P ′ + (1 − α′)Q′ with the means of
P ′ and Q′, p′, q′ with p′−i∗ , q

′
−i∗ ∈ L and p′i∗ , q

′
i∗ ∈ [c, 1 − c], α′ ∈ [0, 1], multiples

of ε1/6.
9: Let δ = C(ε1/6

√
λ+ ε2/3 log(1/ε)) for a sufficiently large constant C.

10: Find a real number T > 0 such that

Pr
X∈uS′

(|v∗ · (X−i∗ − µ)| > T + δ) > 8 exp(−T 2/2) + 8ε/d .

11: return the set S′′ = {x ∈ S′ : |v · (x−i∗ − µ)| ≤ T + δ}.

We now proceed to prove correctness. We note that given S = SP ∪ SQ, we can
write

S′ = S′
P ∪ S′

Q ∪ E,

where S′
P ⊆ SP , S

′
Q ⊆ SQ, and E is disjoint from SP \ S′

P and SQ \ S′
Q. Thus, we

have

∆(S, S′) =
|SP \ S′

P |+ |SQ \ S′
Q|+ |E|

|S| .

We use the notation µSP , µS′

P , µE ∈ R
d−1 etc., for the means of SP , S

′
P , E, etc.,

excluding the last coordinate.
We next need some basic lemmas relating the means of some of these distributions.

Lemma 8.8. Let P be a binary product distribution with mean vector p. Let S be
an ε-good multiset for P in the sense of Definition 8.3. Let S̃ be a subset of S with

|S| − |S̃| = O(ε|S|). Let µS̃ be the mean of S̃. Then, ‖p− µS̃‖2 ≤ O(ε
√
log(1/ε)).

Proof. Since S is ε-good, ‖µS − p‖2 ≤ ε/
√
d. Let L = S \ S̃. We can apply

appropriate lemmas from section 7.1. Note that Lemma 7.12 and Claim 7.14 only
depend on µS′

as far as it appears in the definition of ML, and we may treat it as a
parameter that we will set to p. By Lemma 7.12 with µS′

:= p, we have ‖EX∈uL[(X−
p)(X − p)T ]‖2 ≤ O (log(|S|/|L|) + ε|S|/|L|). By Claim 7.14 again with µS′

:= p, it

follows that (|L|/|S|)‖µL − p‖2 ≤ O(ε
√
log(1/ε)). Since |S|µS = |S̃|µS̃ + |L|µL, we
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have µS − µS̃ = −(|L|/|S̃|)(µL − µS) and so

‖µS − µS̃‖2 ≤ (|L|/|S̃|)‖µL − µS‖2
≤ O(ε2/

√
d) +O(1 + ε)(|L|/|S|)‖µL − p‖2 ≤ O(ε

√
log(1/ε)).

By the triangle inequality, ‖p− µS̃‖2 ≤ ε/
√
d+O(ε

√
log(1/ε)) = O(ε

√
log(1/ε)).

We next show that µ(1) − µ(0) is approximately parallel to p−d − q−d. Note that
if we had S = S′ and µSP = p−d, µ

SQ = q−d, then µ(1) − µ(0) would be a multiple
of p−d − q−d. Since S is ε-good, we can bound the error introduced by µSP − p,

µSQ − q−d, and Lemma 8.8 allows us to bound the error in taking µS′

P , µS′

Q instead
of p−d, q−d. However, we still have terms in the conditional means of E.

Lemma 8.9. For some scalars a = O(ε), b0 = O(|E0|/|S′|), b1 = O(|E1|/|S′|),
we have

‖(1− µd)µdu− (α(1− α)(pd − qd) + a)(p−d − q−d)− b0(µE0 − µ)− b1(µE1 − µ)‖2
≤ O(ε log(1/ε)) ,

where Ej is the subset of E with last entry j, and µEj

is the mean of Ej with dth
coordinate removed.

Proof. Let S′j
P , S

′j
Q, E

j , S′j denote the subset of the appropriate set in which the

last coordinate is j. Let µS′

P
j

, µS′

Q
j

, µEj

denote the means of S′j
P , S

′j
Q, and Ej with

the last entry truncated, respectively.
We note that

S′j = S′
P ∪ S′

Q ∪ Ej .

Taking the means of the subsets of S′j , we find that

|S′j |µ(j) = |SP̃ j |µS′

P
j

+ |S′j
Q|µS′

Q
j

+ |Ej |µEj

.

Therefore, using this and Lemma 8.8, we have that

|S′j |µ(j) = |S′j
P |p−d + |S′j

Q|q−d + |Ej |µEj

+O(ε log(1/ε)|Sj |),

where O(ε) denotes a vector of `2-norm O(ε).
Thus, we have

|S′0||S′1|(µ(1) − µ(0)) = (|S′0||S′1
P | − |S′1||S′0

P |)p−d

+ (|S′0||S′1
Q | − |S′1||S′0

Q |)q−d

+ |E1||S′0|µE1 − |E0||S′1|µE0

+O(ε log(1/ε)(|S1||S′0|+ |S0||S′1|)) .(40)

Since |S′j | = |S′j
P |+ |S′j

Q|+ |Ej |, we have

0 = |S′0||S′1| − |S′1||S′0| = (|S′0||S′1
P | − |S′1||S′0

P |)
+ (|S′0||S′1

Q | − |S′1||S′0
Q |) + |E1||S′0| − |E0||S′1| .
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Thus, the sum of the coefficients of the p−d and q−d terms in (40) is |E0||S′1| −
|E1||S′0|, which is bounded in absolute value by |E||S′| ≤ O(ε|S|2). Meanwhile, the
p−d coefficient of (40) has

|S′0||S′1
P | − |S′1||S′0

P |
= |S′0||S1

P | − |S′1||S0
P |+O(ε|S′|2) = |S′0||S|αpd − |S′1||S|α(1− pd) +O(ε|S′|2)

= |S0||S|αpd − |S1||S|α(1− pd) +O(ε|S′|2)
= ((α(1− pd) + (1− α)(1− qd))αpd − (αpd + (1− α)qd)α(1− pd) +O(ε))|S′|2

= (α(1− α)(1− qd)pd − α(1− α)qd(1− pd) +O(ε))|S′|2

= (α(1− α)(pd − qd) +O(ε))|S′|2 .

Noting that (|E1||S′0| − |E0||S′1|)α = O(ε|S′|2) and (|E1||S′0| − |E0||S′1|)(1 − α) =
O(ε|S′|2), we can write (40) as

|S′0||S′1|(µ(1) − µ(0)) = (α(1− α)(pd − qd) +O(ε))|S′|2(p−d − q−d)

+ (|E1||S′0| − |E0||S′1|)(αp−d + (1− α)q−d)

+ |E1||S′0|µE1 − |E0||S′1|µE0

+O(ε log(1/ε)|S′|2) .

We write µΠ = αp−d+(1−α)q−d and so, dividing by |S′|2 and recalling that |E|/|S′| ≤
O(ε), we get

µd(1− µd)(µ
(1) − µ(0)) = (α(1− α)(pd − qd) +O(ε))(p−d − q−d)

+O(|E1|/|S′|)(µE1 − µΠ)

+O(|E0|/|S′|)(µE0 − µΠ) +O(ε log(1/ε)) .(41)

If µΠ = µ, then we would be done. So, we must bound the error introduced by making
this substitution. We can express µ as

|S′|µ = |S′
P |µS′

P + |S′
Q|µS′

Q + |E|µE

= |S|µΠ +O(ε|S|)(p−d − q−d) +O(ε log(1/ε)|S′|) + |E1|µE1

+ |E0|µE0

,

and so

|S|(µΠ−µ) = O(ε|S|)(p−d− q−d)+O(ε log(1/ε)|S|)+ |E1|(µE1 −µ)+ |E0|(µE0 −µ) .

Thus, we have

µΠ = µ+O(ε)(p−d−q−d)+O(ε log(1/ε))+O(|E1|/|S′|)(µE1−µ)+O(|E0|/|S′|)(µE0−µ) .

Substituting this into (41) gives the lemma.

We now show that, for any vector v perpendicular to u, if the variance of S′ in
the v-direction is small, then v · p−d and v · q−d are both approximately v · µ.

Lemma 8.10. For any v with ‖v‖2 = 1, v · u = 0, we have that |v · (p−d − µ)| ≤ δ
and |v · (q−d − µ)| ≤ δ for δ := C(ε1/6‖Σ‖2 + ε2/3 log(1/ε)) for a sufficiently large
constant C as defined in the algorithm.
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Proof. We begin by noting that

vTΣv = Var
X∈uS′

(v ·X) = E
X∈uS′

[|v · (X − µ)|2]

≥ (|Ej |/|S′|) E
X∈uEj

[|v · (X − µ)|2]

≥ (|Ej |/|S′|)|v · (µEj − µ)|2 .

Next, since v · u = 0, we have by Lemma 8.9 that

|v · (p−d − q−d)|

≤ 1

α(1− α)(pd − qd)
·
(
O(|E0|/|S′|)v

· (µE0 − µ) +O(|E1|/|S′|)v · (µE1 − µ) +O(ε log(1/ε))‖v‖2
)

= O

(
1

α(1− α)(pd − qd)

)(√
ε(vTΣv) + ε log(1/ε)

)
.

However, we have that |S′|µ = |S′
P |µS′

p + |S′
Q|µS′

q + |E|µE + |S′|O(ε log(1/ε)), and so

(|S′| − |E|)(µ− µS′

p) = |S′
Q|(µS′

Q − µS′

P ) + |E|(µE − µ) + |S′|O(ε log(1/ε)) .

Now, we have

µ− p−d = (1− α+O(ε))(q−d − p−d) +O(|E|/|S′|)(µE − µ) +O(ε log(1/ε)) .

Thus,

|v·(p−d−µ)| = O(v·(p−d−q−d))+O(|E|/|S′|)(v·(µE−µ)−v·(µ−p−d))+O(ε log(1/ε)).

Therefore,

|v · (p−d − µ)| = O

(
1

α(1− α)(pd − qd)

)(√
ε(vTΣv) + ε log(1/ε)

)
.

Inserting our assumptions that α(1− α) ≥ ε1/6/2 and pd − qd ≥ ε1/6 gives

|v · (p−d − µ)| = O(ε1/6
√
‖Σ‖2 + ε2/3 log(1/ε)) ≤ δ ,

when C is sufficiently large.
The other claim follows symmetrically.

We can now show that if we return R, some distribution returned is close to Π.
First, we show that there are points on L close to p−d and q−d.

Lemma 8.11. There are c, d ∈ R such that p̃ = µ + cu and q̃ = µ + du have
‖p̃− p−d‖2, ‖q̃ − q−d‖2 ≤ δ.

Proof. If we take the c that minimizes ‖p̃− p−d‖2, then u · (p̃− p−d) = 0. Thus,
we can apply Lemma 8.10, giving that |(p̃− p−d) · (p−d − µ)| ≤ ‖p̃− p−d‖2δ.

However, p̃− µ = cu so we have (p̃− p−d) · (p̃− µ) = 0 and thus

‖p̃− p‖22 = |(p̃− p−d) · (p−d − µ)| ≤ ‖p̃− p−d‖2δ.

Therefore, ‖p̃− p−d‖2 ≤ δ.
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It is clear that even discretizing c and d, we can still find such a pair that satisfies
this condition.

Lemma 8.12. There are p′, q′ ∈ L such that ‖p−d−p′‖2, ‖q−d−q′‖2 ≤ δ+O(ε1/6) .

Proof. By Lemma 8.11, there exist points p̃ = µ+(a/‖u‖2)u and q̃ = µ+(b/‖u‖2)u
with a, b ∈ R that have ‖p̃− p−d‖2, ‖q̃ − q−d‖2 ≤ δ.

Letting iε1/6 be the nearest integer multiple of ε1/6 to a, we have that p′ :=
µ+ i(ε1/6/‖u‖2)u has ‖p−d − p′‖2 ≤ ‖p̃−d − p‖2 + ‖p′ − p̃‖2 ≤ δ + ε1/6.

Note that we have ‖p−d− p̃‖2 ≤ ‖p−d−µ‖2 ≤
√
d‖p−d−µ‖∞ ≤

√
d, which implies

that a ≤
√
d. Thus, |i| ≤ 1+

√
d/ε1/6. If p′ /∈ [c, 1−c], then replacing any coordinates

less than c with c and more than 1− c with 1− c can only decrease the distance to p
since p ∈ [c, 1− c]d. Thus, there is a point p′ ∈ L with ‖p−d − p′‖2 ≤ δ +O(ε1/6).

Similarly, we show that there is a q′ ∈ L such that ‖q − q′‖2 ≤ δ +O(ε1/6).

Corollary 8.13. If the algorithm terminates at step 8 of Algorithm 15, then
there is a Π′ ∈ R with dTV(Π

′,Π) = O(ε1/6/
√
c).

Proof. By Lemma 8.12, there exists p̃, q̃ ∈ L such that ‖p−d − p̃‖2, ‖q−d − q̃‖2 ≤
δ+O(ε1/6). But now there is a distribution Π′ ∈ R, where Π′ = α′P ′+(1−α′)Q′ for
binary products P ′ and Q′, whose mean vectors are p′, q′ and with |α′ − α| ≤ ε1/6,
‖p′−d − p−d‖2, ‖q′−d − q−d‖2 ≤ O(ε1/6) and |p′d − pd|, |q′d − qd| = O(ε1/6). Note that

this implies that ‖p′ − p‖2, ‖q′ − q‖2 = O(ε1/6).
Since P andQ are c-balanced, we have dTV(P, P

′) ≤ O(‖p−p′‖2/
√
c) ≤ O(ε1/6/

√
c)

and

dTV(Q,Q′) ≤ O(‖q − q′‖2/
√
c) ≤ O(ε1/6/

√
c).

Thus, dTV(Π
′,Π) ≤ δ +O(ε1/6/

√
c). Since we terminated in step 8 of Algorithm 15,

λ ≤ O(1), and so δ = C(ε1/6
√
λ+ ε2/3 log(1/ε)) = O(ε1/6).

Now, we are ready to analyze the second part of our algorithm. The basic idea
will be to show that if λ is large, then a large fraction of the variance in the v-direction
is due to points in E.

Lemma 8.14. If λ ≥ Ω(1), then

Var
X∈uS′

[v∗ ·X]� |E|EY ∈uE [|v∗ · (Y − µ)|2]
|S′|(α(1− α)(pd − qd))2

.

Proof. We have that

|S| Var
X∈uS′

[v∗ ·X] = |S′
P |
(

Var
X∈uS′

P

[v∗ ·X] + |v∗ · (µS′

P − µ)|2
)

+ |S′
Q|
(

Var
X∈uS′

Q

[v∗ ·X] + |v∗ · (µS′

Q − µ)|2
)

+ |E| E
X∈uE

[|v∗ · (X − µ)|2] .
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Since SP and SQ are ε-good, we have that

Var
X∈uS′

P

[v∗ ·X] = E
X∈uS′

P

[(v ·X − v∗ · µS′

P )2]

≤ (|SP |/|S′
P |) E

X∈uSP

[(v∗ ·X − v∗ · µS′

P )2]

= (|SP |/|S′
P |)
(

Var
X∈uSP

[v∗ ·X] + (v∗ · (µSP − µS′

P ))2
)

≤ (|SP |/|S′
P |)
(
Var
X∼P

[v∗ ·X] + (v∗ · (p−d − µS′

P ) +O(ε
√

log(1/ε)))2
)

≤ (1 +O(ε/α)) · (O(1) +O(ε
√
log(1/ε))2) ≤ O(1) ,

and similarly,

Var
X∈uS′

Q

[v∗ ·X] = O(1) .

Thus, we have

|S′| Var
X∈uS′

[v∗·X] ≤ |E| E
X∈uE

[|v∗·(X−µ)|2]+O(1+|v∗·(p−d−µ)|2+|v∗·(q−d−µ)|2)|S′| .

By Lemma 8.9, we have

|v · (p−d − µ)|, |v∗ · (q−d − µ)| ≤ O(1/(α(1− α)(pd − qd)))

· (O(|E0|/|S′|)|v∗ · (µE0 − µ)|
+O(|E1|/|S′|)|v∗ · (µE1 − µ)|+O(ε log(1/ε)))

≤
√

(|E|/|S′|) E
Y ∈uE

[|v∗ · (Y − µ)|2] +O(ε log(1/ε)) .

However,

λ = Var
X∈uS′

[v∗ ·X]� |E|EY ∈uE [|v∗ · (Y − µ)|2]
|S|(α(1− α)(pd − qd))2

+O(1) .

Since λ is larger than a sufficiently large constant, this completes the proof.

We next show that the threshold T > 0 required by our algorithm exists.

Lemma 8.15. If λ ≥ Ω(1), there exists a T > 0 such that

Pr
X∈uS′

(|v∗ · (X − µ)| > T + δ) > 8 exp(−T 2/2) + 8ε/d .

Proof. Assume for the sake of contradiction that this is not the case, i.e., that for
all T > 0 we have that

Pr
X∈uS′

(|v∗ · (X − µ)| ≥ T + δ) ≤ 8 exp(−T 2/2) + 8ε/d .

Using the fact that E ⊂ S′, this implies that for all T > 0

|E| Pr
Y ∈uE

(|v∗ · (Y − µ)| > T + δ)� |S′|(exp(−T 2/2) + ε/d) .

D
o
w

n
lo

ad
ed

 1
1
/1

4
/1

9
 t

o
 1

8
.1

0
.2

7
.6

3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST AND EFFICIENT ESTIMATORS IN HIGH-DIMENSIONS 833

Therefore, we have that

E
Y ∈uE

[|v∗ · (Y − µ)|2]� δ2 + E
Y ∈uE

[min(0, |v∗ · (Y − µ)| − δ)2]

� δ2 +

∫ √
d

0

Pr
Y ∈uE

(|v∗ · (Y − µ)| > T + δ)TdT

� δ2 +

∫ √
d

0

(ε/d)TdT +

∫ 2
√

log(|S′|/|E|)

0

TdT

+

∫ ∞

2
√

log(|S′|/|E|)
(|S′|/|E|) exp(−T 2/2)TdT

� δ2 + ε+ log(|S′|/|E|) .

On the other hand, we know that

E
Y ∈uE

[|v∗ · (Y − µ)|2]� (α(1− α)(pd − qd))
2λ|S′|/|E| � log(|S′|/|E|) .

Combining with the above we find that

δ2 = O(ε1/3λ)� (α(1− α)(pd − qd))
2λ|S′|/|E| .

Or in other words,

ε4/3 ≥ ε1/3|E|/|S′| � (α(1− α)(pd − qd))
2 ≥ ε2/3 ,

which provides a contradiction.

Finally, we show that S′′ is closer to S than S′ was.

Claim 8.16. If the algorithm returns S′′, then ∆(S, S′′) ≤ ∆(S, S′)− 2ε/d.

Proof. Since S′′ ⊂ S, we can write S′′ = S′′
P ∪ S′′

Q ∪ E′′ for S′′
P ⊆ S′

P , S
′′
Q ⊆ SQ

and E′′ ⊂ E, where E′′ has disjoint support from S′′
P \ SP and S′′

Q \ SQ. Thus, we
need to show that

|E′′ \ E| ≥ 2ε|S|/d+ |S′
P \ S′′

P |+ |S′
Q \ S′′

Q| .

We have that

|S′ \ S′′| = Pr
X∈uS′

(|v · (X − µ)| ≥ T + δ)|S′|

≥ (8 exp(−T 2/2) + 8ε/d)|S′| ≥ (4 exp(−T 2/2) + 4ε/d)|S| .

By Hoeffding’s inequality, we have that

Pr
X∼P

(|v∗ · (X − p−d)| ≥ T ) ≤ 2 exp(−T 2/2) .

By Lemma 8.10, we have that |v∗ · (µ− p−d)| ≤ δ and so

Pr
X∼P

(|v∗ · (X − µ)| ≥ T + δ) ≤ 2 exp(−T 2/2) .

Since S is (ε, d)-good, we have

Pr
X∈uSP

(|v∗ · (X − µ)| ≥ T + δ) ≤ 2 exp(−T 2/2) + ε/d .
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We get the same bound for X ∈u SQ, and so

Pr
X∈uS

(|v∗ · (X − µ)| ≥ T + δ)

= (|SP |/|S|) Pr
X∈uSP

(|v∗ · (X − µ)| ≥ T + δ) + (|SQ|/|S|) Pr
X∈uSQ

(|v∗ · (X − µ)| ≥ T + δ)

≤ 2 exp(−T 2/2) + ε/d .

Since L′′
P ∪ L′′

Q ⊆ S but any x ∈ (S′
P \ S′′

P ) ∪ (S′
Q \ S′′

Q) has v
∗ · (x − µ) ≥ T + δ, we

have that

|S′
P \ S′′

P |+ |S′
Q \ S′′

Q| ≤ Pr
X∈uS

(|v∗ · (X − µ)| ≥ T + δ)|S|

≤ (2 exp(−T 2/2) + ε/d)|S| .

Finally, we have that

|E \ E′| = |S′ \ S′′| − |S′
P \ S′′

P | − |S′
Q \ S′′

Q|

≥
(
4 exp(−T 2/2) +

4ε

d

)
|S| −

(
2 exp(−T 2/2) +

ε

d

)
|S|

≥
(
2 exp(−T 2/2) +

3ε

d

)
|S|

≥ |S′
P \ S′′

P |+ |S′
Q \ S′′

Q|+
2ε

d
,

which completes the proof.

8.3. Mixtures of products whose means are close in every coordinate.

In this section, we prove the following theorem.

Theorem 8.17. Let ε, τ > 0 and let Π = αP + (1 − α)Q be a d-dimensional
mixture of two c-balanced product distributions P and Q whose means p and q satisfy
‖p − q‖∞ ≤ δ, for δ ≥

√
ε log(1/ε), and c ≤ pi, qi ≤ 1 − c for i ∈ [d]. Let S be a

multiset of Ω(d4 log(1/τ)/(ε2δ)) independent samples from Π. Let S′ be obtained by
adversarially changing an ε-fraction of the points in S. There exists an algorithm
that runs in polynomial time and, with probability at least 1 − τ , returns a set of
distributions R such that some Π′ ∈ R has dTV(Π,Π

′) ≤ O(δ/
√
c).

We will assume without loss of generality that α ≤ 1/2. We may also assume
that α > 10δ ≥ 10ε since, otherwise, we can make use of our algorithm for learning a
single product distribution.

In this context, we require the following slightly different definition of a good set.

Definition 8.18. Let S be a multiset in {0, 1}d. We say that S is ε-good for the

mixture Π if there exists a partition S = SP ∪SQ such that
∣∣ |SP |

|S| −α
∣∣ ≤ ε and that SP

and SQ are ε/6-good for the component product distributions P and Q, respectively.

Lemma 8.19. If Π has mixing weights δ ≤ α ≤ 1 − δ, with probability at least
1− τ , a set S of Ω(d4 log 1/τ/(ε2δ)) samples drawn from Π is good for Π.

The proof of this lemma is in Appendix E. Our theorem will follow from the
following proposition.

Proposition 8.20. Let Π be as above and S be a good multiset for Π. Let S′ be
any multiset with ∆(S, S′) ≤ 2ε. There exists a polynomial-time algorithm that, given
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S′, ε > 0, and δ, returns either a multiset S′′ with ∆(S, S′′) ≤ ∆(S, S′) − 2ε/d or
a set of parameters of binary product distributions of size O(d/(εδ2)) which contains
the parameters of a Π′ with dTV(Π,Π

′) ≤ O(δ/
√
c).

Before we present the algorithm, we give one final piece of notation. For S a set
of points, we let Cov(S) be the sample covariance matrix of S and Cov0(S) be the
sample covariance matrix with zeroed out diagonal. Our algorithm is presented in
detailed pseudocode in Algorithm 16.

Algorithm 16 Filter algorithm for mixture of two binary products whose means are
close in every coordinate.

1: procedure Filter-Product-Mixture-Close(ε, S′, δ)
2: Compute µ, the sample mean of S′, and Cov0(S

′). Let C be a sufficiently large
constant.

3: if Cov0(S
′) has at most one eigenvector with an absolute eigenvalue more than

Cδ2 then

4: Let v∗ be the unit eigenvector of Cov0(S
′) with largest absolute eigenvalue.

5: Let L be the set of points µ+ iδv∗ truncated to be in [c, 1− c]d, for i ∈ Z

with |i| ≤ 1 +
√
d/δ.

6: return the set of distributions of the form Π′ = α′P ′+(1−α′)Q′ with the
means of P ′ and Q′ in L and α′ a multiple of ε in [10ε, 1/2].

7: Let v∗ and u∗ be orthogonal eigenvectors with eigenvalues more than Cδ2.
8: Find a number t ≥ 1 + 2

√
log(1/ε) and θ a multiple of δ2/d such that r =

(cos θ)u∗ + (sin θ)v∗ satisfies

Pr
X∈uS′

(
Pr

Y ∈uS′
(|r · (X − Y )| < t) < 2ε

)
> 12 exp(−t2/4) + 3ε/d .

9: return the set S′′ = {x ∈ S′ | PrY ∈uS′(|r · (x− Y )| < t) ≥ 2ε} .

To analyze this algorithm, we begin with a few preliminaries. First, we recall that
S = SP ∪ SQ. We can write S′ = S′

P ∪ S′
Q ∪ E, where S′

P ⊂ SP , S
′
Q ⊂ SQ, and

|S|∆(S, S′) = |SP \ S′
P |+ |SQ \ S′

Q|+ |E| .

Let µS′

P and µS′

Q be the sample means of S′
P and S′

Q, respectively.

Lemma 8.21. We have that α‖p− µS′

P ‖2, (1− α)‖q − µS′

Q‖2 = O(ε
√
log(1/ε)) .

Proof. The proof follows from Lemma 8.8.

We will require that the matrix Cov0(S
′) is close to being PSD. The proof of this

fact is rather technical and we defer it to Appendix E.

Lemma 8.22. Let T be the multiset obtained from S′ by replacing all points of
S′
P with copies of µS′

P and all points of S′
Q with copies of µS′

Q . Then, ‖Cov0(S′) −
Cov(T )‖2 = O(δ2) .

We are now prepared to show that the first return condition outputs a correct
answer. We begin by showing that vectors u with large inner products with µS′

P − µ
or µS′

Q − µ correspond to large eigenvectors of Cov0(S
′).

Lemma 8.23. For u ∈ R
d, we have

α(u · (µS′

P − µ))2 + (1− α)(u · (µS′

P − µ))2 ≤ 2uTCov0(S
′)u+O(δ2)‖u‖22.
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Proof. Using Lemma 8.22, we have uTCov0(S
′)u = VarX∈uT (u ·X)+O(δ2)‖u‖22.

From the definition of T it follows that

Var
X∈uT

(u ·X) ≥
( |S′

P |
|S′|

)
(u · (µS′

P − µ))2 +

( |S′
Q|
|S′|

)
(u · (µS′

Q − µ))2 +
|E|
|S′| Var

X∈uE
(u ·X)

≥ (α− 2ε)(u · (µS′

P − µ))2 + (1− α− 2ε)(u · (µS′

Q − µ))2

≥ α/2 · (u · (µS′

P − µ))2 + (1− α)/2 · (u · (µS′

Q − µ))2 .

Next, we show that if there is only one large eigenvalue of Cov0(S
′), the means

in question are both close to a given line.

Lemma 8.24. There are p̃, q̃ ∈ L such that ‖p − p̃‖2 ≤ O(δ/
√
α) and ‖q − q̃‖2 ≤

O(δ/
√
1− α).

Proof. Let p′ = µ+av∗, q′ = µ+bv∗ with a, b ∈ R be the closest points to p and q
on the line µ+cv∗, for c ∈ R. Then, v∗ ·(p′−p) = 0 and since v∗ is the only eigenvector
of the symmetric matrix Cov0(S

′) with eigenvalue more than C(δ2 + ε log(1/ε)), we
have that

(p′ − p)TCov0(S
′)(p′ − p) ≤ C(δ2 + ε

√
log(1/ε))‖p′ − p‖22 .

We thus obtain

‖p′ − p‖42 = (p′ − p) · (p− µ)2

≤ 2(p′ − p) · (p− µSP )2 + 2(p′ − p) · (p− µSP )2

≤ O(ε2 log(1/ε)/α2)‖p′ − p‖22 + (4/α) · (p′ − p)TCov0(S
′)(p′ − p)T

+O(δ2/α)‖p′ − p‖22
≤ O((δ2 + ε log(1/ε))/α)‖p′ − p‖22(since α ≥ ε)

≤ O(δ2/α)‖p′ − p‖22 ,

where the second line uses Lemmas 8.21 and 8.23. We thus have that ‖p′ − p‖2 ≤
O(δ/

√
α). Letting iδ be the nearest integer multiple to a, we have that p̃ := µ+ iδv∗

has
‖p− p̃‖2 ≤ ‖p′ − p‖2 + ‖p′ − p̃‖2 ≤ O(δ/

√
α).

Note that we have ‖p− p′‖2 ≤ ‖p− µ‖2 ≤
√
d‖p− µ‖∞ ≤

√
d. So, a ≤

√
d/δ. Thus,

|i| ≤ 1 +
√
d/δ. If p̃ /∈ [c, 1− c], then replacing any coordinates less than c with c and

more than 1− c with 1− c can only decrease the distance to p, since p ∈ [c, 1− c]d.
Similarly, we show that there is a q̃ ∈ L such that ‖q− q̃‖2 ≤ O(δ/

√
1− α), which

completes the proof.

Corollary 8.25. If the algorithm outputs a set of distributions in step 6 of Al-
gorithm 16, then one of those distributions has dTV(Π

′,Π) ≤ O(δ/
√
c).

Proof. There is a distribution in the set Π = α′P ′+(1−α′)Q′, where |α−α′| ≤ ε
and the means of P ′ andQ′ are p̃ and q̃ as in Lemma 8.24. Then, we have dTV(P, P

′) ≤
‖p− p̃‖/√c ≤ O(δ/

√
αc) and dTV(Q,Q′) ≤ ‖p− p̃‖/√c ≤ O(δ/

√
(1− α)c). Thus, we

have

dTV(Π
′,Π) ≤ O(ε) + αdTV(P, P

′) + (1− α)dTV(Q,Q′) ≤ O(ε)

+O((
√
α+
√
1− α)δ/

√
c) ≤ O(δ/

√
c) .
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Next, we analyze the second case of the algorithm. We must show that step 8 of
Algorithm 16 will find an r and t. First, we claim that there is a θ which makes r
nearly perpendicular to µS′

p − µS′

Q .

Lemma 8.26. There exists an r = (cos θ)u∗+(sin θ)v∗, with θ a multiple of δ2/d,
that has

|r · (µS′

P − µS′

Q)| ≤ δ2/
√
d.

Proof. Let z = (µS′

P − µS′

Q). If u∗ · z = 0, then θ = 0 suffices. Otherwise, we
take θ′ = cot−1( v

∗·z
u∗·z ). Then, let θ be the nearest multiple of δ2/d to θ′. Note that

| cos θ − cos θ′|, | sin θ − sin θ′| ≤ |θ − θ′| and |u∗ · z|, |v∗ · z| ≤
√
‖z‖2 ≤

√
d. Then, we

have

|r · z| = |(cos θ)(u∗ · z) + (sin θ)(v∗ · z)|
≤ |(cos θ′)(u∗ · z) + (sin θ′)(v∗ · z)|+ |θ − θ′|

√
d

= | sin θ′||u∗ · z + (cot θ′)(v∗ · z)|+ |θ − θ′|
√
d

≤ 0 + δ2/
√
d .

We now need to show that for this r, step 8 of Algorithm 16 will find a t. For
this r, r · µS′

P and r · µS′

Q are close. We need to show that E contains many elements
x whose r · x is far from these. We can express this in terms of T .

Lemma 8.27. Let r be a unit vector in r ∈ 〈u∗, v∗〉 with |r ·(µS′

P −µS′

Q)| ≤ δ2/
√
d.

Then, there is a t > 1 such that

Pr
X∈uT

(r · (X − µS′

P ) > 2t) > 12 exp(−(t− 1)2/4) +
3ε

d
.

Proof. First, we wish to show that EX∈uE [(r · (X − µS′

P ))2] is large.
Since r ∈ span(u∗, v∗), |rTCov0(S′)r| ≥ Cδ2. By Lemma 8.22, we have that

Var
X∈uT

(r ·X) = rTCov(T )r ≥ rTCov0(S
′)r −O(δ2) ≥ (C −O(1))δ2 ≥ (C/2)δ2

for sufficiently large C, and we also have that rTCov0(S
′)r is positive.

We note that

rTCov(T )r = Var(r · T )
= (|E|/|S′|) Var

X∈uE
(r ·X) +O(α)(r · (µ− µS′

P ))2 +O(1− α)(r · (µ− µS′

Q))2

+ (|E|/|S′|)(r · (µ− µE))2

= (|E|/|S′|)
(

Var
X∈uE

(r ·X) + (r · (µ− µE))2
)
+O(δ2) .(42)

Now,
E

X∈uE
[(r · (X − µS′

P ))2] = Var
X∈uE

(r ·X) + (r · (µS′

P − µE))2 .

We also have that

|S′|(r · µ) = (|S′| − |E|)(r · µS′

P ) + |S′
Q|(r · (µS′

P − µS′

Q)) + |E|(r · µE)

= (|S′| − |E|)(r · µS′

P ) + |E|(r · µE) + |S′|O(δ2) .
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Thus,

(|S′| − |E|)(r · (µ− µE)) = (|S′| − |E|)(r · (µS′

P − µE)) + |S′|O(δ2)

or
(r · (µ− µE)) = (r · (µS′

P − µE)) +O(δ2) .

This implies that

(r · (µS′

P − µE))2 ≥ (r · (µ− µE))2/2−O(δ4) .

Substituting into (42), we have

(|E|/|S′|) E
X∈uE

[(r · (X − µS′

P ))2] = (|E|/|S′|)
[
Var

X∈uE
[r ·X] + (r · (µS′

P − µE))2
]

−O(δ4)� C/2δ2.

Thus, for C sufficiently large,

E
X∈uE

[(r · (X − µS′

P ))2]� δ2/ε.

Suppose for a contradiction that this lemma does not hold. Then, since E ⊂ T ,
we have

Pr
X∈uE

(
r · (X − µS′

P ) > 2t
)
≤ (|S′|/|E|)12 exp(−t2/2) + 3ε

d
.

Thus, we have

Pr
X∈uE

(r · (X − µS′

P ) > t) ≤ (|S′|/|E|)12 exp(−(t− 1)2/4) +
3ε

d
,

and we can write

|S′|δ2 � |E| E
X∈uE

[(r.X − r.µSP )2]

= |E|
∫ √

d

0

Pr
X∈uE

(r · (X − µS′

P ) > t)tdt

� |E|
∫ 1+

√
log(|S′|/|E|)/2

0

tdt+ |S′|
∫ ∞

1+
√

log(|S′|/|E|)/2
exp(−(t− 1)2/4)tdt

+

∫ √
n

0

ε/dtdt

� |E| log(|S′|/|E|) + |E|+ |S′|(|E|/|S|) + ε

≤ |S′| ·O(ε log(1/ε)) .

Since we assumed that δ2 ≥ Ω(ε log(1/ε)), this is a contradiction.

To get a similar result for S′, we first need to show that S′
P and S′

Q are suitably
concentrated about their means.

Lemma 8.28. If t ≥ 1,

(1− |E|/|S′|) Pr
X∈uS′

P∪S′

Q

(
r · (X − µS′

P ) > t
)
≤ 5

4
exp(−(t− 1)2/2) +

ε

5d
.

If t ≥ 1 +
√
2 log 6/ε, this is strictly less than 2ε/3.
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Proof. We present

Pr
X∈uS′

P

(r · (X − µS′

P ) ≤ t) ≤ (|SP |/|S′
P |) Pr

X∈uSP

(r · (X − µS′

P ) ≤ t)

≤
(
1 +

O(ε)

1− α

)
·
(

Pr
X∼P

(r · (X − µS′

P ) ≤ t) +
ε

12d

)

=

(
1 +

O(ε)

1− α

)

·
(

Pr
X∼P

(
r · (X − p) ≤ t− (r · (µS′

P − p))
)
+

ε

6d

)

≤
(
1 +

O(ε)

1− α

)
·
(
2 exp(−(t− 1/2)2/2) +

ε

6d

)
.

(using Lemma 8.21 and Hoeffding’s inequality)

Similarly,

Pr
X∼S′

Q

(r · (X − µS′

Q) ≤ t) ≤
(
1 +

O(ε)

1− α

)
·
(
2 exp(−(t− 1/2)2/2) +

ε

6d

)
.

Since |r · (µSQ − µSP )| ≤ δ2/
√
d ≤ 1/2, we have

Pr
X∼S′

Q

(
r · (X − µS′

Q) ≤ t
)
≤
(
1 +

O(ε)

1− α

)
·
(
2 exp(−(t− 1)2/2) +

ε

6d

)
.

Noting that 1− (|S′
P |+ |S′

Q|)/|S′| = |E|/|S′| ≥ 4ε/3, we have

(1− |E|/|S′|) Pr
X∈uS′

P∪S′

Q

(
r · (X − µS′

P ) > t
)

= (|S′
P |/|S′|) Pr

X∼S′

P

(
r · (X − µS′

P ) > t
)
+ (|S′

Q|/|S′|) Pr
X∼S′

Q

(
r · (X − µS′

P ) > t
)

= (α+O(ε))

(
1 +

(
1 +

O(ε)

α

))
+ (1− α+O(ε))

(
1 +

(
1 +

O(ε)

1− α

))

·
(
2 exp(−(t− 1)2/2) +

ε

6d

)

≤ (1 +O(ε)) ·
(
2 exp(−(t− 1)2/2) +

ε

6d

)

≤ 5

2
exp(−(t− 1)2/2) +

ε

5d
,

for ε sufficiently small. If t ≥ 1 +
√
2 log 6/ε, this expression is (5/2)(ε/6) + ε/5d ≤

2ε/3.

Now we can finally show that a t exists for this r, so step 8 of Algorithm 16 will
succeed.

Lemma 8.29. There is a t ≥ 1 + 2
√
log(9/ε) such that

Pr
X∈uS′

(
Pr

Y ∈uS′
(r · (X − Y ) > t) < 2ε

)
> 12 exp(−(t− 1)2/4) +

3ε

d
.

Proof. By Lemma 8.27, there exists a t ≥ 1 such that

Pr
X∈uT

(
r · (X − µS′

P ) > 2t
)
> 12 exp(−(t− 1)2/4) +

3ε

d
.
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Using the definition of T , the points when x = µS′

P or x = µS′

Q do not contribute to
this probability so all points in T that satisfy r · (x− µS′

P ) > 2t come from E. Since
E ⊂ S′ and |S′| = |T |, we have
(43)

Pr
X∈uS′

(
r · (X − µS′

P ) > 2t
)
≥ Pr

X∈uT

(
r · (X − µS′

P ) > 2t
)
> 12 exp(−(t−1)2/4)+3ε

d
.

Noting that |E|/|S′| ≤ 4ε/3, all except a 4ε/3-fraction of points x ∈ T have r · (x −
µS′

P ) = O(δ2). So, 4ε/3 ≥ 12 exp(−(t− 1)2/4). Therefore, t ≥ 1 + 2
√
log(9/ε).

Thus, by Lemma 8.28, we have (1− |E|/|S′|) PrX∈uS′

P∪S′

Q

(
r · (X − µS′

P ) > t
)
<

2ε/3. Again, using that |E|/|S′| ≤ 4ε/3, we have that

Pr
X∈uS′

(
r · (X − µS′

P ) > t
)
< 2ε .

Consequently, if x satisfies r·(x−µS′

P ) > 2t, then it satisfies PrY ∈uS′ (r · (x− Y ) ≤ t) <
2ε. Substituting this condition into (43) gives the lemma.

Again we need to show that any filter does not remove too many points of S. We
need to show this for an arbitrary r, not just one nearly parallel to µS′

P − µS′

Q .

Lemma 8.30. For any unit vector r′ and t ≥ 2
√

log(1/ε), we have

(1− |E|/|S′|) Pr
X∈uS′

P∪S′

Q

(
Pr

Y ∈uS′
(r′ · (X − Y ) ≤ t) < 2ε

)
≤ 3 exp(−t2/4) + ε

4d
.

Proof. Using Hoeffding’s inequality, we have

|S′
P | Pr

X∈uS′

P

(r · (p−X) > t/2) ≤ |SP | Pr
X∈uSP

(|r′ · (X − p)| > t/2)

≤ |SP |
(

Pr
X∼P

(|r′ · (X − p)| > t/2) +
ε

6d

)

≤ |SP |
(
2 exp(−t2/4) + ε

6d

)
.(44)

Every point x with |r′ ·(x−p)| ≤ t/2 has |r′ ·(x−y) ≤ t| for all y with |r′ ·(y−p)| ≤
t/2. Thus, for x with |r′ · (x− p)| ≤ t/2, we have

Pr
Y ∈uS′

(r′ · (x− Y ) ≤ t) ≥ |SP |
|S′| −

|SP |
|S′|

(
2 exp(−t2/4) + ε

6d

)
.

When t ≥ 2
√
log(1/ε), we have

|SP |
|S′|

(
2 exp(−t2/4) + 3ε

d

)
≤ (1 + 2ε) ·

(
2ε+

ε

6d

)
≤ 3ε .

Also, we have

|SP |
|S′| ≤

(α− ε/6)|S|
|S|(1− 2ε)

≤ α− 3ε ≤ 7ε .

Thus, we have PrY ∈uS′(r · (x− Y ) ≤ t) ≥ 4ε > 2ε.
But inequality (44) gives a bound on the number of x in SP that do not satisfy

this condition. That is,

|S′
P | Pr

X∈uS′

P

(
Pr

Y ∈uS′
(r′ · (X − Y ) ≤ t) < 2ε

)
≤ |SP |

(
2 exp(−t2/4) + ε

6d

)
.
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Similarly, every point x with |r′ · (x− q)| ≤ t/2 has

Pr
y∈uS′

(r′ · (x− y) ≤ t) > 2ε

and

|S′
Q| Pr

X∈uS′

Q

(r′ · (X − p) > t/2) ≤
(
2 exp(−t2/4) + ε

6d

)
.

Thus,

|S′
Q| Pr

X∈uS′

Q

(
Pr

Y ∈uS′
(r′ · (X − Y ) ≤ t) < 2ε

)
≤ |SQ|

(
2 exp(−t2/4) + ε

6d

)
.

Summing these gives

(|S′
P |+ |S′

Q|) Pr
X∈uS′

P∪S′

Q

(
Pr

Y ∈uS′
(r′ · (X − Y ) ≤ t) < 2ε

)
≤ |S|

(
2 exp(−t2/4) + ε

6d

)
.

Dividing by |S′| and noting that |S| ≤ (1 + 2ε)|S′| ≤ (3/2)|S′| completes the
proof.

Now, we can show that the filter improves ∆(S, S′′), such that the algorithm is
correct in the filter case.

Claim 8.31. If we reach step 9 of Algorithm 16 and return S′′, then ∆(S, S′′) ≤
∆(S, S′)− 2ε/d.

Proof. We can write S′′ = S′′
P ∪ S′′

Q ∪ E′′, where E′′ has disjoint support from
SP \S′′

P and SQ \S′′
Q. Note that, since we have S′′ ⊂ S′, we can define these sets such

that S′′
P ⊆ S′

P , S
′′
Q ⊆ S′

Q, and E′′ ⊆ E. We assume that we do. Now we have that

∆(S, S′)−∆(S, S′′) =
|E′′ \ E′| − |S′′

P \ S′
P | − |S′′

Q \ S′
Q|

|S| .

Therefore,

∆(S, S′)−∆(S, S′′) =
|S′′ \ S′| − 2(|S′′

P \ S′
P |+ |S′′

Q \ S′
Q|)

|S| .

In step 8 of Algorithm 16, we found a vector r and t ≥ 1 + 2
√
log(1/ε) such that

Pr
X∈uS′

(
Pr

Y ∈uS′
(|r · (X − Y )| < t) < 2ε

)
> 12 exp(−(t− 1)2/4) +

3ε

d
.

Then in step 9 of Algorithm 16, we remove at least a 12 exp(−t2/4) + 3ε/d-fraction
of points. That is,

|S′′ \ S′| ≥
(
12 exp(−t2/4) + 3ε

d

)
|S′| .

The fact that t ≥ 1 + 2
√

log(1/ε) allows us to use Lemma 8.30, with r′ = r, yielding

(1−|E|/|S′|) Pr
X∈uS′

P∪S′

Q

(
Pr

Y ∈uS′
(r · (X − Y ) ≤ t− 1) < 2ε

)
≤ 3 exp(−(t−1)2/4)+ ε

4d
.
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This implies that

(1− |E|/|S′|) Pr
X∈uS′

P∪S′

Q

(
Pr

Y ∈uS′
(r · (X − Y ) < t) < 2ε

)
≤ 3 exp(−(t− 1)2/4) +

ε

4d
.

Thus,

|S′′
P \ S′

P |+ |S′′
Q \ S′

Q| ≤
(
3 exp(−(t− 1)2/4) +

ε

4d

)
|S′| ,

and we have

∆(S, S′)−∆(S, S′′) ≥
(
12 exp(−(t− 1)2/4) + 3ε/d

− 2
(
3 exp(−(t− 1)2/4) +

ε

4d

))
|S′|/|S|

≥ 2ε

d
,

since |S′| ≥ |S|(1−∆(S, S′)) ≥ (1− 2ε)|S| ≥ 5|S|/6.
Appendix A. Deferred proofs from section 4. This section contains deferred

proofs of several concentration inequalities.
Proof of Lemma 4.3. Recall that for any J ⊆ [N ], we let wJ ∈ R

N be the vector
which is given by wJ

i = 1
|J| for i ∈ J and wJ

i = 0 otherwise. By convexity, it suffices

to show that

Pr

[
∃J : |J | = (1− ε)N and

∥∥∥∥∥

N∑

i=1

wJ
i YiY

>
i − (1− ε)I

∥∥∥∥∥
2

≥ δ1

]
≤ τ .

For any fixed wJ we have

n∑

i=1

wJ
i YiY

>
i − I =

1

(1− ε)N

∑

i∈J

YiY
>
i − I

=
1

(1− ε)N

N∑

i=1

YiY
>
i −

1

1− 2ε
I

−


 1

(1− ε)N

∑

i 6∈J

YiY
>
i −

(
1

1− ε
− 1

)
I


 .

Therefore, by the triangle inequality, we have
∥∥∥∥∥

N∑

i=1

wI
i YiY

>
i − (1− ε)I

∥∥∥∥∥
2

≤
∥∥∥∥∥

1

(1− ε)N

N∑

i=1

YiY
>
i −

1

1− ε
I

∥∥∥∥∥
2

+

∥∥∥∥∥∥
1

(1− ε)N

∑

i 6∈J

YiY
>
i −

(
1

1− ε
− 1

)
I

∥∥∥∥∥∥
2

.

Observe that the first term on the RHS does not depend on the choice of J . Let
E1 denote the event that

(45)

∥∥∥∥∥
1

(1− ε)N

N∑

i=1

YiY
>
i −

1

1− ε
I

∥∥∥∥∥
2

≤ δ1 .
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By Lemma 2.22, this happens with probability 1− τ so long as

N = Ω

(
d+ log(1/τ)

δ21

)
.

For any J ⊂ [n] so that |J | = (1− ε)n, let E2(J) denote the event that
∥∥∥∥∥∥

1

(1− ε)N

∑

i 6∈J

YiY
>
i −

(
1

1− ε
− 1

)
I

∥∥∥∥∥∥
2

≤ δ1 .

Fix any such J . By multiplying both sides by ρ = (1 − ε)/ε, the event E2(J) is
equivalent to the event that

∥∥∥∥∥∥
1

εN

∑

i 6∈J

YiY
>
i − I

∥∥∥∥∥∥
2

> ρδ1 .

Let A,B be as in Lemma 2.22. Observe that ρδ1 = Ω(log 1/ε) ≥ 1 for ε sufficiently
small. Then, by Lemma 2.22, we have that for any fixed J ,

Pr



∥∥∥∥∥∥

1

εN

∑

i 6∈J

YiY
>
i − I

∥∥∥∥∥∥
2

> ρδ1


 ≤ 4 exp (Ad−BεNρδ1) .

Let H(ε) denote the binary entropy function. We now have

Pr




 ⋂

J:|J|=(1−ε)N

E2(J)




c 


(a)

≤ 4 exp

(
log

(
N

εN

)
+Ad−BεNρδ1

)

(b)

≤ 4 exp (NH(ε) +Ad−BεNρδ1)

(c)

≤ 4 exp (εN(O(log 1/ε)−Nρ) +Ad)

(d)

≤ 4 exp (−εN/2 +Ad)
(e)

≤ O(τ) ,

as claimed, where (a) follows by a union bound over all sets J of size (1 − ε)N , (b)
follows from the bound log

(
n
εn

)
≤ εH(ε), (c) follows since H(ε) = O(ε log 1/ε) as

ε → 0, (d) follows from our choice of δ1, and (e) follows from our choice of n. This
completes the proof.

Proof of Theorem 4.12. We first recall Isserlis’ theorem, which we will require in
this proof.

Theorem A.1 (Isserlis’ theorem). Let a1, . . . , ak ∈ R
d be fixed vectors. Then if

X ∼ N (0, I), we have

E

[
k∏

i=1

〈ai, X〉
]
=
∑∏

〈ai, aj〉 ,

where the
∑∏

is over all matchings of {1, . . . , k}.
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Let v = A[ ∈ Ssym. We will show that

〈v,Mv〉 = 2vT
(
Σ⊗2

)
v + vT

(
Σ[
) (

Σ[
)T

v .

Since M is a symmetric operator on R
d2

, its quadratic form uniquely identifies it and
this suffices to prove the claim.

Since A is symmetric, it has an eigenvalue expansion A =
∑d

i=1 λiuiu
T
i , which

immediately implies that v =
∑d

i=1 λiui ⊗ ui. Let X ∼ N (0,Σ). We compute the
quadratic form

〈v,Mv〉 =
d∑

i,j=1

λiλj〈ui ⊗ ui,E[(X ⊗X)(X ⊗X)T ]uj ⊗ uj〉

=

d∑

i,j=1

λiλj E
[
〈ui ⊗ ui, (X ⊗X)(X ⊗X)Tuj ⊗ uj〉

]

=

d∑

i,j=1

λiλj E
[
〈ui, X〉2〈uj , X〉2

]

=

d∑

i,j=1

λiλj E
[
〈BTui, Y 〉2〈BTuj , Y 〉2

]

=

d∑

i,j=1

λiλj

(
〈BTui, B

Tui〉〈BTuj , B
Tuj〉+ 2〈BTui, B

Tuj〉2
)
,

where the last line follows by invoking Isserlis’s theorem. We now manage both sums
individually. We have

d∑

i,j=1

λiλj〈BTui, B
Tui〉〈BTuj , B

Tuj〉 =
(

d∑

i=1

λiu
T
i Σui

)2

=

(
d∑

i=1

λi (ui ⊗ ui)
T (

Σ[
)
)2

= vT
(
Σ[
) (

Σ[
)T

v

and

d∑

i,j=1

λiλj〈BTui, B
Tuj〉2 =

∑

i,j

λiλj〈(BTui)
⊗2, (BTuj)

⊗2〉

=

d∑

i,j=1

λiλj〈(BT ⊗BT )ui ⊗ ui, (B
T ⊗BT )uj ⊗ uj〉

=

d∑

i,j=1

λiλj(ui ⊗ ui)Σ
⊗2(uj ⊗ uj)

= vTΣ⊗2v .

This completes the proof.
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Proof of Corollary 4.9. Let Sm = {S ⊆ [N ] : |S| = m} denote the set of subsets
of [N ] of size m. The same Bernstein-style analysis as in the proof of Lemma 4.3
yields that there exist universal constants A,B so that

Pr

[
∃T ∈ Sm :

∥∥∥∥∥
1

m

∑

i∈T

XiX
>
I − I

∥∥∥∥∥
F

≥ O

(
δ2

N

m

)]

≤ 4 exp

(
log

(
N

m

)
+Ad2 −Bδ2N

)
.

Thus, union bounding over all m ∈ {1, . . . , εN} yields that

Pr

[
∃T s.t. |T | ≤ εN :

∥∥∥∥∥
1

|T |
∑

i∈T

XiX
>
I − I

∥∥∥∥∥
F

≥ O

(
δ2

N

|T |

)]

≤ 4 exp

(
log(εN) + log

(
N

εN

)
+Ad2 −Bδ2n

)
≤ τ ,

by the same manipulations as in the proof of Lemma 4.3.

A.1. Proof of Theorem 4.13. This follows immediately from Lemmas 5.17
and 5.20.

Appendix B. Deferred proofs from section 5.

B.1. Proof of Lemma 5.3.

Proof of Lemma 5.3. Let N = Ω((d/ε2) poly log(d/ετ)) be the number of samples
drawn from G. For (i), the probability that a coordinate of a sample is at least√

2ν log(Nd/3τ) is at most τ/3dN by Fact 5.6. By a union bound, the probability

that all coordinates of all samples are smaller than
√
2ν log(Nd/3τ) is at least 1−τ/3.

In this case, ‖x‖2 ≤
√

2νd log(Nd/3τ) = O(
√

dν log(Nν/τ)).
After translating by µG, we note that (iii) follows immediately from Lemma 2.21

and (iv) follows from Theorem 5.50 of [Ver10], as long as N = Ω(ν4d log(1/τ)/ε2),
with probability at least 1 − τ/3. It remains to show that, conditioned on (i), (ii)
holds with probability at least 1− τ/3.

To simplify some expressions, let δ := ε/(log(d log d/ετ)) andR = C
√
d log(|S|/τ).

We need to show that for all unit vectors v and all 0 ≤ T ≤ R that

(46)

∣∣∣∣ Pr
X∈uS

[|v · (X − µG)| > T ]− Pr
X∼G

[|v · (X − µG) > T ≥ 0]

∣∣∣∣ ≤
δ

T 2
.

First, we show that for all unit vectors v and T > 0,
∣∣∣∣ Pr
X∈uS

[|v · (X − µG)| > T ]− Pr
X∼G

[|v · (X − µG)| > T ≥ 0]

∣∣∣∣ ≤
δ

10ν ln(1/δ)

with probability at least 1 − τ/6. Since the Vapnik–Chervonenkis dimension (VC
dimension) of the set of all halfspaces is d + 1, this follows from the VC inequal-
ity [DL01], since we have more than Ω(d/(δ/(10ν log(1/δ))2)) samples. We thus need
only consider the case when T ≥

√
10ν ln(1/δ).

Lemma B.1. For any fixed unit vector v and T >
√
10ν ln(1/δ), except with

probability exp(−Nδ/(6Cν)), we have that

Pr
X∈uS

[|v · (X − µG)| > T ] ≤ δ

CT 2
,
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where C = 8.

Proof. Let E be the event that |v · (X −µG)| > T . Since G is sub-Gaussian, Fact
5.6 yields that PrG[E] = PrY∼G[|v · (X − µG)| > T ] ≤ exp(−T 2/(2ν)). Note that,
thanks to our assumption on T , we have that T ≤ exp(T 2/(4ν))/2C, and therefore,
T 2 PrG[E] ≤ exp(−T 2/(4ν))/2C ≤ δ/2C.

Consider ES [exp(t
2/(3ν) ·N PrS [E])]. Each individual sample Xi for 1 ≤ i ≤ N

is an independent copy of Y ∼ G, and hence,

E
S

[
exp

(
T 2

3ν
·N Pr

S
[E]

)]
= E

S

[
exp

(
T 2

3ν

)
·

n∑

i=1

1Xi∈E

]

=

N∏

i=1

E
Xi

[
exp

(
T 2

3ν

)
·

n∑

i=1

1Xi∈E

]

=

(
exp

(
T 2

3ν

)
Pr
G
[G] + 1

)N

(a)

≤
(
exp

(
T 2

6ν

)
+ 1

)N

(b)

≤ (1 + δ5/3)N

(c)

≤ exp(Nδ5/3) ,

where (a) follows from sub-Gaussianity, (b) follows from our choice of T , and (c)
comes from the fact that 1 + x ≤ ex for all x.

Hence, by Markov’s inequality, we have

Pr

[
Pr
S
[E] ≥ δ

CT 2

]
≤ exp

(
Nδ5/3 − δN

3C

)

= exp(Nδ(δ2/3 − 1/(3C))) .

Thus, if δ is a sufficiently small constant and C is sufficiently large, this yields the
desired bound.

Now let C be a 1/2-cover in Euclidean distance for the set of unit vectors of size
2O(d). By a union bound, for all v′ ∈ C and T ′ a power of 2 between

√
4ν ln(1/δ) and

R, we have that

Pr
X∈uS

[|v′ · (X − µG)| > T ′] ≤ δ

8T 2

except with probability

2O(d) log(R) exp(−Nδ/6Cν) = exp (O(d) + log logR−Nδ/6Cν) ≤ τ/6 .

However, for any unit vector v and
√
4ν ln(1/δ) ≤ T ≤ R, there are a v′ ∈ C and

a T ′ such that for all x ∈ R
d, we have |v · (X − µG)| ≥ |v′ · (X − µG)|/2, and so

|v′ · (X − µG)| > 2T ′ implies |v′ · (X − µG)| > T.
Then, by a union bound, (46) holds simultaneously for all unit vectors v and all

0 ≤ T ≤ R, with probability of at least 1− τ/3. This completes the proof.
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B.2. Proof of Lemma 5.16.

Proof of Lemma 5.16. Note that an even polynomial has no degree-1 terms.
Thus, we may write p(x) =

∑
i pi,ix

2
i +

∑
i>j pi,jxixj + po. Taking (P2)i,i = pi,i and

(P ′
2)i,j = (P ′

2)j,i =
1
2pi,j , for i > j, gives p(x) = xTP ′

2x+p0. Taking P2 = Σ1/2P ′
2Σ

1/2,

we have p(x) = (Σ−1/2x)TP2(Σ
−1/2x) + p0, for a d × d symmetric matrix P2 and

p0 ∈ R.
Let P2 = UTΛU , where U is orthogonal and Λ is diagonal, be an eigendecomposi-

tion of the symmetric matrix P2. Then, p(x) = (UΣ−1/2x)TP2(UΣ−1/2x). Let X ∼ G
and Y = UΣ−1/2X. Then, Y ∼ N (0, I) and p(X) =

∑
i λiY

2
i + p0 for independent

Gaussians Yi. Thus, p(X) follows a generalized χ2-distribution.
Thus, we have

E[p(X)] = E

[
∑

i

λiY
2
i + p0

]
= p0 +

∑

i

λi = p0 + tr(P2)

and

Var[p(X)] = Var

[
∑

i

λiY
2
i + p0

]
= 2

∑

i

λ2
i = 2‖P2‖2F .

Lemma B.2 (cf. Lemma 1 from [LM00]). Let Z =
∑

i aiY
2
i , where Yi are inde-

pendent random variables distributed as N (0, 1). Let a be the vector with coordinates
ai. Then,

Pr(Z ≥ 2‖a‖2
√
x+ 2‖a‖∞x) ≤ exp(−x) .

We thus have

Pr


∑

i

λi(Y
2
i − 1) > 2

√√√√
(
∑

i

λ2
i

)
t+ 2

(
max

i
λi

)
t


 ≤ e−t .

Noting that tr(P2) =
∑

i λi,
∑

i λ
2
i = ‖P2‖F , and maxi λi = ‖P2‖2 ≤ ‖P2‖, for µp =

E[p(X)] we have
Pr(p(X)− µp > 2‖P2‖F (

√
t+ t)) ≤ e−t .

Noting that 2
√
a = 1 + a− (1−√a)2 ≤ 1 + a for a > 0, we have

Pr(p(X)− µp > ‖P2‖F (3t+ 1)) ≤ e−t .

Applying this inequality on both p(x) and −p(x) simultaneously, we get

Pr(|p(X)− µp| > ‖P2‖F (3t+ 1)) ≤ 2e−t .

Substituting t = T/3‖P2‖F − 1/3 and 2‖P2‖2F = VarX∼G(p(X)) gives

Pr(|p(X)− E
X∼G

[p(X)]| ≥ T ) ≤ 2e1/3−2T/3VarX∼G[p(X)] .

The final property is a consequence of the following anticoncentration inequality.

Theorem B.3 (see [CW01]). Let p : Rd → R be a degree-d polynomial. Then,
for X ∼ N (0, I), we have

Pr |p(X)| ≤ ε
√
E[p(X)2] ≤ O(dε1/d) .

This completes the proof.
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B.3. Proof of Lemma 5.17.

Proof of Lemma 5.17. First, we note that it suffices to prove this for the case
Σ = I, since for X ∼ N (0,Σ), Y = Σ−1/2X is distributed as N (0, I), and all the
conditions transform to those for G = N (0, I) under this transformation.

Condition 1 of Definition 5.15 follows by standard concentration bounds on ‖x‖22.
Condition 2 of Definition 5.15 follows by estimating the entrywise error between
Cov(S) and I. These two conditions hold by Lemma 5.3, since they follow from
(i), (iii), and (iv) of (ε, τ)-goodness in the sense of Definition 5.2.

Condition 3 of Definition 5.15 is slightly more involved. Let {pi} be an or-
thonormal basis for the set of even, degree-2, mean-0 polynomials with respect to
G. Define the matrix Mi,j = Ex∈uS [pi(x)pj(x)] − δi,j . This condition is equivalent
to ‖M‖2 = O(ε). Thus, it suffices to show that for every v with ‖v‖2 = 1 we have
vTMv = O(ε). It actually suffices to consider a cover of such v’s. Note that this

cover will be of size 2O(d2). For each v, let pv =
∑

i vipi. We need to show that

Var(pv(S)) = 1+O(ε). We can show this happens with probability 1− τ2−Ω(d2), and
thus it holds for all v in our cover by a union bound.

Condition 4 of Definition 5.15 is substantially the most difficult of these conditions
to prove. Naively, we would want to find a cover of all possible p and all possible T ,
and bound the probability that the desired condition fails. Unfortunately, the best a
priori bounds on Pr(|p(G)| > T ) are on the order of exp(−T ). As our cover would

need to be of size 2d
2

or so, to make this work with T = d, we would require Ω(d3)
samples in order to make this argument work.

However, we will note that this argument is sufficient to cover the case of T <
10 log(1/ε) log2(d/ε).

Fortunately, most such polynomials p satisfy much better tail bounds. Note that
any even, mean-0 polynomial p can be written in the form p(x) = xTAx − tr(A) for
some matrix A. We call A the associated matrix to p. We note by the Hanson–Wright
inequality that Pr(|p(G)| > T ) = exp(−Ω(min((T/‖A‖F )2, T/‖A‖2))). Therefore, the
tail bounds above are only as bad as described when A has a single large eigenvalue.
To take advantage of this, we will need to break p into parts based on the size of its
eigenvalues. We begin with a definition.

Definition B.4. Let Pk be the set of even, mean-0, degree-2 polynomials, such
that the associated matrix A satisfies

1. rank(A) ≤ k,
2. ‖A‖2 ≤ 1/

√
k.

Note for p ∈ Pk that |p(x)| ≤ |x|2/
√
k +
√
k.

Importantly, any polynomial can be written in terms of these sets.

Lemma B.5. Let p be an even, degree-2 polynomial with E[p(G)] = 0,Var(p(G)) =
1. Then if t = blog2(d)c, it is possible to write p = 2(p1 + p2 + · · ·+ p2t + pd), where
pk ∈ Pk.

Proof. Let A be the associated matrix to p. Note that ‖A‖F = Var p = 1. Let
Ak be the matrix corresponding to the top k eigenvalues of A. We now let p1 be the
polynomial associated to A1/2, p2 be associated to (A2 − A1)/2, p4 be associated to
(A4 − A2)/2, and so on. It is clear that p = 2(p1 + p2 + · · · + p2t + pd). It is also
clear that the matrix associated to pk has rank at most k. If the matrix associated to
pk had an eigenvalue more than 1/

√
k, it would need to be the case that the k/2nd

largest eigenvalue of A had size at least 2/
√
k. This is impossible since the sum of

the squares of the eigenvalues of A is at most 1.
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This completes our proof.

We will also need covers of each of these sets Pk. We will assume that Condition 1
of Definition 5.15 holds, i.e., that ‖x‖2 ≤

√
R, where R = O(d log(d/ετ)). Under this

condition, p(x) cannot be too large and this affects how small a variance polynomial
we can ignore.

Lemma B.6. For each k, there exists a set Ck ⊂ Pk such that
1. For each p ∈ Pk there exists a q ∈ Ck such that Var(p(G)− q(G)) ≤ 1/R2d2.
2. |Ck| = 2O(dk logR).

Proof. We note that any such p is associated to a matrix A of the form A =∑k
i=1 λiviv

T
i , for λi ∈ [0, 1/

√
k] and vi orthonormal. It suffices to let q correspond

to the matrix A′ =
∑k

i=1 µiwiw
T
i with |λi − µi| < 1/R2d3 and |vi − wi| < 1/R2d3

for all i. It is easy to let µi and wi range over covers of the interval and the sphere
with appropriate errors. This gives a set of possible q’s of size 2O(dk logR) as desired.
Unfortunately, some of these q will not be in Pk as they will have eigenvalues that are
too large. However, this is easily fixed by replacing each such q by the closest element
of Pk. This completes our proof.

Next, we will show that these covers are sufficient to express any polynomial.

Lemma B.7. Let p be an even degree-2 polynomial with E[p(G)] = 0 and Var(p(G))
= 1. It is possible to write p as a sum of O(log(d)) elements of some Ck plus another
polynomial of variance at most O(1/R2).

Proof. Combining the above two lemmas we have that any such p can be written
as

p = (q1 + p1) + (q2 + p2) + · · ·+ (q2t + p2t) + (qd + pd) = q1 + q2 + · · ·+ q2
t

+ qd + p′ ,

where qk above is in Ck and Var[pk(G)] < 1/R2d2. Thus, p′ = p1 + p2 + · · ·+ p2t + pd
has Var[p′(G)] ≤ O(1/R2). This completes the proof.

The key observation now is that if |p(x)| ≥ T for ‖x‖2 ≤
√
d/ε, then writing p =

q1+q2+q4+ · · ·+qd+p′ as above, it must be the case that |qk(x)| > (T −1)/(2 log(d))
for some k. Therefore, to prove our main result, it suffices to show that, with high
probability over the choice of S, for any T ≥ 10 log(1/ε) log2(d/ε) and any q ∈ Ck for
some k, that Prx∈uS(|q(x)| > T/(2 log(d))) < ε/(2T 2 log2(T ) log(d)). Equivalently,
it suffices to show that for T ≥ 10 log(1/ε) log(d/ε) it holds that Prx∈uS(|q(x)| >
T/(2 log(d))) < ε/(2T 2 log2(T ) log2(d)). Note that this holds automatically for T >
R, as p(x) cannot possibly be that large for ‖x‖2 ≤

√
R. Furthermore, note that

losing a constant factor in the probability, it suffices to show this only for T a power
of 2.

Therefore, it suffices to show for every k ≤ d, every q ∈ Ck, and every R/
√
k �

T � log(1/ε) logR that with probability at least 1−τ2−Ω(dk logR) over the choice of S
we have that Prx∈uS(|q(x)| > T )� ε/(T 2 log4(R)). However, by the Hanson–Wright
inequality, we have that

Pr(|q(G)| > T ) = exp(−Ω(min(T 2, T
√
k))) < (ε/(T 2 log4 R))2 .

Therefore, by Chernoff bounds, the probability that more than an ε/(T 2 log4 R)-
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fraction of the elements of S satisfy this property is at most

exp(−Ω(min(T 2, T
√
k))|S|ε/(T 2 log4 R))

= exp(−Ω(|S|ε/(log4 R)min(1,
√
k/T )))

≤ exp(−Ω(|S|kε2/R(log4 R)))

≤ exp(−Ω(|S|kε/d(log(d/ετ))(log4(d/ log(1/ετ)))))
≤ τ exp(−Ω(dk log(d/ε))) ,

as desired.
This completes our proof.

Appendix C. Deferred proofs from section 6.

Proof of Theorem 6.8. The first two properties follow directly from (32). We now
show the third property. Suppose this does not happen, that is, there are j, j′ such that
` = `(j) = `(j′) such that ‖µj−µj′‖22 ≥ Ω(dk log k/ε). That means that by (32) there
is some sequence of clusters S1, . . . , St such that Si ∩ Si+1 6= ∅ for each i, |Si| ≥ 4εN
for each i, and moreover, there is an Xi ∈ S1 such that ‖Xi − µ1‖22 ≤ O(d log k/ε)
and an Xi′ ∈ St such that ‖Xi′ − µ2‖22 ≤ O(d log k/ε). But by (32), we know that
each Si contains a point Xi′′ such that ‖Xi′′ − µri‖22 ≤ O(d log k/ε). In particular,
by the triangle inequality, this means that if ‖µri − µri+1

‖22 ≤ O(d log k/ε) for all
i = 1, . . . , t− 1, then we can set µr1 = µj and µrt = µj′ .

Construct an auxiliary graph on k vertices, where we put an edge between nodes
ri and ri+1. By the above, there must be a path from j to j′ in this graph. Since this
graph has k nodes, there must be a path of length at most k from j to j′; moreover,
by the above, we know that this implies that ‖µj − µj′‖22 ≤ O(kd log k/ε).

Finally, the fourth property follows from the same argument as the proof of the
third.

Proof of Lemma 6.9. Let C =
∑N

i=1 wi(Xi − µ)(Xi − µ)T − I. Let v be the top
eigenvector of

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T .

Observe that by (33), we have

N∑

i=1

wi(Xi − µ)(Xi − µ)T �
∑

i∈G

wi(Xi − µ)(Xi − µ)T

� wg(I +Q)− f(k, γ, δ1)I

� (1− ε)(I +Q)− f(k, γ, δ1)I ,

and so, in particular,

N∑

i=1

wi(Xi − µ)(Xi − µ)T − (I +Q) � −ε(I +Q)− f(k, γ, δ1)I .
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Therefore, for any unit vector u ∈ R
d, we must have

uT

(
N∑

i=1

wi(Xi − µ)(Xi − µ)T − (I +Q)

)
u ≥ −εuT (I +Q)uT − f(k, γ, δ1)

≥ − c

2
h(k, γ, δ) .

In particular, since
∣∣vT

(∑N
i=1 wi(Xi − µ)(Xi − µ)T − (I + Q)

)
v
∣∣ ≥ ckh(k, γ, δ), we

must have

vT

(
N∑

i=1

wi(Xi − µ)(Xi − µ)T − (I +Q)

)
v > 0,

and hence

vT

(
N∑

i=1

wi(Xi − µ)(Xi − µ)T − (I +Q)

)
v ≥ ckh(k, γ, δ) .

Let U = [v, u1, . . . , ud−1] be a d× k matrix with orthonormal columns, where the
columns span the set of vectors {(µj − µ) : j ∈ [k]} ∪ {v}. We note the rank of this
set is at most k due to the definition of µ.

Using the dual characterization of the Schatten top-k norm, we have that

‖C‖Tk
= max

X∈Rd×k
Tr(XTCX) ≥ Tr(UTCU).

Observe that since span(Q) ⊆ span(U), we have

‖C‖Tk
≥ Tr

(
UTCU

)
= Tr

(
UT

(
N∑

i=1

wi(Xi − µ)(Xi − µ)T − (I +Q)

)
U

)
+ ‖Q‖Tk

= Tr
(
UT (C −Q)U

)
+
∑

j∈[k]

γj

= vT (C −Q)v +
k−1∑

i=1

uT
i (C −Q)ui +

∑

j∈[k]

γj

≥ ckh(k, γ, δ)− (k − 1)
c

2
h(k, γ, δ) +

∑

j∈[k]

γj

≥ c

2
kh(k, γ, δ) +

∑

j∈[k]

γj ,

as claimed.

Proof of Lemma 6.10. By Fact 4.2 and (34) we have ‖∑i=G
wi

wg
Xi−µ‖2 ≤ k1/2δ2.

Now, by the triangle inequality, we have
∥∥∥∥∥
∑

i∈E

wi(Xi − µ)

∥∥∥∥∥
2

≥ ‖∆‖2 −
∥∥∥∥∥
∑

i∈G

wi(Xi − µ)− wgµ

∥∥∥∥∥
2

≥ Ω(‖∆‖2).

Using the fact that variance is nonnegative, we have

∑

i∈E

wi

wb
(Xi − µ)(Xi − µ)T �

(
∑

i∈E

wi

wb
(Xi − µ)

)(
∑

i∈E

wi

wb
(Xi − µ)

)T

,
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and therefore,

∥∥∥∥∥
∑

i∈E

wi(Xi − µ)(Xi − µ)T

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
wb

)
≥ Ω

(‖∆‖22
ε

)
.

On the other hand,

∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≤
∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI

∥∥∥∥∥
2

+ wb ≤ f(k, γ, δ1) + wb,

where in the last inequality we have used Fact 4.2 and (33). Hence, altogether this
implies that

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
2

≥ Ω

(‖∆‖22
ε

)
− wb − f(k, γ, δ1) ≥ Ω

(‖∆‖22
ε

)
,

as claimed.

C.1. Proof of Theorem 6.12. Once more, let ∆ = µ − µ̂ and expand the
formula for M :

N∑

i=1

wiYiY
T
i − I =

N∑

i=1

wi(Xi − µ+∆)(Xi − µ+∆)T − I

=
N∑

i=1

wi(Xi − µ)(Xi − µ)T − I +
N∑

i=1

wi(Xi − µ)∆T

+∆

N∑

i=1

wi(Xi − µ)T +∆∆T

=
N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −∆∆T .

We start by proving completeness.

Claim C.1. Suppose that w = w∗. Then ‖M‖Tk
≤∑i∈[k] γj +

ckh(k,γ,δ1)
2 .

Proof. w∗ are the weights that are uniform on the uncorrupted points. Because
E ≤ 2εN , we have that w∗ ∈ SN,ε. Using (33), this implies that w∗ ∈ Cf(k,γ,δ1). By

Corollary 6.11, ‖∆‖2 ≤ O(ε
√

log 1/ε). With this in hand, we proceed by taking the
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Schatten top-k norm of the above expansion of M .

∥∥∥∥∥

m∑

i=1

w∗
i (Xi − µ)(Xi − µ)T − I −∆∆T

∥∥∥∥∥
Tk

≤

∥∥∥∥∥∥

N∑

i=1

w∗
i (Xi − µ)(Xi − µ)T − I −

∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
Tk

+

∥∥∥∥∥∥

∑

j∈[k]

αi(µj − µ)(µj − µ)T

∥∥∥∥∥∥
Tk

+ ‖∆∆T ‖2

≤ kf(k, γ, δ1) +
∑

j∈[k]

γj +O(ε2 log 1/ε)

<
∑

j∈[k]

γj +
ckh(k, γ, δ)

2
.

Claim C.2. Suppose that w 6∈ Cckh(k,γ,δ). Then ‖M‖Tk
>
∑

i∈[k] γj +
ckh(k,γ,δ1)

2 .

Proof. We split the proof into two cases. In the first case, ‖∆‖22 ≤ ckh(k,γ,δ)
10 . By

Lemma 6.9, we have that

∥∥∥∥∥

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I

∥∥∥∥∥
Tk

≥
∑

j∈[k]

γj +
3ckh(k, γ, δ)

4
.

By the triangle inequality,

‖M‖Tk
≥
∑

j∈[k]

γj +
3ckh(k, γ, δ)

4
− ‖∆‖22 ≥

∑

i∈[k]

γj +
ckh(k, γ, δ)

2
,

as desired.
In the other case, ‖∆‖22 ≥ ckh(k,γ,δ)

10 . Recall that Q =
∑

j∈[k] αj(µj −µ)(µj −µ)T

from (29). Write M as follows:

M =

N∑

i=1

wi(Xi − µ)(Xi − µ)T − I −∆∆T

=

(
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI − wgQ

)

+ wgQ+
∑

i∈E

wi(Xi − µ)(Xi − µ)T − wbI −∆∆T .
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Now taking the Schatten top-k norm of M , we have
∥∥∥∥∥

(
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI − wgQ

)
+ wgQ+

∑

i∈E

wi(Xi − µ)(Xi − µ)T

− wbI −∆∆T

∥∥∥∥∥
Tk

≥
∥∥∥∥∥wgQ+

∑

i∈E

wi(Xi − µ)(Xi − µ)T

∥∥∥∥∥
Tk

−
∥∥∥∥∥
∑

i∈G

wi(Xi − µ)(Xi − µ)T − wgI − wgQ

∥∥∥∥∥
Tk

− ‖wbI‖2 −
∥∥∆∆T

∥∥
2

≥
∥∥∥∥∥wgQ+

∑

i∈E

wi(Xi − µ)(Xi − µ)T

∥∥∥∥∥
Tk

− kf(k, γ, δ1)− 4ε− ‖∆‖22

≥


∑

j∈[k]

γj − 4εkγ


+

∥∥∥∥∥
∑

i∈E

wi(Xi − µ)(Xi − µ)T

∥∥∥∥∥
Tk

− kf(k, γ, δ1)− 4ε− ‖∆‖22

≥
∑

j∈[k]

γj +Ω

(‖∆‖22
ε

)(47)

≥
∑

j∈[k]

γj +
ckh(k, γ, δ)

2
.

The first inequality is the triangle inequality, the second is by (33) and Fact 4.2, the
third is because the summed matrices are positive semidefinite, the fourth follows
from Lemma 6.10, and the fifth holds for all c sufficiently large.

By construction, we have that `(w) ≥ 0. It remains to show that `(w∗) < 0:
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ̂)(Xi − µ̂)T − I

∥∥∥∥∥
Tk

=

∥∥∥∥∥
1

|G|
∑

i∈G

(Xi − µ+∆)(Xi − µ+∆)T − I

∥∥∥∥∥
Tk

≤

∥∥∥∥∥∥
1

|G|
∑

i∈G

(Xi − µ)(Xi − µ)T − I −
∑

j∈[k]

αj(µj − µ)(µj − µ)T

∥∥∥∥∥∥
Tk

+

∥∥∥∥∥∥

∑

j∈[k]

αj(µj − µ)(µj −m)T

∥∥∥∥∥∥
Tk

+ 2‖∆‖2
∥∥∥∥∥

1

|G|
∑

i∈G

(Xi − µ)

∥∥∥∥∥
Tk

+ ‖∆‖22

≤kf(k, γ, δ1) +
∑

j∈[k]

γj + 2k1/2δ2‖∆‖2 + ‖∆‖22.

Therefore,

`(w∗) ≤ kf(k, γ, δ) +
∑

j∈[k]

γj + 2k1/2δ‖∆‖2 + ‖∆‖22 − Λ.
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If ‖∆‖22 ≤ ckh(k,γ,δ)
10 , then

`(w∗) ≤
∑

j∈[k]

γj + kh(k, γ, δ) +
2kδ
√

ch(k, γ, δ)√
10

+
ckh(k, γ, δ)

10
− Λ.

We wish to show that
2kδ
√
ch(k, γ, δ)√
10

≤ ckh(k, γ, δ)

10
,

or, equivalently, that

δ ≤
√

ch(k, γ, δ)

2
√
10

.

But this is true for c sufficiently large, as
√
h(k, γ, δ) ≥

√
δ. Therefore,

`(w∗) ≤
∑

j∈[k]

γj +
(c+ 5)kh(k, γ, δ)

5
− Λ ≤ 0,

where the second inequality holds since Λ >
∑

j∈[k] γj +
ckh(k,γ,δ)

2 .

On the other hand, consider when ‖∆‖22 ≥ ckh(k,γ,δ)
10 . By (47), we know that

Λ ≥
∑

j∈[k]

γj +Ω

(‖∆‖22
ε

)
.

Then we know

`(w∗) ≤ kf(k, γ, δ) + 2k1/2δ‖∆‖2 + ‖∆‖22 − Ω

(‖∆‖22
ε

)
.

The first and third terms are immediately dominated by Ω
(‖∆‖2

2

ε

)
; it remains to show

that

k1/2δ‖∆‖2 = O

(‖∆‖22
ε

)
.

Or, equivalently, k1/2δε = O (‖∆‖2) . This follows since

‖∆‖2 ≥ O(
√
h(k, γ, δ)) ≥ O(

√
kδ2) = O(k1/2δε).

Therefore, in this case as well, `(w∗) < 0, as desired.

Appendix D. Deferred proofs from section 7.

Proof of Lemma 7.21. By Lemma 7.6, applied with ε′ := ε3/2/10d in place
of ε, since we have Ω(d4 log(1/τ)/ε′2) samples from P, with probability of at least
1− τ, the set S is such that for all affine functions L, it holds that |PrX∈uS(L(X) ≥
0)− PrX∼P (L(X) ≥ 0)| ≤ ε′/d. We henceforth condition on this event.

Let CT be the event that all coordinates in T take their most common value. For
a single coordinate i, the probability that it does not take its most common value,
min{pi, 1− pi}, satisfies

min{pi, 1− pi} = pi(1− pi)/max{pi, 1− pi} ≤ 2pi(1− pi).

D
o
w

n
lo

ad
ed

 1
1
/1

4
/1

9
 t

o
 1

8
.1

0
.2

7
.6

3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

856 DIAKONIKOLAS, KAMATH, KANE, LI, MOITRA, AND STEWART

Thus, by a union bound, we have that PrP (CT ) ≥ 3/5. Let #T (x) be the number
of coordinates of x in T which do not have their most common value, and observe
that #T (x) is an affine function of x. Noting that for x ∈ {0, 1}d, we have that
1−#T (x) > 0 if and only if CT holds for x, it follows that |PrS(CT )−PrP [CT ]| ≤ ε′/d.
Hence, we have that PrS(CT ) ≥ 1/2.

For any affine function L(x), let

LT (x) = L(x)−#T (x) · max
y∈{0,1}d

L(y).

Note that for x ∈ {0, 1}d, we have that LT (x) > 0 if and only if L(x) > 0 and CT

holds for x. Therefore, we can write

∣∣∣∣ Pr
X∈uS

(L(X) > 0)− Pr
X∼P

(L(X) > 0)

∣∣∣∣

=

∣∣∣∣
PrX∈uS(LT (X) > 0)

PrX∈uS(CT )
− PrX∼P (LT (X) > 0)

PrX∼P (CT )

∣∣∣∣

=
|PrX∈uS(LT (X) > 0)PrX∼P (CT )− PrX∼P (LT (X) > 0)PrX∈uS(CT )|

PrX∈uS(CT ) PrX∼P (CT )

≤ (10/3) ·
(

Pr
X∈uS

(LT (X) > 0) ·
(

Pr
X∼P

(CT )− Pr
X∈uS

(CT )
)

− Pr
X∈uS

(CT )
(

Pr
X∼P

(LT (X) > 0)− Pr
X∈uS

(LT (X) > 0)
))

≤ (10/3) · 2ε′/d ≤ ε3/2/d2 .

This completes the proof of Lemma 7.21.

Appendix E. Deferred proofs from section 8.

Proof of Lemma 8.6. Let SP ⊆ S be the set of samples drawn from P , and let
SQ ⊆ S be the set of samples drawn from Q. First, we note that by a Chernoff
bound, ||SP |/|S| − α| ≤ O(ε/d2) with probability 1 − τ/3. Assuming this holds, it
follows that |SP | ≥ (α/2)|S| ≥ (ε1/6/2)|S| = Ω(d4 log(1/τ)/ε2). Similarly, |SQ| ≥
(1−α)|S|/2 ≥ Ω(d4 log(1/τ)/ε2). By Lemma 7.6 applied with ε′ := (c2/4) · ε in place
of ε, since we have Ω((d4 + d2 log(τ))/ε′2) samples, with probability 1− τ/3, the set
SP is ε′-good for P , i.e., it satisfies that for all affine functions L, |PrX∈uSP

(L(X) >
0)− PrX∼P (L(X) > 0)| ≤ ε′/d. We show that assuming S is ε′-good, it is (ε, i)-good
for each 1 ≤ i ≤ d.

Note that PrX∼P [Xi = 1] = pi ≥ c and PrX∼P [Xi = 0] = 1 − pi ≥ c. Since
|PrX∼P [Xi = 1] − PrX∈uSP

[Xi = 1]| ≤ c2ε/(4d), it follows that PrX∈uS [Xi = 1] ≥
c/2. For any affine function L, define L(0)(x) := L(x)−xi(maxy |L(y)|) and L(1)(x) :=
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L(x)− (1− xi)(maxy |L(y)|). Then, we have the following:
∣∣∣∣ Pr
X∈uS1

P

(L(X) > 0)− Pr
X∼P

(L(X) > 0 | Xi = 1)

∣∣∣∣

=

∣∣∣∣∣
PrX∈uS1

P

(
L1(X) > 0

)

PrX∈uS1
P
(Xi > 0)

− PrX∼P

(
L1(X) > 0

)

pi

∣∣∣∣∣

≤ (2/c2)

(
Pr

X∈uS1
P

(
L1(X) > 0

)
pi − Pr

X∼P

(
L1(X) > 0

)
Pr

X∈uS1

(Xi > 0)

)

≤ (2/c2)

(
pi

(
Pr

X∈uS1
P

(
L1(X) > 0

)
− Pr

X∼P

(
L1(X) > 0

))

− Pr
X∼P

(
L1(X) > 0

)(
Pr

X∈uS1
P

(Xi > 0)− pi

))

≤ 2/c2 · 2ε′/d ≤ ε/d .

Similarly, we obtain that
∣∣∣∣ Pr
X∈uS1

(L(X) > 0)− Pr
X∼Π

(L(X) > 0)

∣∣∣∣ ≤ ε/d .

So, we have that SP is (ε, i)-good for P for all 1 ≤ i ≤ d with probability 1 − τ/3 .
Similarly, SQ is (ε, i)-good for Q for all 1 ≤ i ≤ d with probability 1− τ/3. Thus, we
have that ||SP |/|S| − α| ≤ ε/d2, SP is (ε, i)-good for P , and SQ is (ε, i)-good for Q
for all 1 ≤ i ≤ d with probability 1− τ . That is, S is (ε, i)-good for Π for all 1 ≤ i ≤ d
with probability at least 1− τ .

Proof of Lemma 8.19. Let SP ⊆ S be the set of samples drawn from P , and
let SQ ⊆ S be the set of samples drawn from Q. First, we note that by a Chernoff
bound, ||SP |/|S| − α| ≤ O(ε/d2) with probability at least 1 − τ/3. Assuming this
holds, |SP | ≥ (α/2)|S| ≥ δ|S| = Ω(d4 log(1/τ)/ε2). Similarly, |SQ| ≥ (1 − α)|S|/2 ≥
Ω(d4 log(1/τ)/ε2).

By Lemma 7.6 applied with ε′ := ε/6, since we have Ω(d4 log(1/τ)/ε′2) samples,
with probability at least 1−τ/3, the set SP is ε-good for P . Similarly, with probability
at least 1 − τ/3, the set SQ is ε-good for Q. Thus, with probability 1 − τ , we have

that
∣∣ |SP |

|S| − α
∣∣ ≤ ε and that SP and SQ are ε-good for P and Q, respectively.

Proof of Lemma 8.22. Noting that the mean of T is µ and |T | = |S′|, we have

|S′|Cov(S′) = |S′
P | E

X∈uS′

P

[(X − µ)(X − µ)T ] + |S′
Q| E

X∈uS′

Q

[(X − µ)(X − µ)T ]

+ |E| E
X∈uE

[(X − µ)(X − µ)T ]

= |S′
P |
(
Cov(S′

P ) + (µS′

P − µ)(µS′

P − µ)T
)

+ |S′
Q|
(
Cov(S′

P ) + (µS′

Q − µ)(µS′

Q − µ)T
)

+ |E| E
X∈uE

[(X − µ)(X − µ)T ]

= |S′
P |Cov(S′

P ) + |S′
Q|Cov(S′

Q) + |S′|Cov(T ) .(48)

Since P and Q are product distributions, Cov(S′
P ) and Cov(S′

Q) can have large diag-
onal elements but small off-diagonal ones. On the other hand, we bound the elements
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on the diagonal of Cov(T ), but ‖Cov(T )‖2 may still be large due to off-diagonal
elements.

By the triangle inequality, and (48) with zeroed diagonal, we have

‖Cov0(S′)− Cov(T )‖2 ≤ ‖Cov0(S′)− Cov0(T )‖2 + ‖Cov0(T )− Cov(T )‖2

≤
( |S′

P |
|S′|

)
‖Cov0(S′

P )‖2 +
( |S′

Q|
|S′|

)
‖Cov0(S′

Q)‖2

+ ‖Cov0(T )− Cov(T )‖2 .(49)

We will bound each of these terms separately.
Note that Cov0(T )− Cov(T ) is a diagonal matrix and its nonzero entries are

(Cov0(T )− Cov(T ))i,i = Var
X∈uT

[Xi].

Since the mean of T is µ, for all i, we have that VarX∈uT [Xi] ≤ EX∈uT [‖X − µ‖2∞].
We seek to bound the RHS from above.

Note that µ satisfies |S′|µ = |S′
P |µS′

P + |S′
Q|µS′

Q + |E|µE . Since |S′| − |E| =
|S′

P | + |S′
Q|, we have (|S′| − |E|)(µ − µS′

P ) = |S′
Q|(µS′

Q − µS′

P ) + |E|(µE − µ). Using
that |S′| − |E| = (1 +O(ε))|S|, |S′

Q| = (1− α)|S| −O(ε), |E| ≤ O(ε)|S|, we have

‖µ− µS′

P ‖∞ ≤ (1− α+O(ε))‖µS′

Q − µS′

P ‖∞ +O(ε) .

Similarly,
‖µ− µS′

Q‖∞ ≤ (α+O(ε))‖µS′

Q − µS′

P ‖∞ +O(ε) .

Since S is ε-good for Π, it follows that ‖µSP − p‖∞ ≤ ε/d and ‖µSQ − q‖∞ ≤ ε/d.
Also,

‖|SP |µSP − |S′
P |µS′

P ‖∞ ≤ |SP | − |S′
P | ≤ O(ε)|S| .

Thus,

‖µSP − µS′

P ‖∞ ≤ ‖µSP − (|S′
P |/|SP |)µS′

P ‖∞
+ (|SP | − |S′

P |)/|SP | ≤ O(ε)|S|/|SP | ≤ O(αε) .

Similarly, we show that

‖µSQ − µS′

Q‖∞ ≤ O((1− α)ε).

Finally, ‖p− q‖∞ ≤ δ. Thus, by the triangle inequality, we get

‖µS′

Q − µS′

P ‖∞ ≤ O(αε) + ε/d+ δ + ε/d+O((1− α)ε) ≤ δ +O(ε) .

We have the following sequence of inequalities:

|S′| Var
X∈uT

[Xi] ≤ |S′| E
X∈uT

[‖X − µ‖2∞]

= |S′
P |‖µ− µS′

P ‖2∞ + |S′
Q|‖µ− µS′

Q‖2∞
+ |E| E

X∈uT
[‖X − µ‖2∞]

≤ (|S′
P |+ |S′

Q|)(‖µS′

Q − µS′

P ‖∞ +O(ε))2 + |E|
≤ (δ2 +O(ε))|S′| .
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Thus,

‖Cov0(T )− Cov(T )‖2 = max
i

(Cov0(T )− Cov(T ))i,i = max
i

Var(Ti) ≤ O(δ2 + ε).

It remains to bound the
( |S′

P |
|S′|
)
‖Cov0(S′

P )‖2 +
( |S′

Q|
|S′|
)
‖Cov0(S′

Q)‖2 terms in (49). To

analyze the first of these terms, note that Cov0(P ) = 0. We have that

‖Cov0(S′
P )‖2 = ‖Cov0(S′

P )− Cov(P ) + Diag( Var
X∼P

(Xi))‖2
≤ ‖Cov(S′

P )− Cov(P )‖2 +max
i

(| Var
X∈uS′

P

(Xi)− Var
X∼P

(Xi)|) .

Noting that

| Var
X∈uS′

P

(Xi)− Var
X∼P

(Xi)| = eTi (Cov(S
′
P )− Cov(P ))ei,

we have that

max
i

(
| Var
X∈uS′

P

(Xi)− Var
X∼P

(Xi)|
)
≤ ‖Cov(S′

P )− Cov(P )‖2 ,

and so
‖Cov0(S′

P )‖2 ≤ 2‖Cov(S′
P )− Cov(P )‖2.

By the triangle inequality,

‖Cov(S′
P )− Cov(P )‖2 ≤ ‖Cov(S′

P )− Cov(SP )‖2 + ‖Cov(SP )− Cov(P )‖2 .

Note that since S is good, the (i, j)th entry of Cov(SP )−Cov(P ) has absolute value
at most ε/d. Thus,

‖Cov(SP )− Cov(P )‖2 ≤ ‖Cov(SP )− Cov(P )‖F ≤ ε ,

which gives
‖Cov0(S′

P )‖2 ≤ 2‖Cov(S′
P )− Cov(SP )‖2 +O(ε).

We have

‖Cov(S′
P )− Cov(SP )‖2 = sup

‖v‖2=1

(∣∣∣∣ Var
X∈uS′

P

(v ·X)− Var
X∈uSP

(v ·X)

∣∣∣∣
)

.

Since S′
P ⊆ SP ,

|S′
P | Var

X∈uS′

P

(v ·X) ≤ |SP | E
X∈uSP

[v ·X − µS′

P ]

≤ |SP |
(

Var
X∈uSP

(v ·X) + ‖µS′

P − µSP ‖22
)

≤ (1 +O(ε/α))|S′
P | ·

(
Var

X∈uSP

(v ·X) +O(ε2 log(1/ε)/α2)

)
.

Thus,
∣∣∣∣ Var
X∈uS′

P

(v ·X)− Var
X∈uSP

(v ·X)

∣∣∣∣ ≤ O(ε/α) Var
X∈uSP

(v ·X) +O(ε2 log(1/ε)/α2)

≤ O(ε/α) Var
X∼P

(v ·X) +O(ε2 log(1/ε)/α2)

≤ O(ε/α) +O(ε2 log(1/ε)/α2)

≤ O(ε log(1/ε)/α) .
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Thus, we have that

‖Cov0(S′
P )‖2 ≤ 2 ·O(ε log(1/ε)/α) +O(ε) ≤ O(ε log(1/ε)/α).

Therefore, combining the above we have that

( |S′
P |
|S′|

)
‖Cov0(S′

P )‖2 = (α+O(ε))‖Cov0(S′
P )‖2 = O(ε log(1/ε)) .

A similar argument shows

( |S′
Q|
|S′|

)
‖Cov0(S′

Q)‖2 = O(ε log(1/ε)).

Combining this with the above gives that

‖Cov0(S′)− Cov(T )‖2 = O(δ2 + ε log(1/ε)).

By the assumption on δ in Theorem 8.17, δ2 = Ω(ε log(1/ε)), and the proof is com-
plete.
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