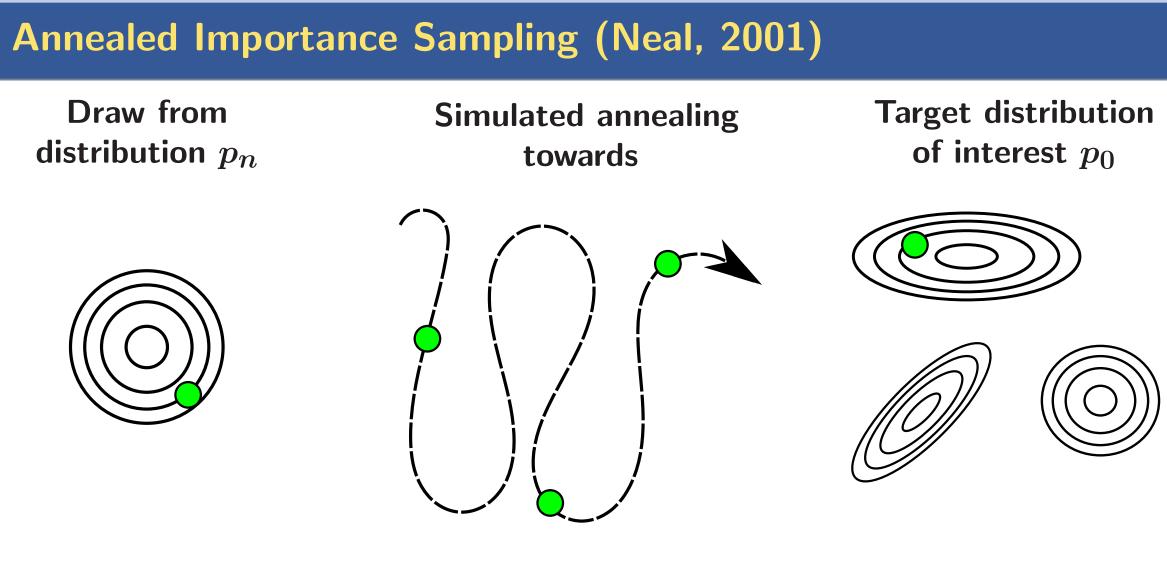
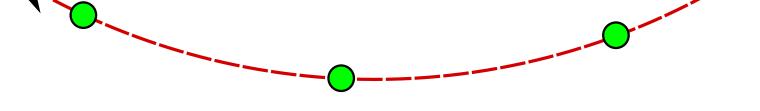


Abstract

- Despite recent advances in learning and inference algorithms, evaluating the predictive performance of topic models is still painfully slow and unreliable.
- ► We propose a new strategy for computing relative log-likelihood (or perplexity) scores of topic models, based on **annealed importance sampling**.
- ► The proposed method has smaller Monte Carlo error than previous approaches, leading to marked improvements in both accuracy and computation time.



Use this as an **importance sampling proposal distribution** for:



Annealing in the reverse direction, from the target to the source.

The importance samples can be used to estimate the ratio of normalizing constants of $f_0 \propto p_0$ and $f_n \propto p_n$, via

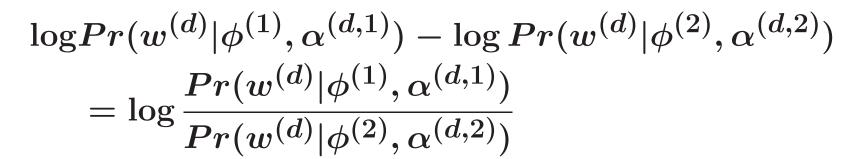
$$rac{\sum w^{(i)}}{N} \Rightarrow rac{\int f_0(x) dx}{\int f_n(x) dx}$$

Wallach et al. (2009) show how to employ AIS in the context of topic models to estimate $Pr(w^{(d)}|\Phi,lpha^{(d)})$:

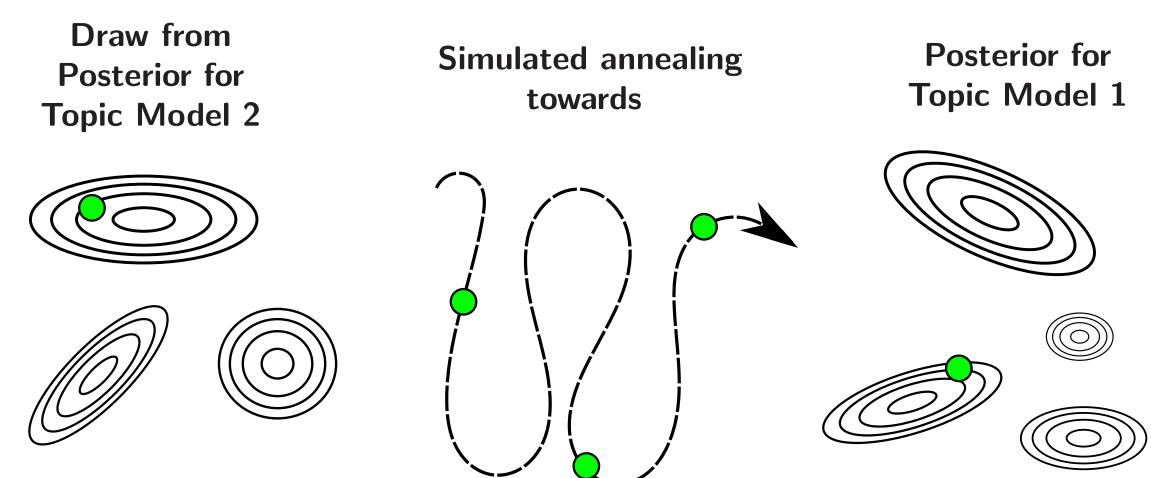
- \blacktriangleright Perform AIS on the topic assignments z.
- Anneal from the prior to the posterior.
- Estimate the likelihood by averaging the importance samples.

The Proposed Method

► Typically for evaluation we are interested in the **relative** performance of topic model 1 (e.g. a new model) and topic model 2 (e.g. vanilla LDA):



- This could be estimated by running AIS once for each model.
- ► However, AIS is already capable of computing ratios. We therefore propose to use AIS to compute this ratio directly. The procedure is:



Note that this approach avoids several sources of Monte Carlo error incurred by naively running AIS for each model separately. Specifically, the naive method:

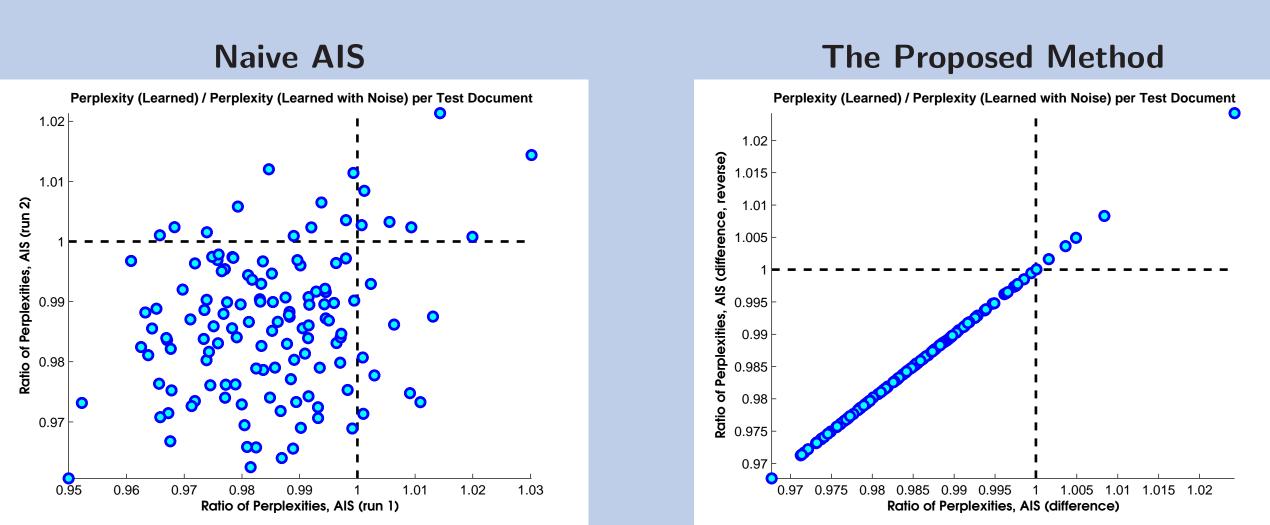
- \blacktriangleright estimates the denominator of a ratio even though it is a constant (=1),
- uses different z's for both models.
- and is run twice, introducing Monte Carlo noise each time.

Convergence check: Anneal in the reverse direction to compute the reciprocal.

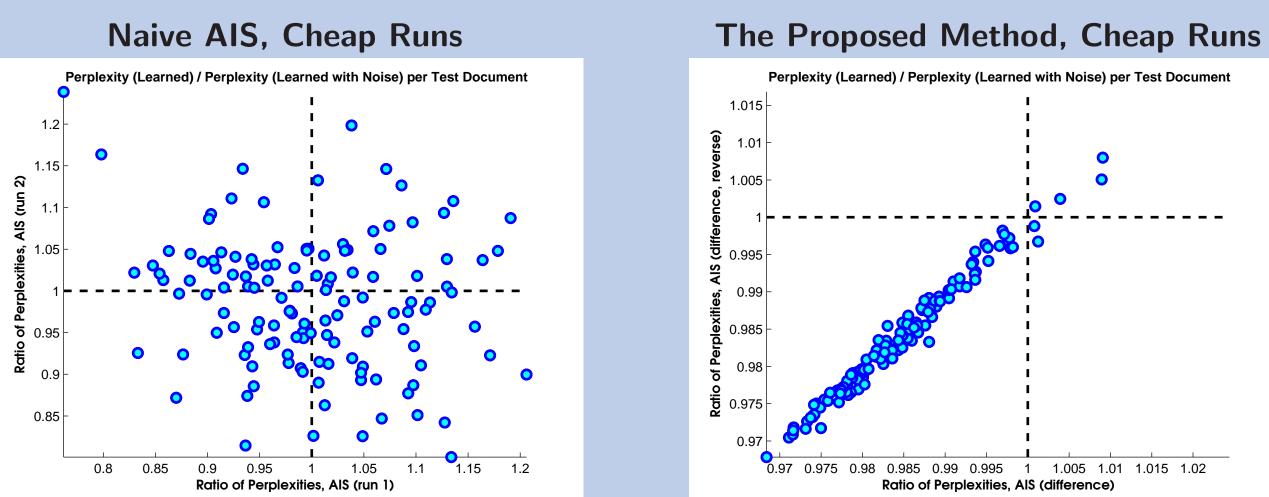
Robust Evaluation of Topic Models James Foulds and Padhraic Smyth

Experimental Analysis: NIPS Corpus

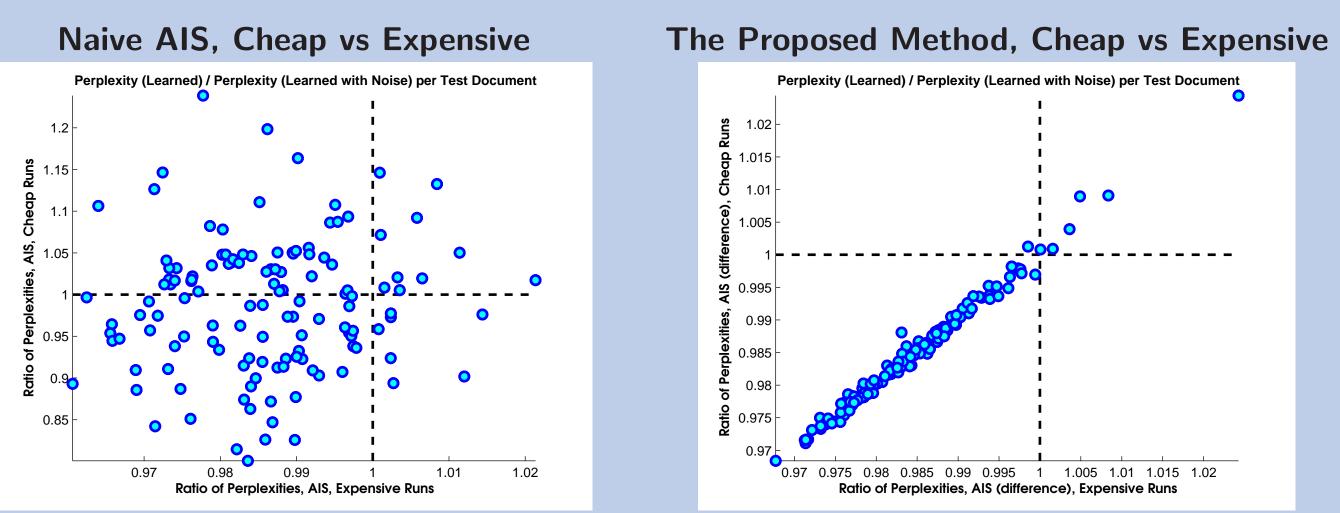
- ► A corpus of 1740 NIPS articles from 1987 1999. We held out a test set of 130 articles. **Task**: compute the relative performance of **learned topics**, and **perturbed** versions of these topics (5 % random noise).
 - How to read these graphs
- Each dot represents a document
- Each axis shows, for the corresponding method, the estimated ratio, perplexity of the learned topics
 - perplexity of the perturbed learned topics
- **Dots below 1**: Unperturbed topics are better (likely **correct**)
- **Dots above 1**: Perturbed topics are better (likely **incorrect**)
- **Dots on the diagonal**: The two methods **agree** on the perplexity ratio



The proposed method was much more **consistent between runs**, in both directions of annealing. It also was much more reliable at determining the **direction of the difference** between models correctly.



These advantages were most pronounced with a small computational budget per document.



On a computational budget, accurate results were obtained, similar to those of more expensive runs.

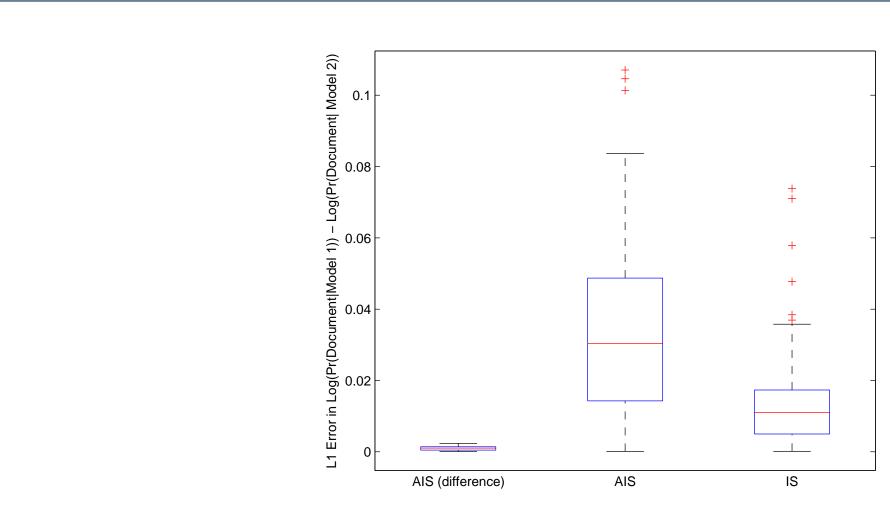
Overall Results

Method	Percent of Documents with Correct Evaluation (I.e., the Unperturbed Topics Win vs the Perturbed Topics)
Expensive runs:	
AIS	88 %
AIS (difference)	95 %
AIS (difference, reverse)	95 %
Cheap runs:	
AIS	52 %
AIS (difference)	95 %
AIS (difference, reverse)	96 %

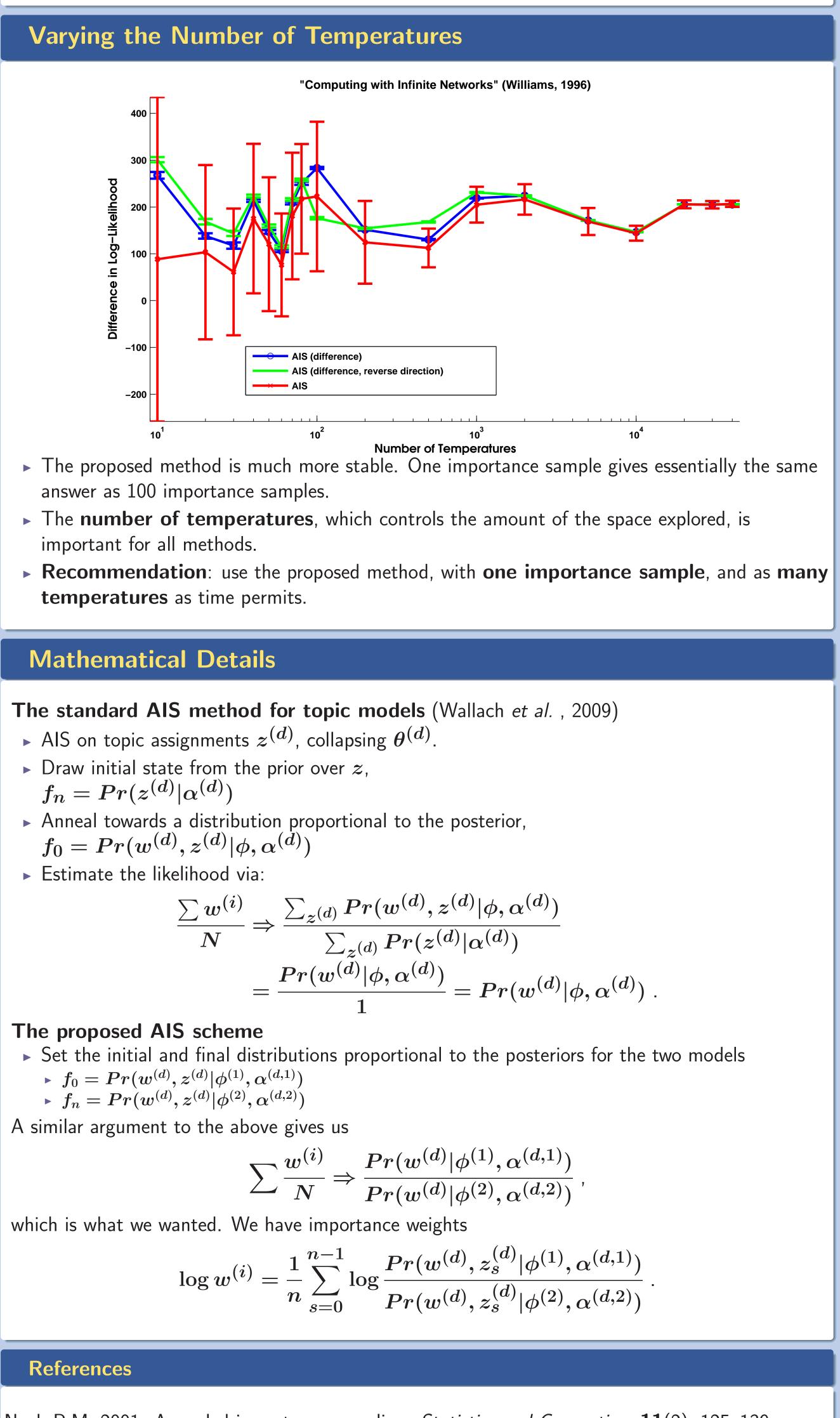
University of California, Irvine

Comparison to Ground Truth on Very Small Problems

cs)



- ► In this graph, lower values are better.
- naive AIS method. This does not hold in general.



Mathematical Details

$$egin{aligned} &\sum w^{(i)} \ & N \ & \Rightarrow rac{\sum_{z^{(d)}} Pr(w)}{\sum_{z^{(d)}} Pr(w)} \ & = rac{Pr(w^{(d)} | \phi)}{1} \end{aligned}$$

The proposed AIS scheme

A similar argument to the above gives us

$$\sum rac{w^{(i)}}{N} \Rightarrow rac{Pr}{Pr}$$

$$\log w^{(i)} = rac{1}{n} \sum_{s=0}^{n-1} \log rac{1}{n}$$

References

Neal, R.M. 2001. Annealed importance sampling. *Statistics and Computing*, **11**(2), 125–139. Wallach, H.M., Murray, I., Salakhutdinov, R., & Mimno, D. 2009. Evaluation methods for topic models. ICML.

UCIRVINE

► Note: in this regime (4 topics, 8 words per document), importance sampling is better than the