
ScienceDirect

IFAC-PapersOnLine 48-23 (2015) 117–122

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.11.270

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: predictive control, event-triggered control, robustness

1. INTRODUCTION

Networked control systems are distributed control systems
in which the communication between sensors, controllers,
and actuators takes place over a communication network,
see for example Hespanha et al. (2007). If the bandwidth
of the network is small compared to the number of users,
and/or if communications induce a non-trivial cost in
terms of energy, which is especially the case in wireless
communication, efforts should be made in reducing the
overall amount of communication in the control system.
One method that is suited to reduce the required com-
munication is event-triggered control. Instead of updating
the control input of the plant at periodic time instances,
in event-triggered control new inputs are only transmitted
to the actuators if certain well-defined events occur in the
plant. Typically, these events are defined in terms of the
plant output or state leaving a certain set. For a recent
overview of event-triggered control, please refer to Heemels
et al. (2012).

In event-triggered model predictive control (MPC), an
event is usually triggered if the plant state deviates by
a certain amount from the prediction of the state that was
computed in the MPC optimization problem at the last
event, see for example Bernardini and Bemporad (2012);
Lehmann et al. (2013); Eqtami (2013); Li et al. (2014),
and the references therein. Alternatively, the MPC cost
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function may be used to define the event conditions, see
for example Varutti et al. (2010). These control schemes,
including the scheme proposed in this paper, require a
whole sequence of predicted inputs to be transmitted to
the actuators at a given event. This setup matches many
communication protocols in which the size of communi-
cated packets is fixed, such that it is more efficient to
transmit whole sequences of inputs only at infrequent
times, than to transmit a single input at each point in time,
although the overall amount of transmitted information is
the same (or even higher), see Georgiev and Tilbury (2004)
and Bernardini and Bemporad (2012) with reference to
Feeney and Nilsson (2001). See also Quevedo et al. (2011),
where an MPC scheme using packetized communication is
proposed. This control structure is illustrated in Figure 1,
which corresponds to the structure also used in Lehmann
et al. (2013).

In this paper, we propose a robust event-triggered MPC
scheme based on the Tube MPC approach presented
in Chisci et al. (2001). In Tube MPC, the uncertainty in
the prediction of the future plant state due to disturbances
is described by a sequence of sets (the so-called “tube”),
which are centered around the prediction of a nominal
system, see also Langson et al. (2004); Mayne et al. (2005).
The main idea in Tube MPC is to assume that feedback
is applied to the plant at every time step, which allows to
limit the growth of the uncertainty in the prediction, as
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the (future) feedback will counteract the effect of the dis-
turbances. An important observation (motivating our pro-
posed scheme) is that if a disturbance of significantly lower
than worst-case magnitude affects the system at a given
time step, then the deviation of the plant trajectory from
the predicted trajectory will not be greater than what was
previously predicted as a worst case, even if no feedback is
applied at the given time step. We exploit this observation
in order to derive a robust event-triggered controller that
does not update the inputs of the plant in the very event
of such less-than-worst-case disturbances, thereby saving
communication, and possibly computational power, in the
process. Interestingly, our newly proposed design method-
ology allows any periodically updated Tube MPC scheme
to be used for creating an event-triggered MPC scheme
retaining the guarantees of its periodically updated coun-
terpart concerning robust constraint satisfaction, region of
attraction, and asymptotic bound, with a reduced average
amount of communication between the controller and the
actuators. Additionally, we present a method of artificially
increasing the assumed bound on the disturbances in order
to further reduce the communication in the system. In
particular, we show how, based on the knowledge of the
probability distribution of the disturbances, event condi-
tions can be designed such that the time between events is
a random variable with a predefined, arbitrary probability
distribution with finite and discrete support.

The remainder of the paper is structured in the following
way. Section 2 contains notes on notation and several
preliminary results. The formal problem statement is given
in Section 3. The robust event-triggered MPC scheme
is presented in Section 4 and its relevant properties are
described in Section 5. The design of the event conditions
is explained in Section 6. Section 7 contains numerical
examples illustrating our results and Section 8 concludes
the paper with an outlook on open questions.

2. NOTATION AND PRELIMINARIES

N denotes the set of non-negative integers. For q, s ∈ N,
let N[q,s] denote the set {r ∈ N | q ≤ r ≤ s}. For a given
real number a ∈ R, we use R≥a and R>a to denote the set
of real numbers greater than a, or greater than or equal to
a, respectively. For symmetric matrices S = S⊤ ∈ R

n×n,
we use S > 0 and S ≥ 0 to denote the fact that S is
positive definite and positive semi-definite, respectively.
Given sets X ,Y ⊆ R

n, a scalar α, and matrices A ∈ R
m×n,

B ∈ R
n×m we define αX := {αx | x ∈ X}, AX :=

{Ax | x ∈ X}, and B−1X := {x |Bx ∈ X}. The Minkowski
set addition is defined by X ⊕Y := {x+y | x ∈ X , y ∈ Y}.
Given a vector x ∈ R

n we define X⊕x := x⊕X := {x}⊕X .
The Pontryagin set difference is defined by X ⊖Y := {z ∈
R

n | z ⊕ Y ⊆ X}, see Kolmanovsky and Gilbert (1995,
1998). Given a sequence of sets Xi for i ∈ N[a,b] with

a, b ∈ N, we define
⊕b

i=a Xi = Xa ⊕ Xa+1 ⊕ . . . ⊕ Xb. By
convention, the empty sum is equal to {0}. Similarly, for

any vectors vi ∈ R
n, i ∈ N, we define

∑b

i=a vi = 0 for any
a, b ∈ N if a > b. We call a compact, convex set containing
the origin a C-set. A C-set containing the origin in its (non-
empty) interior is called a PC-set. A function α : R+ → R+
belongs to class K if it is continuous, strictly increasing
and α(0) = 0. If additionally α(s) → ∞ as s → ∞, α
is said to belong to class K∞. The Euclidean norm of
a vector v ∈ R

n is denoted by |v|. Given any compact
set Y ⊆ R

n, the distance between v and Y is defined by
|v|Y := mins∈Y |v − s|. Define finally the Euclidean unit
ball by B := {x ∈ R

n | |x| ≤ 1}.

Definition 1. Given a dynamical system of the form
xt+1 = f(t, xt, wt), t ∈ N, f : N × R

n × W → R
n

with a compact set W ⊆ R
n, a set Y ⊆ R

n is robustly

asymptotically stable with region of attraction X̂ for this
system, if there exists a class K-function α, such that
|xt|Y ≤ α(|x0|Y), t ∈ N, and limt→∞ |xt|Y = 0, for all

x0 ∈ X̂ , wt ∈ W, compare Rawlings and Mayne (2009).

Definition 2. Given a dynamical system described by
xt+1 = Axt + wt with xt ∈ R

n, wt ∈ W, t ∈ N, where
W ⊆ R

n is a C-set and A is a Schur matrix, the minimal
robust positively invariant set is the nonempty compact set
Y⋆ ⊆ R

n satisfying AY⋆ ⊕ W ⊆ Y⋆ , which is contained
in every compact set Ȳ ⊆ R

n satisfying AȲ ⊕ W ⊆ Ȳ,
see also Kolmanovsky and Gilbert (1998), Raković et al.
(2005).

3. PROBLEM SETUP

We consider linear discrete-time systems of the form

xt+1 = Axt +But + wt, (1)

where xt ∈ R
n is the state and ut ∈ R

m is the control input
at time t ∈ N. The disturbance wt is assumed to be time-
varying, unknown, and to satisfy wt ∈ W ⊆ R

n, t ∈ N,
where W is a known C-set. Furthermore, the probability
distribution of the disturbance wt is assumed to be known.
In particular, we assume wt to be independently and
identically distributed for all t ∈ N according to the
bounded probability density function pw : Rn → R≥0 with
a support that is bounded by W. Further, hard constraints
xt ∈ X , ut ∈ U , t ∈ N on the input and state are given,
where X ⊆ R

n and U ⊆ R
m are C-sets. We assume that

the state xt is available to the controller as a measurement
at any time step t ∈ N. The communication network for
which we would like to reduce the number of transmissions
is situated between the controller and the actuator, as
illustrated in Figure 1.

In order to save communication, the input ut will be
determined by an event-triggered controller of the form

ut = κ(xtj , t− tj), t ∈ N[tj ,tj+1−1] (2a)

tj+1 = inf{t ∈ N≥tj+1 | xt /∈ E(xtj , t− tj)}, (2b)

where j ∈ N and t0 = 0. That is, the control values are only
updated at the sampling instants tj , which are determined
based on the event conditions xt /∈ E(xtj , t − tj). At the
time instances between tj and tj+1 the input ut is open-
loop, that is, not depending explicitly on the current state
xt. This makes it possible to transmit the whole sequence
utj , utj+1, . . . , utj+1−1 to the actuator in one packet at
time tj .

Our goal is to design the controller κ : Rn ×N → R
m and

the set-valued function E : Rn × N → 2R
n

for the closed-
loop system consisting of (1) and (2) such that (i) the
constraints xt ∈ X , ut ∈ U , t ∈ N, are robustly satisfied,
(ii) a C-set Y ⊆ R

n is robustly asymptotically stable,
and (iii) the expected value of the inter-sampling times
satisfies E[tj+1 − tj ] = ∆̄ for a given ∆̄ ≥ 1. We expect
a trade-off between ∆̄ and the size of the set Y, with the
trade-off depending, amongst others, on the probability
distribution pw.

The control scheme will be based on an auxiliary feedback
law defined by the matrix K ∈ R

m×n, which is assumed
to be the desired feedback for the plant if the constraints
are ignored. The following assumption is required to hold.

Assumption 1. The matrix A+BK is Schur.



 Florian D. Brunner et al. / IFAC-PapersOnLine 48-23 (2015) 117–122 119

4. EVENT-TRIGGERED TUBE MPC

We propose a solution to the problem stated in Section 3
based on Tube MPC. That is, the functions κ and E are
determined by the solution of a finite horizon optimal con-
trol problem which is to be solved online at the sampling
instants tj , j ∈ N. The constraints in the optimization
problem are tightened in order to guarantee robust con-
straint satisfaction. In particular, we employ the method
proposed in Chisci et al. (2001) to compute the tightened
constraint sets. We artificially increase the assumed bound
on the disturbances in the computations in order to take
into account the event-triggered implementation of the
controller.

4.1 Setup of the MPC scheme

The finite horizon optimal control problem is defined as
follows for an xt ∈ R

n with t ∈ N. The decision variable
of the optimization problem is

dt = ((x0|t, . . . , xN |t), (u0|t, . . . , uN−1|t)) ∈ DN , (3)

where DN = R
n × · · ·×R

n ×R
m × · · ·×R

m and N ∈ N≥1

is the prediction horizon. The constraints

x0|t = xt, (4a)

∀i ∈ N[0,N−1], xi+1|t = Axi|t +Bui|t, (4b)

∀i ∈ N[0,N−1], xi|t ∈ Xi, (4c)

∀i ∈ N[0,N−1], ui|t ∈ Ui, (4d)

xN |t ∈ Xf (4e)

are imposed on dt, where the variables xi|t represent the
predicted trajectory for the undisturbed system generated
by the inputs ui|t according to (4a) and (4b). The sets
Xi and Ui, i ∈ N[0,N−1], are tightened constraint sets,
depending on the step i in the prediction. The set Xf is a
terminal set. Define the set of all feasible decision variables
for a given point xt ∈ R

n by

DN (xt) = {dt ∈ DN | (4a) to (4e)}. (5)

The tightened constraint sets Xi and Ui are defined by

Xi := X ⊖ Fi, i ∈ N[0,N−1], (6a)

Ui := U ⊖KFi, i ∈ N[0,N−1], (6b)

where the sets Fi ⊆ R
n are chosen in order to capture

the worst-case uncertainty in the prediction, taking into
account that feedback is only present if an event occurs.
The terminal set Xf, as well as the sets Fi, i ∈ N, will be
defined in Subsection 4.2.

The cost function for the finite horizon optimal control
problem is based on the deviation of the predicted input
from the desired feedback u = Kx and is defined for all
t ∈ N and all dt ∈ DN by

JN (dt) =
N−1∑

i=0

ℓ(ui|t −Kxi|t) (7)

for a stage cost function ℓ : Rm → R≥0.

The finite horizon optimal control problem to be solved in
order to obtain κ and E is defined for all t ∈ N and all
xt ∈ R

n by

J0
N (xt) = min

dt∈DN (xt)
JN (dt) (8a)

d
⋆
t (xt) = argmin

dt∈DN (xt)

JN (dt) (8b)

Remark 1. In the case of non-unique minimizers, it is
assumed that d

⋆
t (xt) is any solution to the optimization

problem.

The set where the optimization problem in (8) is fea-

sible is defined by X̂N := {x ∈ R
n | DN (x) �=

∅}. Given any d
⋆
tj
(xtj ) = ((x⋆

0|tj
, . . . , x⋆

N |tj
), (u⋆

0|tj
, . . . ,

u⋆
N−1|tj

)), where tj is assumed to be a sampling instant,

the event conditions are defined by E(xtj , t − tj) :=
x⋆
t−tj |tj

⊕Tt−tj , for given closed sets Ti ⊆ R
n, i ∈ N[1,N ] and

t ∈ N[tj+1,tj+N ]. That is, an event is triggered if the actual
trajectory deviates too much from the predicted trajectory
of the undisturbed system. As the actuator runs out of
buffered inputs after N steps, an event has to be triggered
within the prediction horizon. For this reason we define
TN := ∅. Furthermore, we define T0 = {0}. The control law
is defined by κ(xtj , t − tj) = u⋆

t−tj |tj
for t ∈ N[tj ,tj+N−1].

That is, the finite horizon optimal input is applied in an
open-loop fashion to the plant until the next event occurs
and the next optimal control problem is solved. The closed-
loop system under the event-triggered controller is given
by

xt+1 = Axt +Bu⋆
t−tj |tj

+ wt, t ∈ N[tj ,tj+1−1] (9a)

tj+1 = min{t ∈ N≥tj+1 | xt /∈ x⋆
t−tj |tj

⊕ Tt−tj} (9b)

with wt ∈ W, j, t ∈ N, t0 = 0, and x0 ∈ R
n. As will be

shown in Section 6.2, this definition of the triggering con-
ditions ensures that the times between sampling instants
tj only depend on the realization of the disturbances wt,
but are independent of the initial condition x0.

4.2 Assumptions on the constraints

In the following, assumptions on the sets involved in the
definition of the triggering conditions and the optimal
control problem will be given that ensure robust constraint
satisfaction and robust stability properties for the closed-
loop system (9). The sets Fi, i ∈ N, used to describe the
uncertainty in the prediction, are defined by

Fi :=

i−1⊕

j=0

(A+BK)jW̄, (10)

where the set W̄ ⊆ R
n is an artificial over-approximation

of the set W of disturbances acting on the system, chosen
in a way such that the event-triggered behavior of the
closed-loop system is taken into account. Compare Chisci
et al. (2001), where the sets Fi are defined with W̄ = W.
In particular, the following assumption is made on the sets
Ti and W̄. Different methods for choosing these sets will
be discussed in Section 6.
Assumption 2. It holds that

ATi ⊕W ⊆ Fi+1, i ∈ N[0,N−1]. (11)

The reasoning behind this assumption is that if no event is
triggered at a given time t+ i, then the deviation between
the actual system state xt+i and its prediction x⋆

i|t is

contained in the set Ti. Assumption 2 ensures that even
without feedback the worst case deviation at the next point
in time is bounded by the uncertainty bound Fi+1, which
is computed under the assumption of feedback.
Remark 2. From (10) it follows that F0 = {0}. Further, by
(11) for i = 0 and the assumption that T0 = {0}, it follows
that W ⊆ F1 = W̄ . Moreover, with (10) and 0 ∈ W we
have 0 ∈ Fi for i ∈ N. Furthermore, it holds that

(A+BK)jFi ⊕Fj = Fi+j (12)

for i, j ∈ N, see also Kolmanovsky and Gilbert (1995).
Remark 3. Note that using a single sequence of sets Fi,
i ∈ N[0,N ], to capture all possible future states under event-
triggered feedback is a simplification. A sharper approxi-
mation can be obtained by using a different sequence of
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sets for every different future sequence of inter-sampling
times tj+1 − tj . As the number of these possible future
sequences grows exponentially in the prediction horizon,
the conservative over-approximation above is used in order
to limit the computational effort involved with the MPC
scheme.

The following assumption on the terminal set Xf ⊆ R
n,

equivalent to the choice of the terminal set in Chisci et al.
(2001), is required to hold.
Assumption 3. It holds that

Xf ⊆ X ⊖ FN (13a)

KXf ⊆ U ⊖KFN (13b)

(A+BK)Xf ⊕ (A+BK)NW̄ ⊆ Xf. (13c)

5. MAIN PROPERTIES OF THE MPC SCHEME

In this section, the most important properties of the
proposed event-triggered MPC scheme are presented, that
is, well-definedness of the controller, robust constraint
satisfaction, and asymptotic stability of a compact set for
the closed-loop system. Due to lack of space, the proofs of
the statements have been omitted.

The following lemma ensures that system (9) is well
defined in the sense that if the optimization problem in (8),
defining the controller and the event conditions, is feasible
at initialization, then it remains feasible for all sampling
instants (recursive feasibility).
Lemma 1. Let any t ∈ N, any xt ∈ R

n, and any dt =
((x0|t, . . . , xN |t), (u0|t, . . . , uN−1|t)) ∈ DN (xt) be given.
Let further xt+s+1 = Axt+s+Bus|t+wt+s with wt+s ∈ W
for all s ∈ N[0,i−1], where

t+ i = min{j ∈ N≥t+1 | xj /∈ xj−t|t ⊕ Tj}. (14)

Then it holds that DN (xt+i) �= ∅.

The next theorem guarantees the satisfaction of the con-
straints in the closed-loop system.

Theorem 1. For all x0 ∈ X̂N and any realization of the
disturbances wt ∈ W, t ∈ N, it holds that xt ∈ X and
κ(xtj , t − tj) ∈ U for all t ∈ N[tj ,tj+1−1], j ∈ N, for the
closed-loop system (9).

In order to establish stability properties of the closed-
loop system, the auxiliary functions Vs : R

n → R and
q : Rn → R are introduced. In particular, the stage cost
function ℓ, q, and Vs are required to satisfy the following
assumption.
Assumption 4. The functions ℓ, Vs, and q are continuous
and positive semi-definite. Further, for all x ∈ R

n and all
v ∈ R

m it holds that
Vs((A+BK)x+Bv) ≤ Vs(x)− q(x) + ℓ(v). (15)

Finally, there exist K∞-functions α1 and α2, such that for
all x ∈ R

n it holds that
q(x) ≥ α1(|x|) (16)

and
Vs(x) ≤ α2(|x|). (17)

Remark 4. Assumption 4 requires Vs to be an ISS-
Lyapunov function for the system described by xt+1 =
(A + BK)xt + Bvt. See also Copp and Hespanha (2014),
where an ISS-control Lyapunov function is used as a ter-
minal cost. The assumption is, for example, satisfied for
the quadratic functions ℓ(x) = x⊤Lx, Vs(x) = ηx⊤Sx, and
q(x) = η

2x
⊤Qx, where η ∈ R>0, S = S⊤ > 0,Q = Q⊤ > 0,

L = L⊤ > 0, (A + BK)⊤S(A + BK) = S − Q, and

L−η(2B⊤S(A+BK)Q−1(A+BK)⊤SB + B⊤SB) ≥ 0. Note
that if Assumption 1 is satisfied, it is always possible to
find matrices satisfying these inequalities.

Let Y ⊆ R
n denote the minimal robust positively invariant

set for the dynamics xt+1 = (A+BK)xt+wt with wt ∈ W̄,

t ∈ N. Define for any x ∈ X̂N

V 0
N (x) := J0

N (x) + min
y∈Y

Vs(x− y). (18)

The following lemma ensures that this function decreases
along trajectories of the closed-loop system in a certain
sense.
Lemma 2. For all x0 ∈ X̂N and any realization of the
disturbances wt ∈ W, t ∈ N, it holds that

V 0
N (xtj+1

) ≤ V 0
N (xtj )−

tj+1−1
∑

t=tj

α1(|xt|Y) (19)

for all j ∈ N for the closed-loop system (9).

Define the set

X̄N := {x ∈ R
n | (A+BK)Nx ∈ Xf,

(A+BK)jx ∈ Xj ,K(A+BK)jx ∈ Uj , j ∈ N[0,N−1], },
(20)

which is the set of all states for which the optimization
problem in (8) admits a feasible solution resulting from
the application of the linear feedback u = Kx at each
predicted time step.

Theorem 2. For all x0 ∈ X̂N and any realization of the
disturbances wt ∈ W, t ∈ N, it holds that limt→∞ |xt|Y =
0 for the closed-loop system (9). Further, if there exists an
ǫ > 0 such that Y ⊕ ǫB ⊆ X̄N , then the set Y is robustly
asymptotically stable for the closed-loop system (9) with

region of attraction X̂N .

6. PROBABILISTIC GUARANTEES AND CHOICE
OF PARAMETERS

In this section, we will give techniques to choose the
parameters W̄ and Ti that guarantee the satisfaction of
Assumption 2 and allow a quantification of the worst case
asymptotic bound on the system state and the probability
distribution of the inter-sampling time.

6.1 Event-triggered implementation of Tube MPC

If the main objective is a large region of attraction X̂N and
a small asymptotic bound Y for the closed-loop system,
one may choose W̄ = W and

Ti = A−1(Fi+1 ⊖W) = A−1





i
⊕

j=1

(A+BK)jW



 , (21)

for i ∈ N[1,N−1], in order to satisfy Assumption 2. In
this way, the resulting event-triggered MPC scheme re-
quires the same tightening of constraints, and guarantees
the same worst-case asymptotic bound, as the all-time
triggered scheme in Chisci et al. (2001). The amount of
reduction in communication depends on the particular
probability density function pw.
Remark 5. This result implies that any periodically trig-
gered Tube MPC scheme (not necessarily updating the
inputs at every time point t) can be improved in terms
of the average required communication by using an ap-
propriate event-triggered MPC scheme in its place. In the
event-triggered scheme, whenever the periodically updated
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scheme would normally schedule an update, an event con-
dition along the lines of (21) would be checked beforehand.

6.2 Event-triggered implementation with probabilistic
guarantees

In this subsection, we provide a means to design the
sets T0, T1, . . . , TN−1 and the set W̄, such that a desired
average sampling rate is achieved in the closed-loop system
and Assumption 2 is satisfied. In particular, consider the
probability that an event is triggered at time point t + i
given that the last event occurred at time point t,

P(xt+i /∈ x⋆
i|t ⊕ Ti, xt+j ∈ x⋆

j|t ⊕ Tj , j ∈ N[1,i−1]). (22)

It holds that xt+j − x⋆
j|t =

∑j−1
s=0 A

swt+j−1−s. Further-

more, the disturbances are assumed to be distributed
identically and independently, such that the probability
in (22) is independent of xt and t and is given by

Pi :=

P

(

i−1
∑

s=0

Aswi−1−s /∈ Ti,

j−1
∑

s=0

Aswj−1−s ∈ Tj , j ∈ N[1,i−1]

)

,

(23)

where the disturbances wj , j ∈ N[0,i−1], are generated
according to the probability density function pw.

Remark 6. From (23) it can be seen that the triggering
behavior of the closed-loop system only depends on the
realization of the disturbance sequence, such that neither
the initial condition x0, nor the constraints, nor the
stage cost function ℓ have an influence on the number of
communications in the closed-loop system.

As TN = ∅, and hence an event is guaranteed to occur for
an i ∈ N[1,N ], it holds that

N
∑

i=1

Pi = 1, Pi ≥ 0, i ∈ N[1,N ]. (24)

As pw was assumed to be bounded, it is possible to assign
any values to Pi, i ∈ N[1,N ] in (23) which satisfy (24), by
choosing the sets Ti accordingly.

We propose the following simple method of choosing
the sets T0, T1, . . . , TN−1. Let T ⊆ R

n be any PC-set
and define Ti = ρiT for ρi ∈ R≥0 and i ∈ N[1,N−1].
With this definition it holds that ρr ≤ ρs ⇔ Tr ⊆ Ts
for all r, s ∈ N[1,N−1], such that the probabilities Pi,
i ∈ N[1,N−1], as functions of ρ1, ρ2, . . . , ρi, are continuous
and monotonically non-increasing in ρi for ρ1, ρ2, . . . , ρi−1

fixed. This allows Pi to be approximated (to arbitrary
precision) by a bisection approach. Note that if the scalars
ρj are fixed for j ∈ N[1,i−1], then Pi is a function of ρi
only. Hence, for desired values of Pi and given set T , the
values of ρi may be computed sequentially, starting with
ρ1. The expected value of the inter-sampling time is given

by E[tj+1 − tj ] =
∑N

i=1 iPi for any given j ∈ N. Hence,
by choosing Pi, (and, in turn, Ti) accordingly, any desired
value E[tj+1 − tj ] = ∆̄ for ∆̄ ∈ [1, N ] can be achieved.

Remark 7. By Theorem 1 in Doob (1948), it follows that
the average sampling frequency converges to 1/∆̄ for the
closed-loop system as time increases in the sense that
limt→∞

1
t
E(max{j ∈ N | tj ≤ t}) = 1/∆̄.

If the sets T0, T1, . . . , TN−1 are known, the enlarged dis-
turbance set W̄ may be determined by defining W̄ := ρ̄W
for a ρ̄ ∈ R≥1 such that Assumption 2 is satisfied. In this
case, it holds that Y = ρ̄Y⋆, where Y⋆ is the minimal

robust positively invariant set for the case W̄ = W, which
follows immediately from equation (3) in Raković et al.
(2005).

7. NUMERICAL EXAMPLES

In this section, we provide two examples 1 showing the
reduction of communication with the proposed scheme.

7.1 Event-triggered implementation of a given Tube MPC
scheme

Let the system be given by

xt+1 =
[

1.1 0.2
0 1.2

]

xt +
[

0
1

]

ut + wt, (25)

where wt is independently uniformly distributed on W =
[−1, 1]2 for t ∈ N. The feedback matrix K has been chosen
LQ-optimal with the weighting matrices Q = [ 1 0

0 1 ] and
R = 1. In the first example, we investigated the closed-
loop behavior for sets Ti, i ∈ N[1,N−1], constructed as

proposed in Section 6.1. We defined W̄ = W and imple-
mented the resulting event-triggered MPC scheme with a
prediction horizon of N = 10. A simulation of Tsim = 105

steps yielded the distribution of time steps between events
displayed in Table 1. The average time between events was
1.42, which amounts to a 29% reduction in communication.
Note that the region of attraction and worst-case asymp-
totic bound on the system state are exactly the same for
the scheme in Chisci et al. (2001) and the event-triggered
scheme presented here. Consider further the performance

index Jperf := 1/Tsim

∑Tsim−1
t=0 (x⊤

t Qxt + u⊤
t Rut). For this

example the performance index for the closed-loop system
with an MPC update at every time step was Jpt

perf = 5.69.
The performance index for the event-triggered scheme was
Jet
perf = 5.79, which amounts to a 1.73% increase when

compared to the scheme with updates at every point in
time. The sequence of disturbances in the simulation of
both control schemes was chosen to be identical.

Table 1. Distribution of inter-sampling times
for an event-triggered implementation of a

Tube MPC scheme.

inter-sampling frequency
time

1 77.96%
2 12.82%
3 4.63%
4 1.95%
5 1.12%

inter-sampling frequency
time

6 0.68%
7 0.34%
8 0.22%
9 0.11%

10 0.19%

7.2 Event-triggered Tube MPC with assigned distribution
of inter-sampling times

In the second example, we implemented the scheme as pro-
posed in Section 6.2. Consider the same setup as in the first
example. We chose T = [−1, 1]2 and used a Monte-Carlo-
approach to evaluate the probabilities Pi for given ρi with
a 95% confidence interval of [−0.005, 0.005]. The values
for ρi were computed with a bisection iteration with an
error tolerance of [−0.005, 0.005], using the aforementioned
Monte-Carlo-approach in each step. Hence, the probabili-
ties Pi are contained in an interval of [−0.01, 0.01] around
their desired values (chosen to be P1 = P5 = 0.1, P2 =
P4 = 0.2, P3 = 0.4, and P6 = P7 = . . . = P10 = 0) with

1 YALMIP (Löfberg (2004)), the Multi-Parametric Toolbox 3.0
(Herceg et al. (2013)) and IBM ILOG CPLEX Optimization Studio
(IBM (2014)) were used in the simulations.



122 Florian D. Brunner et al. / IFAC-PapersOnLine 48-23 (2015) 117–122

95% confidence. The values chosen for the probabilities Pi

imply a desired average of 3 time steps between sampling
instants and thus an average reduction in communication
by 66.7%. The resulting values of ρi for i ∈ N[1,4] were
computed to ρ1 = 0.9492 ρ2 = 1.3750, ρ3 = 0.9688, and
ρ4 = 0.7188. The remaining ρi for i ∈ N[5,10] were set
to 0. The value of ρ̄ was computed to ρ̄ = 2.3435, which
is at the same time the factor describing the increase in
the guaranteed asymptotic bound on the system state and
the increase in necessary constraint tightening. The region
of attraction depends on the constraints on the state and
input, which were not considered in these examples. Note
that a tightening of constraints does not necessarily lead
to a reduction of the region of attraction. A simulation of
105 steps yielded the distribution of time steps between
events displayed in Table 2. All frequencies are within an
interval of [−0.01, 0.01] around the assigned probabilities
Pi as guaranteed with 95% confidence by the combined
Monte-Carlo-bisection iteration above. The average time
between events was 2.9989, which amounts to a 66.55%
reduction in communication. For this example we obtained
J
pt
perf = 5.77 and Jet

perf = 7.85 which amounts to a 36%
increase of the performance index for the event-triggered
scheme when compared to a scheme with updates at every
point in time.

Table 2. Distribution of inter-sampling times
for an event-triggered Tube MPC scheme with

assigned probabilities.

inter-sampling frequency
time

1 9.88%
2 20.19%
3 40.56%

inter-sampling frequency
time

4 19.77%
5 9.60%

Remark 8. The disturbances were assumed to be uni-
formly distributed in the examples. Much more favorable
results (greater reduction in communication with smaller
performance loss) can be expected for sporadically oc-
curring disturbances, that is for probability distributions
which are mostly concentrated around the origin.

8. CONCLUSIONS AND OUTLOOK

We have presented a robust event-triggered MPC scheme
based on Tube MPC methods. It was shown that the
required amount of communication in the control system
can be reduced without sacrificing the guarantees offered
by a periodically updated Tube MPC scheme. Further
reduction of the required communication and assignment
of a desired expected value of the time between events
is possible by allowing a larger asymptotic bound on the
system state and tightening the constraints in the predic-
tion, while introducing a trade-off between the closed-loop
performance and the average required communication.

The results in this paper rely heavily on the fact that
the disturbances are independent and that the expected
value of the time between events only depends on the
disturbances occurring in exactly this time span. These
assumptions are not necessarily satisfied in the case of
output feedback or disturbances generated by a (randomly
disturbed) exosystem, both of which are subject to future
research.
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