
Robust Execution of Contingent, Temporally Flexible Plans ∗

Stephen A. Block, Andreas F. Wehowsky and Brian C. Williams
Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA

sblock@mit.edu, andreas@wehowsky.dk, williams@mit.edu

Abstract

Many applications of autonomous agents require groups to
work in tight coordination. To be dependable, these groups
must plan, carry out and adapt their activities in a way that is
robust to failure and uncertainty. Previous work has produced
contingent plan execution systems that provide robustness
during their plan extraction phase, by choosing between func-
tionally redundant methods, and during their execution phase,
by dispatching temporally flexible plans. Previous contingent
execution systems use a centralized architecture in which a
single agent conducts planning for the entire group. This can
result in a communication bottleneck at the time when plan
activities are passed to the other agents for execution, and
state information is returned.
This paper introduces the plan extraction component of a ro-
bust, distributed executive for contingent plans. Contingent
plans are encoded as Temporal Plan Networks (TPNs), which
use a non-deterministic choice operator to compose tempo-
rally flexible plan fragments into a nested hierarchy of con-
tingencies. To execute a TPN, the TPN is first distributed over
multiple agents, by creating a hierarchical ad-hoc network
and by mapping the TPN onto this hierarchy. Second, candi-
date plans are extracted from the TPN using a distributed, par-
allel algorithm that exploits the structure of the TPN. Third,
the temporal consistency of each candidate plan is tested us-
ing a distributed Bellman-Ford algorithm. Each stage of plan
extraction distributes communication to adjacent agents in the
TPN, and in so doing eliminates communication bottlenecks.
In addition, the distributed algorithm reduces the computa-
tional load on each agent. The algorithm is empirically vali-
dated on a range of randomly generated contingent plans.

Introduction
The ability to coordinate groups of autonomous agents is key
to many real-world tasks, such as a search and rescue mis-
sion, or the construction of a Lunar habitat. Achieving this
ability requires performing robust execution of contingent,
temporally flexible plans in a distributed manner. Meth-
ods have been developed for the dynamic execution (Morris
& Muscettola 2000) of temporally flexible plans (Dechter,
Meiri, & Pearl 1991). These methods adapt to failures that

∗This work was made possible by the sponsorship of the
DARPA NEST program under contract F33615-01-C-1896
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fall within the margins of the plan and hence add robustness
to execution uncertainty.

To address plan failure, (Kim, Williams, & Abramson
2001) introduced a system called Kirk, that performs dy-
namic execution of temporally flexible plans with contin-
gencies. These contingent plans are encoded as alternative
choices between functionally equivalent sub-plans. In Kirk,
the contingent plans are represented by a Temporal Plan Net-
work (TPN) (Kim, Williams, & Abramson 2001), which
extends temporally flexible plans with a nested choice op-
erator. To dynamically execute a TPN, Kirk continuously
extracts a plan from the TPN that is temporally feasible,
given the execution history, and dispatches the plan, using
the methods of (Tsamardinos, Muscettola, & Morris 1998).
Dynamic execution of contingent plans adds robustness to
plan failure.

However, as a centralized approach, Kirk can be brittle to
failures caused by communication limitations. This is be-
cause the agent performing planning must communicate the
plan with all other agents before execution. This leads to a
communication bottleneck at the lead agent.

We address this limitation through a distributed version of
Kirk, which performs distributed dynamic execution of con-
tingent temporally flexible plans. The distributed approach
evens out communication requirements and reduces the brit-
tleness to a single communication bottleneck.

This paper focuses on a method for dynamically select-
ing a feasible plan from a TPN. A subsequent method for
performing distributed execution of the plan is presented
in (Block, Wehowsky, & Williams 2006). Our key inno-
vation is a distributed, hierarchical algorithm for search-
ing a TPN for a feasible plan. This algorithm shares the
computational load of plan extraction between all agents,
thus reducing the computational complexity for each agent,
and exploits parallelism through concurrent processing. Our
plan selection algorithm, Distributed-Kirk (D-Kirk), is com-
prised of three stages.

1. Distribute the TPN across the processor network,
2. Generate candidate plans through distributed search on

the TPN, and
3. Test the generated plans for temporal consistency.

802

This paper begins with an example TPN and an overview
of the way in which D-Kirk operates on it. We provide a
formal definition of a TPN and then discuss the three stages
of D-Kirk. Finally, we discuss the complexity of the D-Kirk
algorithm and present experimental results demonstrating its
performance.

Example Scenario
In this section, we discuss at a high level the three step
approach taken by D-Kirk to execute a contingent plan.
Throughout this paper we use a simple, pedagogical exam-
ple TPN to aid understanding of the key concepts.

This TPN is represented as a graph in Fig. 1, where nodes
represent points in time and arcs represent activities. Each
activity is labeled with upper and lower time bounds that
represent the temporal constraints on its duration. A path-
way through the TPN is a thread of activity. A node repre-
senting a non-deterministic choice for the target of its path-
way is called a choice node and is shown as an inscribed
circle.

[0,0][0,
0]

[0,
0] D[0,0]

ActivityC [1,2]

[0,0]

JI

[0,0]
[0,0]

[0,3]

HG

E F
ActivityA [1,2]

ActivityB [1,2]

K L M N
ActivityD [1,2]

A B

[0,0]

[0,0]

[0,0]

[0,
0]

C

[0,3]

Figure 1: Example TPN

The plan is to be executed by a group of seven processors,
p1, . . . , p7. To perform distributed plan selection, the first
step is to distribute the TPN itself over the processors. A
TPN is built as a hierarchy of nested subnetworks, and we
exploit this hierarchy when distributing the plan selection
problem.

To facilitate TPN distribution, a leader election algorithm
is used to arrange the processors into a hierarchy (Fig. 2).
The hierarchical structure of the TPN is then used to map
subnetworks to processors. For example, the master pro-
cessor p1 handles the composition of two subnetworks of
the plan at the start node (node A) and the end node (node
B). It passes responsibility for each of the two main subnet-
works to the two processors immediately beneath it in the
hierarchy. Nodes C,D,E,F,G,H are passed to p2 and nodes
I,J,K,L,M,N are passed to p3.

In the remaining two steps the processors work together
to extract a plan from the TPN that is temporally consistent.
Step two generates a candidate plan. This involves select-
ing a single thread of execution from the plan. This step
coordinates in a hierarchical fashion, where each processor
sends messages to its neighbors in the hierarchy correspond-
ing to the subnetworks of the TPN. Neighbors are requested
to make selections in the subnetworks for which they are
responsible and in this way, selections are made concur-
rently. In the example, only the subnetwork owned by p2

p6

p3

p7

p1

p2

p4 p5

Figure 2: A three-level hierarchy formed by leader election

(nodes C,D,E,F,G,H) contains a choice, that is, p2 must de-
cide between ActivityA and ActivityB, whereas p3 has
no choice to make.

Having generated a candidate plan, the third and final
step of D-Kirk is to test the candidate plan for consistency.
Again, this is performed in a hierarchical fashion, where
consistency checks are first made at the lowest level and suc-
cessful sub-plan candidates are then checked at an increas-
ingly higher level. For example, p2 and p3 simultaneously
check that their subnetworks are internally consistent. If so,
p1 then checks that the parallel execution of the two candi-
dates is consistent.

Throughout the plan generation and consistency checking
phases of D-Kirk, processors exchange messages to coordi-
nate their activities. These messages are distributed between
all processors, avoiding the communication bottleneck at the
leader node which is present in a centralized architecture.
In addition, candidate generation (Step 2) and consistency
checking (Step 3) are interleaved, such that some of the pro-
cessors are generating candidates while others are simulta-
neously checking consistency. This use of parallel process-
ing improves the efficiency of the algorithm.

Temporal Plan Networks
A TPN is used to represent a contingent, temporally flexible
plan. The primitive element of a TPN is an activity[l, u],
which is an executable command with a simple temporal
constraint. The simple temporal constraint [l, u] places a
bound t+ − t− ∈ [l, u] on the start time t− and end time
t+ of the network to which it is applied. A TPN is built
from a set of primitive activities and is defined recursively
using the choose, parallel and sequence operators,
taken from the Reactive Model-based Programming Lan-
guage (RMPL) (Williams et al. 2003), (Kim, Williams, &
Abramson 2001). These operators are defined below. A
TPN encodes all executions of a non-deterministic concur-
rent, timed program, comprised of these operators.

• choose(TPN1, . . . , TPNN) introduces multiple sub-
networks of which only one is to be chosen. A choice
variable is used at the start node to encode the currently
selected subnetwork. A choice variable is active if it
falls within the currently selected portion of the TPN. The
choose operator allows us to specify nested choices in
the plan, where each choice is an alternative sub-plan that
performs the same function.

803

• parallel(TPN1, . . . , TPNN) [l, u] introduces multi-
ple subnetworks to be executed concurrently. A simple
temporal constraint is applied to the entire network. Each
subnetwork is referred to as a child subnetwork.

• sequence(TPN1, . . . , TPNN) [l, u] introduces multi-
ple subnetworks which are to be executed sequentially.
A simple temporal constraint is applied to the entire net-
work. For a given subnetwork, the subnetwork following
it in a sequence network is referred to as its successor.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 3. Nodes represent time events and directed edges rep-
resent simple temporal constraints.

activity

parallel

A

Z

[l,u]

[0,0][0,
0]

[0,
0][0,0]

ES

S E

choose

A

Z

[0,0][0,
0]

[0,
0] ES [0,0]

sequence

A
[0,0]

[0,0]

ES

Z
[0,0]

[0,0]

[l,u]

[l,u]

Figure 3: TPN Constructs

A temporally consistent plan is obtained from the TPN if
and only if a feasible choice assignment is found. See (We-
howsky 2003) for a more precise definition.

Definition 1 A temporally flexible plan is temporally con-
sistent if there exists an assignment of times to each event
such that all temporal constraints are satisfied.

Definition 2 A feasible choice assignment is an assignment
to the choice variables of a TPN such that 1) all active
choice variables are assigned, 2) all inactive choice vari-
ables are unassigned, and 3) the temporally flexible plan
(program execution) corresponding to this assignment is
temporally consistent.

TPN Distribution
Recall that the first step of D-Kirk is to distribute the input
TPN over the available processors. The TPN may be pro-
vided by a high-level generative planner or by a human op-
erator, but plan generation is outside the scope of this paper.

To support this and the subsequent two steps, the proces-
sors must first be able to communicate. To accomplish this,
D-Kirk begins by establishing a hierarchical, ad-hoc com-
munication network. In addition, an overall leader is se-
lected, in order to initiate plan extraction and to communi-
cate with the outside world.

Ad-Hoc Processor Network Formation

We use the leader election algorithm in (Nagpal & Coore
1998) to arrange the processors into a hierarchical network,
an example of which is shown in Fig. 2. For each process-
ing node, the node immediately above it in the hierarchy
is its leader, those at the same level within that branch of
the hierarchy are its neighboring leaders and those directly
below it in the hierarchy are its followers. The leader elec-
tion algorithm forms a hierarchy using a message passing
scheme that ensures that every node can communicate with
its leader, as well as with all neighboring leaders and fol-
lowers. Note that the hierarchical communication structure
lends itself well to distributing the TPN, which is also hier-
archical. It may be possible to improve the performance of
the plan selection algorithm by using the TPN structure to
guide the formation of the processor hierarchy. This is an
interesting direction for future work.

TPN Distribution over the Processor Network

A TPN is distributed by assigning to each processor the re-
sponsibility for zero or more nodes of a TPN graph, such that
each node is assigned to exactly one processor. During the
subsequent two steps of D-Kirk, each processor maintains
all data relevant to its assigned nodes.

This distribution scheme requires that two processors be
able to communicate whenever they have been assigned two
TPN nodes that are linked by a temporal constraint. This
requirement is satisfied by D-Kirk’s TPN distribution algo-
rithm, shown in Fig. 4. See (Wehowsky 2003) for further
explanation. Note that the algorithm allows the TPN to be
distributed down to a level at which a processor handles only
a single node; this permits D-Kirk to operate on heteroge-
neous systems that include computationally impoverished
processors.

We now demonstrate this distribution algorithm on the
TPN of Fig. 1 and the processor hierarchy of Fig. 2. The
TPN is supplied from an external source, which establishes
a connection with the top-level leader, p1. The TPN is a
parallel network at the highest level, hence processor p1
assigns the start and end nodes (nodes A,B) to itself (line
7). There are two subnetworks, which p1 assigns to its two
followers, p2 and p3 (lines 15-18). p1 passes the choose
subnetwork (nodes C,D,E,F,G,H) to p2 and the sequence
subnetwork (nodes I,J,K,L,M,N) to p3. p2 and p3 then pro-
cess their subnetworks in parallel. p2 assigns the start and
end nodes (nodes C,D) to itself (line 7). This network has
two subnetworks, which p2 assigns to two of its followers,
p4 and p5 (lines 15-18). p2 passes ActivityA (nodes E,F)
to p4 and ActivityB (nodes G,H) to p5. Since activities
can not be decomposed, p4 and p5 assign nodes E,F and
G,H, respectively, to themselves (lines 3-4). Meanwhile, p3
receives the sequence subnetwork and assigns the start and
end nodes (nodes I,J) to itself (line 7). This network has two
subnetworks, which p3 assigns to two of its followers, p6
and p7 (lines 15-18). p3 passes ActivityC (nodes K,L) to
p6 and ActivityD (nodes M,N) to p7. p6 and p7 then as-
sign nodes K,L and nodes M,N, respectively, to themselves
(lines 3-4).

804

1: wait for TPN
2: n ← number of followers of p
3: if TPN is of type activity then
4: assign start and end nodes of TPN to p
5: else
6: k ← number of subnetworks
7: assign start and end nodes to p
8: if n = 0 then
9: if p has a neighbor leader v then

10: send k
2

subnetworks of TPN to v

11: assign k
2

subnetworks of TPN to p
12: else
13: assign TPN to p
14: end if
15: else if n ≥ k then
16: for each of k subnetworks of TPN do
17: assign subnetwork of TPN to a follower of p
18: end for
19: else if n < k then
20: for each of n subnetworks of TPN do
21: assign subnetwork to a follower of p
22: end for
23: assign remaining (k − n) subnetworks of TPN to p
24: end if
25: end if

Figure 4: TPN Distribution Algorithm for node p

Candidate Plan Generation
Having distributed the TPN across the available processors,
D-Kirk’s second step generates candidate plans. These can-
didates correspond to different assignments to the choice
variables at each choice node, and can be viewed as a re-
stricted form of a conditional CSP (Mittal & Falkenhainer
1990). D-Kirk uses parallel, recursive, depth first search to
perform these assignments. This use of parallel processing
is one key advantage of D-Kirk over a traditional, central-
ized approach.

D-Kirk operates on three network types formed from the
four types fundamental to a TPN. These are activity,
parallel-sequence and choose-sequence, as shown
in Fig. 5, where the subnetworks Ai, . . . , Zi are of any of
these three types. We handle the simple temporal constraint
present on a sequence network by considering a sequence
network as a special case of a parallel-sequence net-
work, in which only one subnetwork exists.

Note that while a simple temporal constraint [l, u] is lo-
cally inconsistent if l > u, we assume that the TPN is
checked prior to running D-Kirk, to ensure that all tem-
poral constraints are locally consistent. This assumption
means that only parallel-sequence networks can intro-
duce temporal inconsistencies.

D-Kirk uses the following messages for candidate plan
generation.

• findfirst instructs a network to make the initial search
for a consistent set of choice variable assignments.

• findnext is used when a network is consistent inter-
nally, but is inconsistent with other networks. In this
case, D-Kirk uses findnext messages to conduct a sys-
tematic search for a new consistent assignment, in order

activity

parallel-sequence

A1

Z1

[l,u]

[0,0][0,
0]

[0,
0][0,0]

ES

S E

S

Zn

[0,0]

[l,u]

Zn

[0,0]

[0,0]

[0,0]

choose-sequence

A1

Z1

[0,0][0,
0]

[0,
0][0,0]

E

Zn

[0,0]

Zn

[0,0]

[0,0]

[0,0]

Figure 5: Constructs for D-Kirk

to achieve global consistency. findnext systematically
moves through the subnetworks and returns when the first
new consistent assignment is found. Therefore, a success-
ful findnext message will cause a change to the value
assigned to a single choice variable, which may in turn
cause other choice variables to become active or inactive.
Conversely, findfirst attempts to make the first con-
sistent assignment to the choice variable in every choice
node in the network.

• fail indicates that no consistent set of assignments was
found and hence the current set of assignments within the
network is inconsistent.

• ack, short for acknowledge, indicates that a consistent set
of choice variable assignments has been found.

Whenever a node initiates search in its subnetworks, using
findfirst or findnext messages, the relevant processors
search the subnetworks simultaneously. This is the origin of
the parallelism in the algorithm.

The following three sections describe the actions carried
out by the start node of each network type on receipt of a
findfirst or findnext message. Pseudo-code for each
section of the algorithm is shown in Figs. 7 through 11 in
the appendix. A more detailed description of the algorithm,
including a walk-through of the pseudo-code for an example
TPN, can be found in (Wehowsky 2003).

Activity
During search, an activity node propagates request mes-
sages forward and response messages backward.

Parallel-Sequence Network
On receipt of a findfirst message, the start node v of a
parallel-sequence network initiates a search of its sub-
networks and of any successor network, in order to find a
temporally consistent plan. The pseudo-code is in Fig. 7.

First, the start node sends findfirst messages
to the start node of each child subnetwork of the
parallel-sequence structure (lines 2-4) and to the start

805

node of the successor network, if present (lines 5-7). These
searches are thus conducted in parallel. If any of the child
subnetworks or the successor network fails to find a locally
consistent assignment (line 12), then no consistent assign-
ment to the choice variables exists and the start node returns
fail (line 13).

Conversely, suppose that all child subnetworks and the
successor network find variable assignments such that each
is internally temporally consistent. The start node must then
check for consistency of the entire parallel-sequence
network (line 15). This is performed by a distributed
Bellman-Ford consistency checking algorithm, which is ex-
plained in the next section. If the consistency check is suc-
cessful, the start node returns an ack message to its parent
(line 16) and the search of the parallel-sequence net-
work is complete.

If, however, the consistency check is not successful, the
start node must continue searching through all permutations
of assignments to the child subnetworks for a globally con-
sistent solution (line 18). The pseudo-code for this search is
in Fig. 8. The start node sends findnext messages to each
subnetwork (lines 1-2). If a subnetwork fails to find a new
consistent solution then the start node sends a findfirst
message to that subnetwork to reconfigure it to its original,
consistent solution (lines 11-12) and we move on to the next
subnetwork. If at any point, a subnetwork successfully finds
a new consistent solution, the start node tests for global con-
sistency and returns true if successful (lines 4-6). If the
consistency check is unsuccessful, we try a different permu-
tation of variable assignments (line 8) and continue search-
ing. If all permutations are tested without success, then no
globally consistent assignment exists (line 15).

When the start node v of a parallel-sequence net-
work receives a findnext message, it systematically
searches all consistent assignments to its subnetworks, in
order to find a new globally consistent assignment, just as
described above. The pseudo-code is in Fig. 9.

If the search for a new globally consistent assignment
(line 1) is successful, the start node sends ack to its par-
ent (line 2). If it fails, however, the start node attempts to
find a new assignment to the successor network. If a suc-
cessor network is present, the start node sends a findnext
message and returns the response to its parent (lines 3-6). If
no successor network is present, then no globally consistent
assignment exists and the node returns fail (line 8).

Choose-Sequence Network
When the start node of a choose-sequence network re-
ceives a findfirst message, it searches for a consistent
plan by making an appropriate assignment to its choice vari-
able and by initiating search in its successor network, if
present. The pseudo-code is in Fig. 10.

The start node begins by sending a findfirst message
to any successor network (lines 2-4). It then systematically
assigns each possible value to the network’s choice variable
and, in each case, sends a findfirst message to the en-
abled subnetwork (lines 5-7). If a subnetwork returns fail,
indicating that no consistent assignment exists, the current
value of the choice variable is trimmed from its domain to

avoid futile repeated searches (line 18), and the next value is
assigned. As soon as a subnetwork returns ack, indicating
that a consistent assignment to the subnetwork was found,
the start node forwards the response from the successor net-
work to its parent and the search terminates (line 12). If no
successor network is present, the network is consistent and
the start node returns ack to its parent (line 14). If all as-
signments to the network’s choice variable are tried without
receipt of an ack message from a child subnetwork, the start
node returns fail to its parent, indicating that no consistent
assignment exists (line 21).

When the start node of a choose-sequence network re-
ceives a findnext message, it first attempts to find a new
consistent assignment for the network while maintaining the
current value of the choice variable. The pseudo-code is in
Fig. 11.

The start node does this by sending findnext to the cur-
rently selected subnetwork (lines 1-2). If the response is
ack, a new consistent assignment has been found, so the
start node returns ack to its parent and the search is over
(lines 4-6). If this fails, however, the start node searches
unexplored assignments to the network’s choice variable, in
much the same way as it does on receipt of a findfirst
message (lines 8-18). Finally, if this strategy also fails, the
start node attempts to find a new consistent assignment in
any successor network, by sending a findnext message
(lines 19-20).

Temporal Consistency Checking
In the third and final step, each plan generated by candidate
generation must be tested for temporal consistency. Consis-
tency checking is implemented using a distributed Bellman-
Ford Single Source Shortest Path (SSSP) algorithm (Lynch
1997), and is run on the distance graph corresponding to
the portion of the TPN that represents the current candidate.
Temporal inconsistency is detected as a negative weight cy-
cle (Dechter, Meiri, & Pearl 1991). Consistency checking
is interleaved with candidate generation, such that D-Kirk
simultaneously runs multiple instances of the distributed
Bellman-Ford algorithm on isolated subsets of the TPN.

Use of the distributed Bellman-Ford algorithm has two
key advantages. First, it requires only local knowledge of the
TPN at every processor. Second, when run synchronously,
it runs in time linear in the number of processors. This
completes the development of the three stages of D-Kirk in-
volved in plan extraction.

Discussion
We conclude by discussing the performance of D-Kirk. In
the centralized case, the time complexity of TPN plan ex-
traction is determined by the complexity of the SSSP algo-
rithm, used to detect temporal inconsistencies and the num-
ber of consistency checks that must be conducted. In the
worst case, Ne checks must be made, where N is the num-
ber of nodes and e is the size of the domain of the choice
variables. A centralized Bellman-Ford SSSP algorithm has
time complexity NE, where E is the number of edges, giv-
ing an overall worst case time complexity of Ne+1E.

806

D-Kirk uses the distributed Bellman-Ford algorithm,
whose computational complexity is linear in the number of
nodes, since each node communicates only with its local
neighbors. D-Kirk begins consistency checking at the deep-
est level in the TPN hierarchy, progressing to higher lev-
els only if consistency is achieved. Therefore, in the worst
case, N consistency checks are required for each permuta-
tion of choice variable assignments; one initiated at each
node. However, the number of variables involved in each
consistency check is reduced as the depth of the check is in-
creased. If the graph hierarchy is assumed to be of depth
m, with branching factor b, then a consistency check initi-
ated at a node at depth x involves O (bm−x) nodes. Each
node communicates with its b + 1 neighbors, hence the time
complexity is O ((b + 1) bm−x). The number of searches at
depth x is bx, thus the total complexity is O ((b + 1) bm).
Averaging over all nodes, the computational complexity per
node is O

(
(b + 1) bm(e+1)

)
.

Compared to the computational complexity of centralized
plan extraction, Ne+1E = bm(e+1)bm−1, we see that D-
Kirk is more efficient provided that b + 1 < bm−1; this is
true for typical plans.

Furthermore, the time complexity of D-Kirk is likely to be
far better than the worst-case estimates, since the fast con-
sistency checks performed on smaller plans at deeper lev-
els may prevent unnecessary, more expensive consistency
checks at higher levels.

The run time performance of D-Kirk was tested empiri-
cally on randomly generated TPNs, using a C++ implemen-
tation that simulates execution on an array of processors.
Exactly one TPN node was assigned to each processor and
the number of nodes in each randomly generated TPN was
varied between 1 and 100. For each TPN instance, the num-
ber of TPN constructs (parallel, sequence or choose)
was varied between 3 and 30 and the maximum recursive
depth was varied between 4 and 10. Run time was measured
by the number of listen-act-respond cycles completed by the
processor network.

Fig. 6 shows a plot of the average number of cycles
against the average number of nodes. The results show that
the variation in the number of cycles is roughly linear with
the number of nodes. This suggests that in practice, the run
time will be dominated by the distributed Bellman-Ford con-
sistency checking algorithm, which is linear in the number
of nodes, as opposed to backtrack search, which is expo-
nential. The reason for this is that the worst-case exponen-
tial time complexity of D-Kirk occurs only when the TPN is
composed entirely of choose subnetworks.

To summarize, this paper introduced the Distributed Tem-
poral Planner (D-Kirk), the plan extraction component of a
distributed executive that operates on contingent, temporally
flexible plans. D-Kirk operates on a Temporal Plan Net-
work (TPN), by distributing both data and algorithms across
available processors. D-Kirk employs a series of distributed
algorithms that exploit the hierarchical structure of a TPN
to, first, form a processor hierarchy and assign TPN subnet-
works to each processor; second, search the TPN for candi-
date plans, and, finally, check for candidate temporal con-

0 20 40 60 80 100
0

20

40

60

80

100

120

140

C
yc

le
s

Nodes

Figure 6: Number of cycles vs. number of nodes

sistency. This distributed approach spreads communication
more evenly across the processors, helping to alleviate the
communication bottleneck present in a centralized architec-
ture. Furthermore, D-Kirk reduces the computational load
on each processor and allows concurrent processing.

References
Block, S. A.; Wehowsky, A.; and Williams, B. C. 2006.
Robust execution of contingent, temporally flexible plans.
In ICAPS 2006 Workshop on Planning Under Uncertainty
and Execution Control for Autonomous Systems.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Kim, P.; Williams, B.; and Abramson, M. 2001. Executing
reactive, model-based programs through graph-based tem-
poral planning. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
2001).
Lynch, N. 1997. Distributed Algorithms. Morgan Kauf-
mann.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-1990).
Morris, P., and Muscettola, N. 2000. Execution of temporal
plans with uncertainty. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI-2000),
491–496.
Nagpal, R., and Coore, D. 1998. An algorithm for group
formation in an amorphous computer. In Proceedings of the
Tenth International Conference on Parallel and Distributed
Systems (PDCS-1988).
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-1998), 254–261.
Wehowsky, A. F. 2003. Safe distributed coordination
of heterogeneous robots through dynamic simple temporal
networks. Master’s thesis, MIT, Cambridge, MA.
Williams, B. C.; Ingham, M.; Chung, S.; and Elliott, P.
2003. Model-based programming of intelligent embedded
systems and robotic explorers. In IEEE Proceedings, Spe-
cial Issue on Embedded Software.

807

Appendix : D-Kirk Pseudo-Code

1: parent ← sender of msg
2: for each child do
3: send findfirst to w
4: end for
5: if successor B exists then
6: send findfirst to B
7: end if
8: wait for all responses from children
9: if successor B exists then

10: wait for response from B
11: end if
12: if any of the responses is fail then
13: send fail to parent
14: else
15: if check-consistency(v) then
16: send ack to parent
17: else
18: if search-permutations(v) then
19: send ack to parent
20: else
21: send fail to parent
22: end if
23: end if
24: end if

Figure 7: parallel-findfirst(node v)

1: for w = child-0 to child-n do
2: send findnext to w
3: wait for response
4: if response = ack then
5: if check-consistency(v) then
6: return true
7: else
8: w ← child-0
9: end if

10: else
11: send findfirst to w
12: wait for response
13: end if
14: end for
15: return false

Figure 8: search-permutations(node v) function

1: if search-permutations() then
2: send ack to parent
3: else if successor B exists then
4: send findnext to B
5: wait for response
6: send response to parent
7: else
8: send fail to parent
9: end if

Figure 9: parallel-findnext(node v) function

1: parent ← sender of msg
2: if successor B exists then
3: send findfirst to B
4: end if
5: for w = child-0 to child-n do
6: choicevariable ← w
7: send findfirst to w
8: wait for response from child w
9: if response = ack then

10: if successor B exists then
11: wait for response from successor B
12: send response to parent
13: else
14: send ack to parent
15: end if
16: return
17: else
18: remove w from child list
19: end if
20: end for
21: send fail to parent

Figure 10: choose-findfirst() function

1: w ← current assignment
2: send findnext to w
3: wait for response
4: if response = ack then
5: send ack to parent
6: return
7: end if
8: while w < child-n do
9: w ← next child

10: send findfirst to w
11: wait for response
12: if response = ack then
13: send ack to parent
14: return
15: else
16: remove w from child list
17: end if
18: end while
19: if successor B exists then
20: send findnext to B
21: for w = child0 to child-n do
22: choice variable ← w
23: send findfirst to w
24: wait for response from child w
25: if response = ack then
26: break
27: end if
28: end for
29: wait for response from B
30: send response to parent
31: else
32: send fail to parent
33: end if

Figure 11: choose-findnext() function

808

