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Abstract

Abdelbaki Bouguerra (2008): Robust Execution of Robot Task-Plans: A Knowledge-

based Approach. Örebro Studies in Technology 32. 175 pp.

Autonomous mobile robots are being developed with the aim of accomplishing
complex tasks in different environments, including human habitats as well as
less friendly places, such as distant planets and underwater regions. A major
challenge faced by such robots is to make sure that their actions are executed
correctly and reliably, despite the dynamics and the uncertainty inherent in their
working space. This thesis is concerned with the ability of a mobile robot to
reliably monitor the execution of its plans and detect failures.

Existing approaches for monitoring the execution of plans rely mainly on
checking the explicit effects of plan actions, i.e., effects encoded in the action
model. This supposedly means that the effects to monitor are directly observ-
able, but that is not always the case in a real-world environment. In this thesis,
we propose to use semantic domain-knowledge to derive and monitor implicit
expectations about the effects of actions. For instance, a robot entering a room
asserted to be an office should expect to see at least a desk, a chair, and possi-
bly a PC. These expectations are derived from knowledge about the type of the
room the robot is entering. If the robot enters a kitchen instead, then it should
expect to see an oven, a sink, etc.

The major contributions of this thesis are as follows.

• We define the notion of Semantic Knowledge-based Execution Monitor-
ing SKEMon, and we propose a general algorithm for it based on the use
of description logics for representing knowledge.

• We develop a probabilistic approach of semantic knowledge-based exe-
cution monitoring to take into account uncertainty in both acting and
sensing. Specifically, we allow for sensing to be unreliable and for action
models to have more than one possible outcome. We also take into con-
sideration uncertainty about the state of the world. This development is
essential to the applicability of our technique, since uncertainty is a per-
vasive feature in robotics.

• We present a general schema to deal with situations where perceptual in-
formation relevant to SKEMon is missing. The schema includes steps for
modeling and generating a course of action to actively collect such in-
formation. We describe approaches based on planning and greedy action
selection to generate the information-gathering solutions. The thesis also
shows how such a schema can be applied to respond to failures occurring
before or while an action is executed. The failures we address are am-
biguous situations that arise when the robot attempts to anchor symbolic
descriptions (relevant to a plan action) in perceptual information.

The work reported in this thesis has been tested and verified using a mobile
robot navigating in an indoor environment. In addition, simulation experiments



were conducted to evaluate the performance of SKEMon using known metrics.
The results show that using semantic knowledge can lead to high performance
in monitoring the execution of robot plans.

Keywords: autonomous mobile robots, plan execution and monitoring, seman-
tic knowledge, cognitive robotics.
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Chapter 1

Introduction

Autonomous mobile robots are being developed with the aim of accomplishing
a variety of complex tasks in different environments, including human habitats
(e.g., houses, museums, hospitals, etc.) [132, 143] as well as less friendly places,
such as outer space including distant planets [105] and underwater regions
[59]. To perform their assigned tasks successfully, such robots need to be able
to perceive and interact with their environments in an intelligent way. Control
architectures are increasingly employing high-level deliberation techniques that
allow robots to reason about their actions and resources in an effective and
flexible manner. In particular, artificial intelligence planning is used on-board
mobile robots to allow them to synthesize their course of action on their own.
As a result, robots have the possibility to achieve more tasks without having to
be programmed from scratch for each task.

This thesis is concerned with robust execution of robot task-plans in real-
world indoor environments. Our main focus is on the ability of a mobile robot
to monitor the execution of its plans to make sure they are executed as ex-
pected. This ability is essential for the performance as well as the autonomy of
the acting robot. That is to say, an autonomous mobile robot needs to be able
to detect situations where the execution of its actions diverts from what has
been expected to occur.

An autonomous mobile robot must also be able to adapt its behavior in re-
sponse to unpredictable changes and exceptional situations that might emerge
while trying to achieve its tasks. In other words, if the robot is executing a plan
to accomplish a certain task, then it is supposed to be able to find alternative
ways to continue functioning despite the occurrence of unexpected situations.
The thesis presents a general schema to respond to unexpected situations that
involve lack of information relevant to execution monitoring. In addition to
monitoring the execution of plan actions, we show how such a schema can be
applied to respond to failures occurring before or while executing a plan ac-
tion. The failures we address are due to ambiguity in establishing a connection
between symbolic and perceptual data.

1
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1.1 Motivation

In many cases, robots acting in real-world environments face a multitude of
challenging issues. Events whose occurrence leads to the disruption of the ex-
ecution of the robot actions are a typical cause of such issues. For example,
a wet floor might cause the wheels of a mobile robot to slip when the robot
is trying to navigate to a goal destination. A robot that is executing an action
that involves detecting and recognizing objects might find itself not capable of
doing that because the lighting conditions are not favorable for taking good
pictures of the environment. On the other hand, a robot might not find “the
green cup”, which is supposed to be on the table in the kitchen, because an-
other robot picked it up and placed it in the cupboard. Another example is of
a robot that falls down the stairs because it thought it was navigating in a safer
place. The list of examples can be very long, however what should be retained
is that in all those cases, the robot failed to execute its actions correctly.

Generally, failures to execute actions are detected when the robot ends up
in situations that it did not expect. Such unexpected situations are caused by
the presence of uncertainty as well as the dynamics and complexity of the envi-
ronment. Uncertainty itself might be the result of many factors. The on-board
sensors are an important source of uncertainty because they can be unreliable
due to noise and physical limitations, such as limited range in case of proximity
sensors, and lighting conditions in case of cameras. For instance, navigation
failures are mostly caused by errors in localizing the robot within its environ-
ment, which is in most cases due to poor sensing (e.g., odometry errors). Un-
reliable sensors provide uncertain measurements. Those might lead to wrong
state estimation (e.g, wrong estimation of the robot pose), which itself might
lead to generating wrong controls. As a result, the robot might fail to achieve
its goals.

Failures might also be caused by unreliable actuators such as broken motors
and flat wheels. Unreliable actuators introduce uncertainty in the outcome of
actions, which in turn might result in wrong state estimation; thus, the robot
might wrongly believe that it has successfully executed its action when it has
failed to do so.

Another source of failures might be the model used by the deliberation and
control modules of the mobile robot. A model that does not reflect the true
consequences of the robot’s actions or the state of the environment can lead
to problems that the robot cannot predict. A wrong model would in general
result in issuing wrong controls that lead to execution failures. Add to that
the potential programming errors and bugs introduced while developing the
different modules of the robot architecture [115]. A well-known example of
mission failure is the loss of NASA’s Mars Polar Lander (MPL) in 1999 when
it was about to land on Mars. One possible cause of the failure is speculated to
be the software controlling the descent engine; it is claimed that the software
shut down the engines because of a false landing signal [13].
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Carlson and Murphy [30] collected, during a two-year period, data for
studying the reliability of thirteen mobile robots. The authors analyzed the data
using some standard manufacturing measures including MTBF (Mean Time Be-
tween Failures) and availability1. The studied robots included indoor and field
robots and came from different manufacturers. The study addressed the failures
of robot components that included the control system, effectors, power, sens-
ing, and wireless communication components. The results showed that the field
robots failed more often than the indoor robots and that availability was less
than 50%. The MTBF was about 8 hours, whereas the probability of failure
at a given hour was 5.5%. The components that failed most were the effectors
(35%) including the platform itself, followed by the control system (29%) (in-
cluding the operating system or wired control). The authors included failures
caused by humans such as design and interaction failures in a sequel paper [31]
where more data was collected (1082 additional usage hours, 75 recorded fail-
ures). The MTBF and availability were shown to be improved compared to the
first study (MTBF was 3 timers better, while availability reached 54%). The
authors argued that the improvements might be attributed to learning from
past failures and to repair specialists being better acquainted with the failures.
Although the study did not give any clue about executing high-level plans au-
tonomously, it showed that failure is more the norm than the exception. This
goes against the claims of Dearden et al. [39] and Verma et al. [149] that fail-
ures are low-probability events.

Taking into consideration all these factors, we can claim that without the
ability to monitor the execution of their actions, mobile robots will not notice
whether those actions were executed as predicted or failed to produce their
desired effects. Responding to the detected unexpected situations, on the other
hand, is important because we want the mobile robot to continue acting on its
own to achieve its tasks despite the occurrences of contingencies.

Moreover, the ability to detect unexpected situations and respond to them
is not only a prerequisite for achieving tasks successfully, but it is also a cru-
cial capacity if we want robots to be efficient and safe in their actions and to
their surroundings. In other words, if the robot is able to detect unexpected
situations, then it can avoid taking unintentional harmful actions. Efficiency is,
on the other hand, the result of not taking unnecessary or counter-productive
actions in such unexpected situations.

1.2 Scope of the Thesis

Monitoring approaches of robotic plans have generally focused on comparing
the observed effects resulting from the execution of a plan action with its ex-
plicit effects, which are specified in an action model; usually, models of actions

1MTBF represents the average time to the next failure, while availability represents the ratio of
the average time, a robot is completely functional, to the total average time.
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used by the planner are used to extract the explicit effects of actions. The aim
of the comparison is to establish whether the execution of the action has been
successful (i.e., the comparison reveals no difference) or an unexpected situa-
tion has occurred. Examples of such approaches include the ROGUE mobile
robotic architecture [69] and the work by Fichtner et al. [50].

Relying only on using the explicit effects to monitor the execution of plan
actions supposedly means that the derived expectations are directly observable.
That is, of course, not always realistic in complex environments where checking
expectations is inherently a complex process. Therefore, the primary focus of
this thesis is on

using more advanced forms of reasoning that involve semantic
domain-knowledge to derive and monitor implicit expectations
related to the correct execution of robots’ planned actions.

By semantic domain-knowledge we mean knowledge about objects and
their classes as well as how those objects are related to each other. For in-
stance, in an office environment, an office is a class whose individual instances
(objects) are rooms that have at least one desk and a chair; the entities desks
and chairs denote themselves classes of pieces of furniture, etc. In the context
of monitoring the execution of a robot’s actions, semantic domain-knowledge
is used as a source of information to logically derive implicit expectations from
the explicit ones, i.e., the ones encoded in the action models. The key idea is
to compute implicit expectations that can be checked at runtime to make sure
that actions are executed as expected. For example, if the mobile robot moves
into a room that is asserted to be an office, then it should expect to be in that
room (explicit expectation) as well as to see objects that are typical of an office
(implicit expectations), e.g., a desk, a chair, and possibly a PC. If the robot is
entering a kitchen instead, it should expect to see an oven, a sink, etc.

We also address unexpected situations that occur at execution time. The
emphasis of this thesis is on dealing with unexpected situations that are pri-
marily caused by lack of information that is necessary for accomplishing robot
tasks. We will concentrate on two cases where lack of information is charac-
teristic. First, we consider the case of monitoring the outcomes of an action
where the robot has only partial information about whether the implicit expec-
tations hold. Second, we consider perceptual anchoring where the robot tries
to identify an object that fits a specific symbolic description and that is relevant
to the correct execution of a planned action. More precisely, we are interested
in situations where the robot may not have sufficient information to find the
correct object due to ambiguity resulting from the robot perceiving more than
one candidate object.

In the treatment of the problem addressed in this thesis, we make the fol-
lowing restrictions:
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Plan execution: we restrict our work to deal only with the execution of high-
level symbolic plans. This means that low-level execution is not addressed
in this thesis.

Single mobile robot: we consider the execution of plans of a single mobile
robot. Multi-robot plan execution, although challenging, is not addressed
in this work.

Indoor environments: the robot acts to achieve tasks in an indoor environ-
ment. Tasks that involve outdoor environments are not considered.

1.3 Methodology

We developed our solutions to plan execution monitoring and responding to
unexpected situations using standard tools and techniques from the discipline
of artificial intelligence. To address the problem of monitoring the execution
of plans, we employ semantic domain-knowledge as a source of information
to compute and check conditions that should hold when an action is executed
correctly. We define the notion of Semantic Knowledge-based Execution Mon-
itoring, or SKEMon for short, and we propose a general algorithm for it based
on the use of description logics for representing knowledge. We also develop
a second approach of SKEMon to take into account probabilistic uncertainty
both in acting and sensing. In particular, we allow for sensing to be unreli-
able, for action models to have more than one possible outcome, and we take
into consideration uncertainty about the state of the world. This extension is
essential to the applicability of our approach, since uncertainty is a pervasive
phenomenon in robotics.

To tackle the issue of unexpected situations due to lack of information, we
propose to model those situations as a planning problem and employ artifi-
cial intelligence sensor-based planning to solve it. As a result, the computed
solution takes full advantage of the power of AI planning, i.e., the capacity to
reason by looking several steps ahead in order to select the best course of ac-
tion to solve the problem at hand. Practically, the generated solution is an active
information-gathering plan that includes actions to collect runtime information
in order to reduce uncertainty about the state of the world.

Since we are dealing with practical problems, the best way to validate our
proposed approaches is through carrying out an experimental evaluation. To
this end, we performed extensive simulation experiments to collect data for the
purpose of statistical evaluation of performance. We also implemented our so-
lutions on real mobile robots and ran multiple experiments for different indoor
scenarios. Unfortunately, the lack of shared benchmarks in the field makes the
evaluation against other solutions impossible. In fact, a common problem that
is faced by research works like ours is how to evaluate performance. This prob-
lem is mainly due to lack of appropriate evaluation metrics, which are available
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in other research areas. It is worth noting that in our work we use standard AI
tools that have been validated separately; therefore, our real robot experiments
are best seen as test cases that serve as proofs of concept of the proposed ap-
proaches.

1.4 Thesis Statement

This thesis is about using standard artificial intelligence knowledge represen-
tation and reasoning techniques to achieve a more robust execution of robot
plans. The thesis statement is

Semantic domain-knowledge and sensor-based planning increase
the robustness of autonomous robot architectures because they con-
tribute to the detection and handling of unexpected situations dur-
ing plan execution.

1.5 Contributions

The main contributions of the work reported in this thesis are in the area of
plan execution in mobile robotics. These contributions are:

• The concept of using semantic domain-knowledge to monitor the execu-
tion of robot task-plans. Although the use of semantic knowledge is find-
ing its way in mobile robotic areas, such as mapping and human robot
interaction, it is practically inexistent in plan execution. In fact, we are
the first to propose to use it systematically to monitor the execution of
robot plans, and therefore it is considered to be a major contribution of
the current thesis. The contribution is presented in chapter 4 where an
algorithm that implements it is also presented. A related contribution in-
cludes the development of a probabilistic approach to handle uncertainty
in semantic knowledge based execution monitoring. Chapter 5 presents
the probabilistic approach and discusses how uncertainty in sensing, ac-
tion effects, and world stated is taken into account by the monitoring
process.

• The study of using sensor-based planning to respond to unexpected situ-
ations caused by lack of information. The contribution is formulated as a
general schema that models situations of incomplete knowledge as a plan-
ning problem. The schema is presented in chapter 6 where it is applied to
help the SKEMon process to collect information necessary for deducing
whether the execution of a plan action have been successful. The same
schema is also applied in chapter 7 to resolve situations of ambiguity in
finding an object relevant to the successful execution of an action of a
task-plan.
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Besides the major contributions, the research work leading to the current
thesis has resulted in other contributions. These include a probabilistic con-
ditional sensor-based planner (called Pc-Shop) and a hierarchical executor of
symbolic conditional plans; both of which are presented in chapter 3.

1.6 Dissertation Map

The reader’s guide to the content of the thesis is as follows. In chapter 2, we give
an overview of the research topic of the current thesis. We summarize the state
of the art of the two subproblems addressed in the thesis, i.e., plan execution
monitoring and responding to unexpected situations.

Both formal and practical tools that we used in our research work are pre-
sented in chapter 3. We mainly review the ThinkingCap behavior-based robot
control architecture and the deliberative tools we used to implement our solu-
tions. These tools include the sensor-based planners Ptlplan and Pc-Shop as
well as the description logics inference engine Loom. All of the tools presented
in this chapter were already existent, except for the hierarchical planner Pc-
Shop and the plan executor that were developed by the author and colleagues.

In chapter 4, we cover our first solution to the problem of monitoring im-
plicit expectations of plan actions. The solution is based on using semantic
domain-knowledge to derive and monitor implicit effects of plan actions. This
represents a new idea in the field and therefore is considered to be a major
contribution of the thesis.

In chapter 5, we go one step further in using semantic domain-knowledge
to monitor the execution of robot actions. We take into account quantitative
uncertainty in the form of probabilities to model world states, action outcomes,
sensing, and the way we interpret expectations in our semantic knowledge.

An information gathering schema is presented in chapter 6 to address sit-
uations of lack of information in semantic-knowledge based execution moni-
toring. The chapter shows how sensor-based planning can be used to generate
active information gathering solutions to help in evaluating the outcome of
actions.

In chapter 7, we present a solution to recover from a specific type of per-
ceptual failures called anchoring failures. The chapter presents a case study of
using the schema of information gathering developed in chapter 6 to handle
ambiguous situations in anchoring. These situations arise when the robot can-
not identify a perceived object to anchor to a symbol due to uncertainty about
properties of perceived candidate objects.

Chapter 8 presents real-robot test scenarios as well as simulation exper-
iments. The real robot scenarios were performed in an indoor environment,
and they are intended to show the applicability of the different approaches
presented in this thesis. The simulation experiments, on the other hand, are
intended for a systematic evaluation of performance.
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Chapter 9 presents a summary and a discussion of the contents of the thesis.
This chapter identifies the limitations of the proposed solutions and points out
possible future research directions.
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Chapter 2

Background and Related Work

Plan execution by mobile robots is arguably a complex and challenging task
since it involves dealing with uncertainty and environment dynamics. Auton-
omy requires that mobile robots be able to detect unexpected situations that
might lead to failures to execute their actions. Autonomy requires also that
robots try to handle detected unexpected situations on their own in order to
successfully accomplish their assigned tasks.

Despite the importance of execution monitoring and responding to unex-
pected situations in the process of plan execution, it is rare to find literature
about research work that is addressed solely to them. Instead, they are usually
mentioned briefly when talking about plan execution.

In this chapter, we review research work that has been done in monitoring
the execution of plans as well as strategies used to respond to execution failures.
Although, our main focus is on plan-controlled mobile robotic architectures,
we also give examples of other works that deal with the execution of symbolic
plans.

2.1 Monitoring the Execution of Robot Plans

To accomplish their tasks successfully, plan-based mobile robotic architectures
need to be able to cope with the issues of uncertainty and the dynamics of
the real world that might hinder the correct execution of their task plans. To
achieve that objective, plan execution systems employ monitoring techniques
and methods in order to make sure that plan actions are executed correctly.
The aim of plan execution monitoring is to detect anomalous situations that
might lead to execution failure. Thus plan execution monitoring is a fundamen-
tal functionality that needs to be implemented in order to achieve robustness in
coping with contingencies that might occur at execution-time. Moreover, exe-
cution monitoring is a prerequisite for recovering from unexpected situations.

Most plan execution monitoring approaches in mobile robotics use action
models to compare the explicit effects of actions to what is observed as a result

11
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Figure 2.1: Steps of execution and monitoring of symbolic plans by a mobile robot.

of executing those actions (e.g., see the work of Haigh and Veloso [69] and the
survey by Pettersson [122]). Other approaches address execution monitoring
in an ad hoc fashion, i.e., hard-coded procedures are implemented to monitor
specific conditions of interest (see the works of Beetz [6] and McCarthy and
Pollack [99]). It is worth mentioning that the terms nominal and expected are
also used to describe the situation that should occur when the action is exe-
cuted successfully, while the anomalous situation can be qualified as erroneous,
faulty, or simply unexpected [147, 50].

Figure 2.1 shows the main steps involved in the execution of symbolic plans
by mobile robots. Briefly, the plan executor takes one plan action and trans-
lates it into a set of low-level controls, such as velocity and pan-tilt commands.
During the execution of the generated controls, the on-board sensing modali-
ties (vision, dead-reckoning, etc.) use the data collected by the robot sensors to
compute observations that are used to estimate the actual state of the system.
The monitoring module compares the estimated state with the predicted one
(i.e., the state that should result after the action is executed correctly). The aim
of the comparison is to check whether there is a discrepancy between the two
states, i.e., unexpected situations. If a discrepancy is detected, a diagnosis pro-
cess can be launched in order to identify and classify the occurring unexpected
situation. The diagnosis result can be then used by the plan executor to search
for a recovery solution.
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Example Consider a mobile robot trying to accomplish the task of delivering
a mail to a certain office, located in the room identified by the symbol r1.
The generated task plan could include the following actions to achieve
the assigned task:

(go-near d1)(face d1)(open d1)(enter r1)(drop-mail r1)

The plan includes actions that instruct the robot to move near d1, the
door of the office, face the door, open the door, and finally drop the mail
inside the room. Executing the action (face d1) implies that the robot
has to orient itself until its front camera is facing the door d1. Moni-
toring the execution of this action relies on the observation of what the
robot is seeing to establish the truth value of the predicate (facing d1).
If the truth value of the predicate is found to be true, the execution mon-
itoring process deduces that the action has been successfully executed.
Otherwise, an unexpected situation is detected, which leads to trigger-
ing a recovery procedure with the aim of trying to find a solution, e.g.,
generating a second plan to achieve the goal of facing door d1.

Literature Overview of Execution Monitoring

In the rest of this section, we present an overview of how execution monitoring
is addressed in plan-based robotic architectures. For an overview of execution
monitoring in other artificial intelligence systems, the reader is referred to the
extensive survey by Pettersson [122].

As mentioned above, traditional approaches focus on comparing the esti-
mated state of the world with the one that is predicted to occur when a plan
action is executed successfully. In general, the predicted state is computed using
predefined models that describe the explicit effects of actions. The first plan
controlled mobile robotic architecture Shakey employed the PLANEX system
[52] to execute and monitor the execution of plans generated by the STRIPS
planner [51]. PLANEX used a data structure called a triangle table where each
plan action was annotated with world conditions that made it applicable as well
as the predicted effects of that action when executed successfully. The execu-
tion of plan actions was carried out by parameterized programs that instructed
the robot to perform the desired activity. The representation made it possible
to know the preconditions and effects of any portion of the plan. Therefore,
the executor would execute only the plan portion that was necessary for ac-
complishing the assigned task. PLANEX was able to detect whether the so far
executed portion of the plan had resulted in its predicted outcome. Moreover,
triangle tables allowed the execution monitor to identify situations in which
plan actions would no longer be needed to achieve the assigned task.
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The LAAS architecture [1] is another plan-based control architecture for
mobile robots. Plan execution monitoring is performed by checking the pre-
dicted outcomes of executing a plan action with respect to the state computed
by the on-board sensing modalities. A failure is raised when a deviation be-
tween the two states is detected. The LAAS architecture used the Procedural
Reasoning System (PRS) [77, 78] to implement plan execution and monitoring
functionalities. In a recent work by Lemai and Ingrand [89], the plan executor
of the LAAS architecture was extended to handle the execution of temporal
plans. Consequently, other conditions, such as timeouts of action execution,
has to be taken into account by the execution monitoring process.

In the integrated planning, executing and learning robotic agent ROGUE
[71], hand-coded procedures are used to translate plan actions into sequences
of commands that the robot executor understands. The execution monitoring
process of ROGUE checks the predicted effects of executed actions using re-
dundant tests. For instance, reaching a specific location is checked both by
the navigation system as well as a vision system. Besides plan generation and
execution, ROGUE is designed to learn situations where plan execution has
already failed. Situation-dependent rules are created accordingly to be used by
the planner in order to generate better plans, i.e., plans that try to prevent those
failure-inducing situations. For example, ROGUE could learn situations where
navigation failed due to busy hours; the on-board planner could then take that
fact into account to generate navigation plans that avoided passing through
busy locations [70].

The plan executor of NASA’s Remote Agent architecture [105] handles both
the execution of plan actions as well as execution monitoring. As with the pre-
vious architectures, the executor translates actions to be executed into a set of
executable steps. The appropriate spacecraft components are then asked to per-
form the controls necessary to accomplish the executable steps. The execution
monitoring relies on information that comes from the model-based Mode Iden-
tification and Recovery (MIR) component of Remote Agent. MIR constantly
monitors the state of the spacecraft to detect and identify possible component
failures. To achieve its tasks, MIR compares information, provided by the on-
board sensors, with information generated from the models of the components
given the spacecraft’s current activities. If the sensor data does not contradict
the component models, MIR notifies the plan executor that everything is going
as planned. Otherwise an execution failure is reported causing MIR to try to
identify the cause of the unexpected situation.

The model-free execution monitoring work reported by Pettersson and col-
leagues in [121] represents an exception in that it does not use predefined mod-
els to predict outcomes of action execution to detect failures. Instead, machine
learning techniques are used to learn patterns of failure and success of action
execution. The process of plan execution monitoring observes the behavior of
the robot and detects whether an action is executed correctly based on what it
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has learned. An advantage of this approach is that execution monitoring bene-
fits from past execution experiences to detect execution failures.

Fernández and Simmons [48] use a hierarchy of monitors to monitor the ex-
ecution of navigation plans. The hierarchy includes monitors that are designed
to detect symptoms of specific exceptional situations. For instance, the fact that
the robot does not move is considered to be a symptom of the exceptional sit-
uation of the robot being stuck. The top-level hierarchy monitors are general
monitors designed to cover a large number of exceptions, while the lower-level
hierarchy monitors are more specialized and therefore cover fewer exceptions.
This means that the more general monitors can be used to detect exceptional
situations, which are in general signs of execution failure. The more special-
ized monitors, on the other hand, can be more informative and thus help in
diagnosing the exceptional situation.

In another work by Fernández and colleagues [47], Partially Observable
Markov Decision Processes (POMDP) are used to plan for detecting and re-
covering from execution unexpected situations. POMDPs are a probabilistic
formalism that can represent and reason about uncertainty in world state, ob-
servations, and results of actions. The authors consider both nominal and ex-
ception states for navigation tasks. The actions to plan are those of perform-
ing activities that lead to achieving the assigned task as well as actions that
collect information about the world state and actions for recovery purposes.
Therefore, the computed POMDP policy1 encloses the execution monitoring
process, since faulty states are already identified and taken into consideration
when the policy is being generated. To actually determine the resulting belief
state at execution time, the execution monitoring process uses the available per-
ceptual information to update the belief state of the robot. Belief update might
be costly as a large number of observations and states have to be taken into
account. Thus, in a related work by Verma et al. [147], Bayesian filters are used
to approximate the execution-time belief state. Bayesian filtering techniques are
also applied to detect and diagnose exceptional situations caused by hardware
faults in planetary rovers [148, 149].

The PRS execution system used by the LAAS architecture is an implementa-
tion of the Belief-Desire-Intention (BDI) model of rational agents [24]. In short,
a BDI agent organizes its knowledge about the world in a database (Beliefs) that
is among other things the result of executing a set of adopted plans (Intentions)
to achieve some specific goals (Desires). PRS executes plan actions by instanti-
ating them into a set of predefined declarative procedures that are stored in a
library that contains also execution scripts and plans. The process of instantia-
tion takes into account the current state of the world, which is represented in
a separate database containing symbolic and numerical facts. This database is
continuously updated to reflect the changes detected by the perception system

1A policy is a mapping from belief states to actions, where a belief state is a probability distri-
bution over elementary states. In this case, a belief state includes nominal as well as faulty states
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of the robot. PRS executes a plan action by trying the different corresponding
procedures. If no procedure is applicable, the execution of the action is consid-
ered to have failed. It is also possible in PRS to specify monitoring procedures of
conditions other than the effects of actions. Thus more complicated monitoring
strategies can be defined for each type of action. Other implementations of the
BDI model include RAPS [54], Jadex [124], and the commercial system JACK
[74]. A common feature of all these systems is that they use hand-coded pro-
cedures to monitor events that might affect the execution of the agent actions.
Consequently, expectations about the results of actions are explicitly encoded
in the monitoring procedure. Thus, to handle new events implies writing new
monitoring procedures.

Another execution system inspired by work on intelligent agents is pre-
sented by Dias and colleagues in [43]. The high-level plan executor is imple-
mented using the Intelligent Distributed Execution Architecture (IDEA). The
basic idea of IDEA is to write control systems as a set of control agents. Each
agent uses a model-based reactive planner for reasoning. The proposed archi-
tecture was implemented on a planetary rover with two agents; one agent for
task planning and another one for executing and monitoring the actions of the
task plan.

Other execution monitoring approaches use logic formalisms to describe
the dynamics of the environment. An example of a logic-based approach is the
work of De Giacomo et al. [41] describing a process for monitoring the ex-
ecution of robot programs written in Golog. The working of Golog is based
on the Situation Calculus, which is a logical formalism for reasoning about
the consequences of actions. The execution monitor compares what the robot
expects and what it senses to detect discrepancies and recover from them. Dis-
crepancies are assumed to be the result of exogenous actions. The recovery is
done through a call to a planner to produce a Golog program consisting of a
sequence of actions that locally transform the current situation to the one ex-
pected by the original program before it failed. The work by Fichtner et al. [50]
employs the Fluent Calculus, a logical action formalism, to model actions and
their effects. Besides detecting discrepancies, the authors describe how such a
formalism can be used to provide explanations of why failures occurred, which
can be useful to recover from such failures. Lamine and Kabanza propose to
use Linear Temporal Logic (LTL) with fuzzy semantics to encode knowledge
about successful execution of robot actions [88]. Such knowledge is used by
the monitoring process to check the correct execution of the robot actions by
considering not only present execution information, but also past one. The
monitoring process checks the correct execution of the robot actions by pro-
gressing the temporal formulas over the sequences of symbolic states derived
from the execution traces. In a related work [80], the authors show that using
temporal logic allows to specify monitoring conditions over what should or
should not occur in the future as well as past sequences of states with respect
to the current state of the world.
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There are also approaches that monitor conditions other than the explicit ef-
fects of actions. The monitoring approach proposed by Fraser et al. [57] consid-
ers monitoring plan invariants, i.e., environment conditions that have to hold
during the whole execution episode of a plan. The Rationale-Based Monitoring
approach [146, 99] and Propice-Plan [42] monitor features of the environment
that can affect the plan under construction. When a feature is detected to be
a potential threat to the execution of the plan, the planning process takes into
account such information and adapts the plan under construction accordingly.

The assumptive mobile robotic architecture by Nourbakhsh and Genesereth
[113] focuses on interleaving planning and plan execution to cope with uncer-
tainty due to lack of information through the use of assumptions to simplify the
planning task. For example, when there are several hypotheses about the loca-
tion of the robot, a simplifying assumption can be to consider that the robot is
in the most likely location. Because the planning assumptions might turn out
to be wrong, the execution monitoring process must continuously check that
they are not violated. This ensures that the robot does not execute actions that
might result in disastrous outcomes.

Beetz proposes to use structured reactive controllers (SRCs) to implement
the execution and monitoring system of precomputed plans for office-delivery
tasks [5]. SRCs are collections of procedures intended to be implementations
of reactive controllers that run concurrently. The SRCs include two types of
plans. The first type is called structured reactive plans; they are used to spec-
ify the actions needed to achieve user requests. As in the assumptive planning
architecture above, the structured reactive plans can be created based on as-
sumptions about some features of the environment, e.g., doors of offices to
deliver mail to are all open. The second type of plans are called policies; they
are in charge of maintaining conditions that are necessary to the execution of
the first type of plans. They are also used to monitor the execution of the struc-
tured reactive plans. Policies to monitor assumptions, made by the first type of
plans, need to be specified explicitly.

Ontological control [12] was proposed to monitor the execution of se-
quences of actions used to control industrial plants. The main focus of ontolog-
ical control is to detect deviations of the model-based expected behavior of the
controlled system and classify those deviations according to what caused them.
First, the deviations can be caused by external actions, which might result in
disturbing the functioning of the controlled system. Second, deviations might
be caused by violations of ontological assumptions representing expectations
that are due to faulty action models. These violations are deduced based on the
assumption that the actuators are reliable, i.e., the execution of an action gives
always the same actual outcome, but the model does not reflect that outcome.
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2.2 Responding to Unexpected Situations

To continue acting autonomously, mobile robots need to be able to adapt their
behaviors in response to the detection of unexpected situations while they are
executing their plans. That is to say, an autonomous mobile robot is supposed
to be able to find alternative ways to continue acting, in case the execution of
its actions do not succeed. As it is mentioned by Turner et al. in [144], handling
unexpected events is a difficult task because in many cases they are hard to
detect. Moreover, it is even harder to identify their causes and their severity,
which makes it difficult to decide how to cope with the problems they cause.

Bjäreland observes that recovery from execution failures is a function that
is difficult to characterize because of the different interpretations associated
with it [11]. However, much of the research carried out in autonomous mobile
robotics views execution recovery as part of the system in charge of plan execu-
tion or as a process that uses the functionalities of such a system. For instance,
in [11], [41] and [50] both detecting unexpected situations and responding to
them are constituent parts of the execution monitoring process.

In this section, we survey the different approaches and strategies used to
recover from execution failures. The primary focus will be on recovering from
failures of executing high-level task-plans. However, this does not prevent us
from citing references related to recovery strategies at different levels of execu-
tion.

2.2.1 Response Strategies

Upon the detection of an unexpected situation such as an action execution fail-
ure, the recovery mechanism has to take an immediate action to allow the robot
continue its course of action; if it is not possible to do so, the recovery mecha-
nism should ensure that the robot is put in a safe state. Recovering from plan
execution failures can be done in different ways. In systems that support back-
tracking at execution time, recovery might be to backtrack to a working state,
which is similar to rolling back in software systems such as database manage-
ment systems. However, this technique cannot be used solely in mobile robotics,
simply because there might be no possibility to backtrack to a working state.
Therefore, engaging in the computation of a correction procedure is necessary
in such situations. Another way is to identify potential failures in advance and
compute recovery procedures to deal with them. Such procedures are executed
at runtime, whenever failures associated with them are detected.

Data about past failures and how they were recovered from can be used to
prevent the occurrence of failures. There are two ways to do so. First, the failure
and the procedure used to recover from it can be classified and stored. Second,
the available data about failures can be used to improve the model of action
and world to avoid subsequent similar situations. In our survey, we classify
strategies for handling unexpected situations of plan execution according to
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when those strategies compute the response procedures, i.e., before launching
the execution of plans (off-line) or at plan execution-time (on-line).

2.2.2 On-line Response Strategies

Here, the robot engages in taking a course of action to achieve a certain task
and postpones the computation of responses to recover from failures until they
occur at execution-time. On-line recovery strategies include replanning, plan
adaptation, and reconfiguration of functional modules. Clearly, to be able to
compute recovery solutions at execution-time, mobile robots have to be en-
dowed with situation assessment capabilities to help them identify what went
wrong and possibly why. As observed by Fernández and Simmons, accurate
situation assessment is of primary importance for computing correct recovery
solutions [48]. Not only do correct recovery solutions help to recover from
execution failures, but they also contribute to avoiding the occurrence of new
failures. In other words, if the recovery solution is not correct, then its execu-
tion can lead to other unexpected situations.

Replanning

Replanning is a technique widely used within plan-based control architectures
in mobile robotics. The use of replanning dates back to the early days of mobile
robots where it was used within PLANEX, the plan executor on-board Shakey
the robot [53]. Triangle tables were used within PLANEX to reuse a plan if
one of its actions failed to execute [52]. If no plan portion could be executed,
the planning engine STRIPS [51] was invoked to compute a new plan to reach
the original goal from the current state. Replanning is used within several other
mobile robotic architectures including ROGUE [71], the navigation architec-
ture ThinkingCap [134], and NASA’s remote agent [105].

Responding to unexpected situations using replanning presupposes that the
robot is executing a sequence of actions (plan) to reach a goal state. Every time
a plan action is executed, its effects are checked by the execution monitoring
process so that unexpected situations can be detected. The preconditions of the
next action to execute are also checked by the execution monitoring process to
determine if the action is executable in the current state of the world. When-
ever an unexpected situation is detected, the execution of the current plan is
suspended and a recovery procedure is launched. Computing a recovery solu-
tion involves calling the task planner to find a new plan that transforms the
current (faulty) state into the goal-state of the failed plan. Since the goal-state
might have some facts achieved by the so-far executed actions, the goal-state
of the recovery task might be considered to be the set of unachieved facts. This
idea is used in the temporal planning and executor system IxTeT-eXeC [89].

When the planner finds a new plan, the executor schedules it for execution,
otherwise a permanent execution failure is declared leading to the cancellation
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1. Put the robot in a safe state

2. Compute the current state

3. Find a plan to reach the original goal

4. If plan found, execute it,

5. Else declare permanent failure

Figure 2.2: Main steps of a replanning recovery-strategy.

of the current task. An abstract replanning schema is given in figure 2.2. The
first step in the abstract schema is optional, and depends on the severity of the
faulty state. Some architectures such as ROGUE allow the robot to continue
executing other tasks meanwhile planning to solve other problems [69]. A typ-
ical scenario where replanning can be used is a robot navigating in an indoor
environment. If the current route of the robot is blocked, the planner is called
to try to find another path leading to the goal location.

Replanning is a straightforward recovery strategy, since recovery can be
considered as another planning problem with the current “faulty” state as the
initial state while the goal-state to reach is the same as that of the failing plan.
However, the efficiency of replanning as a recovery strategy depends to a great
extent on a good state estimator and a good action model. The role of the state
estimator is important for replanning because the plan generated depends on
the initial state of the planning problem. If the initial state does not reflect the
state of the world, then the generated plan might be non-executable. Even if
it is executable, it might not lead to the desired goal-state. On the other hand,
having a good action model is important for creating a plan that predicts as
closely as possible the actual outcomes of the actions when they are executed
in the real world.

Plan Adaptation

Plan adaptation is another strategy that is used to cope with unexpected situa-
tions at the time they occur. The key idea of plan adaptation is to keep the cur-
rent plan in execution and try to correct the portion of the plan that has failed,
while unaffected sub-plans continue to be executed. This strategy is adopted
by architectures that execute partial-order plans such as in Cypress [153, 152]
where it is called asynchronous run-time replanning, and in IxTeT-eXeC [89]
where it is referred to simply as plan repair.

When correcting portions of a plan while continuing executing others, cer-
tain issues arise that have to be addressed by the system. The first issue arises
when the state of the world, resulting from the execution of a non failed plan
portion, affects the predictions of the portion being repaired. Consequently,
the planner/executor has to envisage how to integrate the replanned activity
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with the rest of the executing ones. The second issue concerns making sure that
the new replanned portion does not invalidate the other sub-plans, i.e., ensure
conflict-free sub-plans. As stated by Pell et al. in [120], resolving one problem
can lead to new problems, hence not only does the recovery procedure have to
make local repair, but it also has to take into account the overall constraints
related to correct execution.

Both Cypress and IxTeT-eXeC call the same planner that generated the
initial task-plan to perform a search for a local repair plan. An example of
recovery using local plan repair is described by Lemai and Ingrand in [89] where
a mobile robot is asked to carry two objects to their destination locations. As
the robot is executing its plan to achieve the task, execution failure occurs
when the first object is accidentally dropped on the floor. The robot continues
executing the portion of the plan related to the second object, while the portion
related to the first object is being repaired by adding actions to pick up and
carry the fallen object.

Beetz presents another plan adaptation framework where predefined pro-
cesses are embedded in the task plans with the aim of repairing them, should
a belief change be detected [6]. Those processes perform execution-time plan
adaptation in two stages: first a reactive response is produced, then a more
deliberative response is performed to revise the currently executed plan. Belief
change is detected either when failures occur or when opportunities arise. Plan
adaptation is specified by a set of specialized methods that are defined using a
set of transformation rules that might even invoke a planner.

Other architectures that support runtime plan adaptation include the two-
layered robot programming framework CLARAty [111] that employs in its
decision layer the planning system CASPER [33]. In CLARAty, the planner is
continuously in interaction with the executor. In other words, in each cycle
CASPER is called to compute the effects of updates to the current state and
goals on the current plan. If unexpected situations are detected, the planner
tries to repair the currently executed plan.

It is worth mentioning that, from a theoretical point of view, trying to mod-
ify a plan by keeping as much as possible of the old plan (failed plan) can be
harder than planning from scratch [110].

Reconfiguration

One way to provide reliable acting of mobile robots is to make them fault-
tolerant [49, 93], i.e., despite the presence of faults, they can continue acting
[96]. One of the possible strategies to fault-tolerance is the use of redundant
modules (software or hardware) where recovery is performed by reconfiguring
non failing modules to compensate for the failed module.

Among the robotic architectures that use alternative procedures to achieve
tasks, we cite the three-layered architectures ATLANTIS [62], REFLECS [65],
and the executor PRS-CL[106]. ATLANTIS comprises three components: a re-
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active controller, a deliberator and an executor. It is the responsibility of the ex-
ecutor layer to decompose higher-level tasks into low-level tasks and sequence
the primitive activities (reactive sensorimotor processes) achieving them. It also
keeps a set of methods for each task. If the execution of a task fails, an al-
ternative method is tried instead. PRS-CL can be considered as an executor
that provides the functionality of the execution layer in ATLANTIS. PRS-CL
achieves tasks by a set of predefined procedures referred to as Acts depending
on the observed state of the world. REFLECS, on the other hand, addresses
behavioral cycles that manifest themselves in mobile robots’ schema-based re-
active architectures, where control is specified as a configuration of modes (on,
or off mode) of schemas. REFLECS incorporates a deliberative module that
monitors for failures resulting from repeating behaviors due to local optima.
The response consists in computing a new configuration of schema modes us-
ing predefined methods. Typically, the methods determine changeable schemas
and tasks that can replace them. Schemas to be changed are then disabled by
setting their mode to off while schemas replacing them get activated by setting
their mode to on. In [123], Pirjanian presents a formal description of a voting
scheme that shows how redundant behaviors can be combined to reach a more
reliable execution than when just one behavior is used.

The plan executor of NASA’s Remote Agent architecture [120, 105] includes
two sub-modules: EXEC and MIR. EXEC is a reactive plan execution system
that provides control procedures, task decomposition and scheduling as well as
concurrency. The functioning of EXEC is based on the RAPS [54] procedural
language, which is used to define redundant methods to achieve tasks. MIR, on
the other hand, is a deductive model-based mode identification and reconfigu-
ration system. It is used to determine the current state of the spacecraft and to
recompute the configurations of hardware components. MIR is also called by
EXEC to compute sequences of actions to restore function and to recover from
execution failures caused by components of the spacecraft. For instance, if the
action of staring an engine fails because of a stuck valve, MIR can generate
a sequence of actions (such as opening and closing valves) to reconfigure the
components that would make it possible to start the engine.

The SFX-EH architecture [104] addresses the detection, classification, and
recovery from sensing failures. In addition to recalibration and corrective ac-
tions, reconfiguration is one of the strategies used to recover from sensing fail-
ures in SFX-EH. Reconfiguration relies on the presence of redundant logical
sensors, which are perceptual processes that can be used by the same percep-
tion schema of a reactive behavior. If a perception schema detects that one of
its logical sensors has failed, then a new configuration of the other logical sen-
sors is generated to compensate for the failing one. If no reconfiguration can be
generated, the corresponding behavior is deactivated and possibly a new one
that uses a different perception schema is activated.

Reconfiguration may also be used to restore a robot’s functionality follow-
ing a physical damage by adjusting the parameters of the robot’s controller.
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Bongard and Lipson [18, 19] propose an evolutionary strategy to estimate, in
a first stage, damage hypotheses incured by a simulated legged robot when
walking forward. In a second stage, the controller is evolved to cope with the
physical damage. The simulated legged robots are controlled by a neural net-
work. Upon the detection of a failure (e.g., due to a broken leg), the first stage
of the evolutionary algorithm is used to estimate a damage hypothesis on the
basis of a limited number of predefined damage causes. The damage hypoth-
esis and the controller of the physical robot are then fed to the second stage
of the evolutionary algorithm. The aim is to evolve the controller through the
generation using a simulator of the physical robot for fitness evaluation. Then,
the evolved controller is downloaded to the robot for testing. Sensor data re-
sulting from the test is used by the estimation stage together with the evolved
controller to evolve the robot’s simulator so it better reflects the physical robot.

2.2.3 Off-Line Response Strategies

Off-line strategies imply the computation of the response to cope with exe-
cution failures before the robot starts the execution of its tasks. In this class
of responses, the exceptional situations are anticipated, possibly because the
robot has already encountered them, or they are identified during the design
phase. Off-line strategies include contingency planning as well as precomputed
failure-response procedures and plans.

Contingency Planning

As outlined before, uncertainty in sensing as well as in the state of the world
and in the outcomes of actions represent a cause of failure of plan execution.
One way to cope with execution failures is to reason about uncertainty when
plans are generated, i.e., generate contingency plans. The key idea of contin-
gency planning is to plan in advance for potential contingencies by explicitly
encoding responses to possible failures as plan branches of the main plan. A lot
of research work has been carried out to address the issues of uncertainty and
contingencies in planning. For an overview of techniques of planning under un-
certainty, the reader is referred to the survey by Blythe [16] and to the recent
book by Ghallab et al. [63] about artificial intelligence planning.

Using contingency planning to handle failures involves the definition of a set
of actions that collect information at execution-time, so it is possible to deter-
mine the course of action to follow. The main issue with contingency planning
is that the size of the plan increases exponentially with the number of contin-
gencies. Thus, some techniques aim at planning only for contingencies judged
as to have a severe impact on the execution of the main plan (plan without
contingencies).

In the following, we review three planning systems aiming at selecting con-
tingencies to handle failures that might affect the overall value of the plan. The
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Figure 2.3: The two stages of incremental planning under uncertainty.

three approaches share the same incremental structure. They start by building
an initial plan, which is subsequently analyzed for failure places to determine
where it is best to insert plan branches to deal with failures. This process of
planning and plan analysis continues until producing a plan with a desired
value expressed either as a success probability or expected utility. Figure 2.3
schematizes the two-stage incremental process. It is worth noting that all three
systems do not consider the cost (or value) of replanning in their contingency
selection.

The first planning system we review is Weaver [14, 15], which is an prob-
abilistic planner that takes into account actions as well as external events that
can change the state of the world. The external events have a probability of
occurrence conditioned by the satisfaction of some conditions in the state of
the world. The focus of Weaver is on generating plans that solve the planning
problem with a certain degree of success (expressed as a probability). It relies
on a generic planner to find plans, and then tries to correct them in order to re-
duce the effects of external events that might take place at execution time. The
planner does not consider external events when solving the planning problems.
Instead, they are introduced by a failure analysis module that translates the plan
into a Bayesian belief network. The objective of failure analysis is to calculate
the success probability of the plan and to look for events whose occurrences
can lead to failures. The result of the analysis module is used to introduce cor-
rective actions that either undo the effects of the external events, negate their
preconditions, or reduce the occurrence time of an event. The same process
repeats with the corrected plan until producing a plan satisfying the success
probability.

Mahinur [117] is also an incremental planner that addresses the question
of which plan-execution failures should be planned for. Mahinur starts also by
building a plan with a non-zero probability of success. Then, actions are added
to take into account the failure of the plan branch whose utility is maximal.
The planning process stops if the utility of the resulting plan exceeds a preset
threshold or there is no time for extra planning. The identification of the con-
tingency with the greatest impact on the utility of the overall plan is done by
selecting the contingency with maximum disutility.
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More recently, the Just In Case planning system, JIC, [40, 25] was proposed
to cope with uncertainty in action duration and continuous resources for space
rovers. The JIC planner starts by generating a first version of the plan (called
seed plan) taking into account constraints over resources such as their avail-
ability and how they are used by the plan actions. The generated seed plan is
constructed to achieve the rover mission goals with maximum expected utility.
Next, the seed plan is checked for possible failure places to determine the best
point to insert a contingency plan so that the overall utility of the plan is maxi-
mized. The procedure of selecting the contingency branch with maximal utility
would involve calculating the utility of the branch; a calculation that cannot
be done exactly unless the plan of the branch is fully constructed. Therefore,
the authors propose to approximate the utility of a branch without searching
the actual planning. Instead, a reachability graph that reaches the goals is con-
structed and then the utility is back-propagated in the graph. Besides the differ-
ent types of contingencies they consider, the JIC planner and Weaver differ also
in the criterion used to generate plans. Weaver estimates success probability
while the JIC planner estimates utilities.

Although, the three systems share their main incremental structure, there
are differences between the way they consider failure points. Weaver relies on
improving the probability of success, and therefore branches are added where
it is estimated that the probability of success will be improved. In Mahinur, and
the JIC planner, improving the overall utility is used to repair the plan, which
according to [40], makes it possible plan branches in the right place compared
to what Weaver does. On the other hand, Mahinur differs from the JIC planner
in the way the utilities of the contingencies are estimated. Moreover, the JIC
planner considers continuous time and resources, while Mahinur does not.

Universal Planning

Another approach to deal with execution failures is to take into account all sit-
uations (i.e., nominal and unexpected situations) that might arise at execution-
time and associate a reaction for every possible situation. This idea was pro-
posed by Shoppers in [136] to generate universal plans to guide robots in
achieving their goals. It is worth mentioning that the idea of universal plan-
ning has encountered critics regarding the exponential size of all the potential
situations that an agent might encounter at execution time [64].

An example of formalisms that generate plans for all possible situations is
Markov Decision Processes, or MDPs for short [125]. MDPs have been widely
used within mobile robotic architectures as robust control formalisms, e.g.,
[29, 66]. MDPs are a formal model that is used to generate policies (universal
plans) taking into consideration costs and rewards as well as uncertainty about
action outcomes. They generate policies that maximize the expected total return
resulting from the application of actions in states [23, 90]. The use of an MDP
formulation to solve the robot tasks makes it possible to model faulty states as
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possible results of actions, and therefore associate costs with ending up in such
states. As a result, the generated optimal policy takes into account faulty states
and associates actions with them in order to recover to more desirable states.

Partially Observable MDPs [81], or POMDPs for short, extend MDPs to
model environments with partial observability, i.e., where there is uncertainty
about the actual state of the world. Thanks to their ability to represent explicitly
different forms of uncertainty, especially about sensing and acting, POMDPs
have been reported as successful tools in controlling mobile robot to achieve in-
door navigation tasks [114, 139]. The work by Fernandez and colleagues [47]
is an example of using POMDPs in an architecture dedicated to the supervision
of indoor mobile robot navigation. A supervision policy is computed off-line,
and the process of identifying unexpected situations and recovery from them is
performed on-line. The POMDP model classifies states as nominal states and
exceptional states (states to recover from). The exceptional states are deter-
mined as a combination of known exceptional situations (e.g., non navigable
path, perception problems, etc.). Actions can be either recovery actions or ac-
tions to accomplish a certain task such as navigating to a specific location. An
example of a recovery action is to call the path planner to find an alternative
path, when the robot believes it cannot follow a corridor because it is blocked.

Despite the attraction of using POMDPs due to their ability to handle many
aspects of uncertainty, their use is always constrained by the size of the problem
they try to solve. POMDPs become intractable for problems with just hundreds
of states and few observations even when approximate solutions are used [145].
Nevertheless, there are techniques that can give approximate solutions for cer-
tain classes of problems with far greater state spaces [128].

Precoded Failure Responses

Response strategies under this category involve off-line coding of procedures
that the plan executor has to try in order to cope with known failures. This
is equivalent to organizing failures and their responses in a look-up table. At
execution time, the execution monitor is active to detect failures. Upon the de-
tection of a failure, a process of failure identification is launched to identify
the encountered failure. The identified failure can be used to extract the corre-
sponding response procedure from the library of responses [48].

Precomputed failure strategies can be made more reliable by adding a de-
bugging component to assess the influence of recovery procedures on the occur-
rence of subsequent failures. One way to do that is to debug execution traces of
plans to search for dependencies between recovery actions and failures. Depen-
dencies are analyzed to build possible hypotheses of caused failures. Identifying
the most likely hypothesis helps modify recovery actions and add new ones
[76, 75].

Precoded responses are used within the Procedural Reasoning System [78]
and its derivatives PRS-CL [152], and PRS-Lite [106], where failures are re-
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sponded to through the execution of predefined declarative plans/procedures. A
procedure is described by a body specifying the steps to follow to recover from
the failure. Similarly, the RAPs (Reactive Action Packages) execution system
[54] refines abstract plan actions into detailed instructions at execution-time by
choosing a method for the next step in execution from a preexisting library.
Methods to execute abstract actions are selected depending on the context of
the run-time situation, meaning that at run-time the situation of the world is
determined to index the appropriate method in the RAP.

The Task Control Architecture (TCA) [138] is also an execution framework
that has been employed to control several mobile robots. It supports the def-
inition of hierarchical exception handling procedures that are associated with
specific task nodes in the tree of tasks to be executed. If an exception is de-
tected while executing a task node, the associated procedure is called to handle
the exception, and hence the possibility of changing the task tree itself. In case
the exception handler cannot recover from the failure, it is possible to a call
another procedure higher up in the tree to try to handle the exception.

Clearly, using precoded procedures is limited to working with known fail-
ures. As mobile robots work in highly dynamic environments, relying solely on
this approach to achieve reliable execution would not work in face of unknown
and unanticipated failures. For this reason, some of the mobile robotic archi-
tectures employ this strategy together with other strategies, such as plan adap-
tation, reconfiguration, and/or replanning [153]. Moreover, using precomputed
responses to cope with failures implies using robust failure identification and
diagnosis so that the best recovery procedures are selected. The autonomous
underwater vehicle controller ORCA [144] focuses most of its efforts on iden-
tifying unanticipated events and the assessment of their importance using a
backward chaining fuzzy rule-based diagnosis system. A response is selected
for an event if it is assessed as important.

2.2.4 Failure Prevention

In this section, we give an overview of work addressing learning from past
experiences and from interaction with the environment to improve the envi-
ronment model and/or the action model used by planning systems. The aim of
such work is to make it possible for the used planning system to generate plans
that improve execution reliability and avoid failure. Learning methods involv-
ing supervision or methods that learn models completely from scratch [119] are
not considered here, since we assume that the robot has already a sound and
complete planning system and needs only to tune its models to cope with uncer-
tainty about the environment and the outcome of actions. One typical example
of learning systems is OBSERVER, [150], which relies on learning by observing
a set of execution traces generated by an expert. The execution traces are used
to learn operators that are subsequently refined by solving practice problems.
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The TRAIL [8] learning system learns from execution traces generated by
an expert, but it is more interesting since it learns from its own experience
as well. TRAIL learns domain-specific action models to be used by a reactive
agent to generate plans to achieve a certain goal. The action model uses teleo-
operators, TOPs for short, which are processes used to maintain the execution
of a primitive behavior until a condition becomes true. TRIAL aims to learn
preconditions of TOPs that have to be maintained until the realization of the
intended postcondition. Learning is carried out after the execution of a plan ac-
tion fails. Thus learning is interleaved with execution of actions. TRAIL learns
preconditions of TOPs by refining them such that conditions that precede the
successful execution of a TOP are preserved and those that precede a failing
TOP are excluded.

Schmill and colleagues [135] present an example of a learning system that
learns to improve a probabilistic action model. The learning system learns both
the preconditions and the effects of actions. The effects of an action are ex-
tracted by partitioning experiences (expressed as multivariate time series con-
taining sensor measurements collected while executing an action) into clusters
according to a similarity metric measure. The resulting clusters are considered
to be the different outcomes of the action involved in the different analyzed
experiences. Learning the conditions that can be used to predict the outcome of
actions is an induction process that uses sensor data that precede the execution
of the target actions. The induction process uses decision trees to learn from the
initial conditions for each action. In the constructed trees, leaves represent the
clusters while non-leaf nodes represent precursor conditions expressed as sen-
sor data. Conditions are formed as a disjunct of conjunctions over the non-leaf
nodes.

Another strategy to help robots learn from their previous experiences is to
build control rules to be used by the planner in order to avoid situations that
would make the execution of the plan fail. The ROGUE robotic system [71, 69]
employs a learning module to do just that. The learning module is used to
enrich the planning domain with control knowledge expressed as a set of rules
extracted from the execution traces of plans. The aim of the learning process is
to identify situations where actions could not be executed as predicted. Success
and failure outcomes of actions are considered to be learning opportunities that
trigger the extraction of situation features related to learning events. Features
can be high-level such as speed, and time of the day. Execution-level features
such as sensor readings, current location, etc., are also considered. The learning
system associates a cost with situational features and learning opportunities.
Regression trees are used to create rules aimed at controlling planning search.
The control rules, then, can be used to select goals or reject them based on their
cost, i.e., if the cost is high then the goal is rejected, and if it is low then it can
be accepted [70].

Era [4] is another approach that uses regression trees to build models of
actions. As in Rogue, Era builds regression trees applied to data collected by
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the robot while executing its actions in the environment. The collected data
includes a description of the state of the world before executing an action,
the action taken in the world and the resulting state. The regression trees are
used to predict the expected errors in the outcomes of actions under specific
environment condition. The action models can then be used with a path planner
to determine the influence of terrain conditions on navigation and to predict the
distance the robot would travel within different regions.

Planning, execution, and learning have also been integrated in a system
called LOPE [98]. The system generates plans, and then proceeds to their ex-
ecution. While executing actions the system learns a model of its environment
by observing the effects of its actions on the environment. Observing the ef-
fects of actions allows the system to create operators if they do not exist in the
knowledge database, or adapt them to the changes in the environment through
the use of generalization heuristics and a reinforcement strategy that gives more
credit to operators with more execution successes and punishes operators that
have failed often.

McDermott and Beetz [7] present an approach that does not rely on learn-
ing. Instead, they propose to debug plans while they are executed to prevent
probable execution failures by projecting the effects of plans at execution time.
The idea is to compute a set of sample execution scenarios to help predict
subsequent failures that might affect the quality of the plan. Detected failures
are used as indexes to retrieve precomputed transformation rules to be applied
in order to improve the plan under execution. Following the same idea of pre-
venting failures, Py and Ingrand [126] propose an execution control component
called Request & Resource Checker (R2C) whose aim is to verify that requests
for functional modules would not result in an inconsistent state. The R2C com-
ponent relies on a the definition of constraints that specify the acceptable and
unacceptable states of the different components forming the functional level of
the robot. The role of R2C is to maintain a derived formula true in all the states
of the system. Should a request result in an inconsistent state, R2C responds
with an action to avoid it, e.g., rejecting the request.

2.3 Conclusion and Discussion

The ability to detect and respond to unexpected situations is essential for sys-
tems designed to act autonomously in real-world environments. We believe that
detecting and handling unexpected situations constitutes the core of auton-
omy, simply because an agent that cannot handle and reason about unpredicted
states on its own is doomed to fail to achieve its tasks where external help is
not available.

The first part of this chapter was devoted to reviewing research work deal-
ing with plan execution monitoring. We have seen that mobile robotic archi-
tectures usually use two types of execution monitoring approaches. First, there
are approaches that rely on hand-coded procedures to monitor and detect un-
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expected situations. This class includes mainly reactive executors such as PRS,
RAPS, and TCL. What characterizes theses approaches is the lack of flexibility
in detecting unspecified execution failures. In fact, one needs to write new mon-
itoring procedures, whenever new conditions are to be monitored. The second
class of monitoring approaches uses models of plan actions to determine what
results to expect when a plan action is executed successfully. Among the ar-
chitectures using such approaches, we find PLANEX, ROGUE, and the LAAS
architecture. We have also seen that there are monitoring approaches that use
logic formalisms to code knowledge about the dynamics of the world with an
emphasis on the results of actions taken by a robot.

In the second part of the chapter, we reviewed research work aiming at re-
sponding to situations that were not expected to occur at execution time. We
classified strategies designed to deal with such situations into two classes: off-
line and on-line strategies. On-line strategies compute response procedures at
execution time, i.e., after the robot has detected that the execution of an action
has failed. Computing response procedures on-line requires that the robot be
able to reason on its own to find the best sequence of actions that would help in
achieving the desired effects. We can identify two main approaches to recover
from failures at execution time. First, there are strategies that rely on Artifi-
cial Intelligence planning techniques either to plan from scratch to achieve the
goals of the failed task or to adapt the current plan to the current situation. Sec-
ond, other strategies borrow ideas from the fault-tolerance community to use
redundancy as a means to handle failures. The key idea is to equip the robot
with redundant modules (hardware or software) that can provide the same ser-
vice. In case of a failure of one module, the system is reconfigured to bring the
unexpected state to a working state.

The second class of recovery strategies encompasses techniques that com-
pute recovery procedures off-line, i.e., before the robot starts the execution of
its actions. The key idea behind off-line strategies is the computation of antic-
ipatory counteraction of predictable failures. One way to do that is through
making the task plan incorporate branches that handle potential contingencies
that might arise at execution time. Another approach is to prepare a universal
plan where all possible situations (nominal as well as faulty ones) have ac-
tions associated with them. The latter approach has been criticized regarding
its realization in real environments. We also reviewed strategies that do not use
planning where experts provide their knowledge to handle predictable failures
and contingencies as hand-coded procedures.

AI learning techniques have been used to prevent failures by learning rules
from previous situations that led to failure. The rules can then be used by the
task planner to avoid taking decisions that might degrade execution or lead to
failure. As the actions of a robot might lead to failures, learning has also been
employed to learn better action models that reflect more accurately the true
effects of actions. As a result, the robot can predict better the outcomes of its
actions.
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We believe that none of the reviewed strategies is the absolute solution to
respond to unexpected situations. Instead, each strategy has its strengths and
weaknesses. On-line recovery strategies might be the ultimate solution if they
are given enough time and a sufficiently accurate model of the environment.
However, there are situations where the environment does not wait for the
robot to make plans and deliberate about its actions. In addition to that, models
are only available for a subset of the possible interactions with the environment.
Off-line recovery strategies on the other hand, have the advantage of being
validated and tested thoroughly before they are loaded on-board. However, the
designers can anticipate only some of the faulty situations, making it difficult
to handle unexpected ones.

Between the two extremes of computing failure responses, i.e., off-line ver-
sus on-line, the three tiered architectures, such as Cypress [153], Rogue [71],
the Remote Agent [120], and IxTeT-eXeC [89], provide a middle ground where
the executor executes the actions provided by the planner using precomputed
procedures. The execution procedures are programmed to handle known fail-
ures at execution time while the planner is used to find an alternative plan if
failures cannot be recovered from by the executor.

Regarding how this thesis relates to the presented material in this chap-
ter, we have two main remarks. First, existing approaches for monitoring plan
execution have their primary focus on checking whether the explicit expecta-
tions of actions are verified in the estimated state of the world. This relies on
the assumption that the effects to monitor are directly observable. However, in
real-world environments checking expectations can be a complex process. In
this thesis, we focus on presenting a knowledge-based approach to derive and
monitor implicit expectations, i.e., expectations that are not given in the action
model. To our knowledge, we are the first to propose such an idea.

Second, we can also claim that there is lack of thorough research work de-
voted to studying and handling unexpected situations of plan execution. In fact,
responding to unexpected situations is generally addressed as a secondary func-
tionality of plan execution. Moreover, plan execution systems tend to respond
to unexpected situations in the same way, i.e., by using the same response strat-
egy. We believe that different types of unexpected situations need to be studied
separately. In this thesis, our focus is on unexpected situations that are due to
lack of information. Therefore, we are able to provide a strategy tailored to deal
with such situations in an effective way through using sensor-based planning.





Chapter 3

Tools

This chapter covers the tools we used to implement our solutions to the prob-
lems addressed by the current thesis. We start by giving an overview of sensor-
based planning and the two planning tools PTLplan and PC-Shop that we
employed to implement active information gathering solutions to deal with
situations characterized by lack of information. Then, we take a look at de-
scription logics and the Loom system used to represent and reason about se-
mantic domain-knowledge. Next, the ThinkingCap robot control architecture
is described together with how the execution of symbolic conditional plans is
carried out. At the end of the chapter, we present our Magellan Pro mobile
robots that have been used to conduct the different real-world test scenarios.

It is worth noting that both PC-Shop and the symbolic plan executor de-
scribed in this chapter have been created as part of the research work leading
to this thesis. The other tools were developed in the context of other research
work, and therefore more information about them can be found the papers and
articles referencing them.

3.1 Sensor-based Planning

Artificial intelligence planning is a problem-solving paradigm that is used to
find a course of action to reach a specific goal state starting from an initial
state. Classical planning approaches, such as STRIPS [51] and Shop [107], rely
on simplifying assumptions to generate plans. One important assumption they
make is that the state of the world is changed only by the execution of a plan
action and that effects of actions are deterministic. They also assume that the
agent executing the plan will always have complete information about the state
of the world. Thus, those approaches are considered to be “open-loop” since
they do not use feedback from the environment to determine what action to
execute next.

Classical planners would in most cases be unable to handle real-world prob-
lems, because of the simplifying assumptions they make. In a real-world situ-
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ation, planners do not have immediate access to all the relevant information.
Moreover, the presence of uncertainty in action effects and sensing can lead to
failure to execute plan actions. Therefore, more robust planners were devel-
oped to address the challenges of real-world planning domains. Sensor-based
planners, such as GPT [17], MBP [10], and PTLplan [82], are designed to han-
dle domains where information about the initial state might be incomplete, but
more information can be acquired at execution time through sensing actions.

In the rest of this section, we give an overview of the two sensor-based
planners PTLplan (developed by Karlsson [82]) and PC-Shop (developed by
the author and Karlsson [20, 21]) that we used to compute solutions for dealing
with unexpected situations resulting from lack of information when executing a
task plan. Each of the planners is an extension of a classical planner. PTLplan is
an extension of the forward-search planner Tlplan developed by Bacchus and
Kabanza [3], while PC-Shop extends the hierarchical planner Shop developed
by Nau and others [107].

Tlplan and Shop were demonstrated to be efficient planners because they
made it possible for the user to provide control knowledge to prune search.
PTLplan and PC-Shop were developed to take advantage of the efficiency of
their predecessors in domains with the most general uncertainty conditions,
i.e., stochastic outcomes of actions and partial observability. Probabilities are
used to model the uncertainty about action outcomes and the world state. As
a result, the planners are able to find plans that achieve the goal with a certain
probability, whereas non-probabilistic planners are restricted to find plans that
achieve the goal with certainty; such a plan might be hard to find or even non-
existent.

3.1.1 Representation

PTLplan and PC-Shop utilize the same representation of actions and world
states. Being a hierarchical task network (HTN) planner, PC-Shop also uses
methods that describe how to refine abstract tasks into more detailed ones.
The underlying representation for actions and states uses a rich LISP-style syn-
tax language that supports among other structures: conditionals, probabilistic
effects, quantified formulas, and partial state description.

Ground States

The state of the world is described in terms of fluents (state variables) and their
values. A fluent literal has the form (f t1...tn=v), denoting that the fluent f with
parameters t1, ..., tn has the value v (which might be non boolean). If the value
is omitted, it is assumed to be t (true). The terms ti can be constants, variables,
or functional, where other non-boolean fluents may serve as functions. Exam-
ples of fluent literals are (room r1) and (robot-in = r1). A fluent formula
is a logical combination of fluent literals using the standard connectives and
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quantifiers. Besides fluents that are stored directly in states, it is also possible
to define axioms in terms of fluents (using fluent formulas and/or special forms
for computing the value of the axiom). Fluents evaluated by external function
calls as well as fluents derived from other fluents are also supported. We write
s |= α to denote that the formula α holds in state s.

Observations

In partially observable environments, agents might not be able to determine the
exact state of the world. Nevertheless, they are generally able to make obser-
vations that help them gain some information about their states. Observations
in our model have the form of sets of ground fluent literals. We denote the
set of all observations with O. An observation may contradict the actual state;
thereby, uncertain or faulty sensors can be represented. For instance, the obser-
vation {(open door1 = t)} might occur when the fluent (open door1 = f)

holds.

Belief States

Belief states are used to model uncertainty about the state of the world at a
certain point in time. Formally, a belief state b is a triple 〈Sb, Pb, Ob〉 where Sb is
a set of ground states s, Pb is a probability distribution over s ∈ Sb, and Ob is a
set of observations the agent can make at runtime. The global probability p(b)
of being in a belief state b is defined as the sum of the probabilities of its element
states, i.e., p(b) =

∑

s∈Sb
Pb(s). For instance, the belief state b representing the

location of a robot as either room r1 with probability 0.8, or room r2 with
probability 0.2, after observing a red light, is given as follows:

b = 〈Sb, Pb, Ob〉

where

Sb = {s1 = {(robot-in = r1)}, s2 = {(robot-in = r2)}}
Pb : pb(s1) = 0.8; pb(s2) = 0.2
Ob = {(red-light)}

Actions

An action specifies a transition from one state s to a non-empty set of new
(alternative) states with associated probabilities. More formally an action a is
triple 〈preca, ca, ta〉, where:

• preca ⊂ S specifies in which states a is applicable.

• ca : S −→ R is the cost function. We write ca(si) to refer to the cost of
executing a in state si.
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• ta(si, sj , O
′) is the state to state/observations transition function such that

si, sj are states and O′ is a set of ground observations. The function ta
encodes a probability distribution over the resulting states and their asso-
ciated sets of observations when action a is executed in a particular state.
In other words, ta(si, sj , O

′) denotes the probability of ending up in state
sj and making the set of observations O′ when action a is executed in
state si.

In practice, actions are represented succinctly as parameterized action tem-
plates written in a language that includes constructs for conjunctive, condi-
tional, stochastic and universally quantified effects. The language can also be
used to specify ramification effects, which are associated not with a specific
action, but are triggered when values of specific fluents change. We omit the
details of how these templates are represented, as they are not significant for
understanding the planning algorithms. It suffices to say that they can represent
arbitrary cost and transition functions over a finite set of fluents.

Example The following action template encodes the movement of a robot
from an initial room, identified by the variable ?r1, to another room,
identified by the variable ?r2.

(ptl-action

:name (move ?r1 ?r2)

:precond (((?r1) (room ?r1)(robot-in = ?r1))

((?r2) (room ?r2)(connected ?r1 ?r2)))

:results (cond ((exists (?d)(door ?d)

(and (connects ?d ?r1 ?r2)(open ?d)))

(alt (0.8 (and (robot-in = ?r2)

(obs (red-light))))

(0.2 (robot-in = ?r1))))

((true)(robot-in = ?r1))))

This template specifies that in order for the movement action to be ap-
plicable, the robot has to be in room ?r1 and that ?r1 is connected to
?r2. The results of the action are specified by a conditional construct that
specifies that if there is an open door that connects the two rooms, the
robot will move to ?r2 (with probability 0.8) and see a red light or stay
unintentionally in ?r1 (with probability 0.2). Otherwise, the robot will
stay in the starting room, i.e., ?r1. Notice that the alt form encodes al-
ternative effects, each with a probability of occurrence. The obs form is
used to specify making observations.

An action a = 〈preca, ca, ta〉 is applicable in a belief state b if and only if
it is applicable in each elementary state s ∈ Sb. The result is a set of belief
states. Result(a, b) denotes the set of the resulting belief states when action a is
applied in the belief state b.
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Belief state update

Let b′ ∈ Result(a, b), then b′ = 〈Ob′ , Sb′ , Pb′〉 satisfies the following conditions:

• The belief state b′ consists of the states reached by a transition with a
specific set of observations Ob′ :

s′ ∈ Sb′ ⇐⇒ ∃s ∈ Sb : ta(s, s′, Ob′) > 0 (3.1)

• The probability of each state s′ ∈ Sb′ is determined by the probability of
its predecessor states and the probability of their transitions to s′:

Pb′(s
′) =

∑

s∈Sb
Pb(s) · ta(s, s′, Ob′)

η
(3.2)

The denominator η in equation (3.2) is a normalizing factor, and is de-
fined as p(b′|b, a), which is given next.

• The posterior probability for b′ when action a is taken in b is:

p(b′|b, a) =
∑

s′∈Sb′

∑

s∈Sb

Pb(s) · ta(s, s′, Ob′) (3.3)

• The expected cost of applying a in b is:

ca(b) =
∑

s∈Sb

Pb(s) · ca(s) (3.4)

Planning Problem

A partially observable planning domain D is a triple 〈S, O, A〉 consisting of the
state space S, the observation space O, and the set of actions A. A planning
problem for a partially observable domain is a tuple 〈D, b0, g, succmin〉 consist-
ing of a domain D, an initial belief state b0, a goal formula g and a minimal
success probability succmin.

Plans

Both planners PTLplan and PC-Shop generate plans that have conditional
form, i.e., having the structure of an “if-then-else” program. The conditions
to branch on are expressed as conjuncts of ground observation-fluents. They
represent possible observations that the agent can make at runtime. Therefore,
conditional plans are a form of a closed-loop control strategy. The syntax of
the generated plans is as follows:
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plan ::= ( action* end-step )

end-step ::= :success | :fail | (cond branch* )

branch ::= (obs-cond action* end-step )

action ::= (action-name term*)

obs-cond ::= fluent-literal | (and fluent-literal*)

The term action represents an instantiated domain action, obs-cond is a con-
junction of fluent-value formulae defined over observations, and :success,
:fail are used to denote predicted plan success and failure respectively. This
grammar accepts plans that have the structure of a tree where nodes with one
successor represent actions, and nodes with several successors represent a con-
ditional branching. The following plan is an example of a plan generated to
enter a destination room, identified by the symbol r1, through door d1. The
plan is generated starting from an initial belief state where the status of the
door, i.e., open or closed, is not known. The plan includes an information gath-
ering action to check the status of the door to decide what to do next:

((go-near d1)

(check d1)

(cond ((open d1 = t) (enter r1) :success)

((open d1 = f) :fail)))

The semantics of a conditional plan can be interpreted as applying the first
action of the plan in the initial belief state. The second action is applied in the
resulting belief state of the first action, and repeatedly applying an action in
the resulting belief state of its preceding action. If the application of an action
results in more than one belief state, then the subsequent action must be a
conditional plan (cond (c1 p1) . . . (cm pm)) with as many branches as resulting
belief states. Each branch (ci pi) represents a contingency plan pi to be executed
in the belief state whose observations satisfy the branch condition ci. Belief
states at a certain execution time are uniquely identified by their observations.
Therefore, the branch that has its observation fluent formula verified in the real
world is selected for subsequent execution. At execution time, there must be at
most one belief state whose observations are verified in the real world.

3.1.2 The PTLplan Planning System

PTLplan is a progressive planner that builds on a classical planner developed
by Bacchus and Kabanza called TLplan [3]. PTLplan starts with an initial be-
lief state, a set of actions, a goal formula, and a required minimum probability
of success. Its output is a plan that when applied in the initial belief state, it
leads to a belief state where the goal formula is satisfied with the minimum
probability of success. The search process of PTLplan starts from the initial
belief state and adds actions until a belief state satisfying the goal is reached.
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When an action results in several new belief states with different sets of ob-
servations, the planner inserts conditional branches in the plan and continues
planning for each branch separately. In order to search more efficiently, the
planner can also eliminate belief states that invalidate a given temporal logic
formula.

Strategic knowledge

In order to eliminate unpromising plan prefixes and reduce the search space,
PTLplan utilizes strategic search control knowledge. This strategic knowledge
is encoded as expressions (search control formulas) in first-order linear tempo-
ral logic (LTL) [45] and is used to determine when a plan prefix should not
be explored further. One example could be the condition “never pick up an
object and then immediately drop it again”. If this condition is violated, that
is it evaluates to false in some state, the plan prefix leading to that state is not
explored further and all its potential extensions are pruned from the search
space. A great advantage of this approach is that one can write search control
formulas without any detailed knowledge about how the planner itself works;
it is sufficient to have a good understanding about the planning domain.

LTL and extensions

LTL is based on a standard first-order language consisting of predicate symbols,
constants and function symbols and the usual connectives and quantifiers. In
addition, there are temporal modalities that are interpreted over a sequence of
states, starting from the current state. For the purpose of PTLplan, they can
be interpreted over a sequence of belief states B = 〈b1, b2, . . .〉 and a current
belief state bi in that sequence. The modal formula (until φ1 φ2) means that
φ2 holds in the current or some future belief state, and that φ1 has to hold
in between; (always φ) means that φ holds in this and all subsequent belief
states; (eventually φ) means that φ holds in this or some subsequent belief
state; and (next φ) means that φ holds in the next belief state bi+1. The fol-
lowing LTL formula specifies that the robot should not enter a room and then
immediately return to its starting location:

(not (and (robot-in = r1)

(next (and (robot-in = r2)

(next (robot-in = r1))))))

In addition to the temporal modal operators from LTL, PTLplan also uses
a certainty operator (nec ϕ) denoting that ϕ holds in the current belief state
bi and a dual plausibility operator (pos ϕ) = ¬ (nec ¬ϕ). This extension is
necessary as formulas need to evaluated in belief states.
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The following modal formula specifies that if it is possible that there is gas
leakage in a room r1, then the robot must not switch off or on the light in that
room:

(not (and (pos (gas-in r1))

(switch r1 = s)(next (not (switch r1 = s)))))

There is also a goal operator goal, which is useful for referring to the goal
in search control formulas. (goal ϕ) denotes that it is among the agent’s goals
to achieve the fluent formula ϕ. Semantically, this modality will be interpreted
relative to a partial state g representing the set of states that satisfy the goal.
Finally, (obs ϕ) means that ϕ was observed in the current observation oi.
Fluent formulas are restricted to appear only inside the nec, pos, goal and
(for atomic fluent formulas) obs operators.

In order to efficiently evaluate control formulas, PTLplan incorporates a
progression algorithm (similar to the one of TLplan [3]) that takes as input a
formula f and a belief state b and a goal state sg (a ground state) and returns
a formula f+ that is “one step ahead”, i.e., corresponds to what remains to
evaluate of f in subsequent belief states. Thus, the progression algorithm can
be applied, during planning, for each transition to a new belief state to have an
up-to-date formula representing what remains to evaluate. If that turns out to
be false, the formula has been violated and search does not continue from that
belief state.

3.1.3 The PC-Shop Planning System

PC-Shop, which stands for “Probabilistic Conditional SHOP”, follows the suc-
cess of the classical HTN planners Shop [107, 108] and Shop2 [109] (devel-
oped for deterministic and fully observable domains). HTN planning is one
of the oldest and most well-tested approaches to planning [141, 151, 38]. It
allows one to code domain-dependent knowledge in a powerful way through
procedures that describe how to solve the planning problem, resulting in more
efficient search and better support for large domains. Shop is known to be a
simple but high-performing HTN planner, where tasks are planned for in the
same order that they will be executed.

The objective of developing PC-Shop is to take advantage of the efficient hi-
erarchical planning techniques to deal with the inherent complexity of planning
in uncertain domains. Besides hierarchical planning under uncertainty being
interesting in its own right, PC-Shop was developed for solving actual robotic
problems. One example is recovery from ambiguous cases in perceptual anchor-
ing, where it was applied to solve some of the problems reported in chapter 7.

An HTN planner works to solve abstract tasks: each goal and subgoal is
represented as a task. Tasks can be either primitive or composite. Primitive tasks
correspond to executable actions, while composite tasks can be decomposed to
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a task network consisting of a set of more detailed tasks with some ordering
constraints. The different ways a task can be decomposed into task networks
are specified by methods. For instance, building a house can be considered as
a composite task. A method for building a house might be: set the foundation,
build the outer walls, build the roof, and so on. Each of these sub-tasks might
in turn be subdivided into further subtasks. There might also be alternative
methods for solving a certain task.

Methods

In PC-Shop, methods are used to control search and they provide the knowl-
edge of how to decompose abstract tasks into more detailed lists of tasks. A
method has the following form:

(h p1 t1 p2 t2 . . . pn tn)

where, h is the method’s name and should unify with an abstract task. pi is
a list of precondition formulae. Each precondition formula is a list of clauses
of the form (v, θ, ϕ), where v is a list of variables that need to be bound, θ is
an atomic fluent formula containing v, and ϕ is a fluent formula or a modal
formula (nec or pos). The keyword :first can be inserted in the beginning of
a precondition, to signify that only the first found variable binding should be
used, i.e., the first binding of the variables of that precondition that satisfies the
entire precondition list.

The task lists ti are recursively built by tasks and the constructs (:unordered
t1 t2 . . .), (:ordered t1 t2 . . .), and (:cond (o1 t1) (o2 t2) . . .). The key
words :ordered and :unordered specify whether tasks can be interleaved or
not. The label :immediately can precede a task to mean that when the preced-
ing tasks have been processed, the task so labeled must be processed at once.
The key word :cond is used to handle feedback and conditional branching. It
specifies that a branch should be generated for each pair (oi ti) if the last action
resulted in a belief state whose observations satisfy oi; the branch includes the
tasks in ti.

Semantically, a method specifies that the abstract task h is further decom-
posed to the tasks in tk if the precondition pk holds and all pj<k are false in the
axiom set and all the ground element states composing the current belief state.
It is worth noting that several methods might have the same name to specify
different ways of decomposing the abstract task h.

Example The following method specifies how to decompose a task of going to
a location ?des into more detailed tasks:

(method (!goto ?des)

(((?src)(robot-in = ?src)(same-floor ?src ?des)) )
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(:ordered (move2door ?des)(enter ?des))

(((?fl)(floor ?des = ?fl)))

(:ordered (call-lift)

(:cond ((lift = OK) (use-lift ?fl))

((lift = NOK)(use-stairs ?fl)))

(!goto ?des)))

Briefly, the idea behind the method is that whenever the robot is on the
same floor as the destination ?des, the decomposition includes the or-
dered primitive tasks of moving to the entrance of ?des and then enter-
ing ?des. Otherwise, the robot has either to take the lift or the stairs
depending on whether the lift is working or not. The second decomposi-
tion includes a recursive call to the same method once the robot reaches
the floor of the destination.

The Planning Algorithm

PC-Shop is a total order forward-search algorithm. It gets as input a set of be-
lief states BS (initially one), an ordered list of tasks to achieve T , a minimum
probability of success, and a domain description D. The output is a plan, com-
posed of only instantiated primitive tasks, with a success probability greater
or equal to the minimum one. The algorithm recursively decomposes the tasks
in T , taking into account ordering constraints, until it finds a plan that con-
tains only primitive tasks. The process of task decomposition might result in
different sub-tasks because more than one method might be applicable when a
composite task is decomposed. Therefore, the algorithm backtracks whenever
a decomposition does not contribute to finding a plan that solves the given
planning problem.

3.2 Description Logics

In this section, we give a short overview of description logics, which are classical
AI formalisms used for knowledge representation and reasoning purposes. Our
particular focus will be on presenting the Loom system [97].

Description logics (DLs) (see the book by Baader et al. [2]) are decidable
fragments of first order logic intended for knowledge representation and man-
agement. They are used to represent domain knowledge of applications through
the specification of the domain concepts and relationships between concepts
(also called terminology). The description of the world consists of assertions of
properties and relations between individuals present in the domain1 .

An important characteristic of description logics is their reasoning capabili-
ties of inferring implicit knowledge from the explicitly represented knowledge.

1In DLs terminology, the term TBOX, respectively ABOX, is used to refer to terminological
knowledge, respectively assertional knowledge, specified in the domain knowledge-base.
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In DL formalisms, unary predicates represent concepts (also called classes),
i.e., sets of individuals (also called objects), and binary predicates express rela-
tionships between individuals. Concept expressions can be built using a small
set of connectives and constraints over the individuals that are in a relation-
ship with a specific individual. Concepts that are not defined in terms of other
concepts are called atomic concepts.

In this thesis, we employ description logics to encode and reason about se-
mantic domain-knowledge for the purpose of plan execution monitoring (see
chapter 4). The major advantages of using description logics (DLs) are as fol-
lows:

• DLs provide a concise representation of the world, as they can express
general knowledge about classes of objects. Thus a lot of information can
be kept implicit. For instance, one does not have to state explicitly that
room r5, which is an office, contains a desk. Such information can be
inferred from the general description of the class ’office’.

• DLs are fairly expressive yet supported by efficient inference mechanisms,
making them practically useful.

The Loom System

In practice, we use Loom [97], a well established knowledge representation and
reasoning system for modeling and managing semantic domain-knowledge. The
choice of Loom was suggested by practical considerations: mainly because it
is a well supported open source project2. Loom provides a definition language
to write definitions of concepts and relations as well as constraints over them.
An assertion language is also provided to assert facts and constraints about
individual objects.

Knowledge in Loom is organized in knowledge bases that contain two types
of knowledge: terminological and assertional. The terminological knowledge is
referred to as the TBOX. It contains definitions of concepts and relations be-
tween concepts. The assertional knowledge is referred to as the ABOX and it
contains assertions about individual objects. In other words, the ABOX repre-
sents an instance of the TBOX describing a possible state of the world.

Concepts are used to specify the existence of classes of objects, such as
“there is a class of rooms” or “a bedroom is a room with at least one bed”:

(defconcept room)

(defconcept bedroom

:is (:and room (:at-least 1 has-bed)))

2The work described in this thesis can be implemented using other knowledge representation
and reasoning systems based on description logics.
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Atomic Construct FOL

A A(x)

(some R C) ∃y. (R(x, y) ∧ C(y))

(all R.C) ∀y. (R(x, y)→ C(y))

(oneOf a1, . . . , an) (x = a1) ∨ . . . ∨ (x = an)

(at-least n R) ∃y1, . . . , yn.
∧

1≤i≤n (R(x, yi)) ∧
∧

1≤i<j≤n yi 6= yj

(at-most n R) ∃y1, . . . , yn+1.
(

∧

1≤i≤n+1 (R(x, yi))
)

→
(

∨

1≤i<j≤n+1 yi = yj

)

(exactly n R) FOL(≥ n R) ∧ FOL(≤ n R)

Table 3.1: Some of Loom’s atomic concept constructs and their equivalent first-order
logic formulas.

The first definition declares that there is an atomic class of items called room.
The second definition introduces a class named bedroom whose instances (ele-
ments) are objects of type room in which there is at least one bed. A concept
can also be specified as primitive to reflect that its definition is not completely
specified, i.e., there are constraints that are not represented for individuals of
that concept.

The term has-bed in the second definition specifies a relation between ob-
jects of class bedroom and objects of class bed. This relation is defined in Loom

as follows:

(defrelation has-bed

:domain bedroom

:range bed)

The construct (:at-least 1 has-bed) specifies a constraint over the number
of beds that can be in a bedroom. Number constraints are used to specify the
number of objects of one class that are related to another object of another
or the same class. It is also possible to specify constraints over the types of
objects an object can be in relation with. Note that (:at-least 1 has-bed)

itself defines a class denoting all objects that have at least one bed.
More complex concept expressions are constructed by combining other con-

cept names using a limited number of connectives (and, or, not, implies).
The semantics of concept expressions are interpreted in terms of set theory
operations (intersection, union,...) or in terms of equivalent first-order logic
formulas over a non empty set of individuals. Table 3.1 shows some of Loom’s
atomic concept constructs and their equivalent first-order logic formulas.
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Once the general semantic knowledge is constructed, specific instances of
classes can be asserted to exist in the real world. For example:

tell (bedroom r1)(has-bed r1 b1))

asserts that r1 is an instance of bedroom and results in classifying b1 as an
instance of the class bed because the range of the relation has-bed is of type
bed. The instance r1 is also classified (deduced) automatically as an instance of
the class room.

Classification is performed based on the definitions of concepts and rela-
tions to create a domain-specific taxonomy (figure 3.1 shows a taxonomy for
classifying house furniture items). The taxonomy is structured according to
the superclass/subclass relationships that exist between entities. When new in-
stances of objects are asserted (added to the knowledge base), they are classified
into that taxonomy.

Loom Supports a first-order query language to retrieve instances from a
knowledge base. It is also possible to ask the knowledge base whether or not
a proposition is true. Loom uses open-world semantics as the default assump-
tion when trying to prove or disprove a proposition. This makes it possible to
conclude whether the truth value of a proposition is true, false, or simply un-
known. For instance, one might ask Loom whether the instance named r1 is a
room by issuing the following question:

(ask (room r1))

To ask if the instance named r1 can be proved to be not a room, one can
issue the following question:

(ask (not (room r1)))

3.3 Robot Architecture

The aim of this section is to describe the integrated mobile robotic architecture
that we used in our test scenarios. The architecture comprises two main lay-
ers: the bottom layer is a behavior-based navigation layer, while the top layer
constitutes a deliberation layer. Figure 3.2 gives an overview of the overall ar-
chitecture and how both layers are integrated. It is worth mentioning that by
no means does the work presented in this thesis rely on a specific robot archi-
tecture. The only requirement of our work is that the underlying architecture
includes an executor of symbolic plans.

The behavior-based layer is implemented by the ThinkingCap (TC) mobile-
robot control architecture developed by Saffiotti [131, 133]. Its main task is
the control of the robot platform to perform navigation tasks. It is a hybrid
control architecture comprising a fuzzy-logic behavior based controller and a
navigation planner.
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Figure 3.1: Part of a taxonomy of some classes of furniture items.
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Figure 3.2: Global robot architecture used in our test scenarios. The architecture is
composed of a deliberation layer that sits on top of a behavior-based navigation layer.
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The deliberation layer includes all the necessary functionalities needed to
generate and execute high-level symbolic task-plans. The plan executor is de-
signed to handle probabilistic conditional plans and is not constrained by using
a specific planner. In fact, the executor can execute any plans fulfilling some rep-
resentational constraints, mainly the syntax of the plans, and the specification
of how to execute the plan actions. The execution system uses three hierar-
chical layers each with a specialized process. The top layer manages high level
plans, user requests, and recovery when necessary. The middle layer has a more
specialized process whose task is to execute the actions of the plan selected
by the upper layer, whereas the third layer is in charge of low-level execution
and monitoring. The overall system has been successfully used for research on
sensor-based planning for mobile robots, most notably in the areas of percep-
tual anchoring as reported by Broxvall et al. [26] and active smelling in the
work by Loutfi et al. [91].

3.3.1 Behavior-based Architecture

The ThinkingCap (TC) robot control architecture [131, 133] controls the mo-
bile robot using fuzzy behaviors expressed as sets of control rules. It integrates
navigational capabilities that help in creating, executing and monitoring navi-
gation plans. The main components of TC are described briefly in the following
paragraphs.

B-Planner The Behavior Planner is a backward search planner that is designed
to generate navigation plans. It computes a set of context-behavior rules
having the form IF context THEN behavior, where context is a for-
mula of fuzzy predicates evaluated on the current world model (LPS be-
low). The context-behavior rules of a B-Plan are evaluated in parallel,
influencing the overall robot behavior according to the combined value
of their respective context.

LPS The Local Perceptual Space (LPS) is used to store information about the
world around the robot expressed as object descriptors and perceptual
data given in robot’s coordinates. It contains raw sensor data as well as
perceptual features such as lines and openings.

Controller This component is in charge of generating crisp control values
(steering and velocity ) through defuzzification of the result of the com-
bined active fuzzy behaviors (according to their context calculated from
the LPS).

Map The Map encompasses the global map of the environment. It is basi-
cally a topological map with nodes describing metric sectors and edges
representing connection gateways.
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Self-localization The self-localization component is used to compute the robot’s
position with respect to the map.

Anchoring and perception The anchoring module provides an interface to per-
ceptual information from the sensor systems of the mobile robot. It con-
tains a number of functionalities for establishing the connection between
the high-level symbolic representation and low-level perceptual represen-
tations such as video camera images. The anchoring module can also pro-
vide information about already perceived objects, such as position and vi-
sual features extracted from the LPS. More about the anchoring process
is given in chapter 7.

Example of B-Plans. Consider the map of the environment depicted in figure
3.3 where the robot is located in the corridor C1. To enter room r1, the
B-Planner is asked to generate a navigation plan that achieves the fuzzy
goal (at me r1). The following B-Plan is generated to achieve the goal
where each row represents a fuzzy rule:

(in me r1) still(goal)

(at me r1)

(not (in me r1))
reach(r1)

(at me c1)

(open door d1)
(facing me d1)
(not (at me r1))

cross(d1)

(near me d1)

(oriented me d1)
(not (at me r1))
(at me c1)
(open door d1)
(not (facing me d1))

face(d1)

(at me c1)

(traversable c1 d1)
(oriented me d1)
(not (near me d1))

follow(c1)

(not (near me d1))

(at me c1)
(traversable c1 d1)
(not (oriented me d1))

orient(d1)
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Figure 3.3: An example of an environment where a robot is trying to navigate from its
current location in the corridor C1 to room r1.

3.3.2 Execution and Monitoring of Conditional Plans

In this section we outline the main processes involved in executing a high-level
conditional plan and its actions. The executor uses different data structures to
manage the execution of multiple plans that can arrive asynchronously.

Each plan has an execution context that includes the initial belief state, the
goal, the plan itself, the last action executed, and the priority of the plan. The
execution context is placed in one of three queues waiting for execution. The
queues are associated with classes of plans identified by their priorities. A plan
can have either low, medium, or high priority.

Plan execution is a hierarchical process that follows the semantics of condi-
tional plans described in section 3.1.1. Figure 3.4 depicts the three sub-processes
forming the hierarchy. At the top-level, there is a state-machine process in
charge of selecting the plan with the highest priority for execution. It is also
in charge of launching the recovery of plans when one of their actions fails to
execute. At the second level, a more specialized state-machine process is used
to control the execution of the actions of conditional plans, reporting the out-
come of the action to the high-level process. The action execution process is
mainly used to extract the execution procedures of the current action to be ex-
ecuted. The procedures specify the different steps needed to achieve the effect
of the corresponding plan action. The action execution process launches the
appropriate processes to execute and monitor the progress of the steps.

Plan Execution Process

The plan-execution process is launched upon starting up the robot. While in
state init, the process checks periodically for waiting plans, proceeding with the
execution of the plan with the highest priority. The actual execution of a plan
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Figure 3.4: The different processes in charge of executing conditional plans of partially-
observable domains.

starts in state next-action, where the executor checks the type of the current
action selected for execution. In this context, an action can be either :success,
:fail, a conditional plan, or a simple domain action. It is also in this state
that plans, with higher priority, can interrupt the execution of the current plan.
As mentioned earlier in section 3.1.1, the special action :success, respectively
:fail, reflects the planner’s prediction that the generated plan will succeed,
respectively fail. If the plan reaches a predicted failure, then the process simply
drops the plan. Reaching a predicted success state means that the plan has
achieved its goals with success. Because the execution of the currently dropped
or successful plan might have interrupted the execution of another plan, with
lower priority, the execution process checks whether there is an interrupted
plan waiting for execution in order to restore its execution context and start it
again (state resume).

One issue that might arise is the inability to resume the execution of the
interrupted plan because its next action to execute is not applicable in the cur-
rent real-world situation as a result of execution an interrupting plan. To partly
remedy this problem, the process does not interrupt an executing plan unless it
can find a chaining plan that ensures that the interrupted plan can be resumed
when the interrupting plan finishes execution with success. It is worth noting
that finding a chaining plan might be problematic since the interrupting plan
can have more than one branch that leads to success. Generating the chain-
ing plan would take into account this issue; thus, chaining plans are generated
for branches whose final belief states satisfy the goals of the interrupted plan.
Upon resuming the execution of an interrupted plan, the process executes the
chaining plan first, and then the rest of the interrupted plan. Obviously, this
works only when the interrupting plan has been successfully executed. In case
of failure, the planner is asked to find a chaining plan that when starting from
the current state, it achieves the preconditions of the first action of the rest of
the interrupted plan.
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In the next-action state, in figure 3.4, the current action might also be a
conditional plan. In that case, the process checks the contingency condition for
every branch in the real-world state, and chooses the branch whose condition
is verified in the real-world observations. Evaluating the branching conditions
is performed by calls to specialized procedures to evaluate the condition fluents
using the perceptual data provided by the anchoring module. If, on the other
hand, the current action is an instantiated domain action, the process checks
its preconditions in the current belief state. In case the preconditions are satis-
fied, another process is launched to execute the action as described in the next
subsection. In case of a discrepancy, the process calls special functions that es-
timate the current belief state so that more information is included about the
current situation. Then, the planner is called to find a plan that achieves the
preconditions of the failing action (state recovery).

Evaluation of Observation Fluents

To be able to evaluate observation fluents at execution-time, a procedure must
be defined and associated with each observation fluent. When executing a plan,
the executor uses the observation fluent to determine the evaluation procedure
associated with it. The procedure specifies how to evaluate the observation
fluent by calling TC’s fuzzy observation predicates such as (open d) (which
refers to the degree to which the door d is open). The procedure might also
use data stored in the LPS to evaluate observation fluents not computed by TC.
For instance, the metric data in the LPS can be used to evaluate whether two
perceived objects obj1 and obj2 are near each other, i.e., to establish the truth
value of the fluent (near obj1 obj2).

Executable Actions

For each plan action, the user creating the planning domain provides the differ-
ent executable actions xactions, which are defined in terms of the functionali-
ties of the robot control-architecture (in this case TC). Typically, an executable
action defines a procedure that calls TC functions to produce behaviors that
would achieve a specific low-level goal. The procedure also defines the moni-
toring process to be associated with the execution of the behaviors in order to
make sure to respond to unexpected events and apply local recovery strategies
if possible. At this level, the monitoring process is a hard-coded procedure that
is tailored to the xaction it is in charge of. Its main task is to give an indication
of whether the execution of the xaction has been successful or it failed, so that
a deliberate recovery would be considered for the high-level action.

Example In order to execute the high-level action (enter r1) to enter room
r1, the execution part consists of a procedure “execute-enter (room)”
that (1) calls the B-Planner with the goal (robot-in r1) where the goal
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represents a fuzzy predicate, and (2) installs a monitor process for the
generated B-Plan. In case of a failure to achieve the B-plan goal, the mon-
itor calls the B-Planner to replan for another navigation path to enter
room r1.

Action Execution Process

The execution of high-level actions is performed by a more specialized pro-
cess whose states are outlined in figure 3.4. Activating action execution at this
level involves blocking the launching process, i.e., the plan-execution process.
High-level action execution starts by retrieving the xactions one at a time
(state xaction). As we outlined before, there are specialized procedures for
each xaction specifying the necessary steps to perform along with a monitor-
ing process. Calling the specialized procedure of an xaction results in block-
ing the action-execution process and launching the monitoring process of the
xaction.

The monitoring process of an xaction can respond to failures by calling
precomputed procedures or by calling the B-Planner to find another local B-
plan. The process has also to guarantee that the blocked action-execution pro-
cess is notified about the outcome of the execution of the xaction. If the execu-
tion of the xaction is successful, then the action-execution process is awaken
in the state xok, otherwise it is awaken in the state xfail.

Awakening the action-execution process in state xfail is an indication of
the inability of the robot to execute the xaction with success, and therefore
leads to the failure of the high-level action. Thus, the plan-execution process
is notified in turn that the execution of the current action has failed (state dis-
crepancy/fail). If, on the other hand, the monitor of the xaction reports to
have executed xaction successfully, the action-execution process repeats the
same steps with the remaining xactions. When all the xactions have been
successfully executed (state success), the action-execution process awakes the
plan-execution process in the state next-action, so that the same steps can be
performed with the next high-level action of the plan.

3.4 Robot Platform

The mobile robotic platforms that we used in our experiments were two Mag-
ellan Pro robots. The robots are named Pippi and Emil (see figure 3.5). Their
bases measure 0.25m high and 0.4m in diameter. They are designed to be used
as indoor research robots. They are driven by 2 motors attached to the two
wheels of the robot. Both robots come equipped with the following sensors:

1. 16 sonars that can be used to detect nearby obstacles, within a range of
0.15− 7.0m.

2. 16 infrared sensors that have a shorter range: up to 0.5m.
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Figure 3.5: From left to right: Emil and Pippi, the two Magellan Pro mobile robots used
in our test scenarios.

3. 16 tactile sensors that can be in a binary state, i.e., bumping or not bump-
ing into an object.

4. Odometry sensors, on both driving wheels, used for measuring the planar
distance traveled by the robot.

Other sensors were added to the robots in order to make other types of
measurements. These include a color camera on both robots (the one on Pippi
is attached to a pan-tilt unit), an electronic nose on Pippi, and a laser range
finder on Emil.

3.5 Summary

This chapter presented the main tools that were used to develop and test our
solutions to the problems addressed in this thesis. We would like to point out
that among these tools, the sensor-based planner PC-Shop and the hierarchi-
cal plan executor represent scientific contributions of the thesis. Starting from
the next chapter, we will be focusing on our approach to robust execution of
symbolic plans by indoor mobile robots.





Chapter 4

Monitoring of Implicit

Expectations

Having reviewed research work related to monitoring the execution of plans
and strategies for dealing with unexpected situations, it is now time to start
presenting our own solutions to the problem addressed in this thesis. In this
chapter, we present a novel approach for intelligently monitoring the execu-
tion of symbolic plans by mobile robots acting in indoor environments, such
as offices and houses. The novelty of the approach lies in using domain knowl-
edge to derive implicit expectations of executing actions successfully. The robot
uses the immediately available perceptual information to check whether those
expectations are met or violated.

As it has been discussed in chapter 2, approaches used to monitor plan
execution have generally focused on using the explicit effects of actions as ex-
pectations that should be verified when the corresponding action is executed
successfully. For instance, an explicit effect of grasping an object can be that
the robot is holding that object, while the explicit effect of entering a room can
be that the robot is inside that room. Explicit effects are generally extracted
from the models of actions, which are given as part of the planning domains.
Examples of such approaches include the ROGUE [69] mobile robotic archi-
tecture, the work by Fichtner et al. [50], and our hierarchical plan execution
and monitoring system, which was described in chapter 2.

Relying only on explicit effects to monitor action execution supposedly
means that the derived expectations are directly observable. For example, a mo-
bile robot that has executed the planned action (enter r1), to enter the living-
room, would query its self-localization system to verify that the explicit expec-
tation (robot-in = r1) holds. This way, execution monitoring completely re-
lies on the accuracy of the self-localization system. Moreover, checking expec-
tations in real-world environments is inherently a complex process that goes
beyond checking what the robot directly senses.

55
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This chapter proposes to increase the reliability of monitoring of plan ex-
ecution by incorporating more advanced forms of reasoning. In particular, we
propose to use semantic knowledge about the domain to derive implicit ex-
pectations about the effects of plan actions, and to monitor these expectations
using the available perceptual information. By implicit expectations we mean
expectations that can be logically derived from the explicit ones (the ones en-
coded in the action model) through the use of semantic knowledge. In the above
example, if the action (enter r1) was successful, and since r1 is an instance
of the class Living-Room, the robot should expect to see objects that are typical
of a living-room such as a TV-set and a sofa. If the robot sees an oven, it should
conclude that it is not in the living-room, and henceforth that the execution
of (enter r1) was not successful. As another example, if the executed action
is to grasp a coffee cup, then semantic knowledge could be used to generate
and check the implicit expectation that the object in the gripper has properties
such as being a container and having exactly one handle. Therefore, checking
implicit expectations when acting in indoor environments helps, among other
things, to verify that the robot is in the correct room, and not (1) dislocated
or (2) have an erroneous map. We also consider the implicit expectations to
be details that would add complexity to the planning task if the task-planner
has to reason about them. That is why they are encoded in a separate semantic
knowledge base, i.e., outside the action models used by the task planner.

In this chapter, we present a monitoring approach that is intended for crisp
domains, i.e., plans are composed only of actions with deterministic effects and
where perceptual information is assumed to be reliable. In chapter 5, we de-
scribe another approach to handle the execution of nondeterministic actions
and noisy sensing. Chapter 8 presents real-robot test scenarios where the ap-
proach was employed in monitoring the execution of indoor navigation plans.

The rest of the chapter is organized as follows. In the next section, we go
through an illustrative scenario of a mobile robot acting in a house environ-
ment. Then, we describe how we encode and reason about semantic domain-
knowledge using the Loom system [97]. The details of the semantic knowledge-
based execution-monitoring approach are presented in the section that comes
next. Finally we conclude and discuss the contents of the chapter.

4.1 A Motivating Scenario

To better illustrate our ideas, we describe a scenario of a mobile robot that is
acting in a house environment to accomplish a multitude of household tasks
such as, cleaning the floor, serving drinks to guests, doing laundry, etc. Figure
4.1 shows a map of such a house where our robot can live and serve. The house
comprises rooms of different types such as bedrooms, kitchen, etc., as well as
objects of different types that can exist in the different rooms. Types of objects
include sofas, beds, tables, chairs, kitchen appliance (silverware, utensils,...),
plants, etc. The environment is not supposed to be specifically structured in a
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Figure 4.1: A plan of a house where a mobile robot can act to achieve household tasks.

way that makes it easy for the robot to act. The environment is also dynamic,
as objects like chairs and cups can be displaced from one location to another
either by the robot itself or by the humans living in the house without notifying
the robot.

The robot is supposed to be acting autonomously and is equipped with
functionalities that help it accomplish its tasks. These include low-level navi-
gation and manipulation functionalities as well as high-level deliberation and
problem solving capabilities. In particular, an on-board planning engine is used
to synthesize plans that specify the necessary actions that need to be executed
in order to accomplish a specific task. The robot is also supposed to have access
to a knowledge base (KB) where information about its environment is stored.

Suppose that while the robot is busy cleaning the living room, it is asked to
bring a cup of coffee immediately. To do so, the robot first suspends the task
of cleaning and then calls its on-board planner to generate a plan that helps it
accomplish the assigned task. The task planning system uses information about
the current location of the robot as well as the domain knowledge (e.g., that
cups are generally arranged in the cupboard, which is located in the kitchen) to
generate a task plan that could include the following actions:

(goto d4)(enter r5)(open-cupboard cb1)

(pick-up c1)(fill c1 coffee)

(goto d4)(enter r4)(deliver c1 person1)

where r5 and d4 are symbols denoting the kitchen and a door that leads to it,
respectively, while the cupboard is referred to by the symbol cb1, and the cup
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by the symbol c1. The final action specifies that the robot should deliver the
cup of coffee to the person “person1” who ordered the cup of coffee.

If the robot started from a position where it was initially disoriented, then
the execution of (goto d4) could result in the robot being not in front of door
d4 but in front of the door that leads to r1 instead. A standard plan execu-
tion monitor checks that action (enter r5) has been executed successfully,
i.e., the robot is in room r5, simply by checking the current location provided
by the robot’s self-localization system. Due to the initial error in orientation,
the location of the robot can be erroneously computed to be r5. Using seman-
tic domain-knowledge in execution monitoring makes it possible to check the
implicit effects implied by being in r5. In particular, since r5 is asserted to be
a kitchen, the robot looks for indications that it is in a kitchen, such as see-
ing an oven, sink, or a stove. If, on the other hand, the robot sees a bed, it
should conclude that it is not in the kitchen, but in a bedroom. Such informa-
tion is derived from the semantics of the different rooms and objects present
in the house. Similarly, the plan executor can check whether the execution of
the action (pick-up c1) has succeeded not only by verifying that its gripper
is holding “something”, but also by checking that what is held satisfies the
description of an object of type “cup”.

4.2 Semantic Knowledge

As mentioned in chapter 1, semantic knowledge refers to the meaning of ob-
jects expressed in terms of their properties and relations to other objects. Ob-
jects that share the same properties and relations are grouped into classes (or
concepts). For instance, objects of type room and with at least one bed are
instances of the class bedroom, while rooms with sofas and TV sets define a
class of living-rooms, etc. Such knowledge captures the way humans organize
knowledge about objects as instances of general categories. Therefore, semantic
knowledge can be used to help mobile robots communicate with humans. For
instance, in the work of Theobalt and colleagues [142], a robot can ask hu-
mans about its location in terms of high-level descriptions of locations instead
of using metric data. Semantic knowledge has also been used in other areas of
mobile robotics, such as scene analysis by Hois and colleagues [73] and map
building, e.g., Galindo et al. [60], Nuchter et al. [116], and Ekvall et al. [44].

Obviously, the semantic knowledge base should capture knowledge about
objects that are part of the environment of the robot. At a first glance, the spec-
ification of such knowledge might appear to be an easy task. However, indoor
environments are usually cluttered with objects of different types, which makes
it difficult to provide knowledge about all of them. As our aim is to use seman-
tic knowledge for the purpose of monitoring the execution of symbolic plans,
we should be careful not to include knowledge about any type of objects but
the ones relevant to the task at hand, i.e., execution monitoring. Therefore, our
design of the semantic knowledge base takes into account the formal definitions
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Figure 4.2: Parts of taxonomies of some classes of objects in a house environment. (Left)
different types of locations. (Right) some types of furniture. The relationships between
the classes of the taxonomies are not shown.

of the actions that form the planning domains. As a first step, we use the ac-
tion models to identify the objects manipulated by the action. Then, we provide
knowledge about the different types of those objects in terms of properties and
relations to other objects. Next, we apply the same process to add knowledge
about the related objects, and so on. For instance, in a navigation planning
domain, the (enter loc1) action can be used to model the movement of the
robot to enter a location loc1. Consequently, the semantic knowledge base in-
cludes knowledge about the different types of locations that exist in the robot’s
environment. These can be corridors, halls, and rooms. The knowledge base in-
cludes also knowledge about the different types of rooms (e.g., kitchen, office,
etc.), and also the objects that are typical of such rooms, such as ovens, desks,
etc. Figure 4.2 shows two taxonomies of classes of objects that can be provided
starting from a navigation action that takes place in a house environment.

We restrict knowledge about objects to be in terms of properties that the
robot can directly observe or are defined in terms of other observable proper-
ties. For example, the definition of an object of type cup might include that the
object must be a container that has one handle, where container and handle are
atomic concepts, hence they must be directly observable. Direct observability
implies that it is the task of the perception module to tell whether a perceived
object is an instance of an atomic class, e.g., whether a perceived object is a
container.

4.3 Overview of the Approach

In this section, we give an overview of how semantic domain-knowledge can
be integrated in the process of monitoring the execution of symbolic plans.
The process is meant to be used for crisp domains where both sensing and
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actions are assumed to be reliable. We start by describing the overall monitoring
process of checking the effects produced by the execution of actions. Then,
we give an overview of the components involved in deriving and checking the
implicit expectations of executing plan actions successfully.

4.3.1 The Overall Monitoring Process

As explained in chapter 2, monitoring the execution of symbolic plans is a
model-based process that compares the explicitly modeled effects of an action
to the actual outcome produced by the execution of that action. The actual
outcome of the action is computed using the perceptual information acquired
by the robot’s on-board sensors. One can also use the model of the executed
action together with knowledge about the objects manipulated by the action
to compute a set of expectations that are not explicitly encoded in that model.
These expectations can then be verified using the same perceptual information
used to check the explicit effects.

There are two possible ways of integrating the results of monitoring the
two types of expectations. The first way is to monitor them separately and then
combine the results to produce a final result about whether the execution of
the action has succeeded. The second way is to use the result produced by the
process of monitoring the implicit expectations as an additional check of the
results produced by the process of monitoring the explicit effects of the action.

Using the first way implies having a mechanism that handles situations
where the results of the two processes might be contradictory. For example,
the process of monitoring the explicit effects of executing the action (move r4

r5) can deduce that the execution has failed because according to the self-
localization module the robot is still in room r4. On the other hand, the pro-
cess of monitoring the implicit expectations can declare that the room where
the robot is located is a kitchen because an oven has been spotted in the current
room.

In this chapter we use the second way where the process of monitoring the
implicit expectations is called only when the explicit effects of the action are
all verified in the world state produced by the execution of the current action.
Hence, the final result of monitoring the execution of the action is the result
returned by the process of monitoring its implicit expectations. Therefore, the
schema of monitoring the execution of an action A in a world state ws includes
the following steps:

1. The first step is a prediction step where the model of action A is used to
compute the explicit effects of A when executed in ws.

2. In the second step, all the computed explicit effects are checked in the
resulting world state. If all of them are verified, then the implicit effects
of executing A in ws are derived and checked in the current world state
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as well. In case one of the implicit expectations is found to be violated,
a failure is returned to the plan executor. Otherwise, the execution of the
action has succeeded and success is returned to the plan executor.

3. If in the second step, some of the explicit effects were found to be violated
in the current world state, then a failure is returned to the plan executor.

4. The plan executor carries on the execution of the rest of the plan only
if it gets “success” from the execution monitoring process. Otherwise a
recovery procedure might be invoked to recover from the encountered
unexpected situation.

4.3.2 Action Model

The predicted effects of an action are derived from its model, which is generally
specified by an action template as part of the planning domain (see chapter 3,
section 3.1). An action template represents a general schema that can be used to
derive instances of actions by instantiating variables appearing as parameters
of the action name. An action template has three parts:

1. An action name with a list of parameters.

2. A precondition part expressing under which conditions the action is ap-
plicable.

3. An effect part, i.e., what changes occur to the state where the action is
applied.

In general, the effect part of the action contains two subsets of assertions
about state variables. First, there is the subset of positive effects that contains
state variables (fluents) asserted either to be true or to have a value that is
different from false. The second subset contains state variables that are asserted
to be false. It should be noted that there are other formalisms for describing
action models. The interested reader is referred to the book by Ghallab and
coauthors about the subject of automated planning [63]. For the purpose of
this chapter, we will only consider monitoring the execution of deterministic
actions,i.e, the models of such actions do not allow to specify uncertain effects.
The execution of a deterministic action is assumed to produce the same effects
every time it is applied in the same state.

Example The following template is used to specify the model an action with
a deterministic outcome to enter a room whose name is to be bound to
the variable ?r1. The template is specified using the PTLplan first-order
language used by the two planners PC-Shop and PTLplan, which are
described in chapter 3.
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(ptl-action

:name (enter ?r1)

:precond (((?r0) (room ?r0)(robot-in = ?r0))

((?r1)(room ?r1)

(exists (?d)(door ?d)

(and (facing ?d)

(connects ?d ?r0 ?r1)(open ?d)))))

:results (robot-in = ?r1))

The :precond part specifies the conditions under which the action is ap-
plicable. In this case it specifies that the robot is in another room ?r0

where it should be facing an open door ?d that leads to the destination
room ?r1. The :results part specifies the predicted effects of the action.
In this case, there is only one positive effect, i.e., (robot-in = ?r1),
which is used to assert that the robot will be in the destination room ?r1.
Notice that the predicate robot-in is in fact a state variable whose do-
main of values is the set of names of the different locations where the
robot can be.

4.3.3 Components

Figure 4.3 shows the different components involved in the process of moni-
toring the execution of a plan action. The perception and anchoring compo-
nent delivers perceptual information about objects. These objects are usually
instances of the atomic classes defined in the semantic knowledge base, such as
beds, chairs, etc. The perceptual information is computed using the data pro-
vided by the on-board sensors such as cameras and lasers. The information is
represented in a symbolic format, and it consists of descriptions of objects in
terms of their observed properties, e.g., color, shape, location, etc. For instance,
if an object of type sofa has been perceived by the robot in room r4, the sym-
bolic description is (and (sofa sf1)(has-sofa r1 sf1)). The perceptual in-
formation is used to estimate the current state of the world, which among other
things includes the current estimated location of the robot. Perceptual informa-
tion is also used to check the implicit expectations of the executed action.

The “robot plans/execution” component maintains information about the
current plan and its execution context. It also stores planning domains that
contain the formal descriptions of action models. The model-based predicted
state of the world is computed using the model of the executed action and
the previous world-state. The predicted state is compared against the estimated
state to detect whether the explicit effects of the executed action were violated.

The knowledge representation and reasoning system Loom is used to store
and reason about semantic domain-knowledge. As explained in chapter 3.2,
this knowledge is divided into terminological knowledge and assertional knowl-
edge. The terminological knowledge captures general knowledge about the ob-
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Figure 4.3: The different components involved in monitoring the implicit expectations
of symbolic actions.

jects present in the environment of the robot. The assertional part of the knowl-
edge base contains knowledge about individual objects that exist in the real
world, such as which room is a kitchen and which object is the oven, etc. The
semantic knowledge base is used to check the implicit expectations that should
result from the execution of actions. Basically, the monitoring module asserts
the acquired perceptual information about perceived objects that are related to
the execution of an action. Then, the semantic knowledge base is queried to
check whether an object of interest is automatically classified as an instance of
a certain class.

4.4 Monitoring Implicit Expectations

A process for Semantic Knowledge-based Execution Monitoring, which we call
SKEMon, is outlined in figure 4.4 (This process will be referred to in subse-
quent chapters as crisp SKEMon). The process typically checks whether an
execution-time object fits the description of an expected object obj using the
available perceptual information. For instance, if the robot has executed the
action (pick-up c1) to pick up the object identified by the symbol c1, then the
object actually picked up by the robot is the execution-time object and needs to
be checked to verify if it matches the description of c1, which is the expected
object. Therefore, the SKEMon process is a kind of type checking process. If
the robot has executed the navigation action (enter r5), then the actual lo-
cation where the robot has ended up is the execution-time object. The location
where the robot is expected to be at, i.e., r5 is the expected object whose de-
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SKEMon(obj)

1. CLs←− skb::get-asserted-classes(obj)

2. temp←− perception::perceived-object

3. Π←− perception::perceived-properties&relations(temp)

4. skb::create-instance (temp,Π)

5. if ∀ cl ∈ Cls: skb::is-instance-of(temp, cl) then

6. return success

7. else if ∃ cl ∈ Cls: skb:is-not-instance-of(temp, cl) then

8. return failure

9. else

10. return unknown outcome

End

Figure 4.4: Main steps of the semantic knowledge-based execution monitoring process
SKEMon.

scription needs to match the actual location of the robot. In the pseudo-code
of the process, the operations prefixed by “skb::” involve using the semantic
domain-knowledge, whereas those prefixed by “perception::” involve using
perceptual information.

The process gets as input the name of the expected object obj, which is de-
rived from the action model. In our current implementation, obj is derived from
the positive effects of the executed action. The process starts by querying Loom

about the asserted classes of the expected object obj (step 1). For example, if the
robot executed the navigation action (enter r4), then Loom is asked about
the asserted classes of the object named r4. Only the most specific asserted
classes are considered, since the semantic knowledge base can deduce that an
instance of a specific class is also an instance of all the more general classes. For
instance, if r4 is asserted once to be a room and once to be a living-room, then
only the living-room class is considered.

In step 2, the execution-time object is given a temporary name, and in step
3 the monitoring process retrieves perceptual information about the perceived
properties (as well as relations to the other perceived objects) of the execution-
time object. It is worth mentioning that the perception and anchoring module
retains only percepts that are relevant to the current domain by filtering the
stream of percepts coming from the sensing modalities. The filtering is carried
out by hard-coded functions that are defined as part of each domain. An alter-
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native solution would be to automatically construct filters using the definitions
of concepts and relations, which are stored in the semantic knowledge base.

The next step is to use the retrieved perceptual information to create a tem-
porary instance referring to the execution time object in the semantic knowl-
edge base (step 4). The aim of this step is to check whether the execution-time
object can be automatically classified as an instance of one of the defined classes
in the knowledge base. For instance, if the perceptual information indicates
that the robot is in a room and that one chair ch1 and one bed b1 have been
observed in that room, then the monitoring process asserts those facts in the
semantic knowledge base by issuing the following Loom command:

(tell (room temp)

(has-chair temp ch1)

(has-bed temp b1))

where temp is a temporary symbol used to refer to the current room (where the
robot is actually located), i.e., the execution-time object. The execution of the
command by Loom results in an automatic classification of the newly created
instance based on the properties and relations to the other perceived objects,
i.e., the chair ch1 and the bed b1.

Once the semantic knowledge base is done with the classification of the
execution-time object, the monitoring process sends another query to Loom to
check whether the classification is consistent with the asserted classes of the ex-
pected object obj (step 5). In step 7, the monitoring process checks whether the
available perceptual information reveals that one of the constraints, involved in
the definition of the classes of the expected object, is violated. For our example,
this is performed by sending the following two queries to Loom:

(ask (living-room temp))

(ask (:not (living-room temp)))

The second query is asked only when the answer to the first one is “NO”.
The monitoring process interprets Loom’s answers as follows:

• Consistent Classification. A YES on the first query means that the implicit
expectations are verified and therefore the execution-time object temp is
classified like the expected object obj. As a result, the SKEMon process
returns success (step 6). In our example, this means that the robot is in
the right type of room.

• Inconsistent Classification. A YES on the second query means that the
classification of the execution-time object is inconsistent with the ex-
pected object obj. This occurs when at least one implicit expectation is
violated. Hence, a failure is reported (step 8). In our example, this means
that the robot is dislocated.
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m < n m = n m > n

(:at-least n R) unknown YES YES

(:exactly n R) unknown unknown NO
(:at-most n R) unknown unknown NO

Table 4.1: Truth values of number constraints given as a function of m: the number of
objects that have been observed to be related by relation R to a specific individual. The
truth values are computed under the open-world assumption.

• Unknown Outcome. NO on both queries means that it cannot be deter-
mined whether some constraints (implicit expectations) hold or not (step
7). In our example, if no sofa is observed and the constraint (:at-least
1 has-sofa) is not known to be true or false for the current room, then
the room cannot be classified as a living-room by Loom.

The unknown outcome is due to the fact that we set up Loom to operate
according to open-world semantics. In other words, the facts told to Loom

are assumed to be only a part of the complete world state. As a result, Loom

assumes that there might be additional facts of which it has not been told. The
reason behind using open-world semantics is to be able to take into account
partial observability of the environment: due to occlusions, the robot gets only
partial information about the presence of objects and their properties.

In fact, using open-world semantics makes number constraints prone to give
an unknown. An (:at-least n R) constraint gives unknown whenever the
total number of observed objects related to the constraint is less than the lower
bound n. The constraint gives YES otherwise. An (:at-most n R) constraint
gives unknown as long as the total number of observed objects related to the
constraint is not above the upper bound n. The constraint gives NO otherwise.
Table 4.1 shows the answers to queries about the truth value of three number
constraints given as a function of the total number m of observed objects.

The robot has two options to handle the unknown outcome. The first option
is to be credulous and consider the absence of counter-evidence as sufficient
grounds for assuming that the execution of the action has succeeded. In our
example, the credulous approach implies that the monitoring process should
ask the semantic knowledge base whether the location is an instance of another
class (that is not a superclass of the expected class) to check whether the robot is
dislocated. If the class of the location is still not known, the monitoring process
assumes that the location is correct as long as no evidence of the contrary is
detected.

The second option is to take a cautious approach and actively try to gather
more information in order to do a better classification. Chapter 6 presents in
detail a sensor-based planning approach designed to deal with situations of lack
of information in semantic knowledge-based execution monitoring.
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4.5 Handling Unsuccessful Execution

Whenever the monitoring process finds out that an action has not been executed
successfully, a recovery procedure can be launched to correct the unexpected
situation. The recovery procedure consists of finding a sequence of actions that
would lead to a situation where the robot can continue executing its top-level
task plan. In our navigation example, replanning is needed when the robot is
found to be dislocated. The first step in replanning is the creation of a world
state that reflects the resulting unexpected situation, i.e., update the location
of the robot to the right one. However, special care should be taken when
performing location update because sometimes the new location might be not
unique. For instance, if all what the robot has observed so far is a sink and
sinks are defined to be either in a kitchen or a bathroom, then, the recovery
module should take this fact into account.

4.6 An Illustrative Example

To clarify the idea of using semantic knowledge in monitoring the execution of
symbolic plans, we describe an example of a mobile robot with manipulation
capabilities. Test scenarios of a real robot acting in an indoor environment are
presented in chapter 8.

In this example, the robot has an arm with a gripper, which is used to grab
objects. The gripper has contact sensors whose states indicate whether the robot
is holding some object. The robot is also supposed to have an on-board vision
system that it can use to collect perceptual information about objects in its
environment. The robot has a semantic knowledge-base that includes, among
other concept and relation definitions, the following:

(defset shape :is

(one-of ’cylindrical ’cubic ’spherical))

(defconcept bowl :is

(and container

(:exactly 0 has-handle)

(= has-shape cylindrical))

(defconcept cup :is

(and container

(:exactly 1 has-handle)

(= has-shape cylindrical))

Notice that the defset construct defines a concept as a set of symbols. In the
definitions given above, the difference between a bowl and a cup is determined
by the number of handles they can have.
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Figure 4.5: An example of a situation where the robot wants to pick up a bowl that
happens to be placed next to a cup.

Suppose that the robot has just finished the execution of the plan action
(pick-up b1) where b1 is a symbol denoting an object of type bowl. The ex-
plicit effect of (pick-up b1) is to grab object b1 which is encoded as (holding
b1 = t). Suppose also that instead of picking up the bowl, the robot picked up
a nearby object of type cup (see figure 4.5).

Using the information provided by the contact sensors of the gripper al-
lows the execution monitor to deduce that the explicit effect (holding b1 =

t) holds. Therefore, the SKEMon process is called to check that the object held
by the gripper is actually of type bowl. To do so, the SKEMon process gives a
temporary name to the picked up object and then asks the perception process
about the observed properties of the picked up object. Relying on the on-board
vision system, the perception process replies that the object is a container with
a cylindrical shape and that has one handle. This perceptual information is
asserted by the SKEMon process in the semantic knowledge base as follows:

(tell (container temp)

(has-handle temp h1)

(has-shape temp cylindrical))

Next Loom is asked about whether temp is of the same type as the expected
object b1, i.e., whether temp is a bowl:

(ask (bowl temp))

The answer of Loom to this question is NO, since the implicit expectation of
a temp having no handle is known to be violated. As a result, the SKEMon
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process concludes that the execution of the action has failed. One solution to
respond to this unexpected situation is to put the cup on the table, then try to
pick up the bowl. Notice that Loom cannot classify the picked up object as a
cup because it does not know whether that object has another handle.

4.7 Discussion

This chapter presented a novel high-level approach for monitoring the execu-
tion of symbolic task plans in indoor environments. The novelty of the ap-
proach resides in using semantic domain-knowledge to compute implicit ex-
pectations that are to be verified when plan actions are executed successfully.
These implicit expectations are then checked based on the run-time collected
perceptual information. In chapter 8 we describe test cases where the proposed
approach was used on-board our mobile robots to monitor the execution of in-
door navigation plans. We also describe an experimental methodology aiming
at evaluating the performance of the proposed approach using simulation.

Although semantic knowledge plays an important role in many application
areas, such as the semantic web [9] and image analysis and interpretation (see
for example the work by Russ and colleagues [129] and the recent work by
Neumann and Möller [112]), its use is still uncommon in mobile robotics. No-
table exceptions include applications to facilitate human robot communication
in a spoken language [142], classification of map spaces for navigation tasks
[60], and as a means of publishing and sharing knowledge in multi-robot en-
vironments [32]. Simple geometric semantic knowledge has also been proved
to be useful in building 3D maps of indoor environments [116], where simple
semantic knowledge is expressed in terms of geometric constraints over laser
readings to classify 3D points into floor, ceiling, or physical objects points. It
is worth mentioning that the mobile robotics community has recently started
looking at using semantic knowledge in robotics with more attention by orga-
nizing international events such as the workshop on semantic information in
robotics at the IEEE international conference on robotics and automation [72]
and the semantic robot vision challenge [118].

The process of monitoring the execution of symbolic plans needs to be per-
formed at different levels, from detection of hardware errors to high-level de-
liberation. In this context, semantic knowledge can be one contributor to a
multi-layered and multi-source monitoring process.

The use of semantic knowledge in execution monitoring helps detect failure
situations that cannot be detected by traditional monitoring approaches. The
reason is that in many situations, monitoring only explicit effects of actions
cannot be enough for detecting unexpected situations. A direct consequence of
using semantic knowledge in monitoring plans is that the process of planning
to achieve tasks becomes less computationally demanding as the task planner
does not reason about the details of the objects manipulated by the planning
domain actions.
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Although the proposed approach helps in developing more robust plan ex-
ecution monitors, it still suffers from the inability to handle uncertainty in per-
ception as well as actions with more than one possible outcome. In the next
chapter, we present another approach of semantic knowledge-based execution-
monitoring that aims to handle uncertainty in action effects, sensing and world
states. Our aim is to develop an approach that is applicable to a wide variety
of real world scenarios.



Chapter 5

Probabilistic Semantic

Execution Monitoring

In chapter 4, we showed how semantic domain-knowledge can be used in the
process of monitoring the execution of symbolic robot plans. The key idea is to
use such knowledge to compute implicit expectations that can be observed at
run time by the robot to make sure actions are executed correctly. The approach
addressed actions with deterministic effects, i.e., having only one outcome and
the result of evaluating the implicit expectations was treated in a boolean set-
ting, that is either true, false, or unknown.

As uncertainty is an ever-present feature in mobile robotics, it has an im-
pact on the actions of robots as well as their perception of their environment;
in the presence of uncertainty, even the best laid plans can fail. Therefore, the
main contribution of this chapter is the development of a second SKEMon
approach that is be able to take into account uncertainty in world states, ac-
tion effects, sensing, and the way expectations are interpreted in the semantic
domain-knowledge. In this chapter, we describe a probabilistic quantitative-
model of uncertainty, such that actions are allowed to have different outcomes
each with a probability of occurrence and such that sensing can be unreli-
able. Using probabilities makes it possible to go beyond a boolean treatment
of whether an expectation is verified. In particular, the execution monitor can
combine different evidences in a systematic way. Therefore, given the a priori
probabilities of the possible action outcomes, the available semantic knowl-
edge, and the actual observations, the execution monitor is able to estimate the
probability of whether a certain expectation is verified, such as “the robot is in
an office with 0.9 probability” – in the framework of chapter 4, that would just
have been a “unknown” monitoring result. Moreover, the fact that the a poste-
riori probability of each outcome of an action can be estimated enables a more
informed decision about how to proceed (consider action execution successful,
failed, or more information needed) than with just a boolean approach.

71
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This chapter is organized as follows. In the next section, we give an overview
of how semantic knowledge can be used under uncertainty. The rest of the
chapter is devoted to explaining how uncertainty in sensing, action effects, and
world states is incorporated in the monitoring process. Before concluding the
chapter, we give an overview of how the results of execution monitoring are to
be used by the plan executor in order to carry on the execution of the rest of the
task-plan. Real-robot test scenarios showing the applicability of the approach
as well as simulation experiments are reported in chapter 8.

5.1 Overview of the Approach

In chapter 3, we argued that the effects of uncertainty on plan execution can
be mitigated by employing planning techniques that reason about uncertainty;
the generated plans include therefore information collection actions that allow
them to respond to different situations adequately. As those plans are generated
off-line, the actual effects of their actions need to be estimated at execution-
time, since the actual effects are not known beforehand. To estimate the actual
effects of actions effectively, the monitoring process needs also to reason about
the uncertainty inherent in action outcomes, world states, and sensing.

In the following, we give an overview of how semantic knowledge can be
used in execution monitoring under uncertainty. The monitoring process uses
the probabilistic model of actions, presented in chapter 3, to model actions with
several possible outcomes. Thus, each outcome is associated with a prior prob-
ability. For instance, to model the uncertainty about the final result of moving
from one room ?r1 to another connected room ?r2, the specification of (move
r1 r2) action might include two possible outcomes: either unintentionally re-
maining in ?r1 (e.g., due to wheel slippage and excessive turning) or effectively
moving to room ?r2. If prior probabilities for these two outcomes are available,
then they can be specified as well, otherwise the two outcomes are assumed to
be equiprobable. The template of the movement action can be specified using
the Ptlplan language as follows:

(ptl-action

:name (move ?r1 ?r2)

:precond (((?r1)(room ?r1)(robot-in = ?r1))

((?r2)(room ?r2)

(and (connected ?r1 ?r2)

(exists (?d)(door ?d)

(and (connects ?d ?r1 ?r2)(open ?d))))))

:results (robot-in = (?r1 0.2)(?r2 0.8)))

The template specifies that the first outcome can occur with a probability that
is equal to 0.2, while the second outcome can occur with a probability that is
equal to 0.8.
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This type of action templates can be used to find plans that reason about
uncertainty in robot actions as well as sensing. This has the advantage of gen-
erating plans capable of dealing with potential contingencies that might arise
at execution time (see section 3.1). For instance, the following plan could be
generated to clean room r2, which is asserted to be of type office, starting
from room r4, which is asserted to be of type living-room. The branches are
created to handle the two predicted contingencies that might occur after the
execution of the movement action1; the condition of each branch is the obser-
vation of the corresponding belief state (the cond form is used to introduce a
conditional branching).

((move r4 r2)

(cond ((robot-in = r4)

(move r4 r2)

(cond ((robot-in = r4) :fail)

((robot-in = r2) (clean r2) :success)))

((robot-in = r2)

(clean r2) :success)))

Even though the plan reasons about the possible contingency of not moving
to the destination room, execution monitoring is still needed mainly for two
reasons. First, the plan executor needs to know the outcome of the movement
action in order to select the next action for execution. Second, other contin-
gencies that were not planned for need to be detected should they occur at
execution-time. For instance, the robot might not be initially in room r4 which
means that the execution of (move r4 r2) would result in a different situation
other than being in room r4 or room r2.

Typically, the monitoring process uses semantic domain-knowledge in the
following way:

• For each possible outcome of the action whose execution is being mon-
itored, a set of implicit expectations are computed. For instance, if one
outcome is to be in an office, the implicit expectations of having at least
one desk and at least one chair are computed. If the second outcome of
the action is ending up in the printing-room, the implicit expectations
would include having at least one printer, one copier, etc.

• Those expectations are used to estimate a probability distribution over
what one would expect the actual world state to be like. For instance, the
implicit expectation of seeing at least one desk implies that the probability

1Recall that a forward-chaining sensor-based planner starts with an initial belief state and adds
actions until a belief state satisfying the goal is reached. If the insertion of an action gives rise to
a set of belief states (due to partial observability), the planner inserts a branch for each resulting
belief state and continues planning for each branch separately. Therefore, the resulting plan is
conditional.
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of having no desk is zero, while the probability of having one, two, or
more desks is strictly greater than zero.2

Besides uncertainty about the world state, uncertainty in sensing is taken
into consideration through a model that expresses the probability of what is
observed for a given world state. In its general form, the sensing model permits:

• To state whether an object that exists in the real world is seen or not, e.g.,
to take occlusions into account.

• How a seen object is classified, i.e., the model accounts for misclassifica-
tion of objects when they are seen. For instance, a sofa may sometimes be
mistaken to be an arm-chair.

The monitoring process uses the prior probability distribution over the
outcomes of the executed action together with the semantic knowledge-based
probability estimates and the sensing model to compute the posterior probabil-
ity of the outcomes. Thus, the monitoring task becomes more like a Bayesian
belief update task [130]. This is basically done through computing the poste-
rior probability distribution of the outcomes using the execution-time acquired
information, i.e., the monitoring process computes the actual execution-time
belief state.

More specifically, if o denotes the collected information (or observations
hereafter), then the posterior probability of the action resulting in a specific
outcome r is computed using Bayes formula:

p(r|o) =
p(o|r)p(r)

p(o)
(5.1)

where p(o) is a normalizing factor. The computation of the posterior p(r|o)
requires the specification of two probability functions: (1) the prior probability
p(r), and (2) the observation function p(o|r).

The function p(r) is easily computed from the action model and the previous
belief state bs, i.e., the belief state before the action was executed:

p(r) =
∑

s∈bs

p(r|s)p(s) (5.2)

where p(r|s) is the conditional probability of the action resulting in outcome r
when the world is in state s; p(r|s) is specified in the action model as a condi-
tional effect. Note that in the case of full observability, i.e., the previous belief
state contains just one state, p(r) is simply derived from the action model. Note
also that using equation (5.2), we can easily take into account the output of
probabilistic localization systems, such as particle-filter ones [56], as a belief

2As neither Loom nor any other currently available DL system supports probabilities, the prob-
ability distributions of the expected state of the world are computed by a precoded procedure.
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state: each state s ∈ bs can represent a possible hypothesis about the true loca-
tion of the robot.

Before going any further, we should mention that there are situations where
equation (5.1) can result in an exception if p(r|o) is zero for all outcomes r.
These situations arise when the collected observations o constitute counter ev-
idence against all outcomes, i.e., p(o|r) = 0 for all outcomes r. An example of
such situations is when the predicted outcomes of a movement action state that
the robot can be either in room r4 (living-room) or in room r1 (a bedroom), but
the robot sees a sink which is counter evidence against being in bedrooms or
living-rooms. This indicates that the actual outcome is not one of the predicted
ones.

One explanation of these exceptions is that the predicted outcomes were
generated starting from a faulty model of the world, i.e., the world state used
by the planner to instantiate the action is wrong. For instance, the robot is
wrongly believed to be in room r4 (the living-room) while it is actually in room
r5 (the kitchen).

Whenever the monitoring process encounters such exceptional situations,
a recovery procedure is needed. The aim is to estimate a world state that is
consistent with the acquired observations and then generate a new task-plan
to achieve the assigned task. For our example, the new estimated world state
would include all locations where seeing a sink is not counter evidence.

Deriving the Observation Function

In the following, we show how the observation function p(o|r) is computed.
We will use the following notation: bold-face letters denote vectors, capitalized
letters denote variables, and uncapitalized letters denote specific values of the
variable denoted by the same letter but capitalized, e.g., o is the same as O = o
and x is the same as X = x. The ith element of a vector X is denoted by Xi.

We will consider only observations that describe number constraints, i.e.,
specified by the :at-least, :at-most, and :exactly concept constructs in the
semantic knowledge base. One could easily add random variables to represent
the observation of other properties such as the color or the size of objects with a
set of different values, and constraints over these values. For instance, we might
have a constraint over the color of a specific class of objects with possible values
in {red, yellow, white}.

To compute the observation function p(o|r), we need the following entities:

• A random variable R whose domain values {1, . . . ,m} represent the dif-
ferent action outcomes that are specified in the action model. The prior
probability p(r) for each single outcome r is computed according to equa-
tion (5.2).
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• A set of N atomic concepts defined in the semantic knowledge base. Each
concept denotes a class of observable objects Ci. For example, C1 = bed,
C2 = sofa, etc.

• A random vector O of size N such that its ith random variable Oi repre-
sents the number of observed objects of type Ci. For instance, if C1 refers
to the concept bed, O1 represents the number of observed beds.

• A random vector S of size N such that its ith random variable Si is a
state variable whose values are the actual number of objects of type Ci.
In our model, each state variable Si depends directly only on R. Each
state variable Si takes values in a finite domain Vi ⊂ N

Example Consider the execution of the navigation action (move r4 r5) whose
model accounts for two possible outcomes. The first outcome, i.e., R = 1,
is when the robot remains unintentionally in r1, while the second out-
come, i.e., R = 2, is when the robot moves effectively to room r5. If the
only classes of observable objects that can exist in either location are so-
fas and sinks, then S1 and S2 denote respectively the actual number of
sofas and sinks that can exist in one of the rooms. O1 and O2 denote re-
spectively the number of observed sofas and sinks in the current location.

We also assume that observing one object is independent of observing another;
therefore number constraints are restricted to be rather over disjoint concepts.
This means that we cannot have a number constraint about beds and at the
same time another number constraint about big-beds, simply because observing
an object that is of type bed is no longer independent of observing an object of
type big-bed.

Thus, equation (5.1) becomes:

p(r|o) =
∑

s

p(r, s|o)

= α
∑

s

p(o|s)p(s|r)p(r) (5.3)

where s ranges over values belonging to V1 × V2 × · · · × VN , and α = 1/p(o)
is a normalizing factor. To compute the observation function, two probability
mass functions are required

• A sensing function p(o|s) that describes the probability of observing o

when the real world state is described by s.

• A state function p(s|r) that describes the probability of s when the out-
come of the action is r. The computation of p(s|r) relies on the im-
plicit expectations computed for outcome r using the available semantic
domain-knowledge.
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5.2 The Sensing Model

We start by deriving a general, but computationally expensive, sensing model;
a simpler version is provided further down.

General Sensing Model

The function p(o|s) represents the sensing model of the robot. The term p(o|s)
specifies that given certain actual values s for the state variables, what is the
probability that we will observe o1 objects of type C1, o2 objects of type C2,· · · ,
and oN objects of type CN? In its general form p(o|s) permits:

• To state if an object that exists in the real world is seen or not, e.g.,
thereby occlusions can be taken into account.

• How a seen object is classified, i.e., the model accounts for misclassifica-
tion of objects when they are seen.

The potential for misclassifying objects when they are seen implies that all
random variables in O and S depend on each other. Consequently, there is an
exponential number of probabilities p(o|s) that need to be specified. We break
this dependency by introducing N random vectors Gi:1≤i≤N (each of dimension
N + 1). Each Gi depends directly only on the ith state variable Si, and p(gi|si)
expresses the probability of classifying si objects of type Ci as gik(k = 1 . . . N)
objects of class Ck. The number of missed (unseen) objects of type Ci is denoted
by gi(N+1). Figure 5.1 shows the dependency structure of the variables R,S, O,
and Gi.

Note that oi =
∑

k=1,N gki, i.e., oi represents the total number of objects
classified as instances of Ci; either correctly, i.e., gii or incorrectly, i.e., gki (for
k 6= i). For example, the number of observed chairs is the total number of
objects classified (correctly or incorrectly) as chairs. Thus, we have

p(oi|g1i, . . . , gNi) =

{

1 if
∑

k=1,N gki = oi

0 otherwise

Under the assumption of independently classifying observed objects of the
same class, each p(gi|si) can be represented by a probability mass function
of a multinomial distribution whose parameters are n = si and classification
probabilities p1, . . . , pN+1. The quantity pk, for 1 ≤ k ≤ N , represents the
probability of classifying an object of type Ci as being of type Ck, while pN+1 is
the probability of missing (not seeing) an object of type Ci.

3 Therefore, p(gi|si)
is given as follows:

3It is worth mentioning that most multi-class object classification methods allow to compute the
probability of classifying an object under different classes (e.g., see the work by Mikolajczyk et al.
[100] and the work by Sipe and Casasent [140]).
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Figure 5.1: The dependency structure of the different random variables used in the state
and sensing functions.
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Finally, the general sensing model is formulated as:

p(o|s)=
∑

g1,...,gN

p(o,g1, . . . ,gN|s)

=
∑

g1,...,gN

p(o|g1, . . . ,gN)p(g1, . . . ,gN|s)

=
∑

g1,...,gN

N
∏

i=1

p(oi|g1i, . . . , gNi)p(gi|si) (5.5)

The posterior probability of the outcomes given the observations is conse-
quently given by

p(r|o) = αp(r)
∑

s

N
∏

j=1

p(sj |r)
∑

g1,...,gN

N
∏

i=1

p(oi|g1i, . . . , gNi)p(gi|si) (5.6)

It should be noted that the sensing model does not take into account hallu-
cinations, i.e., seeing objects that do not exist at all; nevertheless hallucinations
can be handled by a straightforward extension. TO do so, one can add a bi-
nary random variable H to indicate whether the robot is hallucinating, and
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another random vector G that depends only on H. The values of G indicate
the distribution of the hallucinated objects for the different classes.

Simplified Sensing Model

Because misclassification of observed objects has to be taken into account, the
general sensing model in (5.5) can be quite expensive to compute. We also pro-
vide a simplified sensing model where objects can be missed (unseen) but not
misclassified. In such cases, each observation random variable Oi becomes di-
rectly dependent only on its corresponding state variable Si. Hence, we obtain:

p(o|s) =
N
∏

i=1

p(oi|si) (5.7)

where p(oi|si) expresses the probability of seeing oi objects of type Ci when
there are in fact si of them. Under the assumption of independent observations
of objects of the same type, the distribution of Oi given Si = si is a binomial
B(n, pi) with parameters n = si and pi is the probability of seeing an object of
class Ci, i.e.,

p(oi|si) =

(

si

oi

)

poi

i (1− pi)
si−oi (5.8)

5.3 Deriving the State Function

The state function p(s|r) is where semantic knowledge is encoded. This function
gives for instance the probability that the grasped object has a handle given
that it is a cup, or the probability that a room has a stove given that it is
a kitchen. Unfortunately there is no workable description logic system that
supports probabilistic reasoning (although some attempts have been made in
that direction, e.g., see the work by Koller et al. [86] and the recent work
by Lukasiewicz [94]). Therefore, the probabilities of the state functions are
implemented outside the semantic knowledge base.

As we consider that each state variable Sj is dependent only on the outcome
of the action R, the state function p(s|r) becomes

p(s|r) =
N
∏

j=1

p(sj |r) (5.9)

Each p(sj |r) specifies the probability of having exactly sj objects of type
Cj given that the outcome of the action is known to be r. We use semantic
knowledge as a basis for computing p(sj |r). The key idea to determine im-
plicit expectations Er = {e1, . . . , enr

} for each outcome r. Each expectation
expresses a number constraint over the values of the actual number of objects
of a certain type Cj , i.e., ej ≡ (Sj ∈ Vj) where Vj ⊂ N.
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For instance, using the model of the action move given above, to instantiate
the action (move r1 r4) to move from the bedroom r1 to the living-room r4

gives two outcomes. The first outcome is when the robot is still in r1, and
the second one is when the robot moves into r4. Since r1 is a bedroom, and
since bedrooms are defined in the semantic knowledge base as rooms having
at least one bed, at most one sofa, and no sink, the implicit expectations of
the first outcome could be E1 = {e1, e2, e3} where e1 ≡ (S1 ∈ {1, 2, . . . ,m}),
e2 ≡ (S2 ∈ {0, 1}), and e3 ≡ (S3 ∈ {0}). S1, S2, and S3 are random variables
describing respectively the number of beds, sofas, and sinks that may be in
r1. The value of m specifies the maximum number of beds that can be in a
bedroom.

Once the implicit expectations related to each outcome are computed, they
are used to specify p(sj |r) as follows:

• If there is an implicit expectation ej ∈ Er constraining the values of a
state variable Sj , i.e., ej ≡ (Sj ∈ Vj), we should have

p(sj |r) = 0 if sj /∈ Vj

0 < p(sj |r) ≤ 1 if sj ∈ Vj
∑

sj∈Vj
p(sj |r) = 1

The probability mass function p(sj |r) can be a known mass function used
in counting processes such as the binomial or the Poisson mass functions.
It can also be given as a table of probabilities reflecting the belief of the
user.

• For those state variables Sj that are unconstrained in r, we simply as-
sume that Sj ∈ {0, 1, . . . ,max(Sj)}, where max(Sj) is a predefined upper
bound on the values of Sj , and take p(sj |r) to be a uniform probability
mass function.

As stated above, the user can use a known probability mass function to
model the state function p(sj |r). This can be considered as a systematic way of
specifying p(sj |r), when the user does not have access to a table of estimated
values of the state function. Using a known probability mass function reduces
considerably the amount of information that the user has to provide, since
only a few parameters need to be specified. For instance, the shifted geometric
mass function can be used to model a state function representing an :at-least

expectation ej ≡ (:at-least n R) as follows:

P (Sj = m|r) = λ(1− λ)m−n for m ≥ n (5.10)

where λ is a parameter that specifies the probability of having exactly one object
of type Cj . If the user wants to impose a maximum nmax on the values that
the random variable Sj can take, a modified version of (5.10) can be used as
specified in equation (5.11).
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Figure 5.2: Bar-plots of a shifted geometric mass function (with λ = 0.45 and m ≥ 5)
and its modified version with nmax = 8.

P (Sj = m|r) =
λ(1− λ)m−n

α
for n ≤ m ≤ nmax (5.11)

where α is a normalizing factor that is equal to
∑nmax

m=n λ(1− λ)m−n. Figure 5.2
shows an example of a state function modeled with a shifted geometric mass
function with λ = 0.45 and n = 5 as well as its modified version with nmax = 8.

Example Suppose that the robot has executed the movement action (move

r1 r4) to move from bedroom r1 to room r4, which is a living-room.
Deriving the state function for the first outcome implies first deriving the
implicit expectations implied by being in r1. Suppose that the concept
of bedroom defined in the semantic knowledge base gives the following
implicit expectations: e1 ≡ (:at-least 1 has-bed), e2 ≡ (:at-most 1

has-sofa), and e3 ≡ (:exactly 0 has-sink).

Consequently, the conditional probabilities of the state variables given
that the robot is in a bedroom, might be determined as follows:

• The number of beds in a bedroom can be modeled as a shifted geo-
metric random variable S1, i.e.,

P (S1 = i|r) = λ(1− λ)i−1 if i ≥ 1

where λ is the probability of having exactly one bed. Using a shifted
geometric probability mass function ensures that the probability de-
creases when the number of beds increases. For instance, when λ =
0.8, we get P (S1 = 1|r) = 0.8 < P (S1 = 2|r) = 0.16 < P (S1 =
3|r) = 0.032 < · · ·
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• As sofas are believed to be uncommon in a bedroom, one might use
a probability mass function that reflects this belief, for instance:

P (S2 = 0|r) = 0.8;P (S2 = 1|r) = 0.2

where S2 is a random variable modeling the number of sofas.

• The implicit expectation e3 implies that the random variable S3, rep-
resenting the number of sinks, has as probability mass function:

P (S3 = 0|r) = 1.0

• As there is no implicit expectation about chairs in a bedroom (case
2 above), we can have the uniform probability mass function:

P (S4 = 0|r) = · · · = P (S4 = 4|r) =
1

5

which means that there might be up to 4 chairs in a bedroom.

Deriving the state functions for the second outcome, i.e., being in the
living room, is done the same way.

Once the execution monitor finishes computing the posterior probabilities of
the outcomes of the executed action, the plan executor needs to be notified
about the result of the execution. The plan executor uses that result to continue
the execution of the rest of the task-plan or to try to recover if needed. In the
next section, we explain how this is done.

5.4 Using the Results of Execution Monitoring

The results of monitoring the execution of an action are computed based on the
type of the plan being executed and the assumptions made by the planner to
generate it. In other words, the execution monitor needs to know whether the
planner has generated the task plan taking into account partial observability as
well as uncertainty about action effects and sensing.

5.4.1 Linear Plans

If the task plan was generated under the assumptions that there is no uncer-
tainty about the state of the world and that actions are deterministic, then the
plan executor expects to be notified about whether the execution of an action
has resulted in “success” or “failure”. The result “success” reflects the situation
where the actual outcome produced by the execution of the action is the same
as the outcome predicted by the planner. On the other hand, the result “fail-
ure” reflects situations where the predicted outcome is different from the actual
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outcome. Naturally, the plan executor carries on the execution of the rest of
the task plan only if it gets ‘success”, otherwise a recovery procedure might be
needed to respond to the resulting execution failure.

As we have seen so far in this chapter, the execution monitoring process
is designed to reason about the different forms of execution-time uncertainty,
regardless of whether the planner does the same. Since the result of execution
monitoring is a probability distribution over the possible outcomes of the ex-
ecuted action, the computed probabilistic posterior needs to be mapped to the
binary result expected by the plan executor. One way of achieving this mapping
is to return “success” whenever the outcome with the highest posterior prob-
ability is the same as the predicted outcome. More formally, let r denote the
outcome predicted by the planner and r′ the outcome with the highest poste-
rior probability of the executed action, i.e.,

r′ = argmax
R=i

P (R = i|O = o) (5.12)

then the execution result to return to the plan executor is computed as follows:

If r = r′ return success
otherwise return failure

One can also use a modified selection criterion that uses the value of a
threshold T to determine the resulting outcome r′:

If r = r′andP (R = r′|O = o) ≥ T return success
otherwise return failure

where r′ is computed according to equation (5.12). This modified criterion can
be used to avoid returning “success” when the highest posterior probability
might be low. For instance, if an action might result in four possible outcomes,
then it is possible to have a situation where the outcome with the highest pos-
terior has a probability of 0.26, which might be considered to be very low to
conclude that the execution of the action has succeeded.

One issue that might arise when using the modified criterion is that there
might be no outcome that satisfies it. To cope with such an issue, one can either
fall back to the criterion in equation (5.12) or try to identify which of the re-
sulting outcomes would satisfy the selection criterion. This is usually achieved
by actively gathering information that is capable of reducing the uncertainty
surrounding the resulting situation. Section 6.6 of chapter 6 presents an infor-
mation gathering solution that is designed for such purpose.

Example Suppose that the robot is in the living-room (room r4) and that the
next action to execute is (move r4 r5) to move to the kitchen (room r5).
Suppose that the planner used a deterministic model of the action, i.e., its
predicted outcome is that the robot will be in room r5 with certainty. The
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non-determinism of the action is handled by the monitoring process by
using the probabilistic model with two outcomes as given in section 5.1
above. This means that the first outcome, R = 1, models the situation of
the robot getting stuck in the initial room r4 with P (R = 1) = 0.2, while
the second outcome is when the robot effectively moves to the destination
room r5 with P (R = 2) = 0.8.

If the posterior computed by the monitoring process is P (R = 1) = 0.4
and P (R = 2) = 0.6, and the threshold T is equal to 0.5, then the result
of execution is “success”. However, if T = 0.7, the monitoring process
will not be able to compute r′, as neither outcome has a posterior that
is greater than 0.7. In this case, the monitoring process can decide to
launch an active information gathering procedure to look for evidence
(or counter evidence) of being in one of the rooms. On the other hand, a
fall back to (5.12) will result in “success”.

5.4.2 Conditional Plans

In case the planner reasons about uncertainty in action outcomes and the initial
conditions of world states, the generated task plans are conditional; each plan
branch is associated with one possible modeled action-outcome (see chapter
3). Therefore, the executor of the conditional task-plan expects from the mon-
itor not a “success” or “failure” result, but the actual outcome of the executed
action. As a result, the plan executor selects and executes the branch associ-
ated with the actual resulting outcome. This means that an execution failure is
raised, if the resulting outcome has no branch associated with it, e.g., because it
was not predicted by the planner to occur. Consequently, a recovery procedure
might be needed to continue the execution of the task plan.

As monitoring yields a probability distribution over possible outcomes, the
monitoring process needs to select one of them to return to the plan execu-
tor. One way of doing that is to return the outcome with the highest posterior
probability as specified in equation (5.12). Another way is to use the modi-
fied threshold criterion together with information gathering in case there is no
outcome that fulfills the selection criterion.

5.4.3 Conditional Plans under Partial Observability

If the task plan was generated taking into account partial observability of the
environment, the plan executor needs to know the actual belief state resulting
from action execution, to be able to continue the execution of the plan. As
probabilistic monitoring is equivalent to computing the actual belief state of
the world, the whole posterior probability distribution is returned to the plan
executor. The plan executor selects the plan branch associated with the belief
state whose observations are consistent with the run-time collected ones and
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whose probability distribution is equal to the computed posterior. Otherwise,
an execution failure is raised, which leads to starting a recovery procedure.

5.5 Summary and Conclusions

This chapter presented a semantic knowledge-based execution monitoring ap-
proach that is designed to handle uncertainty in action effects, sensing and
world states. The approach provides more informed decision about how to
proceed after an action is executed (execution can succeed, fail, or more infor-
mation is needed) than with the boolean approach presented in chapter 4.

In summary, semantic knowledge is used to compute implicit expectations
for each possible action outcome. Then, a probability distribution is estimated
to reflect how the world state looks like taking into account those implicit
expectations. Moreover, a probabilistic model is provided to reason about un-
certainty in sensing for a given world state. Thus, the result of monitoring is a
posterior probability distribution over the different action outcomes.

The use of probabilities to model uncertainty in sensing and acting gives us a
well founded treatment, but providing the needed probability values might be a
daunting task for large domains. In our implementation, we took a Bayesian ap-
proach and interpreted probability values as measures of belief. Therefore, the
user can model probability state functions using known probability mass func-
tions such as the shifted geometric and Poisson distributions. Using a known
probability mass function reduces considerably the amount of information that
the user has to provide, since only a few parameters need to be specified. We
also simplified the task of providing conditional probabilities for the sensing
model by making assumptions that allowed us to use well known probability
mass functions (binomial and multinomial functions) to encode the probability
of seeing objects as well as misclassifying them when they are seen.

Unfortunately there is no workable description logic system that supports
probabilistic reasoning in both world descriptions and general domain-knowledge
(although some attempts have been made in that direction [86]). Therefore, we
were obliged to implement the probabilistic model of the world state outside
the semantic knowledge base. In fact, research on reasoning under uncertainty
with description logics is an on ongoing activity [94, 95].

In our probabilistic sensing model, observations are restricted to belong to
different branches of the taxonomy, i.e., no observation belongs to a super-
class of another observation. This is a limitation that would be circumvented
by using new developments in reasoning with uncertainty at all levels of the
taxonomy of concepts. Moreover, the sensing model is relatively complex, and
it may be expensive to compute for large state spaces. We have proposed a
simplified model that assumes no misclassification. Alternatively, one may use
approximate inference methods to address the computational complexity of
the sensing model. This last point is worth investigating further and therefore
constitutes a subject of future work.





Chapter 6

Information Gathering for

Monitoring

The crisp SKEMon process, which was presented in chapter 4, used the im-
mediately available perceptual information to evaluate implicit expectations of
executing actions correctly. The result of the evaluation permits to determine
whether the expectations (1) are confirmed, (2) are violated, or (3) it cannot be
determined whether they hold or not, e.g., due to that only parts of the location
or objects under observation can be seen at the moment. Case 3 brings us to the
problem we tackle in this chapter, i.e., expectations are not always immediately
observable.

In this chapter, we extend the crisp SKEMon developed in chapter 4 to han-
dle situations involving lack of information. We present an active information-
gathering schema for modeling and reasoning about uncertainty due to incom-
plete information. We show how such a schema is used to collect the required
information that would help evaluate the implicit expectations with unknown
truth values. Although the treatment of uncertainty does not include probabil-
ities, chapter 7 shows how the same schema uses probabilities to reason and
recover from situations of anchoring failures that are caused by ambiguity in
perceptual information.

In this chapter, we use sensor-based planning to generate the necessary ac-
tions that the robot can execute in order to reduce or eliminate uncertainty
that is due to incomplete information. Our choice is motivated by the fact that
sensor-based planning has the ability to handle complex situations involving
lack of information in an effective and automatic way. The key idea is to model
the occurring situation as a planning task under partial observability. In this
regard, the initial state of the planning task represents the situation of incom-
plete information, while the goal represents a situation where that information
is available. Therefore, the generated plan includes movement and observation
actions needed to gather the required information. We also present a greedy
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strategy to handle situations involving lack of information in the probabilistic
version of SKEMon, where information that is likely to reduce the uncertainty
in the action outcome is selected to be collected.

This chapter is organized as follows. In the next section, we describe a sce-
nario where information gathering is needed for execution monitoring. Then,
we describe how sensor-based planning can be used to find active information
gathering plans, and how those plans are executed and monitored. Before con-
cluding the chapter, we describe the greedy strategy for identifying information
to collect for the purpose of probabilistic SKEMon.

6.1 A Motivating Scenario

Let us reconsider the scenario of the home environment given in chapter 4.
Suppose that the robot is in the kitchen (room r5) and that it has a sched-
uled task to clean the living-room (room r4) because few guests are coming
later in the evening. To achieve the assigned task the on-board planner gen-
erates a plan that could include the following actions: ((goto d4);(enter

r4);(clean r4)). Now suppose that the robot has just finished the execution
of the (enter r4) action, and that the monitoring process is triggered to check
the resulting outcome. Assuming that the self-localization module indicates that
the robot is in room r4 (i.e., the explicit effect of the action is verified), then the
crisp SKEMon process is launched to check the implicit expectations of being
in a living-room.

Suppose that all what the robot could perceive from its current place is a
chair and a table. As chairs and tables can be in rooms of different types, the
acquired perceptual information is not enough to help the SKEMon process to
establish whether the current room is a living-room. Therefore, the initial result
of monitoring is “unknown”. At this stage, the SKEMon process can assume
a credulous approach and consider that the robot is in room r4, since it could
not perceive any counter evidence against being in a living-room. However, if
the robot wants to be sure that the task is achieved successfully (e.g., the robot
does not want to end up cleaning a room that is not the desired one), it needs to
gather more information that helps it establish that it is in the right room. The
information to look for is needed to conclude whether the implicit expectations
of being in the living-room are verified or violated. For example, the robot
might look for sinks to check that the implicit expectation of having no sinks
in a living-room is not violated. It can also look for sofas as a living-room is
supposed to have at least one sofa.

6.2 Planning to Gather Information

The situation encountered by the robot in the example above represents an
unexpected situation that is due to lack of information, which is needed to
determine whether the robot executed its action successfully. In other words,
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it could not be determined whether some implicit expectations hold or not. In
the following, we assume a cautious approach, where the robot has to look
for information required to evaluate such expectations to establish whether an
action has been successfully executed.

We propose an active information-gathering approach that is based on au-
tomatically analyzing and encoding the unexpected situation as a planning
problem under partial observability. We use sensor-based planning to solve the
problem at hand; the solution is a plan that includes actions designed to collect
information capable of helping the robot establish if implicit expectations hold
or not. The procedure of handling a situation involving lack of information
using planning can be summarized as follows:

1. Situation assessment: first the resulting situation of lack of information is
analyzed with the aim of creating a planning problem through the specifi-
cation of an initial belief state and a goal to reach. The initial belief state
encodes the resulting situation as a set of hypotheses. Each hypothesis
represents one possible assignment of truth values to the implicit expec-
tations that are currently with unknown truth values. Situation assess-
ment also involves determining the conditions under which the needed
information can be acquired, e.g., the locations where the robot can see
more objects. In addition, the initial belief state contains other informa-
tion useful for conducting planning, such as topological information. On
the other hand, the goal of planning is to be able to know whether the
implicit expectations hold or not.

2. Plan generation: the created planning problem is, then, passed to the
sensor-based planner to solve it by generating a plan containing move-
ment and information-gathering actions. The movement actions are meant
to put the robot in a state where it can execute the information gathering
actions. For instance, moving to a location where it is possible to observe
other parts of a room. Another example of a movement action is rotating
an object held by the gripper of the robot in order to observe an initially
hidden side of that object.

3. Plan execution and monitoring: the penultimate step consists in launch-
ing the execution of the information-gathering plan. To do so, each action
is translated into a set of sensorimotoric processes that are executed by
the low-level control architecture of the robot (e.g., in our case it is the
ThinkingCap architecture). Moreover, the same monitoring framework
is used to monitor the execution of the information-gathering plan. This
means that situations of recursive planning are possible. This happens
when the monitoring of an action returns “unknown” as a result of ex-
ecution; therefore another information-gathering plan needs to be gen-
erated. It is worth mentioning that there is no risk of infinite recursive
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monitoring as description logics do not allow definitions of concepts to
be cyclic.

4. Resuming the execution of the task plan: depending on the result of the
execution of the last action of the information-gathering plan, the implicit
expectations can be concluded to hold or not. If all the implicit expecta-
tions were found to hold in the real world, then the execution of the
task plan is resumed. However, if there was at least one implicit expecta-
tion that was found to be violated, then the monitoring process informs
the plan executor that the execution of the action of the task plan had
failed. This means that a recovery episode is needed aiming at handling
the execution-failure situation either by finding another plan to accom-
plish the initial task or by repairing the failing task-plan (see chapter 2
for a information about recovery strategies).

In case the execution of the information-gathering plan itself fails (e.g.,
the robot cannot reach an observation location due to obstacles), the plan
executor can try to launch a recovery procedure that produces another
information-gathering plan or it can fall back to the credulous monitoring
approach and use the collected perceptual information to deduce whether
the execution of the last action of the task plan has succeeded.

The generation and execution of information-gathering plans requires infor-
mation from different sources. First, we obviously need the semantic knowledge
base in order to generate the implicit expectations. Second, a planning domain
is needed, specifying among other things observation actions designed to col-
lect information and establish the truth values of expectations. Other types of
information include spatial information such as topological maps and the spa-
tial relations between objects. In the following we explain how the planning
domain is modeled. The planning domain is primarily designed to handle situ-
ations involving lack of information detected by the crisp SKEMon framework.
In section 6.6 we give an overview of information gathering for the purpose of
probabilistic SKEMon.

6.3 Modeling the Planning Domain

The planning domain contains action templates that can be instantiated and
synthesized to solve planning problems. Our solutions are based on using the
sensor-based planners PTLplan and PC-Shop (see chapter 3) to generate active
information-gathering plans. In the following, we describe the different types
of actions used by both planners. We also describe methods used by PC-Shop

to decompose abstract tasks into more detailed ones.
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6.3.1 Actions

There are two types of actions that can be used to deal with situations of lack
of information that is needed to know whether implicit expectations hold or
not. First, actuation actions are needed to put the robot in a position where
it can collect information. Examples of such actions are approaching a cup
to be able to determine its content or moving to a location inside a room to
have a better view of its currently hidden parts. Second, observation actions are
needed to collect the missing information. This can be, for example, smelling
the content of the cup to determine whether it contains a specific substance.
We have a number of different actions for different types of expectations. Since
the implicit expectations to evaluate are specified by atomic concept constructs,
the planning domain contains an observation action for each atomic concept
construct. The aim of each observation action is to gather information so that
the related concept construct can be evaluated to hold or not.

Actions for atomic concepts An observation action (check-<A> ?x) is associ-
ated with each observable atomic concept A. The effect of such an action
is to collect information required to verify whether the object, identified
by the symbol bound to ?x, is an instance of A. Thus, (check-room r10)

checks if the object denoted by r10 is an instance of the atomic concept
room, e.g., by checking the map constructed by the robot at execution-
time. Similarly, action (check-container c1) checks whether object c1
is an instance of the atomic concept container.

Actions for number and type constraints To establish the truth value of
expectations specified by number and type constraint constructs (i.e.,
(:at-least n R), (:at-most n R), (:exactly n R), and (:all R C)),
we need to define an action template to handle each constraint construct.
The aim of such an action is to keep track of the observed objects that
can be fillers of role R; such information is used to deduce the truth value
of the corresponding constraint. For instance, action (eval-all ?r ?c

?x) keeps track of the perceived objects that are related to ?x by ?r. It
concludes that (:all ?r ?c) is verified only if those individuals are all
of type ?c.

Here is a detailed description, in the PTLplan language, of the action tem-
plate (eval-at-least ?n ?r ?x), which is part of a navigation domain. This
template is associated with the :at-least atomic concept construct. The ob-
jective of this action is to check whether the number constraint (:at-least
?n ?r) is verified. To do so, its execution consists in looking for objects re-
lated to the object instance ?x by relation ?r. For example, (eval-at-least 2

has-bed r1) is meant to look for objects of type bed to check whether room
r1 has at least 2 beds.
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(ptl-action

:name (eval-at-least ?n ?r ?x )

:precond (((?p)(place ?p)(robot-at = ?p))

((?r)(role ?r)(and (not (checked ?r ?p))

(can-check ?r ?p)))

((?x)(room ?x)(part-of ?p = ?x)

(not (nec (at-least ?n ?r ?x)))))

:results (and (checked ?r ?p = t)

(cond ((at-least ?n ?r ?x)

(obs (at-least ?n ?r ?x = t)) )

((and (at-least ?n ?r ?x = f)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))

(obs (at-least ?n ?r ?x = f)))

((true)

(and (obs (at-least ?n ?r ?x = f))

(at-least ?n ?r ?x = t f)))) ))

The intuition behind the action is that the robot can move between different
places, and at each position it can observe a number of objects related to ?x by
?r. While doing that, it keeps track of the total number of observed objects and
compares it to ?n.

The initially false predicate (checked ?r ?l) denotes whether the robot
tried to observe objects, needed to evaluate the relation ?r, from position ?l.
The initial truth value of the predicate (at-least ?n ?r ?x ) is unknown.
The action is intended to observe the truth value of this predicate to determine
if the constraint (:at-least ?n ?r) is true for the object bound to ?x. The
modal formula (nec α) is used to denote that the amodal formula α is true in
all the possible worlds of the belief state where the action is applied.

In short, the precondition part specifies when the action is applicable. In this
case, the truth value of (at-least ?n ?r ?x) is not known and the robot is
at a location where it is possible to observe individuals related to ?x by relation
?r. The result part encodes the effects of the action. Besides asserting (checked

?r ?l = t), the action has also three conditional outcomes specified with the
cond form. Note that the cond form works essentially like the Lisp cond, and
the obs form is used to encode run-time observations.

1. The first outcome is observing that the constraint is verified. This happens
when the predicate (at-least ?n ?r ?x) is true, i.e., at execution time,
at least ?n objects have so far been observed to be related to ?x by ?r.

2. The second outcome is observing that the constraint is violated. This is
the result when the robot has visited all locations where it is possible to
perceive objects that satisfy ?r, yet their total number is still less than ?n.
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3. Finally, if the total number of perceived objects is less than ?n and there
are locations where the robot may observe extra objects, then the third
outcome is to observe that (at-least ?n ?r ?x) is not verified and as-
serting its truth value to be unknown.

Actions associated with the other atomic concept constructs (:at-most, :exactly,
etc.) are defined in the similar ways. The definitions of all the actions are given
in appendix A.2.

6.3.2 PC-Shop Methods

Besides actions that correspond to primitive tasks, PC-Shop uses methods to
specify how to decompose abstract tasks into subtasks. In other words, meth-
ods are procedures that provide the knowledge of how to control the process of
searching for plans (refer to chapter 3, for more information on planning with
PC-Shop). In the context of handling situations involving lack of information,
the interest is in determining the truth value of expectations with unknown
truth values. A method is provided to specify how to collect information to
determine the truth value for each type of expectation. In the following, we
discuss the method associated with the :at-least expectation in a navigation
domain. This should give a clear idea of how to write methods for the other
types of expectations.

(method (!check-at-least ?n ?r ?x)

/* Alternative 1*/

(((?p)(place ?p)

(and (finish = f)(robot-at = ?p)(can-check ?r ?p)

(not (checked ?r ?p)))))

(:ordered (:immediate eval-at-least ?n ?r ?x)

(:cond ((at-least ?n ?r ?x)

(:immediate !eval-termination))

((not (at-least ?n ?r ?x))

(!check-at-least ?n ?r ?x))))

/* Alternative 2*/

(((?p)(place ?p)(and (finish = f)(can-check ?r ?p)

(not (checked ?r ?p)))))

(:ordered (move ?p)(!check-at-least ?n ?r ?x))

/* Alternative 3*/

(true)

(!eval-termination) )

Briefly, the method (!check-at-least ?n ?r ?x) describes how to achieve
the task of determining the truth value of (:at-least ?n ?r) expectations
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for an object instance ?x. The method defines a recursive process of active
information gathering with three alternative expansions:

• The first alternative captures the situation when the robot is at place
where it is possible to look for objects that can fill the relation ?r. The
expansion specifies that the primitive task (eval-at-least ?n ?r ?x)

is to be executed immediately 1 which results in a conditional branching.
The first branch reflects the case where the expectation (:at-least ?n

?r ?x) is verified, which implies that no more information gathering is
required. Therefore, the next task to execute is to check whether planning
should be terminated. In the second branch (at-least ?n ?r ?x) is not
verified. Consequently the robot needs to keep looking for fillers of ?r
from other positions. Thus, a recursive call to (!check-at-least ?n ?r

?x) is inserted.

• The aim of the second alternative is to force the robot to move to places
where it is possible to look for objects that can fill the relation ?r. The
tasks of the second alternative are expanded only when the precondition
of the first alternative is not verified. Moreover, there has to be a place ?p
where the robot has not yet looked for fillers of ?r. The expansion spec-
ifies that the robot should move to place ?p and then recursively execute
the task (!check-at-least ?n ?r ?x).

• The third alternative is expanded only when the first two alternatives are
not applicable. The only thing to do in this case is to execute the task
(!eval-termination) to check whether planning should be terminated.

Notice that planning using the method (!check-at-least ?n ?r ?x) stops
as soon as the corresponding expectation is found to be verified, i.e., at least
?n objects have been observed to be related to ?i by ?r. Therefore, going
around to look for more objects is avoided. The idea behind the methods
(!check-at-most ?n ?r ?x) and (!check-exactly ?n ?r ?x) is similar, ex-
cept that planning continues to look for fillers of ?r from all places before
concluding that the corresponding expectation holds.

In situations where there are several expectations to check, we need to make
sure to stop planning as soon as it is needed. For instance, if we are checking a
conjunct of expectations, we need to stop planning once one of them is violated.
On the other hand, if we are checking a disjunct of expectations, planning
should be terminated, as soon as one of the expectations is known to be verified.
The method (!eval-termination) is used to do just that:

1Since primitive tasks are executable actions, their specification is the same as PTLplan action
templates with the same name. The only exception is that primitive tasks do not have preconditions.
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(method (!eval-termination)

/* Alternative 1*/

((()(nec planning-formula)))

(stop success)

/* Alternative 2*/

((()(nec (not planning-formula))))

(stop violated)

/* Alternative 3*/

(true)

(:nop))

where planning-formula is a formula that relates all the expectations we need
to check. For instance, if the goal is to determine whether the room where the
robot is located is a bedroom, the planning-formula is given as a conjunct of
the expectations of being in a bedroom:

(and (room r1) (at-least 1 has-bed r1)(at-most 1 has-sofa r1))

The primitive task (stop success), respectively (stop violated), is meant
to stop the planning process once planning-formula is satisfied, respectively
violated. The result of the corresponding action is visible through setting the
value of the (finish) fluent to true, i.e.,

(ptl-action

:name (stop ?res)

:precond ()

:results (and (finish = t)(result = ?res)) )

6.4 Planning Process

PTLplan requires the specification of an initial belief state and a goal formula
as input. To use PC-Shop, one needs to provide an initial belief state and an
initial list of tasks to accomplish.

6.4.1 Initial Belief State

Generating plans to collect information successfully implies that the planner
takes into account the issue of partial observability of the environment. To this
end, belief states are used to represent the robot’s incomplete and uncertain
knowledge about the world at some point in time, i.e., a belief state represents
a set of hypotheses about the actual state of the world given past observations.

The initial belief state contains hypotheses about the truth value of each
expectation to check. This is done by asserting that the expectations can be true
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or false. The initial belief state includes also other information needed for the
planning task, e.g., the robot’s whereabouts, knowledge about the workspace,
etc.

Example Suppose that the robot has just finished the execution of the action
(enter r1) where r1 is an instance of bedroom, which is defined as fol-
lows:

(defconcept bedroom :is

(:and room

(:at-least 1 has-bed)

(:at-most 1 has-sofa)))

Suppose that the robot could establish that its final location is a room,
that is the implicit expectation (room r1) is verified. Suppose also that
the robot has not seen any sofa nor any bed yet inside the room where
it is. This means that the implicit expectations corresponding to the con-
straints (:at-least 1 has-bed) and (:at-most 1 has-sofa) are not
known to hold or to be violated. This situation is encoded as follows:

(and (room r1)(at-least 1 has-bed r1 = t f)

(at-most 1 has-sofa r1 = t f))

where “= t f” means the truth value can be either t(rue) or f(alse). The
formula encodes a belief state with four hypotheses (possible worlds) that
result from the different combinations of the truth values of the expecta-
tions. Notice that the symbol r1 in this situations is a temporary symbol
that refers to the current location of the robot, which might be different
from the expected location.

The process in charge of creating the initial belief state needs to incorporate
other information that is needed to carry out the planning task. This includes a
symbolic description of the topological map of the robot environment as well as
the places where it is likely to observe individual objects or features related to
an implicit expectation with unknown. For instance, the robot can decide that
in order to look for beds inside the room where it is located, it needs to scan
it from two places r1-1 and r1-4. Therefore, it adds (can-check has-bed

r1-1), (part-of r1-1 = r1), etc., to its belief state.

6.4.2 Goal Specification

The goal state to be reached by the plan is specified by a modal formula contain-
ing a conjunct of the predicates associated with the expectations whose truth
values are unknown. The predicates are assigned the expected truth value of
their corresponding expectations. For the previous example, the goal formula
to pass to PTLplan is:
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(nec (and (at-least 1 has-bed r1 = t)

(at-most 1 has-sofa r1 = t)))

which expresses that the information-gathering plan should try to reach a
state where it is known that room r1 has at least one bed and at most one sofa.

6.4.3 Initial Tasks of PC-Shop

The list of initial tasks of PC-Shop includes a task for each expectation with un-
known truth value. The planning termination condition, i.e., planning-formula
needs to be set at this stage as well. For the previous example, the initial set of
tasks is specified as

(:unordered (!check-at-least 1 has-bed r1)

(!check-at-most 1 has-sofa r1))

while planning-formula is given as

(and (at-least 1 has-bed r1 = t)

(at-most 1 has-sofa r1 = t))

6.4.4 Plan Generation

Both planners PTLplan and PC-Shop were used to generate the information-
gathering plans. PTLplan takes as input an initial belief state and a goal for-
mula, while PC-Shop starts with the initial belief state and the list of initial
tasks. Both planners generate conditional plans that when applied in the initial
belief state they lead to a belief state where the goal formula is verified.

To be able to resume the execution of the top-level task-plan, information-
gathering plans are restricted to include only actions that do not alter the state
of the top-level task-plan in any relevant way. For example, the information-
gathering plan to verify the implicit expectations of being in room r1 is not
allowed to include actions to move outside r1. In navigation scenarios that
involve only observation and movement actions and where the top-level actions
are used only to move to a certain room, such a restriction is sufficient. A more
flexible approach is to require that certain conditions hold at the end of the
execution of the information-gathering plan, such as the robot being in the
same room where the monitoring process triggered the information-gathering
procedure. This would make it possible to include actions to go outside that
room to acquire some information that is not possible to acquire otherwise.

Example The following plan is generated by PTLplan for checking whether
r1 is a bedroom, starting from the situation where the truth values of
the implicit expectations (at-least 1 has-bed r1) and (at-most 1

has-sofa r1) are unknown.
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((eval-at-least 1 has-bed r1)

(cond ((at-least 1 has-bed r1 = f)

(move r1-2)(eval-at-most 1 has-sofa r1)

(cond ((at-most 1 has-sofa r1 = t)

(move r1-4)(eval-at-most 1 has-sofa r1)

(cond ((at-most 1 has-sofa r1 = t)

(eval-at-least 1 has-bed r1)

(cond ((at-least 1 has-bed r1 = f)

:fail)

((at-least 1 has-bed r1 = t)

:success))

((at-most 1 has-sofa r1 = f) :fail)))

((at-most 1 has-sofa r1 = f) :fail)))

((at-least 1 has-bed r1 = t)

(move r1-2)

(eval-at-most 1 has-sofa r1 )

(cond ((at-most 1 has-sofa r1 = t)

(move r1-4) (eval-at-most 1 has-sofa r1)

(cond ((at-most 1 has-sofa r1 = t) :success)

((at-most 1 has-sofa r1 = f) :fail)))

((at-most 1 has-sofa r1 = f) :fail))))))

The plan includes movement actions that cause the robot to move to
observation places (r1-1, r1-2, and r1-4) inside the current room as
well as observation actions aimed at evaluating the truth values of the
expectations. The special action :fail, respectively :success, denotes
predicted failure, respectively predicted success in satisfying the goal. No-
tice that the plan declares failure as soon as the observation (at-most 1

has-sofa r1) evaluates to false, meaning that more than one sofa has
been seen in r1.

Note that the fact that the plan includes movement and observation ac-
tions is specific to navigation scenarios and not a restriction. In other scenarios,
movement actions might not be needed, but observation actions will always be
necessary, since the aim is to gather information. For example, if the robot is
executing the action (grab c21), where the symbol c21 refers to a cup that
contains coffee, the observation plan would include actions to check the con-
tent of the cup but no actions to change the location of the robot.

The monitoring module concludes that the implicit expectations are verified
when the last executed action of the information-gathering plan is :success.
Reaching the :fail action implies that there was at least one violated expecta-
tion.
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6.5 Plan Execution

The execution of the information-gathering plan is carried out by the plan
executor described in chapter 3. Basically, the execution of a plan action is
handled by a set of low-level executable actions called xactions. Each xaction
defines a procedure that calls the functions of the ThinkingCap robot control
architecture (see section 3.3.1) to produce fuzzy behaviors to achieve a low-
level goal.

Example To execute the high-level action (move r1-2) to move to place r1-2
inside room r1, the associated xaction procedure calls the navigation
behavior-planner B-Planner (part of the ThinkingCap) to achieve the low-
level goal specified by the fuzzy predicate (at me r1-2). The generated
B-Plan contains a set of fuzzy behaviors that are executed in parallel by
the low-level controller. Moreover, the execution of the B-Plan is moni-
tored by a process implemented by a hand-coded procedure. The follow-
ing B-Plan is generated to achieve the fuzzy goal (at me r1-2) starting
from a second place inside the same room r1:

IF (at me r1-2) THEN still(goal)

IF ((near me r1-2) and

(not (at me r1-2))) THEN reach(r1-2)

IF ((at me r1) and

(oriented me r1-2) and

(not (near me r1-2))) THEN reach(r1-2)

where the conditions of the rules are fuzzy-logic formulas that define the
context of each rule while the consequents are fuzzy behaviors. The de-
gree to which each rule is active depends on how much the current state
of the world satisfies the condition of the rule.

The xactions associated with high-level observation actions are meant to con-
trol the robot sensors to acquire perceptual information about the environment.
Typical perceptual information includes the color, the shape, and the relative
position of objects detected by the on-board vision system. This perceptual
information is used to assert facts needed to evaluate the truth value of the
predicate corresponding to the concept construct. For instance, executing the
(eval-at-most 1 has-sofa r1) action results in adding information needed
to evaluate the truth value of (at-most 1 has-sofa r1), that is, all newly
perceived sofas are added to the execution-time belief state. In other words,
the assertion (and (sofa sf) (has-sofa r1 sf)) is executed for each newly
perceived sofa sf.

The evaluation of branching conditions is performed by a procedure that
queries the execution-time belief state about the truth values of the predicates
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forming the condition. In particular, the actual truth value of an observation
predicate associated with a number constraint can be computed by comparing
the number of observed objects, filling the corresponding relation, with the
cardinality specified in the constraint. Figure 6.1 shows a procedure designed
to evaluate predicates associated with number constraints (i.e., (at-most n

R i), (at-least n R i), and (exactly n R i)) and type constraints (i.e.,
(some R C i) and (all R C i)). The procedure gets as input an observation
predicate obs (e.g., (at-most 1 has-sofa r1 = t)) and the execution-time
belief state bs. The procedure outputs the truth value “true”, if obs holds in bs.
Otherwise, the truth value “false” is returned. The output is determined in step
12 by evaluating the logical equivalence of the expected truth value (i.e., the
one specified in obs and computed in step 4) and the actual truth value (i.e., the
one computed using the execution-time belief state bs in steps 7–11) (step 12).

evaluate-constraint(obs, bs)

1. R←− relation(obs)
2. i←− instance(obs)
3. n←− cardinality(obs)

C←− type(obs)
4. v←− truth-value(obs)
5. O←− {o | bs |= R(i, o)}
6. case C
7. at-least: res←− (|O| ≥ n)
8. at-most: res←− (|O| ≤ n)
9. exactly: res←− (|O| = n)

10. some: res←− (bs |= ∃o ∈ O. C(o))
11. all: res←− (bs |= ∀o ∈ O. C(o))
12. return (res⇔ v)
END

Figure 6.1: A procedure for evaluating whether observation predicates associated with
number or type constraints hold in the execution-time belief state.

For example, applying the procedure in figure 6.1 to check if the observa-
tion predicate (at-most 1 has-sofa r1 = t) holds in the current belief state
relies on computing the number of sofas that have been observed inside r1.
If that number is equal to 1 (which is the cardinality specified in the predi-
cate), then “true” is returned. However, if (at-most 1 has-sofa r1 = f) is
the predicate to check, then “false” is returned. This result is due to the fact
that the expected truth value of the constraint, i.e., “f” (for false) is not the
same as the actual one, i.e., “true”.

The execution of the actions of the information-gathering plan are also
monitored by the same monitoring process used to monitor the task plan. This
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means that a new information-gathering plan might be needed to monitor the
execution of an observation action which results in recursive active monitor-
ing. Note that there is no risk for infinite recursive information-gathering, as
description logics do not allow cyclic definitions of concepts.

6.6 Information Gathering for Probabilistic SKEMon

In chapter 5, we discussed situations where the collected observations are not
enough to compute a posterior that matches what was predicted by the task-
planner. For instance, the planner might have predicted that after the execution
of a “move” action, the robot would be either in the living-room r4 or in the
kitchen r5; thus, if the robot does not see anything from its current location,
then the monitoring process will not be able to tell with precision in which
room the robot is. As discussed in section 5.4, the probabilistic SKEMon pro-
cess can select the outcome with the highest posterior probability as the result-
ing outcome. We also mentioned that the outcome with the highest posterior
probability that exceeds a given threshold T can also be selected; however, we
argued that there can be no outcome that satisfies the second criterion, due to
the high uncertainty in the computed posterior of the action outcomes.

As in the case of crisp SKEMon, the robot can collect information useful to
reach a situation where uncertainty in action outcomes is eliminated or at least
reduced. In this section, we describe how such information can be identified
without planning all the way to a state where all the uncertainty is eliminated.
The key idea is to select the information that is likely to achieve the highest
reduction in uncertainty and then plan to collect it. In section 8.1.4 of chapter
8, we describe a test scenario where information gathering is applied to reduce
the uncertainty about the posterior of a navigation action.

One measure that can be used to select information to gather is information
gain, which expresses the average reduction in the uncertainty in a random
variable. More formally, the information gain IG(R|Oi) achieved for the ran-
dom variable R, denoting the possible action outcomes, when the values of an
observation variable Oi are known is given as follows:

IG(R|Oi) = H(R)−H(R|Oi) (6.1)

where the quantity H(R) is called the information entropy of the random vari-
able R and H(R|Oi) is called the conditional entropy of R given Oi. The quan-
tity H(R) is used to measure uncertainty in a discrete random variable R. It is
defined as follows:

H(R) = −
∑

R=r

p(r)log(p(r)) (6.2)

The conditional entropy H(R|Oi) represents the average uncertainty in R
taking into account that the value of Oi is known, i.e.,
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Figure 6.2: Plot of the entropy H(X) of a binary random variable X with outcomes
in {x0, x1}. The plot shows the amount of uncertainty in X for all possible probability
distributions of X. It is clear that the highest uncertainty is attained when X is uniformly
distributed.

H(R|Oi) =
∑

Oi=oi

p(oi)H(R|Oi = oi) (6.3)

It is worth mentioning that information entropy was introduced by Shannon
in 1948 [137] as a measure to quantify the information contained in a message
composed of a finite set of symbols. The units for entropy are “nats” when
the natural logarithm is used and “bits” for base 2 logarithms. Larger values
of H(R) represent higher uncertainty in R. In fact, H(R) attains its maximum
value when R is uniformly distributed (see figure 6.2).

For the purpose of information gathering to reduce uncertainty about ac-
tion outcomes, we need to compute the information gain taking into account
all observation variables. In other words, equation (6.1) is applied to all obser-
vation random variables Oi, and the observation variable that gives the highest
information gain is then selected as the useful information to collect. In other
words, let obs be the observation to collect, then obs is determined as follows:

obs = argmax
Oi

IG(R|Oi) (6.4)

Once obs = Ok is determined, the robot can start looking for objects that
are instances of class Ck. For instance, if equation (6.4) reveals that obs = O1,
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which denotes the number of observed sinks, then the robot can move to an
observation place where it can scan the current room to look for sinks.

One obvious limitation of using equation (6.4) as the selection criterion is
that it does not take into account the cost inherent in collecting information.
This is not an issue when all observation actions have the same cost, e.g., due
to using the same sensing modality. However, there are scenarios where not all
missing information has the same cost. For instance, it is known that acquiring
odour information by an electronic nose can take longer times (from 1 to 3
minutes) than acquiring visual information [91]. Another example of cost is
power consumption needed to accomplish an information-gathering task.

One can opt for a decision-theoretic approach to take into account the cost
of information gathering the same way it is performed in active sensing strate-
gies (Hager and Mintz [68], Burgard et al. [28]). To do so, a utility function
U needs to be defined. For instance, Fox et al [55] define the utility associated
with a sensing action as the decrease in uncertainty about the robot location,
where uncertainty is measured by entropy. The cost of each sensing action is
then subtracted from its utility, and the action that has the highest expected
utility is selected. In our case, we would need to associate a utility with each
observation random variable Oi. This can be measured by the information gain
function specified in equation (6.1). As a result, the observation that achieves
the highest difference between its utility and its cost is selected as the informa-
tion to gather. In other words, given the utility U(Oi) and costs C(Oi) of all
observations Oi, the robot selects the observation obs as follows:

obs = argmax
Oi

(U(Oi)− C(Oi)) (6.5)

where U(Oi) = IG(R|Oi).
Once the information to collect is identified, a plan can be generated to col-

lect it, e.g., by moving to different places in a room to scan parts that were
initially hidden. The advantage of planning to collect only a piece of infor-
mation at a time is that the planning problem becomes much less complex.
However, using a greedy approach does not guarantee the computation of an
optimal solution.

6.7 Discussion

The main focus of this chapter has been on using sensor-based planning to han-
dle situations where the acquired information is not enough to know whether
the execution of an action has succeeded or failed. The key idea is to model the
resulting situation involving lack of information as a multi-hypothesis planning
problem where some information needs to be gathered in order to evaluate ex-
pectations with uncertain truth values. We also discussed a greedy approach for
selecting information to collect based on using information-theoretic measures.
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Several research works have investigated the use of planning for different
tasks that involve information gathering. For instance, Kovacic et al. [87] have
used planning to collect visual information for 3D object recognition. Koenig
and Liu [85] used information-gathering actions as part of path plans with the
aim to avoid taking difficult paths, e.g., containing muddy sections. Similarly,
information gathering is used to achieve safer robot navigation by Miura and
Shirai [102] and Gancet and Lacroix [61]. However, no work has addressed us-
ing sensor-based planning to collect information for the purpose of monitoring
the execution of plans.

The advantage of using planning is the flexibility of dealing with a multi-
tude of unpredictable and complex situations of incomplete information. In
other words, only one planning domain needs to be specified to automati-
cally compute solutions for a multitude of situations of lack of information.
Moreover, by combining semantic domain-knowledge and sensor-based plan-
ning, the proposed approach achieves an interleaving of planning and execu-
tion, which is, according to Nourbakhsh and Genesereth [113], a desired ability
of autonomous robotic systems acting in uncertain environments. In fact, the
task planner can reason on a more abstract level (office, kitchen, etc.) to gen-
erate the task plan, while the monitoring process takes care of checking the
details (desk, oven, etc.) at execution-time. The monitoring process, in turn,
uses sensor-based planning when it is needed to do so.

A clear issue that might arise when using planning in general is that plan-
ning is a computationally demanding process especially if the planner has to
reason about uncertainty and partial observability of the environment. We also
consider the issue of which expectations should be selected for checking as an
important one, as the number of expectations might be very large. One possible
solution to this issue is to use a criterion that permits to select only important
expectations, e.g., by using the information gain measure to identify which con-
straints need to be checked first.



Chapter 7

Handling Anchoring Failures

So far, the focus of this thesis has been on the process of monitoring the effects
of actions and its important role in achieving correct execution of robot task-
plans. In this chapter, we address another class of plan execution failures that
are detected by the anchoring process. Anchoring is the problem of establishing
the correspondence between a symbol and a percept. A type of anchoring fail-
ure is when the robot cannot determine which percept corresponds to a given
symbol due to ambiguity, i.e, there are several plausible percepts. To be able
to execute plan actions successfully, the robot needs to solve such problematic
situations.

Generally, ambiguous situations in anchoring arise when the robot does
not have access to all the perceptual information that is necessary to identify
the correct object to anchor. This is another case of unexpected situations that
are due to lack of information. Therefore, it can be seen as an application
of the information-gathering schema described in chapter 6. In other words,
to recover from such a failure, the robot creates a description of the current
situation and generates a plan that disambiguates that situation.

While the sensor-based planning approach described in chapter 6 treated
all hypotheses equally when creating the initial belief state, in this chapter hy-
potheses are treated in a probabilistic way. This makes it possible to assign
probabilities to what perceived object should be anchored to the given symbol.
Moreover, information-gathering plans can be generated so that the current sit-
uation can be disambiguated with a threshold probability. Another similarity
to chapter 6 is the use of background knowledge to fill in missing informa-
tion about perceived objects. The difference is that the background knowledge
is provided in terms of general probabilistic first-order rules rather than as a
description logic knowledge-base. Although the work presented in this chap-
ter does not enrich the use of semantic domain-knowledge in monitoring the
execution of plans, it is still considered to be important for the process plan ex-
ecution, as the final goal of the work of this thesis is robust execution of robot
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plans. The chapter builds upon the initial work of Broxvall et al. [27] and its
related works by the author and others [83, 22].

This chapter is organized as follows. In the next two sections we review
the concept of perceptual anchoring and anchoring failures due to ambiguity.
A detailed description of how to recover from ambiguous situations in anchor-
ing is given in the subsequent section. The chapter includes also test scenarios
performed to show the applicability of the approach.

7.1 Overview of Perceptual Anchoring

Anchoring is the process of establishing and maintaining the correspondence
between the perceptual data and symbolic abstract representation that refer to
the same physical object [35]. Intelligent embedded systems using symbolic rep-
resentations, such as mobile robots, need to perform some form of anchoring
in order to achieve their tasks.

Consider a mobile robot, equipped with a vision system and a symbolic
AI planner, trying to find dangerous gas bottles in a building on fire. Suppose
that the planner has generated a plan that contains the action (go-near b1),
where the symbol b1 refers to an object described as “a green gas bottle”. The
go-near action is implemented by a sensori-motor loop that controls the robot
using the position parameters extracted from a region in the camera image. In
order to execute the plan action (go-near b1), the robot must make sure that
the vision percept it is approaching is the one of the object identified by the
symbol b1. Thus, the robot uses a functionality called Find to link the symbol
b1 to a region in the image that matches the description “a green gas bottle”.
The output of Find is an anchor that contains, among other properties, the
current position of the gas bottle. While the robot is moving, a functionality
called Track is used to update this position using new perceptual data. Should
the gas bottle go out of view for some time the Reacquire functionality would
be called to update the anchor as soon as the gas bottle is in view again [37].

7.1.1 Matching

An important process in all the anchoring functionalities is the matching be-
tween the symbolic description Desc(o), of the object of interest o, given by the
planner and the attributes of percepts generated by the sensor system. A per-
cept π consists of information about an object derived from sensor data (e.g.,
a video image), such as estimates of shape and color. These estimates are often
uncertain, e.g., due to noise in sensing or lack of perceptual information.

The matching process decides which percepts to use to create or update the
anchor of a given symbol. The result of matching Desc(o) against the properties
of π can be either no match, a partial, or a complete match [36]. A percept
π is said to be completely matching o if all the properties of Desc(o) match
those of π, and partially matching if it at least a property of the description
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Desc(o) cannot be determined to match its counterpart in π due to uncertainty.
A percept is said to be a complete anchoring candidate for a symbol o if it
fully matches Desc(o), and a partial anchoring candidate if it partially matches
Desc(o).

7.1.2 Relational Properties

There are situations when it is relevant to describe objects not just in terms of
their properties but also their relations to other objects. By considering rela-
tions, we may be able to resolve cases where the known properties of the object
are not sufficient to distinguish it from other similar objects. An example is
“the green garbage can that is near the red ball and the blue box”. The object
that needs to be anchored, in the example “the green can”, is considered the
primary object while the other objects related to it, in the example “the red
ball” and “the blue box”, are secondary objects [27]. In our work, we use in
particular binary relations and we allow for descriptions to have several nested
relations. In practice, the depth of the relational description is always limited.

Definition 1 Let O denote the set of object symbols. A relational description
of an object o ∈ O having m binary relations (Rk;1≤k≤m) with m secondary
objects (ok;1≤k≤m) is denoted Reldesc(o) and it is defined recursively as:

Reldesc(o) =def Desc(o)
⋃

1≤k≤m

{Rk(o, ok)} ∪Reldesc(ok)

Obviously, the relational description of any object o includes its properties
(specified in Desc(o)), the binary relations where o is involved (

⋃

k {Rk(o, ok)})1

as well as the relational descriptions of all the k secondary objects ok in relation
with o (

⋃

k {Reldesc(ok)}).

Example The description “the red ball that is near the blue box that is on the
brown table” refers to a primary object o1 “the red ball”, a secondary
object o2 “the blue box”, and a third object o3 that is secondary to o2.
The relational descriptions of the three objects are given as:

Reldesc(o3) = {(shape o3 = table), (color o3 = brown)}
Reldesc(o2) = {(shape o2 = box), (color o2 = blue)}∪

{(on o2 o3)} ∪Reldesc(o3)
Reldesc(o1) = {(shape o1 = ball), (color o1 = red)}∪

{(near o1 o2)} ∪Reldesc(o2)

1In case the second argument of the relation is the primary object symbol, we can always rename
the relation such that the primary object symbol is the first argument
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The anchoring process handles relational descriptions by considering relations
as additional properties of the object to anchor, i.e., {Rk(o, ok)} ∪ Reldesc(ok)
is an additional “complex” property of object o. In the previous example, the
fact that o1 is near “a blue box that is on the brown table” is an additional
complex property of o1 besides being a ball that has the color red. Clearly, a
relational property has the additional complexity that an anchor needs to be
found also for the secondary object. The anchoring process for the secondary
objects is the same as the one for the primary object: the secondary object can
be described as definite or indefinite and it can have complete, partial or no
anchoring candidates.

In practice, all possible candidates for the primary object o are considered
based on the non-relational properties in its description, i.e., Desc(o). Then,
for each of these candidates, anchors for all secondary objects are looked for
on the basis of their descriptions and their relations to the primary object.

Definition 2 A relational anchoring candidate for an object o having m binary
relations (Rk;1≤k≤m) with m secondary objects (ok;1≤k≤m) is represented by a
list (π0, (π11 . . .), (π21 . . .), . . . , (πm,1 . . .)) such that π0 is a candidate percept for
the primary object o, and for each secondary object ok, a (possibly empty) list
(πk,1 . . .) of all candidate percepts satisfying Reldesc(ok) and relation Rk(o, ok).

Notice that the same definition applies recursively to relational anchoring
candidates for secondary objects. In fact, a relational anchoring candidate can
be easily represented using an and-or tree where the and nodes represent the re-
lations and the or nodes represent the candidate percepts satisfying the relation
of the parent node.

The process of matching a relation description Desc(o), of an object o,
against perceptual information produces a set of relational anchoring candi-
dates where:

• A relational anchoring candidate is completely matching if π0 completely
matches Desc(o) (the primary object) and for each secondary object ok

there is only one (definite case), or at least one (indefinite case) candi-
date percept πkj completely matching Desc(ok). The definite/indefinite
distinction here refers to whether the secondary object symbol is defi-
nite/indefinite.

• A relational anchoring candidate is partially matching if for some object
(including the primary one) there is no completely matching percept.

7.2 Failures and Ambiguities in Anchoring

There are situations where the anchoring module cannot create or maintain
an anchor for a specific symbol from its percepts because of the presence of
ambiguity, i.e., it cannot determine what anchoring candidate to choose. The
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# Matches Definite Indefinite
Case full partial result action result action

1 0 0 Fail Search Fail Search

2 0 1+ Fail Observe Fail Observe
3 1 0 Ok — Ok —
4 1 1+ Ok/Fail -/Observe Ok —
5 2+ any Conflict — Ok —

Table 7.1: The different situations that can occur during anchoring.

anchoring module detects the presence of ambiguity on the basis of the num-
ber of complete and partial anchoring candidates. Another important factor is
whether the symbolic description Desc(o), of the object to anchor o, is making
a definite reference to exactly one object in the world (e.g., "the red ball") or
an indefinite reference, i.e., to any matching object (e.g., "a red ball"). Table
7.1 summarizes the different situations that can occur [27].

The situation of having no anchoring candidates that fully match the sym-
bolic description are represented by cases 1 and 2. Recovery in case 1 can be
achieved by looking for the desired object in another location. In case 2, an
information-gathering plan can be generated and executed to go around partial
candidates with the aim of observing the missing properties of the object. The
successful disambiguation of the occurring situation makes it possible for the
anchoring module to identify which of the candidate perceived objects should
be used for anchoring.

In case 3, the anchoring module selects the percept that was found to fully
match the description of the desired object.

Cases 4 and 5 reflect situations where at least one complete candidate for
the symbol is perceived. Therefore, if the symbolic description is indefinite, any
one of the complete candidates can be selected to anchor the symbol. When
the description is definite, case 4 can be handled either by observing all partial
candidates to eliminated them, or the complete candidate could be selected. In
case 5, the situation cannot be recovered from by collecting more perceptual
information as the matchings are full; thus, unless the description can be made
more constrained, the situation is considered to be unrecoverable.

Example The robot is presented with the symbolic description “g1 is a garbage
can near a red ball with a mark” and given the task to go near g1. To
do this, the robot needs to anchor the symbol g1. Consider a situation
where a garbage can π0 and a red ball π11 are perceived, but no mark is
visible on the ball. In this situation, we have a singleton set {(π0, (π11))}
of relational candidates. There is one fully matching percept π0 for the
primary object and one partial match π11 for the secondary object; the
mark was not observed. Consequently the entire relational candidate is a
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partial match, giving rise to ambiguity. Thus, to be sure that the observed
garbage can is the requested one, the red ball has to be checked for marks
from other viewpoints.

Dealing with Ambiguous Situations

When the robot is not able to execute a plan action due to ambiguity in anchor-
ing objects, a recovery procedure is needed to compute a solution to handle the
recoverable cases outlined above. Typically, the solution includes information-
gathering actions that allow the robot to establish whether certain properties
of the candidate objects hold or not. Therefore, the schema used to cope with
ambiguous situations in anchoring resembles the schema presented in 6.2. In
other words, after the problematic situation is detected, and the top-level plan
is halted, the following steps are performed:

• Situation assessment: the recovery module analyzes the problematic situ-
ation to determine whether the situation is recoverable according to table
7.1. If the answer is yes, it formulates a belief state that contains the dif-
ferent hypotheses for which of the perceived objects corresponds to the
requested one. This step is achieved by considering the properties of the
requested object and of the perceived objects to generate. Unlike the situ-
ation assessment step in 6.2, here we consider a belief state that consists
of a set of possible worlds with probabilities.

• Planning: the planner is called to achieve the goal of disambiguating the
situation and anchoring the requested object.

• Plan execution: the plan is executed, and either the requested object is
found and identified and can be anchored, or it is established that it can-
not be identified.

• Monitoring: if during the execution of the recovery plan, new perceived
objects are encountered that completely or partially match the primary or
a secondary object, the the whole process is started again.

• Resuming execution: if recovery was successful, the execution of the top-
level plan is resumed.

7.3 Situation Assessment

Typically, ambiguous situations in anchoring involve partial matches of some
perceived candidate objects. This occurs when a certain property or relation is
observed with uncertainty, or neither it nor its opposite was observed at all. Sit-
uation assessment involves considering how probable it is that those properties
hold. There are two sources from which this information can be obtained.
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First, the vision system (and other sensing systems) can provide us with
matching degrees, which can serve as weights when assigning a probability dis-
tribution to a property or relation. For instance, if it could not be determined
whether the color of a perceived object π1 was red or orange, but red is match-
ing better than orange, we might assert in our planner language (color pi-1 =

(red 0.6) (orange 0.4)), which is equivalent to P (color(π1) = red) = 0.6
and P (color(π1) = orange) = 0.4.

Second, we can use background domain-knowledge expressed as condi-
tional probabilities. This background knowledge is encoded as probabilistic
assertion rules that can specify conditional and prior probability distributions
over the values of uncertain properties of perceived objects.

7.3.1 Probabilistic Assertion Rules

Probabilistic assertion rules are part of the first-order language used by the
planners PTLplan and PC-Shop to write planning domains. Assertion rules
are used in action templates to describe the results of the application of an ac-
tion in a belief state. These action results may involve conditional probabilistic
effects, and hence the same representation can also be used to encode back-
ground probabilistic knowledge.

Example The following rule describes the conditional probability of a per-
ceived object ?o containing (has) a substance (milk, tea or nothing)
given its shape (cup, bowl, or something else).

(forall (?o) (percept ?o)

(cond

((shape ?o = cup)

(has ?o = (milk 0.4)(Tea 0.4)(nothing 0.2)))

((shape ?o = bowl)

(has ?o = (milk 0.2)(Tea 0.3)(nothing 0.5)))

((true)

(has ?o = (Tea 0.1)(nothing 0.9)))))

This rule can be used when the robot sees an object but does not know
what it contains. For instance, percepts that have the shape of a cup are
believed to contain either milk, or tea (with 0.4 probability), or noth-
ing (with 0.2 probability). Conditional probabilities are defined using the
cond form which specifies conditional outcomes. It works like a LISP
cond, where each clause consists of a test (which may refer to uncertain
properties) followed by a consequent formula.

The forall assertion formula allows to iterate over elements of a certain
type (here percept) to execute an assertion formula (here the cond form).
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Assertion formulas are applied to belief states, and belief states are probability
distributions over sets of possible worlds (crisp states). The assertion formula
is applied to each possible world in the belief state, resulting in new possible
worlds. These new possible worlds and their probabilities constitute the new
belief state(s). Note that the belief state explicitly represents a joint probability
distribution over the uncertain properties and relations in the situation.

7.3.2 Creating the Initial Belief State

To generate the initial belief state encoding the unexpected situation of failing
to anchor an object o due to ambiguity and given present uncertainties, the
following steps are performed: the situation assessment process takes a set of
relational anchoring candidates as input and performs the following four steps.

1. Initialization A number of properties not related to the anchoring candi-
dates are assessed, such as the location of the robot and the topology of
the room. The aim of this step is to include knowledge that is necessary
to do planning.

2. Description generation The descriptions Desc(πj) and Rk(πj , πk) are com-
puted for all the perceived objects πj and πk in the relational anchoring
candidates. The properties and relations that are considered are those ap-
pearing in Reldesc(o) for the object o such that πj is a candidate object for
o. Uncertain properties are estimated, in the manner described in section
7.3.1, by using matching degrees and background knowledge. The result
of the first step is a belief state representing a joint probability distribu-
tion over all uncertain properties and relations of the perceived objects
present in the anchoring candidates.

3. Classification The possible worlds of the belief state are partitioned into
three different sets for the definite case and two sets for the indefinite case.
For the definite case, one partition contains the possible worlds where
there is a unique matching candidate. A second partition contains those
worlds where there is a conflict due to the presence of more than one
matching candidate, and a third set includes worlds where there is no
matching candidate. Partitioning relies on the evaluation of three exis-
tential formulas derived from Reldesc(o). Those formulas test if there is
exactly one, two or more, and no relational anchoring candidate that
matches Reldesc(o), respectively. In these formulas, the object names in
Reldesc(o) are replaced by existentially quantified variables.

When the recovery module deals with an indefinite case, the partition-
ing yields only two sets: the first set contains worlds where there is no
matching candidate, while the second set contains worlds where there is
at least a matching candidate (remember that in the indefinite case there
is no situation of conflict).
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At this stage, additional knowledge can be asserted to specify conditions
under which it is possible to acquire information about uncertain prop-
erties of anchoring candidates. For instance, if (marked o) is an uncer-
tain property of object o, knowledge about where the robot can observe a
mark on o, e.g., (mark-visible o = (loc1 1/2)(loc2 1/2)), is added
to the possible worlds where (marked o) holds. In this case, it is stated
that the mark on o can be observed with the same probability either from
location loc1 or location loc2.

Sometimes, one might want to provide more weight to the possible worlds
where there is exactly one matching anchoring candidate. After all, if the
robot was ordered to go to "the container with milk" it might be rea-
sonable to consider it likely that there is exactly one such object. Hence,
at this step one may discount the probability of the possible worlds with
none or too many matching candidates using a discount factor α and then
renormalize the probability distribution of the possible worlds to sum to
one.

4. Labeling The formula (anchor o π) is added to each possible world
where percept π is a fully matching candidate, The formula (anchor o

null) is asserted in the set of non-matching worlds (and conflict worlds
for the definite case) to encode that the desired object o cannot be an-
chored. The percepts π are those returned in the answers to the existential
formulas used to partition the possible worlds in step 3.

Example Consider the situation where the anchoring module failed to an-
chor the object identified by the symbol c1 where the desired objects is
described as "the container with milk, and which is near the fridge” be-
cause there are two perceived container objects πc and πb near the fridge
πf such that πc is a green cup and πb is a blue bowl. Let’s also assume
that the recovery module uses the probabilistic conditional rule from sec-
tion 7.3.1.

In step one, it is asserted that the robot is at the entrance of the coffee
room, the locations of the different perceived objects, and so on.

Step 2 consists of computing the description of all the perceived objects
appearing in the relational candidates and relations among them to build
an initial belief state for the subsequent steps.

There are two relational candidates: (πc (πf )) and (πb (πf )). The descrip-
tions we obtain are a set Rel of two relations

Rel = {(near πc πf ), (near πb πf )}

and the following descriptions of the different perceived objects:
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Desc(πc) = {(percept πc), (shape πc = cup), (color πc = green)}
Desc(πb) = {(percept πb), (shape πb = bowl), (color πb = red)}
Desc(πf ) = {(percept πf ), (shape πf = fridge)}

We assert these descriptions, apply the background knowledge rule in sec-
tion 7.3.1 and obtain a belief state bs with four possible worlds s1, . . . , s4

such that:

s1 = { (has πc = milk), (has πb = (tea 3/8)(nothing 5/8))}
s2 = { (has πc = milk), (has πb = milk)}
s3 = { (has πc = (tea 4/6)(nothing 2/6)),

(has πb = (tea 3/8)(nothing 5/8))}
s4 = { (has πc = (tea 4/6)(nothing 2/6)), (has πb = milk)}

In addition, they all contain Rel ∪Desc(πc) ∪Desc(πb) ∪Desc(πf ).

The probability distribution over the possible worlds is:

p(s1) = 0.4 · 0.8 = 0.32; p(s2) = 0.4 · 0.2 = 0.08
p(s3) = 0.6 · 0.8 = 0.48; p(s4) = 0.6 · 0.2 = 0.12

The probability p(s1) of possible world s1 is computed as the joint proba-
bility of πc containing milk and πb not containing milk. The same process
is applied to compute the probabilities of worlds s2, s3, and s4.

In step 3, the situation assessment process classifies the worlds accord-
ing to the number of matching candidates. In worlds s1 and s4 there is
one and only one matching candidate. In world s2 there are two match-
ing candidates, therefore we have a conflict. Finally in world s3 there is
no candidate object matching Reldesc(c1), i.e., the test formula for no
matching candidates

¬∃x1, x2 ( (type x1 = container) ∧ (has x1 = milk)∧
(near x1 x2) ∧ (shape x2 = fridge))

holds in s3.

In step 4, the situation assessment module adds the formulas (anchor c1 πc)
to s1, (anchor c1 πb) to s4, and (anchor c1 null) to both s2 and s3.
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7.4 Planning to Gather Information

Once the recovery module has created the belief state encoding the possible
worlds, it passes it to the planner together with the goal of finding an anchor
to the requested object. The goal formula specifies that the robot must know
which percept, or none, to anchor the object symbol to.

The goal is achieved once a specific recovery action (anchor o x) has been
performed. It represents the decision to anchor the symbol o to some specific
perceived object x (or to no object at all if x = null). This action has as a
precondition that x is the only remaining anchor for o, i.e., the truth value of
the formula (nec (anchor o x)) is true. Thus, all other candidate anchors
have to be eliminated before the anchor action is applied.

The generated plans incorporate also motion actions and sensing actions
aiming at collecting more information about the unknown properties of the
perceived objects. The following PTLPlan action template, for instance, is used
to look for marks (and other visual characteristics) on perceived objects.

(ptl-action

:name (look-at ?y)

:precond (((?p) (robot-at = ?p))

((?y) (perceived-object ?y)) )

:results (cond

((and (marked ?y = t)

(mark-visible-from ?y = ?p))

(obs (marked ?y = t)))

((not (and (marked ?y = t)

(mark-visible-from ?y = ?p)))

(obs (marked ?y = f)))) )

In short, the precond part states that the action requires a perceived ob-
ject ?y and a current position ?p. The result part states that if ?y is actually
marked, and if the robot looks at ?y from the position from which the mark
is visible, then the robot will observe the mark (and thus know that there is a
mark), and otherwise it will not observe any mark. The obs form is the way
to encode that the robot makes a specific observation, and different observa-
tions result in different new belief states. In this case, there would be one belief
state where the robot knows there is a mark, and one where it knows there
is no mark on the side observable from current position ?p. If the robot keeps
making observations, it can ideally eliminate anchoring hypotheses (signified by
(anchor o x)) until only one remains. It can then perform the action (anchor

o x).
The generated recovery plan has a conditional form where each branch-

ing follows an information-gathering action,i.e, each branch corresponds to
one the planning-time belief states produced by the corresponding information



116 CHAPTER 7. HANDLING ANCHORING FAILURES

gathering action. Basically, the condition to branch on is nothing else but the
observation associated with the branch belief state. The following plan is gener-
ated to recover from an ambiguous situation where the anchoring module could
not anchor a perceived green gas bottle because it was not known whether it
has a mark. The percept of the gas bottle is named pi-1, while the positions
used where the robot moves to observe the gas bottle are named r1-2, r1-3,
and r1-4.

((move r1-2) (look-at pi-1)

(cond

((marked pi-1 = f) (move r1-3) (look-at pi-1)

(cond ((marked pi-1 = f)

(move r1-4)

(look-at pi-1)

(cond ((marked pi-1 = t)

(anchor gb1 pi-1) :success)

((marked pi-1 = f)

(anchor gb1 null) :success)))

((marked pi-1 = t)

(anchor gb1 pi-1) :success))

((marked pi-1 = t)

(anchor gb1 pi-1) :success)))

7.5 Execution and Monitoring of Recovery Plans

The execution of the information-gathering plan is carried out by the plan ex-
ecutor described in chapter 3. Basically, non observation actions are translated
into low-level sensori-motoric processes that control the motion of the robot.
For instance, the action (move r1-2) is translated to a set of navigation be-
haviors including a behavior to reach location r1-2 and a behavior to avoid
obstacles. These behaviors are executed in parallel.

Observation actions are translated into sensing processes. For instance, in
our implementation, the execution of the (look-at pi-1) action is carried out
by a process that points the on-board camera in the direction of pi-1 to be
able to capture images to be used by the on-board vision system. The vision
system, extracts percepts and their properties (color, shape, position prop) and
sends them to the perception module. The evaluation of branching conditions
are carried out by procedures that query the perception module about the truth
values of the observation predicates. The anchor action has a special role: it
causes the symbol of the requested object to be anchored to a specific perceived
object.

If the recovery is successful, i.e., it is possible to anchor the requested object
to a perceived object, the plan executor resumes the execution of the top-level
plan. Otherwise, a permanent failure is raised. As a result, The recovery module
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can start another recovery episode whose objective is to search for the requested
object in other areas of the work space of the robot.

Closed World Assumption Monitoring

The recovery plans are generated under the assumption that all relevant candi-
dates have been observed. However, there may be additional candidate objects
that are not visible from the initial position of the robot, but become visible
as the robot moves around while executing its recovery plan. The anchoring
system regularly checks for the appearance of new percepts matching the de-
scription of the requested object. If such a percept is detected, the assumption
of knowing all relevant objects has been violated, and the current recovery plan
is considered obsolete, and therefore dropped. Hence, a new initial belief state
is produced taking into account the previous perceived objects and the infor-
mation gained about them as well as the new perceived object properties. A
new recovery plan is generated for starting from the new initial belief state and
reaching a belief state where the anchoring recovery goal is satisfied.

Replanning for new candidate objects is not only used for the unexpected
discovery of a new object, it is also instrumental in the case where the robot
was explicitly searching for a candidate, and found a partially matching one.
In such a situation, one cannot jump to the conclusion that the correct object
has been found, but must plan to find more information about the object in
question (together with the other remaining candidate objects).

7.6 Multi-Episode Planning

There are situations where a complete recovery plan is difficult to generate
because the number of anchoring candidates and their uncertain properties is
very high, thereby increasing the complexity of the planning process. Another
reason might be that the planner does not have enough time to generate a
complete plan. One way to deal with such situations is to generate plans that
disambiguate the unexpected situation with a threshold probability instead of
plans that always have to succeed. Both PTLplan and PC-Shop are capable of
generating such plans.

An alternative option is to have several planning episodes where in each
episode a short plan to solve part of the planning problem is generated and
executed. As recovering from ambiguous anchoring situations consists in col-
lecting information, required to eliminate hypotheses about different anchoring
candidates, one could design a recovery strategy where the gathering of such
information is distributed over different planning/execution episodes. In each
episode, a plan is generated and executed to collect only a piece of the total in-
formation. For instance, in the example of the containers above, we might have
two episodes such that in the first one a short plan is generated and executed to
check whether the perceived cup πc contains milk. If the execution of the plan
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reveals that the perceived cup πc does not contain milk, a second plan can be
generated and executed to check if the object to anchor is the bowl πb, i.e., by
checking its content.

Therefore, a multi-episode process of recovering from anchoring ambiguous
situations could be performed in the following steps:

1. A belief state bs encoding the ambiguous situation is created as outlined
above (section 7.2).

2. The recovery module determines what piece of missing information I is
to be collected taking into account the current ambiguous situation.

3. The planner is called to generate a plan to collect I starting from bs.

4. The plan is then executed resulting in a new situation. As a result, bs is
updated to reflect the new situation.

5. The recovery module checks whether the new situation is still ambigu-
ous. If the answer is yes, a new information-gathering episode is started
from step 2. Otherwise, the recovery procedure terminates by either de-
termining the candidate object to anchor or asserting that there is no such
object.

Selecting the Information to Collect

We have already seen that the process of recovering from anchoring failures is a
hypothesis elimination process. Each recovery action is meant to acquire some
information that helps in reducing the uncertainty in the belief state encoding
the anchoring ambiguous situation. One measure that can be used to determine
what information should be gathered, so uncertainty in the belief state can be
reduced, is the information theoretic measure of information gain discussed in
section 6.6.

For the purpose of recovering from anchoring ambiguous situations, infor-
mation gain can be used to select the information to collect so that the un-
certainty of anchoring the requested object is minimized. This can be done by
taking into account the uncertainty about the different properties of the dif-
ferent anchoring candidates. The uncertain property that achieves the highest
information gain is then selected as the information I to collect. In other words
I is computed as follows:

I = argmax
Fi

IG(A|Fi)

where A is a binary random variable such that A = 0 means that the requested
object o cannot be anchored, whereas A = 1 means that the requested object o
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can be anchored. Fi are random variables associated with the different uncer-
tain properties such that the values of each Fi are those of the corresponding
property.

The probability mass functions of the different random variables (i.e., A and
Fi) as well as the conditional probabilities of A given Fi are computed from the
belief state bs that encodes the ambiguous situation. In particular, we have

P (A = 0) =
∑

s∈bs;s|=(anchor o null)

pbs(s)

and P (A = 1) = 1− P (A = 0).

Example To clarify our ideas, let’s consider the ambiguous situation given in
the example of section 7.3.2 above.

To determine what uncertain property the robot should gather informa-
tion about, we compute IG(A|Fc) and IG(A|Fb) where Fc, respectively,
Fb, is a random variable whose values denote the possible contents of the
perceived cup πc, respectively bowl πb. The probability mass function of
the random variable A is computed as follows:

P (A = 0) = p(s2) + p(s3)
= 0.56
and

P (A = 1) = p(s1) + p(s4)
= 0.44

This result is computed based on the fact that the requested object o can
be anchored in possible worlds s1 and s4, but not in possible worlds s2

and s3.

The entropy of A is computed as:

H(A) = −(P (A = 0) · log(P (A = 0)) + P (A = 1) · log(P (A = 1)))
= 0.3

P (A|Fc) is computed from the initial belief state and is given in the fol-
lowing conditional probability table:

Fc = milk Fc = tea Fc = nothing

P (A = 0|Fc)
0.08
0.4 = 0.2 0.32

0.4 = 0.8 0.16
0.2 = 0.8

P (A = 1|Fc)
0.32
0.4 = 0.8 0.08

0.4 = 0.2 0.04
0.2 = 0.2
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Consequently, we get

IG(A|Fc) = 0.3− 0.22 = 0.08

Using the same procedure for computing IG(A|Fb) we get

IG(A|Ff ) = 0.3− 0.29 = 0.01

Since IG(A|Fc) is greater than IG(A|Fb), the information to collect is the
content of the perceived cup πc. Therefore, in the first episode, the planner
is called to find a plan to eliminate hypotheses about the content of πc.
Note that a second episode is needed to check the contents of the bowl
πb, no matter what the result of executing the plan of the first episode.
This is because we are dealing with a definite case. If we are dealing with
an indefinite case, a second episode is needed only when the execution of
the plan of the first one reveals that πc does not contain milk.

7.7 Test Scenarios

In this section, we describe test scenarios that we ran to show the feasibility of
using sensor based planning as a tool to recover from ambiguous situations in
anchoring. The test scenarios were run using Pippi, our Magellan Pro robot,
in a lab indoor environment. It is worth mentioning that the time taken to
generate recovery plans was always less than two seconds.

7.7.1 Anchoring under Uncertainty

The aim of this test scenario is to demonstrate the ability of the approach to
handle cases were there is no recovery plan that is certain to succeed. Here, the
plan executor is trying to execute the top-level action (go-near gb1) where
the symbol gb1 refers to a marked gas bottle (indefinite reference). From her
initial position, Pippi could perceive two gas bottles π1 and π2, but no mark is
perceived on them (figure 7.1). The mark could be on one of four sides of each
gas bottle. However, the presence of obstacles prevented observing them from
all sides.

This situation resulted in a failure to anchor the requested object, and thus
recovery was needed. The situation assessment step produced a belief state
consisting of four possible worlds s1, · · · , s4 with a uniform probability, i.e.,
p(si) = 1/4; 1 ≤ i ≤ 4. Each world reflected if π1 or π2 was having a mark,
and if it had a mark, on which side it was. A plan was generated in which the
robot was to move to the different accessible positions to look for a mark on
the perceived gas bottles (right picture of figure 7.1). When observation actions
were performed, the probabilities of the possible worlds were updated accord-
ingly. For instance, if no mark was seen on one side of π1, the probability that
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Figure 7.1: Trying to identify a marked gas bottle. Left: From her initial position, Pippi
perceives two candidate objects resulting an anchoring ambiguous situation. Right: Pippi
trying to recover from the ambiguous situation by moving to a new observation position
to look for a mark on both candidates.

π1 is a match decreased. In one of the runs, with the configuration shown in
figure 7.1, Pippi had not found a mark after observing π1 from three sides and
π2 from two sides. At this stage, the anchoring module decided to anchor the
more likely candidate π2 but with a low degree of certainty. The scenario was
also run successfully under different configurations in terms of the locations of
the gas bottles, whether they were marked or not, and on which sides of the
gas bottles the marks were placed.

7.7.2 Handling of Newly Perceived Candidates

This scenarios was run to test how run-time newly perceived objects were han-
dled. Again, Pippi was to approach a gas bottle with a mark upon it (indefinite
reference). This time, only one gas bottle π1 was initially perceived but without
a mark on it (see the left image in figure 7.2).

As a first step of recovering from the resulting situation, the situation assess-
ment produced a belief state with two uniformly distributed possible worlds s1

(π1 is marked), and s2 (π1 is not marked). In this scenario, all the other three
sides of π1 were considered to be observable, thus in s1 there was a probabil-
ity distribution for which side, of the gas bottle, had the mark. The generated
recovery plan included moving to three predetermined observation locations
(r1-2,r1-3, and r1-4) to observe the mark on π1. The plan is the same as the
one given in section 7.4 above.

Next, Pippi started the execution of the recovery plan and moved to the first
observation position r1-2, so she could look for a mark on π1. Pippi could not
see any mark on πi, yet she detected a second gas bottle π2 that was initially
occluded by the first one (see the right image in figure 7.2). This situation was
a manifestation of a violation to the closed world assumption that π1 was the
only anchoring candidate. Therefore, the execution of the recovery plan was
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Figure 7.2: Trying to identify a marked gas bottle. Left: From her initial position, Pippi
perceives only one candidate object π1 but without a mark. Right: Pippi perceives a
second candidate π2, while trying to observe a mark on the first one from another
observation position. Bottom image: Pippi observes a mark on the second candidate
π2, which results in anchoring the requested object to π2
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halted and a new recovery episode was started to take into account the newly
perceived candidate π2. The situation was reassessed and a new recovery plan
was produced that included actions to look for marks on both the old and the
new gas bottle. The bottom image of figure 7.2 shows a situation where Pippi
could see the mark on the second candidate π2, thereby resulting in anchoring
the requested object to π2.

This scenario was also successfully run under different configurations in
terms of which of the bottles was marked, and which side of the bottle the
mark was on.

7.7.3 Including Background Knowledge

In this scenario, background knowledge was used to resolve an ambiguous sit-
uation where planning time was very short. Pippi had to achieve the same task
as before, but in addition there was the background knowledge that 90% of
brown gas bottles have a mark on them, and only 20% of green ones have a
mark. From its initial position, Pippi perceived two gas bottles: one green π1

and one brown π2. Using the background knowledge, the situation assessment
procedure resulted in a belief state where π2 had a higher chance of matching
the description and therefore it was decided to be anchored directly.

7.8 Summary and Conclusions

Detecting and responding to execution failures is a necessary step for building
robust-execution systems of robot plans. This chapter presented a case study
of dealing with one important class of failures that may arise while executing a
symbolic plan by mobile robot. Our focus was on studying failures that are due
to ambiguous situations in anchoring perceptual information to symbols, i.e.,
situations where there are several hypotheses about which perceived object can
be anchored. We showed that such situations are characterized by uncertainty
due to lack of information about properties of perceived candidate objects.

The chapter presented an active probabilistic recovery procedure to handle
such failures. The process of recovery relies on an important step of situation
assessment to build a probabilistic multi-hypothesis representation of the occur-
ring failure situation. Recovery is, then, achieved by computing an information-
gathering plan whose successful execution permits to draw conclusions about
which percept(s) the object of interest can be anchored to. This recovery pro-
cedure is a direct application of the information-gathering schema described in
chapter 6 to collect information needed for the semantic knowledge-based exe-
cution monitoring process. Here, however, the information to collect is needed
by the plan executor itself in order to correctly execute a symbolic action.

The use of probabilities was shown to make it possible to distinguish be-
tween more likely and less likely candidate percepts as well as handling cases
where the ambiguous situation could only partially be resolved. This means
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that the anchoring module can choose to anchor an object to a symbol with a
degree of certainty; absolute certainty is not required. The original anchoring
framework by Coradeschi and Saffiotti [37] did not permit that. In fact there are
situations where certain relevant properties of an object cannot be determined,
and absolute certainty about which is the correct object is not attainable. Be-
sides, the robot might have only a limited amount of time for planning.

As it has been already discussed in chapter 6, using sensor-based planning
might result in an issue of scalability to handle situations that involve a high
number of hypotheses about the actual state of the world. We presented an
alternative solution to tackle such issue by adapting a recovery strategy that
plans to gather only small pieces of information at a time. Certainly, this strat-
egy might result in sub-optimal recovery solutions. Nevertheless, it has the ad-
vantage of solving recovery problems that are unsolvable if all the required
information has to be planned for at once.

Another potential issue with our encoding of the uncertainty about ambigu-
ous situations is the non-compact representation of uncertainty in belief states.
In fact, this is not a shortcoming of the approach itself, as other tools can be
used to encode belief states. These include tools that use Bayesian networks
to represent first order knowledge [58, 79] and the work by Milch et al. [101]
that uses Bayesian Networks to explicitly represent objects and relations among
them.



Chapter 8

Experiments

In this chapter, we describe the experimental set-up used to validate the pro-
posed approaches of monitoring the execution of plans using semantic domain-
knowledge. Our experiments were conducted both in simulation as well as in
real world using a real robot. The aim of conducting simulation experiments
was to collect large amounts of data for the purpose of statistically evaluat-
ing the performance of both monitoring processes: crisp SKEMon (presented in
chapter 4) and probabilistic SKEMon (covered in chapter 5). The evaluation is
based on viewing each SKEMon process as a classification system that predicts
the outcome of the execution of an action, i.e., success or failure. Thus, perfor-
mance is measured using information about actual and predicted classifications
done by the SKEMon process. On the other hand, the real-world experiments
were aimed at demonstrating the practicability of the proposed approaches on-
board real robots.

Before describing the simulation experiments, we start by presenting some
of the real-robot test scenarios so that the reader can be well acquainted with
the whole process. Note that test scenarios for detecting and responding to
anchoring failures are presented in chapter 7.

8.1 Real-Robot Test Scenarios

The real-robot test scenarios were performed using Pippi, the Magellan Pro
mobile robot, as the main protagonist. Both SKEMon processes (i.e., crisp and
probabilistic) as well as the information gathering process described in chapter
6 were implemented as part of the hierarchical plan executor described in 3.3.

Our test scenarios consisted in performing navigation tasks in a house envi-
ronment. The house comprises 4 rooms, named r1 to r4, which are asserted in
the semantic knowledge base as: r1 and r2 are of type bedroom, r3 is of type
living-room, and r4 is of type kitchen (see figure 8.1). In each room, there are
furniture items that are specific to the type of that room. Objects that are not
specific to any type of room are also present, e.g., tables, plants, etc. The se-
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Figure 8.1: Experimental setup. (Left) Pippi, the Magellan Pro robot together with sim-
ple objects used to represent furniture items. (Right) Map of the environment used in
performing test cases.

mantic knowledge base contains the same concept definitions as the ones used
in simulation experiments (see appendix A.1). To take into account partial ob-
servability of the environment, we set up Loom to use open-world semantics.

Since our main objective is to show the capacity of execution monitoring us-
ing semantic knowledge and not object recognition, we let objects with simple
shapes like cylinders and boxes stand in for beds, sofas, etc. The experiments
reported below have been performed in a lab environment, placing the sim-
ple objects above to simulate pieces of furniture. It should be noted that our
approaches do not depend on the simple vision system we used. One can use
more robust object recognition and classification systems such as the system de-
scribed in [127] that uses scale and orientation invariant local descriptors (SIFT
features) [92] to identify objects occurring in typical household environments.

Perceptual information is produced by an on-board vision system that gets
images from a frame grabber connected to the on-board CCD color camera.
Each image is segmented using mean shift techniques [34] in the LUV color
space. Objects are detected by a process that tries to match the resulting seg-
ments to a set of contours of simple objects (box, ball, cylinder, garbage can,
cup,...). The vision system also computes properties of the matched objects such
as color, relative position, and enclosed regions (marks). The computed percep-
tual information is then sent through TCP/IP to the perception and anchoring
module where data about perceived objects is managed, i.e., stored and main-
tained through tracking. The perception process checks whether a perceived
object is a new object to add it together with its perceived properties to the
local database of perceived objects. As a result, all requests issued by the SKE-
Mon process regarding perceptual information are handled through retrieving
information from the database of perceived objects.
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Figure 8.2: A scenario where Pippi has just finished executing the action (enter r4) to
enter the kitchen. (Left) Two objects are placed in room r4: one oven (red box) and one
sink (green cylinder). From its current place, Pippi sees only the oven. (Right) Picture of
Pippi seeing the oven (red box).

8.1.1 Crisp SKEMon Test Cases

We start by describing test cases where the crisp version of the semantic knowl-
edge based execution monitoring is used to check the implicit expectations of
navigation actions. The tasks assigned to the robot were to clean the different
rooms in the house. The plans used to achieve those tasks were all generated
under the assumption that actions are deterministic and that there is no noise
in sensing data. The task plans included two types of navigation actions (goto
?d) and (enter ?loc). The former were used to put the robot in a position
in front of a door ?d that leads to a room ?loc, while the latter were used to
cause the robot to move inside a room ?loc. As doors did not have any se-
mantic knowledge associated with them, we will only describe the monitoring
process of the (enter ?loc) actions. The SKEMon process used a credulous
approach whenever it could not determine if the room where the robot ended
up was of the same class as the asserted one.

Correct Success Result 1

In this test case, Pippi was in the living room (r3) and was asked to clean
room r4 (the kitchen). The generated task plan specified that she should en-
ter r4 through door d4. Once Pippi finished the execution of (enter r4), the
SKEMon process was called to check if the current room was a kitchen. The
available perceptual information indicated that Pippi saw only an oven (repre-
sented by a red box in figure 8.2). After asserting this fact, Loom classified the
current room as a kitchen. The classification was supported by the constraint
that ovens are to be found only in kitchens. As a result, the SKEMon process
returned “success”, which was interpreted as an indication of the successful
execution of the action (enter r4).
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This test case shows that not all the implicit expectations need to be verified
in order to conclude that an action has been successfully executed. It suffices to
see objects that are exclusively characteristic of a specific class of rooms.

Correct Success Result 2

The aim of this test case is to show that the monitoring process uses the absence
of counter evidence to correctly conclude that an action is executed successfully
although some implicit expectations are not known to hold or not.

Here, Pippi started in r4 and executed the action (enter r3) to move to
room r3; she could perceive one sofa (represented by a green box) from her
final position. The SKEMon process told Loom about the acquired perceptual
information and then queried if the current location was a living-room. The
answers of Loom to the queries showed that the current room was neither a
living-room nor a non living-room. Hence, the SKEMon process reached the
“unknown” monitoring result. As the SKEMon process was using a credulous
approach and no counter evidence of being in a living-room was detected, the
current room was assumed to be a living-room; therefore, it was conclude that
the action had been successfully executed. Notice that although the robot saw a
sofa, Loom could not classify the current room as a living-room because sofas
were not exclusively constrained to be in living-rooms. This is opposed to the
case of ovens,i.e., they were to be found only in kitchens.

False Success Result

The aim of this test case is to show that the credulous approach might cause
the monitoring process to wrongly conclude that the execution of an action has
succeeded. Here, Pippi was put in the living-room and was told to go to bed-
room r1. Pippi was placed in an initial position that made the actual execution
of the task plan end up in the kitchen instead. After finishing the execution
of the action (enter r1), Pippi could see only one table. As tables can be in
any room, Loom could not deduce if the current room was a bedroom. This
led the SKEMon process to reach the “unknown” result. Because there was no
counter evidence against being in a bedroom, it was conclude that the action
had been successfully executed, i.e., Pippi was assumed to be in r1. This was a
false positive since in reality Pippi was in the kitchen (room r4).

Correct Failure Result

The aim of this test case is to show that it is enough that one implicit expecta-
tion is violated to conclude that the execution of the action has failed.

We basically repeated the previous test case, but instead of placing the object
that stands for a table in the field of view of Pippi, we put a green cylinder to
represent a sink. This meant that after the execution of the (enter r1) action,
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the SKEMon process could conclude that the execution has failed. This result
was caused by the violation of the implicit expectation that “bedrooms do not
contain objects of type sink”.

8.1.2 Probabilistic SKEMon Test Cases

In these test cases uncertainty in action effects and sensing was reasoned about
by the probabilistic SKEMon process. Here, the general and simplified sens-
ing models were employed by the monitoring process. The parameters used by
the models were the same as the ones used in the simulation experiments (see
section 8.2.4). In all of the test cases, we considered the monitoring of the nav-
igation action (move ?loc1 ?loc2) with a model of a prior giving the robot
20% chance of being stuck in room ?loc1 (outcome 1, denoted R = 1) and
80% chance of ending up in room ?loc2 (outcome 2, denoted R = 2). The
SKEMon process returned the outcome that had the highest posterior proba-
bility as the outcome produced by the execution of the action.

Negative Evidence Against One Outcome

In this test case, we show how acquiring negative evidence changes the prior
probability of the outcomes. Here, Pippi started in room r3 and executed the
action (move r3 r4) to move from room r3 to room r4. Pippi effectively
moved into r4 and could perceive only one sink from its final place.

The monitoring process was then called to compute the posterior of the out-
comes. Both sensing models of the probabilistic monitor gave the same result,
i.e., P (R = 2) = 1.0 and P (R = 1) = 0.0. This result is supported by the fact
that room r3 is a living-room and according to the semantic knowledge base it
should contain no sink. Moreover, when using the general sensing model, the
only object that could be mistaken as a sink was an oven, which was defined
not to be in a living-room either. Therefore, seeing a sink was negative evidence
against the first outcome.

Negative Evidence Against All Action Outcomes

The aim of this test scenario is to show that the observations acquired by the
robot might reveal an exception that it is outside of the action model. Here,
Pippi started in room r3 and executed the action (move r3 r1), but instead
of ending up in either r1 or r3 as specified by the model, she ended up in the
kitchen (room r4).

As in the previous case, the only object perceived by Pippi was a sink. Com-
puting the posterior, using both sensing models, resulted in P (R = 1) = 0 and
P (R = 2) = 0. This result was supported by the fact that room r1 was of
type bedroom and room r3 was of type living-room, and according to the se-
mantic knowledge base both should contain no sink. Therefore seeing a sink
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was negative evidence against both outcomes. This is an exceptional situation,
which indicates that something outside of the action model has occurred. In
fact, before Pippi started the execution of the action, we changed her location
and direction so that instead of entering r1, she entered r4.

To recover from this exceptional situation, our fall-back strategy was to
assume that the robot was in one of the remaining locations, i.e., either room r2

or room r4 with equal probability 1/2 and recompute the posterior as before.
This yielded P ((robot-in = r2)) = 0 and P ((robot-in = r4)) = 1.0, i.e.,
the robot was certainly in the kitchen.

Uncertain Posterior

We considered three test cases where the acquired perceptual information did
not eliminate the uncertainty about the outcomes of the executed action. All
the three test cases involved monitoring the execution of the same action, i.e.,
(move r3 r1) to move from the living-room r3 to bedroom r1. In all the test
cases, Pippi started from the same location in room r3 and effectively moved
into room r1. The only difference between the different runs was the acquired
perceptual information.

In the first run, Pippi did not see any object from its final place. Both
sensing models of the probabilistic SKEMon process gave the same posterior:
P (R = 1) = 0.13 and P (R = 2) = 0.87. As the monitoring module was con-
sidering the outcome with the highest probability as the actual outcome, Pippi
was concluded to be in room r1.

In the second test case, Pippi could see two chairs from its final place. As
there was no constraint about the type of the room where chairs could be
located, the posterior was once more the same as in the first test case, i.e.,
P (R = 1) = 0.13 and P (R = 2) = 0.87. This was a predictable result as the
conditional probabilities of seeing chairs in both rooms were the same.

In the third case, Pippi could see only a sofa. The posterior computed using
the simplified sensing model was P (R = 1) = 0.51 and P (R = 2) = 0.49. This
meant that the monitoring process returned r3 as the final location of the robot,
which was not the case. On the other hand, the posterior computed using the
general sensing model was P (R = 1) = 0.4 and P (R = 2) = 0.6; therefore,
the monitoring process correctly estimated the final location of the robot, i.e.,
room r1. Notice that the difference in the computed posteriors was due to the
fact that, when using the general sensing model, seeing a sofa was interpreted
as either really seeing a sofa or mistakenly seeing a bed as a sofa; seeing a sofa
was not counter evidence against any of the outcomes.

8.1.3 Information Gathering for Crisp SKEMon

In this section, we describe test scenarios that show the capacity of the SKEMon
process to reason about situations involving lack of information. The goal was
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to test the sensor-based planning approach, proposed in chapter 6, to compute
solutions for gathering information useful for checking implicit expectations.
Remember that information gathering is a cautious approach that can be used
to handle situations where crisp SKEMon cannot establish whether some im-
plicit expectations hold or not, i.e., their truth values are “unknown”.

Active Information Gathering

The aim of this test scenario was to show how planning could be used to collect
information to infer the truth values of implicit expectations. The assigned top-
level task was to clean the living-room (r3 in figure 8.1), starting from the
kitchen r4. In this test scenario, we considered a slightly simple definition of
the concept of living-room:

(defconcept living-room :is

(and room

(:at-least 1 has-tv)

(:at-least 1 has-sofa )

(:exactly 0 has-sink))

The top-level task plan ((enter r3);(clean r3)) was produced to ac-
complish the assigned task. Next, Pippi executed the action (enter r3) to
enter room r3 and could see a TV set inside the room where she ended up.
Then, the SKEMon process was called to check the implicit expectations of
being in a living-room, which resulted in an “unknown” outcome. The reason
was because the truth values of the expectations of having at least one sofa and
no sink were not known.

Consequently, an active information-gathering process was started to look
for sofas and sinks inside the current room. In this test scenario, PC-Shop was
used to generate the information-gathering plan. The plan included actions to
move and scan the room from two predetermined places r3-1 and r3-2 (see
figure 8.3), and is given as follows:

((move r3-1)(eval-exactly 0 has-sink r3)

(cond

((exactly 0 has-sink r3 = t)

(move r3-2)(eval-exactly 0 has-sink r3)

(cond

((exactly 0 has-sink r3 = t)

(eval-at-least 1 has-sofa r3)

(cond

((at-least 1 has-sofa r3 = f) :fail)

((at-least 1 has-sofa r3 = t) :success)))

((exactly 0 has-sink r3 = f) :fail)))
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Figure 8.3: A scenario where Pippi has just entered the living-room r3. (Left) Pippi sees
only a TV set (marked green box), which results in an “unknown” monitoring result.
An information-gathering plan is generated to scan the room from two places, r3-1 and
r3-2, to look for sofas and sinks. (Right) Picture of Pippi scanning the room from place
r3-1 where she could see a sofa (the red box on her left side).

((exactly 0 has-sink r3 = f) :fail)))

We had two test cases of this scenario. In the first case, Pippi executed the
information-gathering plan and reached a :success action. That meant that all
the implicit expectations were verified. Therefore, the room where Pippi was lo-
cated was correctly found to be a living-room, thus the task-plan action (enter

r3) was concluded to have been executed successfully and the execution of the
top-level task plan was resumed with the next action, i.e., (clean r3).

In the second case, we modified the room by adding an object of type sink
and removing the object representing the sofa. As a result, the execution of the
information-gathering plan failed reached the predicted :fail action, because
a sink was perceived inside the room. That meant that the implicit expectation
of having no sink in a living-room was found to be violated. Consequently, the
monitoring process concluded that the task-plan action (enter r3) had failed
to execute successfully.

Recursive Information Gathering

In this test scenario, we show how the framework applies recursively to monitor
the execution of an information gathering plan (itself generated to monitor
expectations of a task-plan). We also show how the approach applies to actions
other than navigation. In this test scenario, a bedroom was defined as

(defconcept bedroom :is

(:and room

(:at-least 1 has-bed)

(:at-most 1 has-sofa)))
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The definition of the relation has-sofa was also modified as follows:

(defrelation has-sofa :domain room

:range two-seater-sofa)

where the new concept two-seater-sofa refers to sofas that have exactly two
seats, i.e.,

(defconcept two-seater-sofa :is

(and sofa (= number-of-seats 2)))

Here, Pippi executed a navigation task-plan that included an action to enter
the bedroom (enter r1). From her final place, Pippi did not see any sofas nor
any beds. This situation resulted in generating and executing an information-
gathering plan to look for sofas and beds inside r1. The information-gathering
plan is similar to the one in section 6.4.4. Using semantic knowledge to monitor
the execution of (eval-at-most 1 has-sofa r1) observation action involved
deriving the implicit expectation that any perceived sofa inside r1 had to ver-
ify the constraint (= number-of-seats 2). Consequently, a new information-
gathering plan was generated, every time a new sofa with an unknown number
of seats was perceived. The goal of the new information-gathering plan was to
check whether the perceived sofa had a number of seats equal to two by moving
in front of the sofa and observing it.

This test scenario shows that the approach leads to a form of interleaving of
planning and execution. In fact, in the task-plans, the planner did not include
any actions to check the number of seats of sofas. This was handled at run-
time by the monitoring process whenever it was needed, i.e., once a sofa with
an unknow number of seats was perceived.

8.1.4 Information Gathering for Probabilistic SKEMon

We also ran test scenarios to handle situations where the computed posterior
of the action outcomes by probabilistic SKEMon involved information gather-
ing as discussed in sections 5.4 and 6.6. A typical scenario where information
gathering was needed was while executing the following conditional task-plan
by Pippi to clean the living-room (room r3) starting from room r1 (bedroom).

((move r1 r3)

(cond

((robot-in = r3) (clean r3) :success )

((robot-in = r1) (move r1 r3)

(cond

((robot-in = r3) (clean r3) :success)

((robot-in = r1) :fail ) ))))
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As with the other test scenarios of probabilistic SKEMon, the same model
of the movement action was used, i.e., the execution of (move r1 r3) could
result in two alternative outcomes. In the first outcome (R = 1), the robot stays
unintentionally in room r1 with probability 0.2, while in the second outcome,
(R = 2), the robot moves effectively into room r3 with probability 0.8.

As the plan executor needed a crisp answer about the location of the robot
to continue the execution of the plan, the SKEMon process returned the out-
come that had a posterior probability greater than a threshold T = 0.8. If no
outcome satisfied the criterion, an information-gathering process was launched
to gather information that was likely to reduce the uncertainty in the posterior
of the outcomes. If, after the information gathering, there was still no outcome
that satisfied the selection criterion, the outcome with the highest probability
was returned to the plan executor.

When Pippi executed the first action (move r1 r3), she could see only one
table from her final place. Consequently, the computed posterior of the action
outcomes using the simplified sensing model was:

P (R = 1) = 0.29;P (R = 2) = 0.71

As none of the outcomes had a posterior probability greater than 0.8, an
information-gathering episode was started to look for objects in order to re-
duce the uncertainty about the location of the robot. To this end, information
gain was computed for the outcomes of the action given the different values
of observation variables. This resulted in selecting objects of type sofa to look
for, as on average observing sofas was predicted to achieve the highest informa-
tion gain. Therefore, Pippi moved to a location in the middle of the room and
scanned it looking for sofas.

We ran two test cases of this scenario, with both starting in the same way
(i.e., by executing the (move r1 r3) action and observing a table), but contin-
ued differently in the information-gathering phase. In the information-gathering
phase of the first test case, Pippi could see a sofa, and hence the posterior prob-
abilities of the two outcomes were as follows:

P (R = 1) = 0.06; P (R = 2) = 0.94

As P (R = 2) ≥ T , the probabilistic SKEMon process returned r3 to the
plan executor as the resulting outcome of executing action (move r1 r3). That
meant that the next action of the task-plan to execute was (clean r3).

In the information-gathering phase of the the second test case, Pippi did
not see any object except the table. Thus, the posterior that was computed
before the information gathering did not change, i.e., P (R = 1) = 0.29 and
P (R = 2) = 0.71. Because neither outcome had a posterior greater than 0.8,
the SKEMon process returned the one that had the highest posterior. In other
words, r3 was returned to the plan executor as the resulting outcome of exe-
cuting action (move r1 r3).
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8.2 Simulation Results

Our simulation experiments consisted of two scenarios taking place inside a
simulated house environment: a manipulation scenario and a navigation sce-
nario. A simulated mobile robot called Astrid, of type ActiveMedia PeopelBot,
was used as the main protagonist in both scenarios (see figure 8.5). The robot
was equipped with a simulated pan-tilt color camera that was used to acquire
visual perceptual information about the environment. The simulation experi-
ments were run using the 3D robot software simulator “Gazebo” [84].

8.2.1 Performance Evaluation Metrics

Due to lack of benchmarks in the area of execution monitoring of symbolic
plans, we base our evaluation on the metrics of false positive rate (FPR) and
true positive rate (TPR). Both metrics assume a binary classifier that tries to
classify a set of instances as either positive or negative. FPR is defined as the
ratio between the number of negative instances that are erroneously classified
as positive (FP ) and the total number of actual negative instances (N ), that is,

FPR =
FP

N

On the other hand, TPR is defined as the ratio between the number of posi-
tive instances that are correctly classified as positive (TP ) and the total number
of actual positive instances (P ), i.e.,

TPR =
TP

P

One way to evaluate the performance of classifiers is to analyze their results
using Receiver Operating Characteristic (ROC) graphs [46]. A ROC graph is a
plot of the rate of false positives (FPR) versus the rate of true positives (TPR),
such that the X axis represents FPR and the Y axis represents TPR. A perfect
classifier will achieve an FPR that is equal to zero and a TPR that is equal to
one, i.e., point (0, 1) in ROC space. A totally random classifier will have an
FPR that is equal to TPR, i.e., a point on the line y = x, which is called the line
of no-discrimination. A classifier that has its (FPR, TPR) point under the line
of no-discrimination is considered to be a bad classifier, while a classifier that
has its (FPR, TPR) above that line is considered to be a good classifier. Figure
8.4 shows an example of a ROC graph where the (FPR, TPR) points of three
classifiers are plotted.

Other metrics related to FPR and TPR include accuracy and precision. The
metric of accuracy gives the proportion of all the instances that are correctly
classified, i.e.,

accuracy =
TP + TN

P + N
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Figure 8.4: An example of a ROC graph showing three classifiers A, B, and C. A is
a good classifier, since its (FPR, TPR) point is above the line of no-discrimination, i.e.,
y = x. B is a bad classifier, as its (FPR, TPR) point is under the line of no-discrimination.
C is a perfect classifier, since it correctly classifies all positive instances and does not
mistakenly classify any negative instance as positive.

where TN represents the number of negative instances that are correctly clas-
sified as negative. The metric of precision gives the proportion of the correctly
classified positive instances:

precision =
TP

TP + FP

8.2.2 Manipulation Scenario

In the manipulation scenario, we used a simulation of the smart house described
by Saffiotti and Broxvall in [132]. Besides the robot, the experimental set-up
included a two prismatic-joint arm that was attached to the roof of a fridge
(see figure 8.5). The arm was used to achieve manipulation tasks aiming at
picking up objects inside the fridge so that they could be placed on the base
of the robot (e.g., to carry them to another location inside the house). Inside
the fridge, there could be objects of different types. We considered objects that
were instances of either of cup, glass, bottle, bowl, or box types. All of these
types were defined as containers that had some specific properties, which
were expressed in terms of constraints over relations to other objects of atomic
concepts (handle, cap, and cover). The semantic definitions of such types are
relatively simple, and they are given in appendix A.1.
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Figure 8.5: Simulation experimental setup. (Left) Astrid, the robot, near the fridge where
an arm is picking up an object. (Right) A close-up of the arm while picking up an object
inside the fridge.

We used the two simple solids of a cylinder and a box to represent a con-
tainer, while the related objects (i.e., handle, cover, cap) were represented by
marks of different colors placed on the container. For example, an object of
type cup was represented by a box (container) that has a yellow mark (handle).

8.2.3 Navigation Scenario

In this scenario, Astrid was acting in a house environment that comprised
rooms of different types (bedroom, living-room, kitchen, bathroom, office, and
utility room). In each room, there were furniture items, which were typical of
the type of that room. For instance, in a kitchen, there’s at least one oven, at
least one sink, etc. and in an office there’s at least one PC, at least one chair,
etc. In total, there were thirteen different types of objects that could exist in a
room. The semantic definitions of the different types of rooms and furniture
items is given in appendix A.1.

The semantic knowledge used in this scenario is more complex than the one
used in the manipulation scenario. The definitions contain more constraints,
and there are more related objects to take into account in order to classify a
room. Moreover, there are situations where seeing objects does not contribute
to the classification process. For instance, seeing only an object of type plant
does not help the robot identify in which room it is, as plants can be in any
room. As in the manipulation scenario, the furniture items were represented by
objects of simple shapes and colors.
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8.2.4 Parameters Used in Probabilistic SKEMon

Parameters of the Manipulation Domain

The state variables of the manipulation domain represent the number of han-
dles (S1), covers (S2), and caps (S3) that can be related to a container. As the
knowledge base shows, the maximum number of objects that a container can
have is always one. This means that all these variables have the same domain,
i.e., the set {0, 1}. The probability values of the state functions p(sj |r) of the
different state variables Sj are either 0 or 1 depending on the class of the object
to pick up. For example, if r models the outcome where the arm picks up a
cup, then p(s1 = 0|r) = 0 and p(s1 = 1|r) = 1 while p(sj = 0|r) = 1 and
p(sj = 1|r) = 0 for the other two state variables Sj .

Regarding the sensing models, we used ad-hoc values of the different param-
eters of the binomial and multinomial probability mass functions. The proba-
bility parameters of the binomials used in the simplified sensing model were
all fixed to 0.8. The probability parameters of the multinomial functions, i.e.,
p(gi|si) used in the general sensing model to encode how objects are classified
when seen are given as follows:

C1 = handle p1 = 0.8 p2 = 0.0 p3 = 0.0 p4 = 0.2

C2 = cover p1 = 0.0 p2 = 0.6 p3 = 0.2 p4 = 0.2

C3 = cap p1 = 0.0 p2 = 0.2 p3 = 0.6 p4 = 0.2

Recall that for a certain object of class Cj , pi expresses the probability of
(mis)classifying that object under class Ci. In this case, the probability of cor-
rectly classifying a handle is p1 = 0.8, whereas the probability of correctly
classifying a cover is p2 = 0.6. Similarly, the probability of misclassifying a
cover as a cap is given as p3 = 0.2, etc. The probability of missing (not seeing)
an object is p4 for all three classes.

Parameters of the Navigation Domain

There are thirteen state variables, such that each variable represents the number
of objects of a certain atomic class, e.g., bed. The domains of those variables
range from zero to a certain maximum number; they are given as follows:

S1 S2 S3 S4 S5 S6 S7

Object bed sofa sink oven table tv chair

max # 2 2 2 1 2 1 4

S8 S9 S10 S11 S12 S13

Object tub fridge plant PC clothes-dryer washing-machine

max # 1 1 3 1 1 1
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As described in section 5.3, the values of the state functions p(sj |r) were set
in accordance with the available semantic domain-knowledge, which is given
in appendix A.1. The values of the state functions were either 0 or 1 with the
exception of the following functions:

i = 0 i = 1 i = 2

P (S1 = i|bedroom) 0.0 0.7 0.3

P (S2 = i|living-room) 0.0 0.6 0.4

P (S3 = i|kitchen) 0.0 0.4 0.6

P (S5 = i|kitchen) 0.0 0.8 0.2

These values were subjective and reflect one’s belief of having a certain num-
ber of objects of a specific type in the different types of rooms.

We also assigned the probability 0.8 to all the parameters of the binomials
of the simplified sensing model. For the general sensing model, only few types
could be misclassified; their classification probabilities are given as follows:

bed p1 = 0.8; p2 = 0.1; p14 = 0.1

sofa p1 = 0.2; p2 = 0.7; p14 = 0.1

sink p3 = 0.7; p4 = 0.1; p14 = 0.2

oven p3 = 0.1; p4 = 0.7; p14 = 0.2

table p5 = 0.8; p6 = 0.1; p14 = 0.1

where pi expresses the probability of classifying a seen object as an instance of
class Ci while p14 represents the probability of missing (not seeing) an object in
a room where the robot is located. The sensing of all the other objects followed
the simplified sensing model, i.e., they were either seen or not seen but not
mistakenly seen as objects that were instances of other classes.

8.2.5 Perceiving the Environment

Often, when the robot senses the environment it only gets partial information
about the presence of objects and their properties, e.g., due to occlusions. To
take this into account, ee model partial observability of the environment using a
parameter Pperc that specifies the probability of perceiving all objects related to
the actual outcome of an executed action. In our experiments, we assume that
the process of observing one object is independent of observing another. We
also assume that all the objects have the same probability of being perceived,
i.e., m

√

Pperc, where m is the total number of objects that are related to the
actual outcome of the action.



140 CHAPTER 8. EXPERIMENTS

8.2.6 Crisp SKEMon Results

We tested the performance of the crisp SKEMon process on both scenarios. For
the manipulation scenario, each experiment consisted of executing the high-
level action “(pick-up obj)” by the arm to pick up the object, identified by
the symbol “obj”, inside the fridge. The high-level definition of the pick-up
action is given as follows:

(ptl-action

:name (pick-up ?obj)

:precond (((?obj)(object ?obj)

(and (arm-empty = t)(inside-fridge ?obj))))

:results (and (arm-empty = f)(holding = ?obj)) )

The SKEMon process was called once the low-level execution process re-
ported that it succeeded in picking up the desired object. The task of the SKE-
Mon process consisted in verifying that the object actually picked up by the
arm was of the same type as the desired one. To do so, the camera on-board
the robot was used as the main sensing modality to acquire perceptual infor-
mation necessary for monitoring. That meant that the robot had to be in front
of the fridge facing one side of the picked up object. Consequently, the robot
could observe the related object (handle, cap, or cover) if it was on the side
facing the robot.

The “(pick-up obj)” experiment was run such that obj was asserted 100
times as an instance of each of the five classes cup, bowl, bottle, glass, or box.
That gave a total of 500 runs where in each run the type of the object that the
arm ended up picking up was uniformly sampled from the five available types.
The perception by the robot of the related object (e.g., handle, cap,...) to the
picked up one was decided by generating a random number from a Bernoulli
distribution with probability Pperc. In other words, the related object was on
the side facing the robot if the sampled random number was less than Pperc.

Similarly, we conducted a total of 600 runs of the (enter loc) navigation
action to enter a room identified by the symbol loc and whose type was as-
serted to be one of the available room types, i.e., bedroom, living-room, etc.
Each room type was considered 100 times; each time, the type of the actual
final location of the robot was sampled uniformly from the six available types.
A world state, containing objects that were consistent with the actual location,
was then generated using the state functions used in the probabilistic version of
SKEMon (see section 8.2.4). Which objects could be perceived from the robot’s
place were determined according to the parameter Pperc . The perceivable ob-
jects were then put in places where the robot could see them while the others
were hidden. The object detection operation was tuned so that all perceivable
objects were actually detected and correctly classified.

Table 8.1 shows the obtained results for three different values of Pperc: 0.3,
0.5, and 0.7. The rows of the table represent the ground truth, such that the
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Table 8.1: Results of crisp SKEMon in monitoring the execution of the actions pick-up
and enter. The rows represent the ground truth, and the columns represent the result
returned by the SKEMon process, i.e., success (S), failure (F), and unknown (U).

Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

S F U S F U S F U

S 20 0 70 22 0 71 27 0 58
Navigation

F 0 412 98 0 418 89 0 437 78

S 9 0 101 22 0 87 22 0 81
Manipulation

F 0 75 315 0 128 263 0 163 234

Table 8.2: The rates of true positives (TPR) and false positives (FPR), given as percent-
ages, of crisp SKEMon for the actions pick-up and enter. Two approaches are consid-
ered: non-credulous (N-C) treating unknown as a separate third case and credulous (C)
treating unknown as success.

Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

Approach FPR TPR FPR TPR FPR TPR

N-C 0 22.22 0 23.65 0 31.67
Navigation

C 19.21 100 17.55 100 15.14 100

N-C 0 8.18 0 20.18 0 21.35
Manipulation

C 80.76 100 67.26 100 58.94 100

first row for each scenario represents the positive cases, i.e., the runs where the
expected outcome of the action is the same as the actual outcome. The second
row represents negative cases, i.e., runs where the expected outcome of the
action is different from the actual outcome. The columns, on the other hand,
represent the results of the SKEMon process, i.e., Success, Failure or Unknown.

The results show that crisp SKEMon is able to get a zero percent of false
positives and a zero percent of false negatives. This is a predictable result as
perceptual information is assumed to be perfectly reliable although incomplete.
We can also remark that the monitor is able to detect most of the failure situ-
ations (true negatives) for the navigation action (80, 82, and 85 %). However,
for the pick-up action, smaller percentages are detected (19, 33, and 41%).

The high percentages achieved in the navigation scenario are explained by
the fact that most concept definitions are highly constrained, and therefore the
perception of objects as counter evidence is more likely. As a result, the number
of cases where the monitor declares unknown is reduced. On the other hand,
the definitions of concepts in the manipulation domain involve only a small
number of constrains over related objects. Consequently, the probability of not
observing counter evidence is higher, which results in having more situations
where the type of the picked up object is not known. Moreover, as the con-
straints involved in the definitions of the concepts bowl and glass are the same,
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Figure 8.6: Rates of true positives (TPR) and true negatives (TNR) achieved by crisp
SKEMon for different types of rooms (left) and containers (right).

all situations where the expected outcome is picking up a bowl, but the actually
picked up object is a glass (and vice versa) are declared as unknown.

The results show also that the percentages of correct detection of success
are low: around 22, 24, 32% for the navigation action and 8, 20, and 21%
for the manipulation action. Notice that all the other cases where the monitor
declares unknown when the actual execution is successful are due to the fact
that we set Loom to use open-world semantics to classify instances. In other
words, :at-most and :exactly constraints can only be deduced to be violated
but not to hold even if the asserted knowledge should make them hold. The
reason is that Loom does not know whether there is more information that
could make those constraints not hold. Following the same reasoning, Loom

can only prove that an :at-least constraint holds.
Figure 8.6 shows the detailed rates of true positives (TPR) and true negatives

(TNR) for the different types of the expected object. One can observe that all
detected success cases for the navigation actions are from runs where the robot
successfully moved into either the kitchen or the utility-room. On the other
hand, the detected success cases for the manipulation actions are from runs
where the expected object to pick up was a cup or a bottle. This is due to the fact
that the robot could see objects that were defined to be exclusively related to
those types of rooms and containers. For instance, seeing an oven was sufficient
to conclude that the current room was a kitchen, while seeing a handle on the
picked up container caused that container to be classified as a cup (see the
definitions of relations in appendix A.1). On the other hand, we can observe
that the percentage of correctly detected failures is never zero. This brings us to
the conclusion that if the SKB contains constraints that uniquely identify classes
of objects, crisp SKEMon would be able to detect more successful execution
cases, and thus a lower number of unknown cases.

When the monitoring process takes a credulous approach, all unknown re-
sults are counted as success. Table 8.2 shows the rates of true positives (TPR)
and false positives (FPR) of crisp SKEMon treating unknown as a separate case,
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i.e., using a non-credulous approach, and crisp SKEMon using a credulous ap-
proach. One can notice that the credulous approach detects 100% of successful
execution cases, but at the same time it reports higher rates of false positives es-
pecially when applied in the manipulation domain. It should also be noted that
all the results of crisp SKEMon, both credulous and non-credulous, indicate a
good performance (even for low values of Pperc). The reason is that when the
FPR vs TPR points are plotted in the ROC space, they are all above the line of
no-discrimination (i.e., the line representing the function f(x) = x). This result
is due to the fact that crisp SKEMon, with a non-credulous approach, achieves
100% specificity (i.e., it is equivalent to 0% of false positives) and a sensitivity
(equivalent to TPR) that is greater than zero. On the other hand, using a cred-
ulous approach gives 100% of true positives and a FPR that is less than TPR.
Therefore, one can conclude that crisp SKEMon is good at detecting execution
failures, provided that the defined concepts be sufficiently constrained, but it is
less good in detecting correct execution.

8.2.7 Probabilistic SKEMon Results

We used the same experimental set-up to run experiments to evaluate the per-
formance of the probabilistic SKEMon process. However, this time, we consid-
ered probabilistic action models with two possible outcomes. For the pick-up
action, the first outcome expressed picking up the desired object, while the sec-
ond outcome expressed picking up another object that was near the desired
one. For the navigation scenario, we considered the action (move loc1 loc2)

to move the robot from its initial room loc1 to destination room loc2. The first
outcome of the action reflected the situation where the robot would remain un-
intentionally in loc1, while the second outcome expressed the case where the
robot would effectively end up in room loc2.

To simulate the unreliable effects of executing (pick-up obj), we used the
prior probability of the two outcomes, specified in the action model, to sample
the object that the arm would actually pick up. Then, the sampled object was
placed in a location where the arm would pick it up. Similarly, the unreliable
effects of executing (move loc1 loc2) were simulated by sampling the room,
where the robot actually ended up, from the two rooms loc1 and loc2 using
the prior probability specified in the action model. The process of determining
which objects were perceivable by the robot was done the same way as in the
crisp SKEMon experiments. To simulate unreliable sensing, the acquired per-
ceptual information was corrupted according to the parameters of the sensing
model used by the monitoring process.

Probabilistic SKEMon was evaluated using four values of Pperc: 0.1, 0.3,
0.5, and 0.7. For each value of Pperc, three prior probability distributions of
the action outcomes were considered: {p(r1) = 0.8, p(r2) = 0.2}, {p(r1) =
0.5, p(r2) = 0.5}, and {p(r1) = 0.2, p(r2) = 0.8}. We performed experiments
where the two objects, or rooms, involved by the two action outcomes could
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Table 8.3: Results of probabilistic SKEMon using the simplified sensing model to mon-
itor the execution of navigation and manipulation actions with two possible outcomes.
The rows represent the actual outcome of the executed action while the columns repre-
sent the outcome predicted by the monitoring process.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

r1 r2 r1 r2 r1 r2 r1 r2

r1 2470 241 2394 216 2466 215 2528 208
Navigation

r2 254 2435 251 2539 206 2513 208 2456

r1 1204 671 1277 626 1327 505 1466 406
Manipulation

r2 696 1179 571 1276 544 1374 427 1451

Table 8.4: Results of probabilistic SKEMon using the general sensing model to monitor
the execution of navigation and manipulation actions with two possible outcomes.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

r1 r2 r1 r2 r1 r2 r1 r2

r1 2467 257 2470 227 2456 201 2514 227
Navigation

r2 239 2437 225 2478 234 2509 196 2463

r1 1135 688 1269 605 1379 518 1474 428
Manipulation

r2 726 1201 603 1273 522 1331 462 1386

be asserted to be of any of the available types. For each combination of types,
we repeated the experiment 50 times. This resulted in a total of 3750 runs for
the manipulation action and 5400 runs for the navigation action.

The results of probabilistic SKEMon using the simplified sensing model and
the general sensing model are shown respectively in tables 8.3 and 8.4. In both
tables, the rows represent the ground truth, and the columns show the results of
the SKEMon process, which were computed by selecting the outcome with the
higher posterior probability (ties were broken randomly). The rates of true pos-
itives (TPR) and false positives (FPR) for both scenarios and for both sensing
models are given in table 8.5. Both rates are computed by considering outcome
r2 as the positive case and outcome r1 as the negative case. The ROC graphs
representing the (FPR, TPR) points are shown in figure 8.7.

The results with both sensing models indicate good performance as TPR
tends to be high, while FPR tends to be low. The results show also that the
performance of probabilistic SKEMon using the simplified sensing model is
slightly better than the one with the general sensing model. This is due to the
fact that when the simplified sensing model is used, simulated objects can be
either seen or missed but not misclassified. On the other hand, when the general
sensing model is used, simulated objects can be missed as well as misclassified
due to the introduction of noise in perception.

As in the case of crisp SKEMon, we notice that the performance of prob-
abilistic SKEMon is very good in the navigation scenario. The percentages of
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Table 8.5: The rates of true positives (TPR) and false positives (FPR) of probabilistic
SKEMon for the two types of actions using the two sensing models (S: simplified; G:
General). The rates are given as percentages.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

Model FPR TPR FPR TPR FPR TPR FPR TPR

S 8.89 90.55 8.28 91.00 8.02 92.42 7.60 92.19
Navigation

G 9.43 91.07 8.42 91.68 7.56 91.47 8.28 92.63

S 35.79 62.88 32.90 69.08 27.57 71.64 21.69 77.26
Manipulation

G 37.74 62.32 32.28 67.86 27.31 71.83 22.50 75.00
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(d) Navigation: general sensing model

Figure 8.7: The upper left corner of the ROC graphs representing the FPR vs TPR points
of probabilistic SKEMon. The points are shown for the different values of Pperc.
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Table 8.6: Accuracy of probabilistic SKEMon in monitoring the execution of navigation
and manipulation actions using the two sensing models (S: simplified; G: General). The
results are given as percentages.

Model Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

S 90.83 91.35 92.20 92.30
Navigation

G 90.81 91.63 91.94 92.17

S 63.55 68.08 72.03 77.79
Manipulation

G 62.29 67.79 72.27 76.27

Table 8.7: Precision of probabilistic SKEMon in monitoring the execution of navigation
and manipulation actions using the two sensing models (S: simplified; G: General). The
results are given as percentages.

Model Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

S 90.99 92.16 92.12 92.19
Navigation

G 90.46 91.61 92.58 91.56

S 63.73 67.09 73.12 78.14
Manipulation

G 63.58 67.78 71.98 76.41

false positives are as low as 7.6%, while the percentages of true positives are as
high as 92.63%. The performance in the manipulation scenario is not as good
as in the navigation scenario, nevertheless it gets better when the probability
Pperc is higher. As explained above, this is due to how definitions of concepts
are constrained as well as how much of the environment is observable, i.e.,
the value of Pperc. Compared to crisp SKEMon, probabilisticSKEMon achieves
better results thanks to its ability to reason about uncertainty in both sensing
and action effects.

The results of accuracy and precision are given in tables 8.6 and 8.7. One
can observe that probabilistic SKEMon is highly accurate in detecting successful
and failed execution in the navigation scenario, but it is less accurate in the
manipulation scenario. As with FPR and TPR, accuracy and precision get better
when the environment is more observable (Pperc is higher). Figure 8.8 shows
accuracy and precision results, given as bar plots, of probabilistic SKEMon.

Corrupted Action Model

To test the influence of incorrect actions models on the performance of prob-
abilistic SKEMon, we ran experiments where the action model used by prob-
abilistic SKEMon was corrupted. In other words, the probabilities assigned to
the possible outcomes were not always correct. In these experiments, we con-
sidered only the monitoring of the execution of navigation actions using the
general sensing model. The action model used by SKEMon had a prior giving
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Figure 8.8: Bar plots showing accuracy and precision of probabilistic SKEMon in mon-
itoring the execution of navigation and manipulation actions. The results are shown for
different values of Pperc.
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Table 8.8: Results of performance of probabilistic SKEMon using the general sensing
model in monitoring the execution of navigation actions with perfect and corrupted
action models.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

r1 r2 r1 r2 r1 r2 r1 r2

Perfect r1 496 217 549 210 564 199 543 197
Model

r2 66 2821 35 2806 39 2798 21 2839

Corrupted r1 869 382 895 346 894 304 949 312
Model

r2 49 2300 32 2327 23 2379 16 2323

Table 8.9: Comparison of the rates of true positives (TPR) and false positives (FPR) of
probabilistic SKEMon using perfect and corrupted navigation-action models.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

FPR TPR FPR TPR FPR TPR FPR TPR

Perfect Model 30.43 97.71 27.67 98.77 26.08 98.63 26.62 99.27

Corrupted Model 30.54 97.91 27.88 98.64 25.38 99.04 24.74 99.32

a probability of 0.2 to the first outcome and a probability of 0.8 to the second
outcome, i.e., {p(r1) = 0.2, p(r2) = 0.8}.

The experiments were performed such that the two rooms involved by the
two action outcomes could be asserted to be any of the available room types.
For each combination of types, the experiment was run 100 times, and each time
the final room of the robot was sampled from the two rooms loc1 and loc2.
In one half of the 100 runs, the sampling was performed according to the prior
probability of the outcomes specified in the action model. In the other half,
the sampling was from a uniform probability distribution, i.e., both modeled
outcomes had the same probability of being the actual outcome.

To be able to analyze the results of probabilistic SKEMon with a corrupted
action model, we repeated the same experiments where the action model was
not corrupted. Table 8.8 summarizes the results achieved by the SKEMon pro-
cess when both action models are used (i.e., corrupted vs non-corrupted mod-
els). The corresponding rates of false positives (FPR) and true positives (TPR)
are given in table 8.9 and plotted in a ROC graph in figure 8.9.

The results indicate that the performance, in terms of FPR vs TPR, of prob-
abilistic SKEMon with a corrupted action model is comparable to that when
a perfect action model is used. However, as demonstrated by tables 8.10 and
8.11, SKEMon with a corrupted action model is both less accurate and less
precise than SKEMon with a perfect action model. Nevertheless, the difference
in accuracy and precision is minimal (see figures 8.10 and 8.11). This leads
us to conclude that semantic knowledge helps in building reliable execution
monitoring systems even when the action model is corrupted.
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Figure 8.9: Upper-left corner of the ROC diagram showing the FPR vs TPR points of
probabilistic SKEMon using corrupted and perfect action models. The points are for
monitoring the execution of navigation actions. Filled figures represent points when the
corrupted model is used while empty figures represent points when the perfect model is
used.

Table 8.10: Comparison of the accuracy of probabilistic SKEMon using corrupted and
perfect navigation-action models. The results are given as percentages.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

Perfect Model 92.14 93.19 93.39 93.94

Corrupted Model 88.03 89.50 90.92 90.89

Table 8.11: Comparison of precision results of probabilistic SKEMon using corrupted
and perfect navigation-action models. The results are given as percentages.

Pperc = 0.1 Pperc = 0.3 Pperc = 0.5 Pperc = 0.7

Perfect Model 92.86 93.04 93.36 93.51

Corrupted Model 85.76 87.06 88.67 88.16
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Figure 8.10: Accuracy of probabilistic SKEMon using corrupted and perfect action mod-
els. The results are for monitoring the execution of navigation actions.
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Figure 8.11: Precision of probabilistic SKEMon using corrupted and perfect action mod-
els. The results are for monitoring the execution of navigation actions.
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8.3 Discussion

The main focus of this chapter was to demonstrate that semantic domain-
knowledge helps robots achieve good performance in monitoring the execu-
tion of their symbolic plans. To this end, we implemented the two monitoring
processes (crisp and probabilistic SKEMon) on a real robot, and we ran test
scenarios involving the execution of symbolic plans generated to navigate in
an indoor environment. We also presented and analyzed simulation and ex-
perimental data using known statistical performance metrics, i.e., rates of true
positives (TPR) and false positives (FPR) as well as accuracy and precision.

Although we have evaluated the performance of our approaches in moni-
toring the execution of simple actions using a simple vision system, we expect
them, especially the probabilistic one, to perform very well in more realistic
scenarios when more powerful perception systems are used. This expectation is
based on the fact that the probabilistic approach uses a sensing model that is
able to reason about noisy sensing where objects can be missed or misclassified
when they are detected.

The results reported in this chapter show that semantic domain-knowledge
can effectively help robots achieve good performance in monitoring the execu-
tion of symbolic plans. In particular, we have seen that crisp SKEMon is very
good at detecting execution failures if the used semantic knowledge contains
enough counter-evidence constraints in the definitions of classes of objects. This
result can be used as the basis for selecting constraints to check using active in-
formation gathering (see chapter 6). In other words, whenever crisp SKEMon
returns the “unknown” outcome regarding the execution of a plan action (be-
cause of lack of information), only counter-evidence constraints can be selected
for generating plans to check them. The objective is to simplify the planning
problem when there is a high number of implicit expectations that involve col-
lecting information.

Moreover, the results show that crisp SKEMon never declares that implicit
expectations are violated when in reality they are not. This claim is supported
by the obtained results showing that crisp SKEMon achieves zero percent of
false negatives independently of how implicit expectations with unknown truth
values are treated (i.e., using a credulous approach or not). Certainly, this re-
sult is due to the simplifying assumption in our experiments that perceptual
information is reliable, i.e., detected objects are not misclassified. Although,
we did not notice any performance issues regarding the size of the knowledge
bases that we used in our experiments, we expect that with the use of the state-
of-the-art knowledge representation systems our approach would be able to
handle much bigger and more complex knowledge bases. Our claim is sup-
ported by the developments of DL-based systems that are shown to scale up
well [67, 103].

When the monitor considers uncertainty in sensing and action effects, the
performance is even better than the one achieved by crisp SKEMon. This claim
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is supported by the high rates of true positives and the low rates of false posi-
tives achieved in monitoring the execution of two different types of actions. The
reason for the better performance can be attributed to the fact that expectations
are no longer treated in a boolean manner, i.e., satisfied, violated, or unknown.
Furthermore, probabilistic SKEMon bases its decisions about whether the exe-
cution of an action has failed or succeeded taking into account how likely each
expectation is verified or violated given the acquired perceptual information.
Additionally, the results show that even when the action model is corrupted
probabilistic SKEMon is still able to perform very well. This claim is supported
by the data reported in table 8.8.

On the down side, crisp SKEMon is unable to detect failure situations when
the expected object has similar conceptual description as the execution-time ob-
ject. A typical example of such situations in our experimental set up is when the
robot is expecting to pick up a glass but ends up grasping a bowl. Such situation
will always result in “unknown” monitoring result. This has also the implica-
tion of erroneously considering such cases as resulting in “success”, when crisp
SKEMon takes a credulous approach. One way to cope with such an issue is to
define concepts to be totally exclusive by providing more constraints involving
the properties of their instance objects.

Similar situations arise when both the expected object and the execution-
time object are instances of the same class. For instance, the robot wants to
move to a bedroom r1, but it ends up in another bedroom r2. This is typically
a situation that cannot be handled by considering only general semantic knowl-
edge. One would need to provide extra information about the expected object
(e.g., the size of r1), or objects related to it (r1 has a red bed) to be able to
remedy such unexpected situations.

It should be noted that the performance of probabilistic SKEMon also drops
when applied in such situations, but it does to a lesser extent. Basically, the re-
sulting posterior of action outcomes is highly influenced by the prior probabili-
ties given in the action model. In the case where the expected and the execution-
time objects are instances of the same class, the posterior probabilities of the
outcomes will always be the same as the prior ones.



Chapter 9

Discussions and Conclusions

This thesis has addressed the topic of robust execution of symbolic plans by
autonomous mobile robots acting in indoor environments. Our primary focus
has been on the ability of a mobile robot to monitor the execution of its plans
to detect unexpected situations at execution-time. The thesis has also addressed
the issue of responding to such unexpected situations with a special emphasis
on situations of lack of information that is required for correct execution of
robot actions.

We have claimed that autonomy requires that mobile robots be able to mon-
itor the execution of their actions to make sure that they are executed success-
fully. In particular, we have identified that existing approaches of execution
monitoring of symbolic plans relied mainly on the results of checking the ex-
plicit effects of plan actions, i.e., effects encoded in the action model. We have
argued that this relies on the hidden assumption that the effects to monitor are
directly observable. Our claim has been that such an assumption is not always
practical in real-world environments where checking expectations is a complex
process. Therefore, we have proposed to increase the reliability of the process
of execution monitoring by incorporating more advanced forms of reasoning.
In particular, we proposed to use semantic domain-knowledge as a source of
information to derive implicit expectations about the effects of actions, and
to monitor these expectations using the available perceptual information. This
has allowed us to introduce the new notion of Semantic Knowledge-based Ex-
ecution Monitoring SKEMon in mobile robotics. To the best of our knowl-
edge, our work is the first one to use semantic knowledge for the purpose
of plan execution monitoring. In fact, with the exception of few cases, e.g.,
[44, 60, 73, 116, 142], there is little work of using semantic knowledge in mo-
bile robotics in general.

We have proposed a general algorithm for SKEMon based on the use of de-
scription logics for representing and reasoning about domain knowledge. The
choice of using description logics was motivated by their ability to express gen-
eral knowledge about classes of objects through a concise representation. In

153
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addition, description logics permit the derivation of implicit knowledge from
the explicitly represented one; thus, a lot of information about domain enti-
ties can be kept implicit. Moreover, description logics are fairly expressive yet
supported by efficient inference mechanisms, making them practically useful.

Uncertainty is a feature that is ever present in robotics, and therefore we
have addressed the issues of probabilistic uncertainty in action effects, sensing,
and world states in the context of using semantic knowledge to monitor plan
execution. Being able to reason about uncertainty, an execution monitor can
deduce whether a specific action outcome is more likely given the acquired
perceptual information, which is generally noisy and incomplete. Therefore,
we have considered uncertainty in sensing through a model that expresses the
probability of what is observed for a given state of the world. The sensing
model permits to state whether an object that exists in the real world is seen
or not, by taking, e.g., occlusion into account. The model also accounts for
misclassification of objects when they are seen.

Our experimental results have shown that semantic knowledge can con-
tribute to effective plan execution monitoring techniques especially when un-
certainty in action effects and sensing is explicitly taken into account. It is worth
mentioning that although several of the examples and experiments presented in
this thesis involved the robot’s location, the problem addressed by our work
should not be confused with self-localization. The aim of our work is to mon-
itor the execution of actions by observing their (explicit and implicit) effects:
these effects may include the robot’s location in the case of navigation actions,
but they include other aspects of the world state for other actions, like obser-
vation and grasping actions.

In this thesis, we have also argued that autonomy requires that robots be
able to respond to unexpected situations on their own. Our argument is moti-
vated by the fact that a robot that can figure out on its own how to cope with
unexpected situations is a robot that can continue functioning toward achieving
successfully its assigned tasks. In this thesis, we considered unexpected situa-
tions caused by lack of information that is necessary for the correct execution
of plans. In chapter 6, we presented an information-gathering schema to deal
with situations that are characterized by lack of information relevant to se-
mantic knowledge-based execution monitoring. Such information is needed to
evaluate implicit expectations whose truth values could not be known using the
immediately available perceptual information. We have claimed that gathering
the missing information is a cautious approach that can be used when the robot
does not want to take a credulous approach, i.e., consider the execution of an
action successful as long as no counter evidence is detected.

The proposed information-gathering schema includes steps for modeling the
occurring situation as well as steps for generating and executing a course of ac-
tion to actively collect the missing information. The process of generating the
information-gathering solutions was described in terms of sensory actions using
sensor-based planning and greedy approaches. The use of planning was moti-
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vated by its ability to handle complex situations involving lack of information
in an automatic and flexible way.

As there can be situations involving the presence of a high number of hy-
potheses about how expectations can be checked to hold or not, planning might
be costly in terms of computational time and memory resources. For this rea-
son, we have presented an alternative approach that greedily select one piece of
information to look for at a time. The information to select is the one that is
predicted to reduce the uncertainty in the action outcomes.

Chapter 7 presented a case study of using active information-gathering to
respond to plan-execution failures caused by ambiguity in anchoring a symbol
to a perceived candidate object. We showed that such failures are characterized
by lack of perceptual information about properties of perceived objects. There-
fore, the same schema presented in chapter 6 has been successfully applied to
devise active information-gathering solutions to recover from ambiguous situ-
ations in anchoring.

Limitations and Open Issues

One of the main limitations of semantic knowledge-based execution monitor-
ing is that it is applicable only when domains have descriptive semantic knowl-
edge available, i.e., domains where knowledge about objects can be organized
in classes and relations between classes. In addition, there are some open is-
sues that need to be investigated further in order improve the practicability of
semantic knowledge-based execution monitoring. These open issues have been
identified separately for each chapter of the thesis, and they are exposed in the
following paragraphs.

The first issue is related to the process of selecting the objects that need to
have their constraints (implicit expectations) checked by the monitoring process
against the available perceptual information. In our current implementation,
we use an ad hoc procedure that consists in selecting objects that appear in the
positive effects stated in the model of the executed action. In crisp SKEMon, for
instance, the action (enter r1) has as positive effect (robot-in = r1), which
states that the robot will be in r1; therefore r1 is selected as the object to check
by SKEMon. This procedure works well when the positive effects refer to a
small number of objects. For actions that involve a large number of objects, this
might be problematic; thus, this issue needs further research aiming at finding
alternative procedures for selecting the few objects that are most important for
the monitoring process.

In the current probabilistic SKEMon process, number constraints are lim-
ited to be over atomic concepts. This limitation was imposed in order to pre-
serve the independence assumption about making observations, i.e., observing
one object is independent of observing another. Using the current settings, we
cannot have a number constraint about beds and at the same time another num-
ber constraint about big-beds because observing an object that is of type bed is
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no longer independent of observing an object of type big-bed. Therefore, it is
worth investigating efficient ways of computing the posterior of the outcomes
of an executed action when there are observation random-variables associated
with concepts at different levels of the concept taxonomy. Another issue worth
investigation in probabilistic SKEMon is addressing the computational com-
plexity of the sensing model, for instance by using approximate inference tech-
niques that are widely studied in the context of inference in Bayesian networks.

Regarding sensor-based planning for dealing with situations of lack of infor-
mation in crisp SKEMon, there are two open issues that need to be addressed.
First, situations involving lack of information might be very complex due to
a large number of implicit expectations with unknown truth values. Solving
such situations by planning can be computationally demanding. A possible so-
lution would be to identify only a subset of expectations to check and then
plan to collect information related to them. The second open issue is related
to the interaction between the execution of the task plan and the execution
of information-gathering actions. In our current implementation, information-
gathering plans are not allowed to modify the state reached by the execution of
the task plan. This is an extreme constraint that might prevent finding informa-
tion gathering plans; thus, further research is needed to find ways to coordinate
the execution of both plans so that the assigned task is achieved successfully.
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Appendix

A.1 Semantic Knowledge Base

A.1.1 Manipulation Domain

;-----------------------------------------------------------------------------------------
; Relationships
;-----------------------------------------------------------------------------------------

(defrelation has-handle :domain cup :range handle)
(defrelation has-cover :domain container :range cover)
(defrelation has-cap :domain bottle :range cap)

;-----------------------------------------------------------------------------------------
; Atomic Concepts
;-----------------------------------------------------------------------------------------

(defconcept handle)
(defconcept cover)
(defconcept cap)
(defconcept container)

;-----------------------------------------------------------------------------------------
; Defined Concepts
;-----------------------------------------------------------------------------------------

(defconcept cup
:is (and container (:exactly 1 has-handle)(:exactly 0 has-cover)(:exactly 0 has-cap)))

(defconcept glass
:is (and container (:exactly 0 has-handle)(:exactly 0 has-cover)(:exactly 0 has-cap)))

(defconcept bottle
:is (and container (:exactly 0 has-handle)(:exactly 0 has-cover)(:exactly 1 has-cap)))

(defconcept box
:is (and container (:exactly 0 has-handle)(:exactly 1 has-cover)(:exactly 0 has-cap)))

(defconcept bowl
:is-primitive (and container (:exactly 0 has-handle)(:exactly 0 has-cover)

(:exactly 0 has-cap)))

A.1.2 Navigation Domain

;-----------------------------------------------------------------------------------------
; Relationships
;-----------------------------------------------------------------------------------------

157
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(defrelation has-oven :domain kitchen :range oven)
(defrelation has-bed :domain room :range bed)
(defrelation has-sofa :domain room :range sofa)
(defrelation has-table :domain location :range table)
(defrelation has-tv-set :domain room :range tv-set)
(defrelation has-sink :domain (or kitchen bathroom utility-room) :range sink)
(defrelation has-tub :domain (or bathroom utility-room) :range tub)
(defrelation has-chair :domain location :range chair)
(defrelation has-fridge :domain room :range fridge)
(defrelation has-pc :domain room :range pc)
(defrelation has-clothes-dryer :domain room :range clothes-dryer)
(defrelation has-washing-machine :domain utility-room :range washing-machine)
(defrelation has-plant :domain location :range plant)

;-----------------------------------------------------------------------------------------
; Atomic Concepts
;-----------------------------------------------------------------------------------------

;-- Items
(defconcept oven) (defconcept bed)
(defconcept sofa) (defconcept table)
(defconcept tv-set)(defconcept sink)
(defconcept tub) (defconcept chair)
(defconcept fridge)(defconcept washing-machine)
(defconcept plant) (defconcept pc)
(defconcept clothes-dryer)

;-- Locations
(defconcept room )(defconcept corridor)

;-----------------------------------------------------------------------------------------
; Defined Concepts
;-----------------------------------------------------------------------------------------

(defset location :is ’(corridor room))
(defconcept bedroom

:is (and room (:at-least 1 has-bed)(:at-most 1 has-sofa)
(:exactly 0 has-sink)(:exactly 0 has-oven)

(:exactly 0 has-tub)(:exactly 0 has-washing-machine)
(:exactly 0 has-clothes-dryer) ))

(defconcept living-room
:is (and room (:at-least 1 has-sofa)

(:exactly 1 has-tv-set)
(:exactly 0 has-sink)(:exactly 0 has-oven)(:exactly 0 has-tub)

(:exactly 0 has-washing-machine)(:exactly 0 has-clothes-dryer)))
(defconcept kitchen

:is (and room (:at-least 1 has-sink)(:exactly 1 has-oven)(:at-least 1 has-fridge)
(:at-least 1 has-table)(:exactly 0 has-pc)(:at-most 1 has-sofa)

(:exactly 0 has-bed)(:exactly 0 has-tub)(:exactly 0 has-washing-machine )
(:exactly 0 has-clothes-dryer) ))

(defconcept bathroom
:is (and room (:at-least 1 has-sink)(:exactly 1 has-tub)(:at-most 2 has-chair)

(:at-most 1 has-table)(:exactly 0 has-pc)
(:exactly 0 has-bed)(:exactly 0 has-sofa)(:exactly 0 has-fridge)

(:exactly 0 has-oven)(:exactly 0 has-washing-machine )))
(defconcept office

:is (and room (:at-least 1 has-table)(:at-least 1 has-chair)(:at-least 1 has-pc)
(:exactly 0 has-bed) (:at-most 1 has-sofa)(:exactly 0 has-fridge)
(:exactly 0 has-sink)(:exactly 0 has-oven)(:exactly 0 has-tub)

(:exactly 0 has-washing-machine)(:exactly 0 has-clothes-dryer)))
(defconcept utility-room

:is (and room (:at-least 1 has-washing-machine)(:exactly 1 has-clothes-dryer)
(:exactly 0 has-oven)(:exactly 0 has-bed)(:exactly 0 has-sofa)

(:exactly 0 has-pc)(:exactly 0 has-fridge) ))
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A.2 Actions and Methods for Information Gathering

This appendix lists PTLplan planning actions and PC-Shop methods that were
used to generate information-gathering plans for checking number and type
constraints (i.e., :at-least, :at-most, :exactly, :all, and :some) for a nav-
igation domain. Notice that the :exactly constraint does not have an action
for its own, as its evaluation can be planned for using the actions associated
with :at-least and :at-most constraints.

A.2.1 PTLPlan Actions

;-----------------------------------------------------------------------------------------
; (eval-at-least ?n ?r ?x)
; Purpose: evaluates the truth value of the constraint (:at-least ?n ?r) for individual ?x
;-----------------------------------------------------------------------------------------

(ptl-action
:name (eval-at-least ?n ?r ?x)
:precond ( ( (?p)(place ?p)(robot-at = ?p))

( (?r)(role ?r)(and (not (checked ?r ?p)) (can-check ?r ?p)))
( (?x)(room ?x)(and (part-of ?p = ?x)(not (nec (at-least ?n ?r ?x))))))

:results (and (checked ?r ?p = t)
(cond ((at-least ?n ?r ?x)

(obs (at-least ?n ?r ?x = t)) )
((and (at-least ?n ?r ?x = f)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))
(obs (at-least ?n ?r ?x = f)))

((true)
(and (obs (at-least ?n ?r ?x = f))

(at-least ?n ?r ?x = t f)))) ) )

;----------------------------------------------------------------------------------------
; (eval-at-most ?n ?r ?x)
; Purpose: evaluates the truth value of the constraint (:at-most ?n ?r) for individual ?x
;----------------------------------------------------------------------------------------

(ptl-action
:name (eval-at-most ?n ?r ?x)
:precond ( ( (?p)(place ?p)(robot-at = ?p))

( (?r)(role ?r)(and (can-check ?r ?p)(not (checked ?r ?p)) ))
( (?x)(room ?x)(and (part-of ?p = ?x)(not (nec (at-most ?n ?r ?x))))))

:results (and (checked ?r ?p = t)
(cond ((at-most ?n ?r ?x = f)

(obs (at-most ?n ?r ?x = f)) )
((and (at-most ?n ?r ?x = t)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))
(obs (at-most ?n ?r ?x = t)))

((true)
(and (obs (at-most ?n ?r ?x = t))

(at-most ?n ?r ?x = t f)))) ) )
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;-----------------------------------------------------------------------------------------
; (eval-all ?r ?c ?x)
; Purpose: evaluates the truth value of the constraint (:all ?r ?c) for individual ?x
;-----------------------------------------------------------------------------------------

(ptl-action
:name (eval-all ?r ?c ?x)
:precond ( ( (?p)(place ?p)(robot-at = ?p))

( (?r)(role ?r)(and (can-check ?r ?p)(not (checked ?r ?p)) ))
( (?x)(room ?x)(and (part-of ?p = ?x)(not (nec (all ?r ?c ?x))))))

:results (and (checked ?r ?p = t)
(cond ((all ?r ?c ?x = f)

(obs (all ?r ?c ?x = f)) )
((and (all ?r ?c ?x = t)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))
(obs (all ?r ?c ?x = t)))

((true)
(and (obs (all ?r ?c ?x = t))

(all ?r ?c ?x = t f)))) ) )

;-----------------------------------------------------------------------------------------
; (eval-some ?r ?c ?x)
; Purpose: evaluates the truth value of the constraint (:some ?r ?c) for individual ?x
;-----------------------------------------------------------------------------------------

(ptl-action
:name (eval-some ?r ?c ?x)
:precond ( ( (?p)(place ?p)(robot-at = ?p))

( (?r)(role ?r)(and (can-check ?r ?p)(not (checked ?r ?p)) ))
( (?x)(room ?x)(and (part-of ?p = ?x)(not (nec (some ?r ?c ?x))))))

:results (and (checked ?r ?p = t)
(cond ((some ?r ?c ?x = t)

(obs (some ?r ?c ?x = t)) )
((and (some ?r ?c ?x = f)

(forall(?l)(can-check ?r ?l)(checked ?r ?l)))
(obs (some ?r ?c ?x = f)))

((true)
(and (obs (some ?r ?c ?x = f))

(some ?r ?c ?x = t f)))) ) )

A.2.2 PC-Shop Methods

;-----------------------------------------------------------------------------------------
; (!check-at-least ?n ?r ?x)
; Purpose: generates a plan to evaluate the truth value of the constraint (:at-least ?n ?r)
; for individual ?x
;-----------------------------------------------------------------------------------------

(method (!check-at-least ?n ?r ?x)

/* Alternative 1*/
(((?p)(place ?p)

(and (finish = f)(robot-at = ?p)(can-check ?r ?p)
(not (checked ?r ?p)))))

(:ordered (:immediate eval-at-least ?n ?r ?x)
(:cond ((at-least ?n ?r ?x)

(:immediate !eval-termination))
((not (at-least ?n ?r ?x))
(!check-at-least ?n ?r ?x))))
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/* Alternative 2*/
(((?p)(place ?p)(and (finish = f)(can-check ?r ?p)

(not (checked ?r ?p)))))
(:ordered (move ?p)(!check-at-least ?n ?r ?x))

/* Alternative 3*/
(true)
(!eval-termination) )

;-----------------------------------------------------------------------------------------
; (!check-at-most ?n ?r ?x)
; Purpose: generates a plan to evaluate the truth value of the constraint (:at-most ?n ?r)
; for individual ?x
;-----------------------------------------------------------------------------------------

(method (!check-at-most ?n ?r ?x)

/* Alternative 1*/
(((?p)(place ?p)

(and (finish = f)(robot-at = ?p)(can-check ?r ?p)
(not (checked ?r ?p)))))

(:ordered (:immediate eval-at-most ?n ?r ?x)
(:cond ((at-most ?n ?r ?x = f)

(:immediate !eval-termination))
((at-most ?n ?r ?x = t)
(!check-at-most ?n ?r ?x))))

/* Alternative 2*/
(((?p)(place ?p)(and (finish = f)(can-check ?r ?p)

(not (checked ?r ?p)))))
(:ordered (move ?p)(!check-at-most ?n ?r ?x))

/* Alternative 3*/
(true)
(!eval-termination) )

;-----------------------------------------------------------------------------------------
; (!check-all ?r ?c ?x)
; Purpose: generates a plan to evaluate the truth value of the constraint (:all ?r ?c)
; for individual ?x
;-----------------------------------------------------------------------------------------

(method (!check-all ?r ?c ?x)

/* Alternative 1*/
(((?p)(place ?p)

(and (finish = f)(robot-at = ?p)(can-check ?r ?p)
(not (checked ?r ?p)))))

(:ordered (:immediate eval-all ?r ?c ?x)
(:cond ((all ?r ?c ?x = f)

(:immediate !eval-termination))
((all ?r ?c ?x)
(!check-all ?r ?c ?x))))

/* Alternative 2*/
(((?p)(place ?p)(and (finish = f)(can-check ?r ?p)

(not (checked ?r ?p)))))
(:ordered (move ?p)(!check-all ?r ?c ?x))

/* Alternative 3*/
(true)
(!eval-termination) )
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;-----------------------------------------------------------------------------------------
; (!check-some ?r ?c ?x)
; Purpose: generates a plan to evaluate the truth value of the constraint (:some ?r ?c)
; for individual ?x
;-----------------------------------------------------------------------------------------

(method (!check-some ?r ?c ?x)

/* Alternative 1*/
(((?p)(place ?p)

(and (finish = f)(robot-at = ?p)(can-check ?r ?p)
(not (checked ?r ?p)))))

(:ordered (:immediate eval-all ?r ?c ?x)
(:cond ((some ?r ?c ?x = t)

(:immediate !eval-termination))
((some ?r ?c ?x = f)
(!check-some ?r ?c ?x))))

/* Alternative 2*/
(((?p)(place ?p)(and (finish = f)(can-check ?r ?p)

(not (checked ?r ?p)))))
(:ordered (move ?p)(!check-some ?r ?c ?x))

/* Alternative 3*/
(true)
(!eval-termination) )

;-----------------------------------------------------------------------------------------
; (!eval-termination)
; Purpose: checks whether planning should be terminated depending on the truth value
; of planning-formula
;-----------------------------------------------------------------------------------------

(method (!eval-termination)
/* Alternative 1*/

((()(nec planning-formula)))
(stop success)
/* Alternative 2*/
((()(nec (not planning-formula))))
(stop violated)

/* Alternative 3*/
(true)
(:nop))
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