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ABSTRACT

Linear prediction filters are an effective tool for reducing random noise from seismic records. 

Unfortunately, the ability of prediction filters to enhance seismic records deteriorates when the 

data are contaminated by erratic noise. Erratic noise in this article designates non‐Gaussian noise

that consists of large isolated events with known or unknown distribution. We propose a robust f‐

x projection filtering scheme for simultaneous erratic noise and Gaussian random noise 

attenuation. Instead of adopting the ℓ2‐norm, as commonly used in the conventional design of f‐

x filters, we utilize the hybrid ‐norm to penalize the energy of the additive noise. The 

estimation of the prediction error filter and the additive noise sequence are performed in an 

alternating fashion. First, the additive noise sequence is fixed, and the prediction error filter is 

estimated via the least‐squares solution of a system of linear equations. Then, the prediction error

filter is fixed, and the additive noise sequence is estimated through a cost function containing a 

hybrid ‐norm that prevents erratic noise to influence the final solution. In other words, we 

proposed and designed a robust M‐estimate of a special autoregressive moving‐average model in

the f‐xdomain. Synthetic and field data examples are used to evaluate the performance of the 

proposed algorithm.

INTRODUCTION

The f‐x prediction filtering methods for random seismic noise reduction have been widely 

adopted by the industry. Canales (1984) proposed the f‐x prediction technique for seismic 

random noise reduction. This method implicitly utilizes the autoregressive (AR) model 

(Yule 1927) to represent data in the f‐x domain. The method is often named f‐x deconvolution 

(Gulunay 1986). f‐x deconvolution is known to damage the signal if the signal‐to‐noise ratio 

(SNR) is low because the AR model is only an approximation to the true process. A large‐order 

AR model can be used to better represent the data (Ulrych and Sacchi 2005). However, long AR 

filters will also model the noise, and therefore, one will not be able to attenuate random noise. 

Harris and White (1997) suggest to “clean up” the linear prediction data matrix that is required to

estimate the prediction error filter via truncated singular value decomposition and use relatively 

large filter length, a methodology first described in Tufts and Kumaresan (1982).
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Soubaras (1994, 1995) proposed the f‐x projection filtering technique. The latter utilizes the 

additive noise model and the concept of quasi‐predictability to estimate additive random noise. 

The additive noise is estimated via the application of an autodeconvolved prediction error filter 

(called the projection filter) to the data. Sacchi and Kuehl (2001) pointed out that the model for 

seismic data in f‐x is actually a special autoregressive moving‐average (ARMA) model (Ulrych 

and Clayton 1976) in the sense that the parameters of the AR portion are identical to the 

parameters of the moving‐average (MA) portion of the model. The prediction error filter in 

Sacchi and Kuehl (2001) is the solution of an eigen‐decomposition problem. The additive noise 

is estimated by a least‐squares procedure equivalent to the method outlined by Soubaras (1994).

Recently, the singular spectrum analysis method (Sacchi 2009), also known as Cadzow filtering 

(Trickett 2008), was introduced to attenuate random seismic noise and for seismic data 

reconstruction (Oropeza and Sacchi 2011). It is also based on the spatial predictability of seismic

signal in the f‐x domain.

The aforementioned methods are based on the least‐squares approach. They are efficient for 

Gaussian noise elimination. However, it is well known that least‐squares estimation is very 

sensitive to erratic noise (non‐Gaussian errors). Unfortunately, seismic data often contain erratic 

noise such as noise bursts, polarity reversals, power‐line noise, traffic noise, swell noise, and 

harmonic noise. The contaminated data samples are named outliers in robust statistics 

(Huber 1981; Maronna, Martin, and Yohai 2006). The large size of the modern dataset makes the

conventional manual trace editing impractical. Several automatic methods based on outlier 

detection have been proposed to denoise seismic data contaminated by erratic noise (Elboth, 

Presterud, and Hermansen 2010; Bekara and van der Baan 2010). For instance, in each frequency

slice or frequency band, the traces containing impulsive noise are first detected, invalidated, and 

then interpolated by f‐x projection filters (Cambois and Frelet 1995; Soubaras 1995) or detected, 

clipped, and iteratively interpolated by f‐x prediction filters (Schonewille, Vigner, and 

Ryder 2008). Empirical studies show that the outlier detection‐based methods may be not able to 

deal with multiple outliers because of the so‐called masking effect (one outlier may hide the 

presence of others) (Hampel 1985). The breakdown point of least‐squares estimation after outlier

rejection is lower than that of robust estimation (M‐estimators) (Hampel 1985). Therefore, 

instead of outlier detection techniques followed by least‐squares estimation, we propose to apply 

direct robust estimation (Chen and Sacchi 2014). The proposed robust f‐x projection method can 

simultaneously remove random Gaussian noise and erratic noise and preserve the signal 

amplitude. The misfit between the observed data and the modelled signal is measured by the 

hybrid ‐norm (Bube and Langan 1997) instead of the classical ℓ2‐norm. The estimation of 

https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0024
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0024
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0041
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0043
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0033
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0026
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0047
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0038
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0042
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0039
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0050
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0039
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0043
https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.12429#gpr12429-bib-0042


the prediction error filter and the clean signal is a nonlinear problem because these two are 

coupled together via convolution. In this article, the aforementioned problem is tackled by an 

alternating minimization scheme where the noise sequence and the prediction error filter are 

alternately updated.

Robust estimation (inversion) has been used in geophysics for seismic deconvolution (Claerbout 

and Muir 1973; Taylor, Banks, and McCoy 1979; Gholami and Sacchi 2012), travel‐time 

tomography (Scales and Gersztenkorn 1988; Bube and Langan 1997), full‐waveform inversion 

(Crase et al. 1990; Ha, Chung, and Shin 2009; Brossier, Operto, and Virieux 2010; Aravkin, van 

Leeuwen, and Herrmann 2011), velocity analysis (Guitton and Symes 2003; Li, Zhang, and 

Claerbout 2012), simultaneous source separation (Ibrahim and Sacchi 2014), and matrix rank 

reduction‐based erratic noise removal and interpolation (Chen and Sacchi 2013; Chen 2013; 

Chen and Sacchi 2015). The main contribution of this paper is the introduction of a robust 

inversion methodology to the problem of estimating projection filters for seismic noise 

suppression.

THEORY

Sinusoids in additive noise

The seismic signal is usually corrupted with seismic noise resulting from various sources. We 

will consider the typical situation where a signal in the f‐x domain is corrupted by not only 

Gaussian noise but also erratic (impulsive) noise. The observed seismic data at one frequency 

 can be regarded as a discrete time series. We will omit the symbol ω 

in the following text and understand that the analysis is carried out for different frequencies in a 

predetermined frequency band. The time series is a sample realization from a wide‐sense 

stochastic process. The discrete stochastic process modelling the time series can be expressed as

(1)

where we use tilded letters to represent stochastic processes and normal letters to represent time 

series ( ). For instance,  is a deterministic process representing the signal, 

is a stationary stochastic process representing the additive complex white Gaussian noise, and  

is a stationary stochastic process representing additive impulsive noise (Fox 1972). The signal 

, the Gaussian noise , and the impulsive noise  are assumed to be mutually independent. The 

process  represents the mixture of additive noises. Equation 1 can be rewritten as

(2)

where the additive noise  only affects the current observation and will not affect the 

subsequent observations. A noise‐free seismic signal that contains p linear events with distinct 
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dips manifests itself as a superposition of p complex sinusoids in the f‐x domain. The discrete 

noise‐free signal process  can be represented by

(3)

where  is the Fourier transform of the source wavelet corresponding to the kth event,  is 

the kth dip,  is the spatial interval between two channels, and . Equation 2 and 3 are 

the sinusoidal model representing the sinusoids embedded in white noise (Stoica and 

Moses 2005). It can be shown that the exponential signal satisfies the pth‐order homogeneous 

difference equation

(4)

or in z‐domain notation

(5)

with  and . The coefficients  are the 

so‐called prediction error filter (Canales 1984; Gulunay 1986). In this particular case, the 

prediction error filter is also the annihilating filter of the discrete signal  (Blu et al. 2008). The 

exponential signal  is represented by line spectra consisting of p impulses located at sinusoidal 

frequencies  ( ). The latter is also a “degenerate AR process” with innovations 

equal to zero and poles that lie on the unit circle. Substituting  into equation 4, 

yields

(6)

or in z‐domain notation

(7)

This ARMA model is special in the sense that the AR and MA coefficients ( ) are 

identical (Ulrych and Clayton 1976). Its poles and zeros are located on the unit circle, and they 

overlap each other.

A special ARMA model for observed time series

In realistic cases, the noise‐free f‐x seismic signal cannot be perfectly modelled as a sum of a 

finite number of exponentials. The concept of quasi‐predictability (Soubaras 1995) will allow us 

to cope with a situation where the innovation of the special AR process is not equal to zero. The 

deterministic complex sinusoidal signal  in equation 4 is approximated by an AR process

(8)

where , are the AR coefficients and  indicates white noise sequence 

(innovation). Substituting  into equation 8 leads to

(9)
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This equation is an ARMA process (Kay 1978) similar to equation 6; however, the process now 

contains an innovation term.

Estimation of ARMA parameters and additive noise

The ARMA parameter estimation problem is nonlinear (Kay and Marple 1981). We tackle it via 

an alternating minimization scheme. First, the additive noise sequence is fixed, and the 

prediction error filter (ARMA parameters) is estimated. Then, the prediction error filter is fixed, 

and the additive noise sequence is estimated. The two stages are iterated until reaching 

convergence. The random process  is observed over a spatial interval of N points leading to the

observation vector . The realization of signal plus additive noise 

(equation 2) is given by

(10)

The forward and backward linear prediction method (modified covariance method) (Ulrych and 

Clayton 1976) is used to represent the AR process in equation 8

(11)

where , are the forward prediction errors and , are 

the backward prediction errors. Equation 11 can be notated as

(12)

where  is the forward prediction error vector and  is the backward prediction error vector. 

Fig. 1 provides a diagram highlighting forward and backward prediction.
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Figure 1
Open in figure viewer  PowerPoint
Forward and backward prediction scheme. Black dot represents already predicted data sample, 

and white dot indicates the data sample to be predicted. Arrows indicate the direction of 

prediction.

Caption

Given the commutative property of convolution, equation 11 can be written as follows:

(13)

or in matrix formulation

(14)

With , this equation changes to

(15)
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where F is a convolutional matrix containing the elements of the unknown filter coefficients. Our

task is to estimate the prediction error filter f and the noise sequence e. Soubaras (1994) and 

Sacchi and Kuehl (2001) constrain the noise term e by

ℓ2‐norm. In this paper, we propose adopting a constraint that minimizes the hybrid ‐norm 

(Bube and Langan 1997; Li et al. 2012) of the noise sequence e. We estimate the prediction error 

filter f and the noise sequence e via minimizing the cost function

(16)

where  is a tradeoff parameter, ξ is the standard deviation of the innovation, and σ is 

the scale parameter for the noise sequence e. The functional  is the hybrid 

‐norm of the complex vector e with the hybrid function given by

(17)

In Fig. 2, we compare the normalized hybrid function  and the normalized

quadratic function . In the current situation, x is a normalized additive noise, i.e., 

, where σ is the scale parameter.
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Figure 2
Open in figure viewer  PowerPoint

The dashed line represents the quadratic function . The solid line represents the hybrid 

function .

Caption

The optimization problem (equation 16) is nonlinear because of the coupling of the two 

unknowns. It can be tackled by an alternating minimization technique (Golub and Pereyra 1973; 

Kaufman 1975). We will first simplify the problem by assuming that the prediction error filter is 
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already estimated from the previous iteration. The estimation of the noise sequence reduces as 

minimizing the cost function

(18)

Setting  leads to the “nonlinear normal equations” (details are given in Appendix)

(19)

where W is an  diagonal weight matrix with diagonal elements given by 

. The nonlinear equations can be solved by the 

iteratively reweighed least‐squares (IRLS) algorithm (Bube and Langan 1997). The kth iteration 

is solved with weights computed from the iteration , 

(20)

The iterative solution is given by

(21)

Now we turn our attention to the estimation of the filter . Clearly, once we have estimated the 

noise sequence e, we can compute an estimation of the clean signal . Moreover, given 

that the regularization term does not depend on f, the problem of estimating f reduces as 

minimizing

(22)

Due to the commutative property of the convolution operator, minimizing  is equivalent to 

minimizing , where X is the matrix containing the elements of x and Xf represents the 

convolution of f with x. Given that , we estimate the prediction filter g as

(23)

 and  are the partitioned matrix and the vector of X such that . Finally, the 

estimated prediction error filter is given by the vector

(24)

Iterative algorithm, hyperparameter selection, and stopping 
criteria

The algorithm is applied to each temporal frequency with special attention paid to Fourier‐

domain symmetries to save computational cost. The algorithm can be summarized as follows.

 1. Initialize the signal x by least‐squares estimation (AR modelling or ARMA modelling) 

and compute an initial noise term .

 2. Estimate the prediction error filter f via equations 23 and 24.
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 3. Estimate the noise sequence e by minimizing the cost function (equation 18).

 4. Iterate steps 2–3 until convergence.

Parameter σ is fixed, and the tradeoff parameter λ is tuned by examining the residuals. This is 

similar to the strategy often used in f‐x deconvolution for parameter selection. For a very wide 

range of parameters, the erratic noise is well removed. For fixed scale parameter σ, a smaller 

value of λ will result in a cleaner section. Meanwhile, the signal will be damaged if λ is chosen 

too small.

The algorithm has two groups of iterations, namely, an internal iteration (IRLS) to estimate eand 

an external iteration for alternating minimization. We have two convergence criteria to reduce the

number of iterations. We monitor the cost function  and terminate the external loop when 

the relative change of the cost function between two consecutive iterations is less than a 

tolerance . A second tolerance  is used to control the number of IRLS iterations that are 

required to estimate e.

EXAMPLES

Synthetic example

Our algorithm is first tested with a synthetic example. We compare the results of robust f‐

xprojection, f‐x deconvolution, and the conventional f‐x projection. The f‐x deconvolution used in

this paper averages the forward and backward predicted values and uses prediction matrix 

corresponds to transient‐free formulation (Sacchi 2008). The conventional f‐x projection filter 

used here is a modification of the method of Sacchi and Kuehl (2001) that uses the modified 

covariance method. Figure 3a shows 2‐D synthetic data with noise. The central frequency of the 

Ricker wavelet is 20 Hz. Figure 3b shows band‐limited Gaussian noise with signal‐to‐noise ratio 

(SNR) equal to 1.2 (SNR is defined as the ratio of the maximum amplitudes of signal and noise). 

Figure 3c shows the high‐amplitude erratic noise. The maximum amplitude of the erratic noise is

approximately five times the maximum amplitude of the signal in Fig. 3a.
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Figure 3
Open in figure viewer  PowerPoint
(a) Noisy synthetic data (after clipping). (b) Gaussian noise with SNR = 1.2. (c) Erratic noise. (d)

Denoising via robust f‐x projection. (e) Denoising via f‐x deconvolution. (f) Denoising via least‐

squares f‐x projection. (g) Difference section for robust f‐x projection. (h) Difference section 

for f‐x deconvolution. (i) Difference section for least‐squares f‐x projection filter.

Caption

The processing frequency band ranges from 1 Hz to 60 Hz. The length of the prediction error 

filter for the robust f‐x projection filtering is set to 4. Scale parameter σ and trade‐off parameter λ
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are 6 and 0.1, respectively. The length of the prediction error filter of the f‐xdeconvolution is 11. 

The length of the prediction error filter in the conventional f‐x projection filtering method is 4, 

and the pre‐whitening parameter is 3. The filtered data by robust f‐xprojection, f‐

x deconvolution, and least‐squares f‐x projection are shown in Figs. 3d, 3e, and 3f, respectively. 

Only the robust f‐x projection filter was able to suppress the erratic noise and Gaussian noise. 

Difference sections (noise‐free data minus filtered data) in Figs. 3g, 3h, and 3i show that the 

robust f‐x projection preserves the original signal. On the other hand, f‐xdeconvolution damages 

the signal. We tested f‐x deconvolution and least‐squares f‐xprojection with a variety of 

parameters, but we never managed to produce fully satisfying results when the data are 

contaminated by high‐amplitude erratic noise. We evaluate the performance of the algorithms in 

decibels via the expression , where D0 denotes the noise‐free data section,  

denotes the filtered data section, and  is the Frobenius norm of a matrix. Larger value 

of Q means better denoising performance. The Q value for the robust f‐x projection filter is 13.1. 

The Q value for the f‐x deconvolution is ‐1.2. The Q value for the f‐xprojection is ‐15.5. The f‐

k spectra in Fig. 4 show that the proposed robust f‐x projection reasonably recovers the true 

spectrum but f‐x deconvolution and least‐squares f‐x projection cannot.
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Figure 4
Open in figure viewer  PowerPoint
(a) f‐k spectrum of noise‐free data. (b) f‐k spectrum of data corrupted with Gaussian noise. (c) f‐

kspectrum of the input noisy data (Fig. 3a). (d) f‐k spectrum of robust f‐x projection filtered data 

(Fig. 3d). (e) f‐k spectrum of f‐x deconvolution filtered data (Fig. 3e). (f) f‐k spectrum of least‐

squares f‐x projection filtered data (Fig. 3f).
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Poststack field data example
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We tested our proposed algorithm on a poststack field dataset from the Western Canadian 

Sedimentary Basin (WCSB). The performances of robust f‐x projection, f‐x deconvolution, and 

conventional f‐x projection are compared. Figure 5a is a poststack data section with erratic noise 

and random Gaussian noise. Magnified portions of data in the left and right rectangular windows 

highlighted in Fig. 5a are shown in Figs. 5b and 5c, respectively. The complete data in Fig. 5a are

divided into overlapping windows. All windows are processed and then added back. Each 

window has 50 traces with 50% overlap and 300 time samples (0.6 s) with 33% overlap. All the 

three filtering methods are applied for frequencies in the band of 1 Hz–80 Hz. The length of the 

prediction error filter for robust f‐x projection filtering is 4. Scale parameter σ and tradeoff 

parameter λ are 10−3 and 0.1, respectively. The length of the prediction error filter for the f‐

x deconvolution is 5. The length of the prediction error filter for the conventional f‐xprojection 

filter method is 4, and the pre‐whitening parameter is 0.1.

Figure 5
Open in figure viewer  PowerPoint
(a) Poststack data from WCSB with erratic noise and random Gaussian noise. (b) The data in the 

left rectangular window. (c) The data in the right rectangular window.
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Caption

The denoising results of the robust f‐x projection, f‐x deconvolution, and least‐squares f‐

xprojection are shown in Figs. 6a, 6b, and 6c, respectively. The result of robust f‐x projection is 

cleaner than the other two. The difference sections in Fig. 7 show that the robust f‐x projection 

preserves the original seismic signal. To show the details more clearly, we display the zoomed 

results and difference sections for the left window in Fig. 5a in Figs. 8 and 9, respectively. The 

zoomed results and difference sections for the right window in Fig. 5a are shown in 

Figs. 10and 11, respectively. The proposed robust f‐x projection removes more erratic noise 

than f‐xdeconvolution and least‐squares f‐x projection.

Figure 6
Open in figure viewer  PowerPoint
(a) Data after robust f‐x projection filtering. (b) Data after f‐x deconvolution filtering. (c) Data 

after least‐squares f‐x projection filtering.
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Figure 7
Open in figure viewer  PowerPoint
Difference sections (input noisy data minus filtered data) of (a) robust f‐x projection, (b) f‐

xdeconvolution, and (c) least‐squares f‐x projection.
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Figure 8
Open in figure viewer  PowerPoint
The comparison of the filtered results of the data in the left rectangular window highlighted in 

Fig. 5a. (a) The result of robust f‐x projection. (b) The result of f‐x deconvolution. (c) The result 

of least‐squares f‐x projection.
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Figure 9
Open in figure viewer  PowerPoint
The comparison of the difference sections of three different methods in the left rectangular 

window highlighted in Fig. 5a. Difference sections of (a) robust f‐x projection, (b) f‐

xdeconvolution, and (c) least‐squares f‐x projection.
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Figure 10
Open in figure viewer  PowerPoint
The comparison of the filtered results of the data in the right rectangular window highlighted in 

Fig. 5a. (a) The result of robust f‐x projection. (b) The result of f‐x deconvolution. (c) The result 

of least‐squares f‐x projection.
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Figure 11
Open in figure viewer  PowerPoint
The comparison of the difference sections of three different methods in the right rectangular 

window highlighted in Fig. 5a. Difference sections of (a) robust f‐x projection, (b) f‐

xdeconvolution, and (c) least‐squares f‐x projection.

Caption

Pre‐stack marine data example with swell noise

The proposed algorithm was also tested on a pre‐stack marine shot gather (Fig. 12a) that contains

swell noise. This is a benchmark dataset used in Elboth et al. (2010) and Bekara and van der 

Baan (2010). Swell noise usually manifests as high‐amplitude and low‐frequency (2 Hz–10 Hz) 

vertical stripes (Elboth, Reif, and Andreassen 2009). If not removed, it will pose problems for the

following processing steps. Similarly, the shot gather is divided into overlapping windows for 

processing. The window size is 50 traces by 250 time samples (1 s). The overlapping percentages

in time and space are both 50%. The frequency band processed is 1 Hz–120 Hz. The length of 

the prediction error filter for robust f‐x projection filtering is 5. Scale parameter σ and tradeoff 

parameter λ are 10−3 and 0.1, respectively. The length of the prediction error filter for the f‐
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x deconvolution is 6. The length of the prediction error filter for the conventional f‐x projection 

filter method is 5, and the pre‐whitening parameter is 0.1. We can see that the robust f‐

x projection filter almost completely removed the swell noise (Fig. 12b). While, conventional f‐

x deconvolution (Fig. 12c) and f‐x projection (Fig. 12d) do not perform well for swell noise 

attenuation. The difference sections (Fig. 13) show that the robust f‐x projection preserves the 

original seismic signal. Figs. 14 and 15 show the filtered results and difference sections of the 

data in the left rectangular window highlighted in Fig. 12a, respectively. Similarly, 

Figs. 16 and 17 show the filtered results and difference sections of the data in the right 

rectangular window highlighted in Fig. 12a, respectively. All of them demonstrate that robust f‐

x projection successfully removed the high‐amplitude swell noise and preserves the signals.
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Figure 12
Open in figure viewer  PowerPoint
(a) Input marine shot gather with strong swell noise. (b) Data after robust f‐x projection filtering. 

(c) Data after f‐x deconvolution filtering. (d) Data after least‐squares f‐x projection filtering.
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Figure 13
Open in figure viewer  PowerPoint
Difference sections of (a) robust f‐x projection, (b) f‐x deconvolution, and (c) least‐squares f‐

xprojection.
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Figure 14
Open in figure viewer  PowerPoint
(a) The data in the left rectangular window highlighted in Fig. 12a. (b) The result of robust f‐

xprojection. (c) The result of f‐x deconvolution. (d) The result of least‐squares f‐x projection.
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Figure 15
Open in figure viewer  PowerPoint
The comparison of the difference sections of three different methods in the left rectangular 

window highlighted in Fig. 12a. Difference sections of (a) robust f‐x projection, (b) f‐

xdeconvolution, and (c) least‐squares f‐x projection.
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Figure 16
Open in figure viewer  PowerPoint
(a) The data in the right rectangular window highlighted in Fig. 12a. (b) The result of robust f‐

xprojection. (c) The result of f‐x deconvolution. (d) The result of least‐squares f‐x projection.
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Figure 17
Open in figure viewer  PowerPoint
The comparison of the difference sections of three different methods in the right rectangular 

window highlighted in Fig. 12a. Difference sections of (a) robust f‐x projection, (b) f‐

xdeconvolution, and (c) least‐squares f‐x projection.
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The proposed method is based on robust inversion. There are two loops of iterations (one for 

alternating minimization and another for IRLS). Thus, the computation is more expensive than 

outlier detection‐based methods. We derived the 2‐D robust f‐x projection filtering algorithm. It 

can be extended to a 3‐D case using 2‐D convolution (Chase 1992; Soubaras 2000; Naghizadeh 

and Sacchi 2010). For the current implementation, the algorithm uses the same parameter setting 

for different windows of the data. One potential future research is developing a data‐adaptive 

parameter determination scheme that will give better tradeoff on signal‐preserving and noise 

attenuation in different windows. It is known that f‐x prediction and projection filters may 

produce small artificial events in the filtered results (Abma and Claerbout 1995; 

Soubaras 1994, 1995; Ozdemir et al. 1999; Soubaras 2000). This problem can be alleviated by 

designing filters in the time domain (Abma and Claerbout 1995; Liu, Liu, and Liu 2015). It is 

important to point out that the idea of our robust f‐x projection filter can also be adapted for 

designing robust t‐x prediction filters.

CONCLUSIONS

In this paper, we have proposed a robust f‐x projection denoising method that is robust to erratic 

noise. The method is also efficient for Gaussian noise attenuation. Instead of using the ℓ2‐norm of

the additive noise, we adopted the hybrid ‐norm to penalize the energy of the additive noise

in order to promote robustness to erratic noise. The estimation of the noise sequence and the 

estimation of the prediction error filter are conducted via an alternating minimization algorithm. 

Synthetic data examples and two field data examples show that the proposed robust algorithm 

can remove erratic noise with a minimal degradation of the signal.
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APPENDIX : PROOF OF EQUATION

The system of “nonlinear normal equations” (equation 19) is obtained by setting the derivative of

the cost function  to zero
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(A‐1)

The derivative of  with respect to  is equal to , …,  with

(A‐2)

Rewrite equation A  ‐  2 in matrix form

(A‐3)

where W is a diagonal weighting matrix. After substituting equation A  ‐  3 into equation A  ‐  1, we 

obtain the “nonlinear normal equations”

(A‐4)

where the weighting matrix W depends on e. 
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