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Abstract

Human faces captured in real-world conditions present

large variations in shape and occlusions due to differences

in pose, expression, use of accessories such as sunglasses

and hats and interactions with objects (e.g. food). Current

face landmark estimation approaches struggle under such

conditions since they fail to provide a principled way of han-

dling outliers. We propose a novel method, called Robust

Cascaded Pose Regression (RCPR) which reduces exposure

to outliers by detecting occlusions explicitly and using ro-

bust shape-indexed features. We show that RCPR improves

on previous landmark estimation methods on three popu-

lar face datasets (LFPW, LFW and HELEN). We further

explore RCPR’s performance by introducing a novel face

dataset focused on occlusion, composed of 1,007 faces pre-

senting a wide range of occlusion patterns. RCPR reduces

failure cases by half on all four datasets, at the same time as

it detects face occlusions with a 80/40% precision/recall.

1. Introduction

Accurate object shape computation is key to many vi-

sual tasks; for instance, classification of facial expres-

sion [17, 30], facial identity [38], action analysis [4], and

fine-grained categorization [34, 3, 18, 40] require accurate

registration of a (deformable, part-based) model to the im-

age. The shape of human bodies and human faces has at-

tracted particular attention [43, 46, 33, 2]. By shape here

we mean the parameters of a model that describe the con-

figuration of an object in the image or, alternatively, the lo-

cation of a number of parts or landmarks in the image or

in 3D space. The complexity and parametrization of shape

depends on the object type and on the task at hand.

Cascaded Pose Regression (CPR) [14] is capable of es-

timating shape using any parametrized variation of the ob-

ject’s appearance. Recently, it has emerged as a particularly

effective and accurate approach for estimating face land-

marks [7]. However, face landmark estimation “in the wild”

remains a very challenging task. We find that CPR struggles

under occlusions and large shape variations.

We propose a novel method inspired by CPR, called Ro-

Figure 1. Example results. RCPR estimates landmark positions as

well as their occlusion state (red=occluded, green=unoccluded).

bust Cascaded Pose Regression (RCPR). RCPR improves

performance by increasing robustness to occlusions and

large shape variations, which occur often in real-world con-

ditions. RCPR is able to detect face occlusion at the same

time as it estimates the landmark positions.

The occlusion information helps during learning to select

unoccluded features and is exploited dynamically through

robust statistics to reduce errors inside the cascade. This

results in an overall improvement as well as a reduction of

failure cases by half when faced with difficult images.

The main contributions of this work are:

1 – A novel cascaded regression method, called Robust Cas-

caded Pose Regression (RCPR). As we show in Section 5,

RCPR outperforms previous landmark estimation work on

four different, varied face datasets. RCPR is more robust to

bad initializations, large shape deformations and occlusion.

Moreover, RCPR is the first approach capable of detecting

occlusions at the same time as it estimates landmarks, see

Figure 1. Code is available online.

2 – The introduction of a challenging face landmark dataset:

Caltech Occluded Faces in the Wild (COFW). This dataset

is designed to benchmark face landmark algorithms in real-

istic conditions, which include heavy occlusions and large

shape variations. The dataset is available online.
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2. Related work

Early work on shape estimation includes Active Con-

tours Models [28], Template Matching [45], Active Shape

Models (ASM) [10] and Active Appearance Models

(AAM) [9]. In recent years, improvements over AAM and

ASM have been proposed [31, 11, 32, 13, 37, 36]. In gen-

eral, these methods suffer from poor generalization perfor-

mance and slow training. Although some of these issues

have been mitigated, none of these approaches reach state-

of-the-art performance on “in the wild” datasets.

Other popular modern approaches to detect the pose or

parts of an object involve first detecting the object parts in-

dependently and then estimating pose and/or shape through

flexible parts models [5, 27, 2, 20] or directly from detec-

tions [21, 19, 8]. These methods are effective at detecting

articulated objects [44] and localizing objects from multiple

views in difficult scenarios [41, 47]. However, our experi-

mental results seem to indicate that they are less suited for

high accuracy landmark estimation, see Section 5.2.

Another option is to tackle shape estimation as a regres-

sion problem, learning regressors that directly predict the

object shape or the location of its parts, starting from a raw

estimate of its position [39, 14, 16, 12, 7, 42, 25, 6]. These

methods generally use boosted regression [23, 15] and ran-

dom fern regressors [35]. Also key to iterative regres-

sion methods are shape-indexed features first introduced by

Fleuret et al. [22], whose output depends on both the image

and the current shape estimate. Current regression methods

are fast and tolerate a small amount of shape variations but

are not robust to occlusions and large shape variations.

We find that occlusions and large shape variations are

quite common in real-world faces. In Section 3 we propose

a novel regression method designed to be robust to both. In

Section 4 we introduce a new, more realistic face dataset,

collected with a focus on real-world occlusions and a vari-

ety of expressions. We benchmark our method against sev-

eral of the methods mentioned above both in pre-existing

datasets and our new dataset, see Section 5.

3. Method

To make this paper self-contained we first review the

original CPR approach [14] and the improved variant pro-

posed in [7]. Then, in Section 3.2 we describe our approach:

Robust Cascaded Pose Regression (RCPR).

3.1. Cascaded Pose Regression (CPR)

Algorithm 1 shows the main steps of the CPR [14] eval-

uation procedure. CPR is formed by a cascade of T regres-

sors R1..T that start from a raw initial shape guess S0 and

progressively refine estimation, outputting final shape esti-

mation ST . Shape S is represented as a series of P part

locations Sp = [xp, yp], p ∈ 1..P . At each iteration, regres-

input : Image I , initial guess S0, regressors R1..T ,

shape-indexed features h1..T

1 for t = 1 to T do

// compute shape-indexed features

2 xt = ht(St−1, I)
// evaluate regressor

3 δS = Rt(xt)
// Update estimation

4 S
t = S

t−1 + δS

5 end

output: final estimation S
T

Algorithm 1: CPR evaluation given an image I , initial

raw shape estimation S0, and trained cascade regres-

sors R1..T with shape-indexed features h1..T .

sors Rt produce an update δS , which is then combined with

previous iteration’s estimate St−1 to form a new shape.

During learning, each regressor Rt is trained to attempt

to minimize the difference between the true shape and the

shape estimate of the previous iteration St−1. The available

features depend on the current shape estimate and therefore

change in every iteration of the algorithm; such features are

known as pose-indexed or shape-indexed features. The key

to CPR lies on computing robust shape-indexed features and

training regressors able to progressively reduce the estima-

tion error at each iteration.

Both [14, 7] use depth 5 random fern regressors as re-

gressors Rt and shape-indexed control point features [35].

Each fern selects which 5 features to use from a large pool

of F features via either a random-step optimization [14] or

a correlation-based evaluation [7] which is faster and im-

proves performance.

Cao et al. [7] proposed a number of improvements over

CPR [14]. To speed-up training convergence and improve

overall performance, [7] performs regression on all shape

parameters at once instead of one parameter at a time, ef-

fectively exploiting shape constraints. To strengthen regres-

sors, Cao et al. use two-level boosted regression [23, 15].

Finally, to improve feature invariance to shape variations,

features are referenced locally with respect to their closest

landmark instead of globally with respect to global shape as

[14] originally proposed.

3.2. Robust Cascaded Pose Regression (RCPR)

Both the original CPR [14] and the variant proposed

in [7] struggle when faced with occlusions and large shape

variations. Boosted regressors are unable to handle outliers

in a principled way, causing a propagation of errors inside

the cascade, harming the whole process. Occlusions and

large shape variations are very common in real-world faces.

We propose a new method, called Robust Cascaded Pose

Regression (RCPR), which improves robustness to both.
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(a) (b)

Figure 2. COFW dataset. (a) example annotation with occlu-

sion information (red=occluded, green=unoccluded) (b) Dataset

occlusion statistics, grouped in 9 zones. Average face occlusion

is 23%. Eyes and eyebrows are most often occluded (hair, hats,

sunglasses), as well as center of the face (object interactions).

3.2.1 Robustness to occlusion

Current approaches struggle under occlusion because they

do not treat it in a principled way. We propose to incorpo-

rate occlusion directly during learning to improve shape es-

timation. Our method requires ground-truth annotations for

occlusion in the training set. This information can be added

with minor cost during the annotation procedure, adding a

flag to each landmark encoding its visibility, see Figure 2(a).

Shape S is traditionally represented as a series of P part

locations Sp = [xp, yp], p ∈ 1..P . We propose to ex-

tend this definition, incorporating also part visibility Sp =
[xp, yp, vp], where vp ∈ {0, 1}. We propose to learn this

third dimension directly at the same time as the part loca-

tions. As we will show, this information is not only a richer

representation of the object shape, it can also be of great use

to better handle occlusions during shape estimation.

In our framework, part locations are initialized randomly

by re-projecting training shapes into a raw guess of the ob-

ject location, as usual. Then, all three dimensions are learnt

simultaneously using cascaded regression (treating visibil-

ity as a continuous, non-binary variable).

CPR’s coarse-to-fine nature implies that occlusion esti-

mation starts to be accurate from early in the cascade. This

suggests that occlusion information can be used at the same

time as it is being estimated to help shape estimation. We

introduce a novel occlusion-centered approach which lever-

ages occlusion information to improve the robustness of

shape updates δS at each iteration.

Given an image, the face (whose location is provided by

a face detector) is divided into a 3x3 grid, see Figure 2(b).

At each iteration t, the amount of occlusion present in each

one of the 9 zones can be estimated by projecting the current

estimate St−1 = [x1..P , y1..P , v1..P ] in the image. Then, in-

stead of training a single boosted regressor Rt at each itera-

tion t, we propose to train Stot regressors Rt
1..Stot

, ensuring

they are “visually different”. More precisely, each regressor

is allowed to draw features only from 1 of the 9 pre-defined

zones (sampled randomly for each regressor).

Finally, each of the regressor’s proposed updates

δS1..Stot
is combined through a weighted mean voting,

where weight is inversely proportional to the total amount

of occlusion present in the zones from which the regres-

sor drew features. We found that good results are achieved

using as little as Stot = 3 regressors (see Supp. Material

for impact of using different number of face zones, sam-

pling areas and Stot). Shape-indexed feature computation

x = h(S, I) is unchanged, allowing features to be com-

puted around occluded landmarks. This allows regressors

to learn image occlusions properly.

At the end of the cascade, predicted visibility vip ∈ R

for all images i = 1..N and parts p = 1..P , needs to be

converted back to binary. Given ground-truth vip ∈ {0, 1}
visibility, a threshold τ is selected by computing the preci-

sion/recall curve, and selecting the most desirable perfor-

mance point (task-dependent). In our case, we chose to

tune performance towards high precision, due the difficulty

of the task, selecting as threshold that achieves 90% preci-

sion during training. During evaluation, the same process

is carried out, using the same threshold value τ found dur-

ing training. With this setting, RCPR is still able to predict

occlusion with high precision in test images.

The key behind our approach is that we enforce “visu-

ally different” regressors to reach consensus, trusting more

those using features from non-occluded areas of the image.

As we show in Section 5.2, adding our occlusion reasoning

results in a win-win scenario: it improves both landmark

estimation and occlusion detection.

3.2.2 Robustness to shape variations

Interpolated shape-indexed features. Real-world faces

present large variations, due to differences in expressions

and pose. Shape-indexed features invariant to face scales

and poses are key to shape estimation success under these

conditions. With this goal in mind, [7] proposed to com-

pute a similarity transform to normalize the current shape

to a mean shape, and reference pixels by its local coordi-

nates δx, δy with respect to its closest landmark.

This is more robust than referencing features directly

with respect to the global shape as originally proposed

in [14]. However, these features are still not robust enough

against large pose variations and shape deformations. If the

number of annotated landmarks is low in a given region, it is

likely that many of the features fall far from any landmark,

becoming increasingly subject to small variations.

To overcome this issue, we propose to reference features

by linear interpolation between two landmarks. These new

features are much more robust to shape variations as shown

in Figure 3. In Section 5 we show that the new features im-

prove overall performance and greatly reduce failure cases.

Furthermore, since there is no longer need to find the clos-

est landmark in the current estimate of the shape for each

feature, computation is considerably faster (3x speedup).
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(a) (b)

Figure 3. Referencing shape-indexed features as points in the line

between two landmarks increases feature invariance to large pose

variations. (a) Features from [7]. (b) Our features.
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Figure 4. Smart restarts. (a) Final error distribution of parallel

RCPR runs on COFW presenting a low/high (green/red) variance

after 10% of the iterations. The difference in shape of the red curve

(longer tailed distribution) suggests that variance can be used to

predict failure cases early on. (b) Average error (bars) and speed

(dashed lines) of the smart restarts (blue) compared with the tradi-

tional approach (black) on COFW as a function of the number of

initializations used.

Smart restarts. CPR is initialization dependent.

Both [14, 7] propose to run the algorithm several times us-

ing different initializations and take as final output the me-

dian of all predictions. Given an image, each restart is run

independently, ignoring estimations until the very end. This

approach fails to leverage an important fact: due to the nat-

ural coarse-to-fine nature of CPR, even if initialized differ-

ently, after just a few iterations each run should reach simi-

lar predictions. If they don’t, its a clear sign that the regres-

sion is failing, see Figure 4(a).

We propose a novel restart scheme. Given an image and

a number of different initializations, first only 10% of the

cascade is applied to each. Then, the variance between their

predictions is checked. If the variance is below a certain

threshold, the remaining 90% of the cascade is applied as

usual. If, however, the variance is higher than the threshold,

the process is restarted with a different set of initializations.

We found by cross-validation that the threshold can be

set to 0.15, and that three iterations are a good trade-off be-

tween performance and speed. This approach improves per-

formance compared with the classical approach, especially

at low number of restarts, while maintaining similar speed,

see Figure 4(b). More sophisticated approaches are possi-

ble, however, the straightforward scheme described above

is already quite effective.

4. Datasets and implementation details

4.1. Datasets

We first report the performance of our method on

three popular datasets: Labeled Face Parts in the Wild

(LFPW) [1], HELEN [29] and Labeled Faces in the Wild

(LFW) [26, 12].

LFPW is one of the most used datasets to benchmark

face landmark estimation in unconstrained conditions, and

is composed of 1300 images, annotated with 29 landmarks.

HELEN is a collection of 2,330 high resolution face por-

traits downloaded from Flickr. Faces are densely annotated

using 194 landmarks, representing a benchmark for high de-

tail face landmark localization. LFW contains facial images

of 5749 individuals, 1680 of which have more than one im-

age in the database. It consists of 13,233 images, collected

“in the wild” and annotated with 10 landmarks.

Our approach outperforms all previous work on these

datasets, see Table 1. However, we could not exploit all the

benefits of our method due to the lack of occlusions in these

datasets and performance saturation (RCPR reaches results

almost on par with humans on LFPW and LFW). These

datasets are not challenging enough since they do not con-

tain faces showing high variations in pose, expressions and

occlusions which are typical in real-world images. There-

fore, we produced a new and significantly more challenging

dataset, which we call Caltech Occluded Faces in the Wild

(COFW).

Our face dataset is designed to present faces in real-

world conditions. We wanted faces showing large varia-

tions in shape and occlusions due to differences in pose, ex-

pression, use of accessories such as sunglasses and hats and

interactions with objects (e.g. food, hands, microphones,

etc.). We asked four people with different levels of com-

puter vision knowledge to each collect 250 faces represen-

tative of typical real-world images, with the clear goal of

challenging computer vision methods.

The result is 1,007 images of faces obtained from a va-

riety of sources. All images were hand annotated in our

lab using the same 29 landmarks as in LFPW. 150 images

were annotated twice by different people to measure human

performance. We annotated both the landmark positions as

well as their occluded/unoccluded state, see Figure 2. The

faces are occluded to different degrees, with large variations

in the type of occlusions encountered. COFW has an aver-

age occlusion of over 23%.

To increase the number of training images, and since

COFW has the exact same landmarks as LFPW, for train-

ing we use the original non-augmented 845 LFPW faces +

500 COFW faces (1345 total), and for testing the remaining

507 COFW faces. To make sure all images had occlusion

labels, we annotated occlusion on the available 845 LFPW

training images, finding an average of only 2% occlusion.
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4.2. Implementation details

In all experiments, to best replicate results of [7, 1], we

simulate the output of a face detector providing the bound-

ing box location and scale of the face with a minimum 80%

random overlap with ground truth. Bounding boxes are used

to project training shapes into test images as initialization

to the algorithm(s) (also for data augmentation during train-

ing). For methods that already include their own detector

(methods in [47]) we avoid false alarms and gross detection

errors by cropping the image around the face. All reported

run times correspond to a standard 3.47 GHz CPU using

Matlab.

Code for [7] is not publicly available; we reimple-

mented the method ourselves starting from the original CPR

code [14] available online. In our implementation, fewer

boosted regressors and more iterations (T = 100,K = 50)

perform better than what originally reported by the authors

as optimal (T = 10,K = 500). We therefore use those

values in all experiments for both [7] and RCPR.

When using Stot > 1 regressors for robustness to oc-

clusions, we reduce K accordingly to have approximately

the same total number of regressors in the cascade (e.g.

Stot = 3,K = 15). The rest of the parameters are set to the

original values recommended by [7]: number of features

F = 400, data augmentation factor of 20 during training,

and 5 restarts during testing. We also use depth 5 random

fern regressors.

5. Results

In all cases we report the average error, percentage of

failure cases, and speed which is measured in frames per

second (fps). Errors in all datasets are measured as the av-

erage landmark distance to ground-truth, normalized as per-

centages with respect to interocular distance. We consider

any error above 10% to be a failure, as proposed in [12].

5.1. LFPW, HELEN and LFW

Since the main component of RCPR is occlusion-

centered regression and occlusion is virtually non-existent

in LFPW, HELEN and LFW datasets, in this section we

benchmark a version of RCPR which uses only the new

shape-indexed features and smart restarts.

For LFPW, some URLs are no longer valid, so we were

only able to download 845 of the 1,000 training images

and 194 of the 300 test images, resulting in different train-

ing/test sets compared to [1, 7]. Due to these missing im-

ages our error for [7] is slightly different from what was

originally reported. For LFW, instead of using a fixed train-

ing/test set as in the other two, the evaluation procedure pro-

posed in [12] consists of a ten-fold cross validation using

each time 1,500 training images and the rest for testing.

Table 1 shows the results on all three datasets. Both [7]

(a) LFPW

(b) HELEN

(c) LFW

Figure 5. Example RCPR results on LFPW, Helen and LFW.

RCPR reduces failure rate by nearly half compared to the state-

of-the-art to just 2-8%, see Table 1.

and RCPR outperform previous work on all datasets, prov-

ing the efficiency of cascaded regression. RCPR improves

[7]’s results in all cases, reducing failure cases by half, prov-

ing its higher robustness to outliers. RCPR is also between

1.5 to 4 times faster than competing approaches.

Usefulness of LFPW and LFW is reaching saturation,

as the state of the art is already very similar to human per-

formance. Figure 5 shows some example results. See Supp.

Material for more detailed evaluation on these datasets.

5.2. Caltech Occluded Faces in the Wild (COFW)

We benchmark RCPR against [7] as well as the pre-

trained DPM methods available online from Zhu et al. [47].

Both [7] and RCPR are trained on COFW. Both meth-

ods from [47] were trained using 900 positive images from

CMU Multi-PIE dataset [24] and 1218 negative images.

Apart from full RCPR, we also benchmark separately each

of its components to study their individual contribution.

Figure 6 shows landmark estimation results and Figure 7

shows occlusion detection results for each RCPR variant.

Each of RCPR’s components contributes to improve

landmark estimation. The new features reduce the number

of failures by 8% and speedup computation by a factor of

3x. The smart restarts also reduce errors while maintaining

similar speed performance. The occlusion-centered regres-

sion further improves landmark estimation at some cost in

speed. Combining different regressors and weighting them
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LFPW HELEN LFW

Method error failures fps Method error failures fps Method error failures fps

[32] 11.1 - - [19] 12.0 - -

[1] 3.90 - - [29] 9.1 - - [12] 7.0 - 10

[7] 3.8 4% 3 [7] 7.1 13% 2 [7] 5.9 7% 11

RCPR 3.5 2% 12 RCPR 6.5 8% 6 RCPR 5.3 4% 15

Human 3.28 0% - Human 3.3 - - Human 4.5 - -

Table 1. Results on LFPW, HELEN and LFW datasets. Errors are measured as percentage of the interocular distance. We report both the

mean error and the failure rates. RCPR reduces failure cases by half compared to best performing method on all three datasets.
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Figure 6. Results on COFW. Errors are measured as percentage of the interocular distance. See Section 5.2 for dataset/methods details. We

report both the mean error and the failure rate to better capture each method’s performance. We also report speed measured in frames-per-

second (fps). Note that methods from [47] were trained on a different dataset. RCPR reduces failure cases 16% (almost half) compared

to best performing method.
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Figure 7. Occlusion detection precision/recall curves of the differ-

ent variants of RCPR on COFW. Crosses mark selected threshold

for occlusion classification. Using occlusion-centered regression

clearly improves area under the curve for occlusion detection.

according to their occlusion also improves the area under

the curve for occlusion detection around 10%.

Full RCPR improves on previous cascaded regression

approaches [7] by a large margin, especially improving on

difficult images, reducing the number of failure cases by

16% (almost half). As shown in Figure 8, RCPR improves

results overall, and especially when faced with high occlu-

sions, making it more suited for real-world applications.

RCPR also outperforms methods in [47]. These meth-

ods struggle with occlusion because they weren’t trained on

it. However, by looking at results on the 90 non-occluded

images present in the dataset (occlusion< 5%), both meth-

ods in [47] have average errors above 10.9, compared to

RCPR’s 5.5. Possibly these results could be improved, but

this is outside of our scope.

Overall, performance of all methods is much lower in

our more realistic and challenging COFW dataset. Figure

9 shows some example RCPR results. See Supp. material

for a comparison between human and machine.
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(a) shape variation (b) face occlusion

Figure 8. RCPR vs. [7] error comparison on COFW. Both average error and standard deviations are shown. (a) Error vs. increasing shape

distance from average. (b) Error vs. amount of occlusion. RCPR improves [7] overall, and most significantly under high occlusions,

where [7] struggles.
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Figure 9. Example RCPR results from COFW. Results are ordered by increasing landmark estimation error (Y axis) and occlusion error

(X axis). RCPR succeeds at localizing face landmarks within 10% of their true location in 80% of COFW images, and detects occlusion

with an 80/40% precision/recall.

6. Discussion and conclusions

Occlusions and high shape variances are a difficult chal-

lenge for current face landmark estimation methods. We

proposed a novel method, called Robust Cascaded Pose

Regression (RCPR), that improves robustness of previous

work against both. RCPR is capable of detecting occlu-

sions explicitly, estimating both the landmark positions and

their occlusion. We first benchmarked RCPR against sev-

eral state-of-the art approaches on three pre-existing chal-

lenging face datasets (LFPW, HELEN and LFW). RCPR

improves previous methods on all three datasets, while be-

ing faster. However, we could not exploit all of RCPR’s

capabilities due to dataset saturation (RCPR performs al-

most on par with humans in LFPW and LFW) and lack

of occlusions. Therefore, we produced a much more chal-

lenging face dataset, called Caltech Occluded Faces in the

Wild (COFW). This dataset represents a very challeng-

ing task due to the large amount and variety of occlu-

sions and large shape variations. We show that our method

clearly improves previous work on this dataset, thanks to its

unique occlusion-centered reasoning. The COFW dataset

and RCPR code are available online.
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