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Abstract— A novel face recognition method is proposed, in 
which face images are represented by a set of local labeled 
graphs, each containing information about the appearance 
and geometry of a 3-tuple of face feature points, extracted 
using Local Feature Analysis (LFA) technique. Our method 
automatically learns a model set and builds a graph space 
for each individual. A two-stage method for optimal 
matching between the graphs extracted from a probe image 
and the trained model graphs is proposed. The recognition 
of each probe face image is performed by assigning it to the 
trained individual with the maximum number of references. 
Our approach achieves perfect result on the ORL face set 
and an accuracy rate of 98.4% on the FERET face set, 
which shows the superiority of our method over all 
considered state-of-the-art methods.  
 
Index Terms—Local Feature Analysis (LFA), Gabor 
wavelet, Principal Component Analysis (PCA), Gaussian 
Mixture Models (GMM), ORL database, FERET database. 
 

I.  INTRODUCTION 

In recent years face recognition has received 
substantial attention from both research communities and 
the market, but has still remained very challenging in real 
applications. A large number of face recognition 
algorithms, along with their modifications, have been 
developed during the past decades which can be generally 
classified into two categories: holistic approaches and 
local feature based approaches. The major holistic 
approaches developed for face recognition are Principal 
Component Analysis (PCA), combined Principal 
Component Analysis and Linear Discriminant Analysis 
(PCA+LDA), and Bayesian Intra-personal/Extra-personal 
Classifier (BIC). PCA [1] computes a reduced set of 
orthogonal basis vectors, called eigenfaces, from the 
training face images. A new face image can be 
approximated by a weighted sum of these eigenfaces. 
PCA+LDA [2] provides a linear transformation on PCA-

projected feature vectors, by maximizing the between-
class variance and minimizing the within-class variance. 
The BIC algorithm [3] projects the feature vector onto 
extra-personal and intra-personal subspaces and computes 
the probability that each feature vector came from one or 
the other subspace. 

In the local feature based approaches developed for 
face recognition, one widely influential work is that of 
Wiskott et al. [4], called Elastic Bunch Graph Matching 
(EBGM). By taking advantage of the fact that all human 
faces share a similar topological structure, EBGM 
represents faces as graphs, with the nodes positioned at 
fiducial points (e.g., eyes, nose) and the edges labeled 
with the distances between the nodes. Each node contains 
a set of 40 complex Gabor wavelet coefficients at 
different scales and orientations, which are called a Gabor 
Jet. The identification of a new face consists of 
determining among the constructed graphs, the one which 
maximizes the graph similarity function. 

In contrast to EBGM, most of the available feature 
based approaches perform single feature matching for 
recognition (e.g., [5]). In training, a large set of features 
are extracted from the training images of each individual, 
and then in recognition a nearest neighbourhood classifier 
is used to assign a training feature to each test feature. 
Each of the training features belong to a certain 
individual and therefore, the probe image is assigned to 
the most referenced trained individual. 

Motivated in part by the work of Wiskott et al. [4], in 
this paper we propose a novel technique for face 
recognition which takes advantage of the fact that a single 
feature can be confused with other features at a local 
scale; however, the ambiguity is less likely if we consider 
groups of features. Like the work of Wiskott’s group, our 
approach compares faces using a combination of local 
features. However, unlike that approach, we do not use a 
pre-defined set of features and a complex graph matching 
process for locating the features. In our technique, face 
images are represented by a set of 3-node labeled graphs, 
each containing information on the appearance and 
geometry of a 3-tuple of face feature points, where 
feature points are extracted using the LFA technique, and 
each extracted feature point is described by a Gabor Jet. 

 
This work is the extension of the paper titled “Local Graph 

Matching for Face Recognition”, by E. Fazl-Ersi and J. Zelek, which 
appeared in the proceedings of the Eighth IEEE Workshop on 
Applications of Computer Vision 2007, Austin, Texas, USA. 
© 2007 IEEE. 



Our method automatically learns a model set and builds a 
graph space for each individual. A two-stage method for 
fast matching is developed, where in the first stage a 
Bayesian classifier based on PCA factorization is used to 
efficiently prune the search space and select very few 
candidate model sets, and in the second stage a nearest 
neighborhood classifier is used to find the closest model 
graphs to the query image graphs. Each matched image 
graph votes for the possible identity of the probe face 
image and the recognition is performed based on the 
number of votes each individual obtains during the 
matching. 

The remainder of this paper is structured as follow: in 
Section II, we introduce the 3-node labeled graphs and 
the way we extract them from face images; the learning 
and recognition phases of our method are described in 
detail in Sections III and IV, respectively; in Section V 
several experimental results on the ORL and FERET face 
datasets are reported, and finally Section VI concludes 
the paper. 

II.  IMAGE GRAPHS 

Faces frequently distinguish themselves not by the 
properties of individual features, but by the contextual 
relative location and comparative appearance of these 
features. A tractable and efficient way for modelling this 
is to employ image graph models. Graphical models have 
been successfully used in pattern recognition and 
computer vision as a powerful and flexible representation 
mechanism (e.g., [4], [6]). In our approach, we represent 
face images using a set of local graphs with 3 nodes and 3 
edges, where nodes are distinctive feature points of the 
face image, labelled with their description vectors, and 
edges (lines connecting the nodes) are labelled with 
distances between their end nodes. In our system feature 
points are extracted using the LFA technique, and each 
extracted feature point is described by a Gabor Jet. In the 
following sub-sections, we briefly describe the feature 
extraction and description techniques used in our system, 
and then discuss the graph properties and the way we 
extract the graphs from training and probe face images.  

A.  Local Feature Analysis (LFA) 
The statistical Local Feature Analysis (LFA) technique 

is used in our method to extract a set of feature points 
from each face image, at locations with highest deviations 
from the statistical expected face. LFA defines a set of 
topographic, local kernels that are optimally matched to 
the second-order statistics of the input ensemble [14]. 
Given the zero-mean matrix X of n vectorized face 
images1 with normalized energy, the eigenvalues of the 
covariance matrix XXT are calculated and the first k 
largest eigenvalues, λ1 … λk, and their associated 

                                                            
1 All face images used to derive the LFA kernels, were first rectified 
using eye coordinates, and cropped with a semi-elliptical mask to 
exclude non-face area. Furthermore, the grey histograms over the face 
area in each face image were equalized. This preprocessing procedure is 
applied to all face images (gallery/probe) used in our experiments 
(presented in Section IV). 

eigenvectors, e1 … ek are selected. Penev and Atick [14] 
defined a set of kernel, K as: 
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The rows of K contain the LFA kernels, which have 
spatially local properties and are topographic in the sense 
that they are indexed by spatial location (see Fig.1). The 
kernel matrix K transforms X to the LFA output O = KXT, 
which inherits the same topography as the input space.  

LFA produces an n dimensional representation, where 
n is the number of pixels in the image. Since the n outputs 
are described by k<<n linearly independent variables, 
there are residual correlations in the output. Penev and 
Atick [14] showed that the residual correlation of the 
outputs can be obtained using: 
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Each point xm in the output array O(x) is correlated 
with other outputs via P(x,xm), so it can predict the other 
outputs to some extent, using the following equation [14]: 
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Penev and Atick [14] used this property and proposed 
an iterative sparsification algorithm for reducing the 
dimensionality of the representation by choosing a subset 
M of outputs that were as decorrelated as possible. At 
each time step, the output point that is predicted most 
poorly by multiple linear regressions on the points in M is 
added to M. The reconstruction (prediction) of O(x) at mth 
step is achieved by: 
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In our system, for an arbitrary face image, the points 
selected through the sparsification of its LFA outputs are 
considered as the most distinctive features of that face 
image, and are used for learning and recognizing the face. 
The result of applying the sparsification algorithm to a 
sample image is shown in Fig.2. The locations and the 
order of the first 20 points show that the outputs with the 
largest deviations from the expectation (e.g., the most 
unusual features of the face) are selected first. 

B.  Gabor Jet 
Each feature point in our system is described by a 

Gabor Jet, i.e., a set of convolution coefficients for Gabor 
wavelet kernels of different orientations and frequencies 
at the location of the feature in the image. Gabor wavelets 



are biologically motivated convolution kernels in the 
shape of plane waves, restricted by a Gaussian envelope 
function [4]. The general form for a 2D Gabor wavelet is: 
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where σ is a parameter to control the scale of the 
Gaussian (in our experiments σ = π) and ks,o is a 2D wave 
vector whose magnitude and angle determine respectively 
the frequency, s, and the orientation, o, of the Gabor 
kernel. 

Similar to [4], in our method wavelet responses at 5 
frequencies (in which |ks,o| = {π/2, π/√8, π/4, π/√32, π/8}) 
and 8 orientations (varying in increments of π/8 from 0 to 
7π/8) are used for description, resulting in 40-element 
description vectors.  

C.  Graph Properties 
The most important and distinctive property of each 

graph is its appearance, which is computed from the 
description vectors of the graph nodes. To compute this, 
one option is to concatenate the description vectors 
(Gabor Jet) of the graph nodes into a single description 
vector, representing the appearance of the graph. 
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Figure 1. K(x,y) and P(x,y) derived from a set of 1196 face images. 

The average of the face images (the statistical expected face) is shown 
in (a), marked with four positions 1-4, (b) shows the first four derived 
PCA kernels, (c) and (d) show K(x,y) and P(x,y) respectively, at the 
four marked positions. 
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Figure 2. (a) shows the original image, (b) illustrates the first 20 

selected points overlaid on the original image and numbered 
sequentially, (c) illustrates the first 50 selected points, (d) shows the 
LFA output of the original image, , (e) shows the reconstructed output, 
and (f) shows the reconstruction error scaled from 0 to 255, 
respectively. 

 
Although this technique is simple and straightforward, 
the high dimensionality of the resulting appearances 
(3x40) restricts its applicability in the matching, 
particularly when the dataset of model graphs, created 
from the training images, is very large. A very powerful 
alternative to this is to model the joint distribution of the 
nodes’ appearances through a probabilistic framework. 
Using this technique, not only is the graph described 
based on the description vectors of its individual nodes, 
the spatial relationships between the appearances of the 
graph nodes and the interaction between them are also 
taken into account. Besides the power of this appearance 
modelling scheme, a very fast matching is also inherently 
achieved. We will discuss further the modelling of the 
appearance of the graphs in more detail in Section III. 

Another graph property which is used in our system as 
a descriptor for the graphs is graph geometry. Graph 
geometry, i.e., the way the three nodes in a graph are 
arranged spatially, could play an important role in 
discriminating graphs, particularly when the use of 
appearance alone causes some ambiguities. In our 
approach, the lengths of graph edges are used to describe 
the geometrical properties of each graph. The lengths of 
graph edges, ei, are simply computed by measuring the 
Euclidean distances between the locations of each two 
end nodes. 

D.  Image Graph Extraction 
Considering that we extract around 150 feature points 

from each face image, approximately 3.3e+6 
(150x149x148) 3-node graphs could be generated for 
each image. Evaluating this number of graphs for each 
probe image would be very computationally expensive. 
On the other hand, even in the learning phase, where the 
computational time is not usually a crucial issue, this 



could be a problem for the modelling of the appearance 
of the graphs (Section III.A). This necessitates the 
selection of only a subset of all possible graphs for the 
subsequent processing. One potential way is to define a 
graph radial threshold, Rth, and then consider only those 
graphs that the distance between each node of the graph 
with respect to the graph centre is lower than Rth (in our 
system Rth is set to a fixed value of 20, where the size of 
the face image is 112x92). This method is efficient, since 
it selects only those graphs in which the nodes are 
sufficiently close to each other, and also it averagely 
selects around 0.6% of the graphs, which is a very good 
reduction rate. However, this technique is reasonable to 
be used for graph extraction in the training stage only, not 
in the run time (recognition); since computing the graph 
centre and edge distances for all graphs of a probe image, 
is still a time consuming process. Therefore we need to 
find another graph selection method to be applied to the 
probe images. Since our graphs have three nodes, the 
most straightforward way for doing this is to apply a 
triangulation technique2. This has the advantage of 
selecting very small number of graphs which can be used 
as the representatives of the probe images3.  

III.  LEARNING 

In this section, we develop and discuss our approach 
for learning model graphs, extracted from training face 
images. In practice, given M training face images for N 
individuals, our learning algorithm works as follow: 

 
1. Initialize N empty model sets. 
2. For each training image Ii: 

a. Extract and describe its feature points (see 
Section II.A and II.B). 

b. Extract the image graphs (see Section II.D). 
c. Place the extracted graphs in one of the N model 

sets, according to the identity of the training face 
image Ii. 

3. Construct an appearance model for each created 
model set from its model graphs. 

 
All steps of the above algorithm have been discussed 

before, except the last step which is the constructing of an 
appearance model for each created model set. In the 
following we explain this step in detail.  
A.  Constructing Appearance Models 

Given Gi = {(
321

,, iii xxx )}, representing the ith 3-node 

graph extracted from a probe face image, where 
1i

x , 
2i

x  

                                                            
2 A triangulation of a discrete set of points P is a subdivision of the 
convex hull of the points into simplices such that any two simplices 
intersect in a common face or not at all and the set of points that are 
vertices of the subdividing simplices coincides with P. 
3 Triangulation could not be a good choice for extracting graphs in the 
training stage, because then the number of extracted graphs from 
training images would not be sufficient for reasonably estimating the 
graph spaces (discussed in Section 3). 

and 
3i

x  are the description vectors of the graph nodes4; 
we are interested in obtaining the probability of Gi 
belonging to each model set (individual) to assign it to 
the one that maximizes the posterior probability: 

)|)},,({(maxarg
321 niii
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MAP CxxxPR =  (7) 

This is called the Maximum a Posteriori (MAP) 
solution5. In the above equation, Cn is the appearance 
model or graph space for the nth individual. The aim of 
this section is to develop a method for estimating Cn for 
each individual, using the model graphs extracted from its 
training images. 

Modelling the total joint likelihood of all 3-node 
graphs of a model set, that is, to construct the graph space 
(appearance model), becomes a (3xD)-dimensional 
distribution, where D is the length of the description 
vector of each node, which is 40 in our approach (see 
Section II.B). To make the appearance model estimation 
more accurate and tractable, we need to apply a 
dimensionality reduction technique over the set of all 
description vectors, extracted from training images of all 
individuals. Principal Component Analysis (PCA) is a 
standard technique for dimensionality reduction and has 
been applied to a broad class of computer vision and 
machine learning problems. While PCA suffers from a 
number of shortcomings such as its implicit assumption 
of Gaussian distributions and its restriction to orthogonal 
linear combinations, it remains a popular method for 
dimensionality reduction due to its simplicity and low 
computational time. Given the set of all description 
vectors, X, PCA calculates the eigenvalues of the 
covariance matrix XXT, and selects the first k largest 
eigenvalues and their associated eigenvectors to form the 
PCA projection matrix W. Using the PCA, the original 
40-dimensional description vectors X are factorized into 
k-dimensional vectors S, where S=W*X. In our system we 
experimentally chose k to be 8, therefore the joint 
likelihood of the 3-node graphs becomes (3x8)-
dimensional rather than (3x40)-dimensional, which is 
more manageable and tractable. 

Given si the factorized description vector of xi, we now 
estimate the P({

321
,, iii sss }), rather than estimating 

P({
321

,, iii xxx }). This can be modelled for each model 
set by using parametric or non-parametric distribution 
estimation techniques. In our approach, we estimate the 
joint distributions of graph appearances for each 
individual by using a Gaussian Mixture Model (GMM) as 
a parametric approximation technique. In a Gaussian 
Mixture Model [10], different Gaussian distributions 
represent different domains of the data, and have different 
output characteristics; GMMs try to describe a complex 
system using combination of all the Gaussian clusters, 

                                                            
4 Generally Gi should be represented by its all properties, however since 
in this section we are only working with the description  vectors  of    its     
nodes,     we     represent   Gi as: Gi = {(

321
,, iii xxx )}.  

5 Given that the classes Cn have equal prior probability. 



instead of using a single Model. In mathematical terms, a 
GMM can be defined as: 
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are the components of the mixture, K is the number of 
components (Gaussians) in the mixture model, 

K
iiiiw 1

2},,{ == σμθ  consists of the means and variances 
of the Gaussians, and wi is the weight of Gaussian i [10].   

Since the family of mixtures of Gaussians is 
parametric, the density estimation problem can be defined 
more specifically as the problem of finding the parameter 
vector θ that specifies the models from which the data are 
most likely to be drawn (the mixing weight vector w 
should also be estimated). Among the available 
techniques for estimating the parameters of Gaussians, 
we choose to use the standard Expectation-Maximization 
(EM) technique [11]. The EM algorithm is an efficient 
iterative procedure to compute the Maximum Likelihood 
(ML) estimate in the presence of missing or hidden data. 
In ML estimation, we wish to estimate the model 
parameters (Ө) for which the observed data are the most 
likely: 

)|(maxarg* θθ
θ

xP=  (9) 

Each iteration of the EM algorithm consists of two 
processes: The E-step (or expectation step), and the M-
step (or maximization step). In the E-step, given the 
observed data and current estimate of the model 
parameters, the missing data are estimated. This is 
achieved using the conditional expectation. In the M-step, 
the likelihood function is maximized under the 
assumption that the missing data are known (For more 
details about the EM algorithm see [11]). 

Once all the graph spaces for each individual’s model 
set are estimated through Gaussian mixture models and 
Expectation-maximization technique, the learning is done 
and matching can be performed based on the constructed 
appearance models.    

IV.  MATCHING AND RECOGNITION 

In this section, a two-stage method for optimal 
matching between the graphs extracted from a probe 
image and the trained model graphs is developed, where 
in the first stage a MAP solution is used to efficiently 
select the most likely individuals’ model sets based on the 
appearances of the graphs, and in the second stage, a 
nearest neighbourhood classifier is used to enable 
correspondence with learned model graphs of the selected 
individuals’ model sets, by incorporating the geometry of 
the graphs. In practice, given N model sets and their 
corresponding appearance models, where N is the number 

of training individuals, the following algorithm is applied 
on the probe image for matching and recognition:  

 
1. Extract and describe the image’s feature points (see 

section II.A and II. B). 
2. Calculate the factorized description vectors for the 

extracted feature points by using the PCA projection 
matrix, W, learned during the training (see section 
III.A). 

3. Extract the image graphs (see section II.B). 
4. For each graph Gi, i = 1…NG, (where NG is the total 

number of extracted graphs from the probe image): 
a. Obtain the probability of Gi belonging to each 

appearance model, Cn, P(Gi| Cn), and select the r 
model sets  with highest P(Gi| Cn) - r in our 
system is 5% of N.  

b. Incorporate the geometrical properties of Gi and 
search the learned instances (model graphs) of 
the selected model sets, picking the model graph 
with highest similarity to the test graph (Graph 
similarity function in terms of appearance and 
geometry is described later in this section). 

c. Vote for the identity of the model set that one of 
its model graphs is matched to the considered 
test graph. 

5. Select the individual with the maximum number of 
votes. 

 
All steps of the above algorithm have been discussed 

before, except step 4.b, which requires a similarity 
function based on appearance and geometry of the 
graphs, to enable correspondence with learned instances 
of the selected model sets. Given )},,{(

321 iiii xxxG = , a 
test graph, and )},,{(

321 jjjj xxxG = , a model graph, the 
similarity between the appearances of the graphs can be 
simply calculated by averaging the similarity between the 
corresponding nodes’ description vectors (

ki
x with 

kj
x  

for k = 1… 3). By employing the cosine similarity 
measure6, the appearance similarity function can be 
formulated as: 
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As discussed in Section II.C, besides the appearance, 
the geometry can be also used as a descriptor for a graph. 
In our system, the lengths of graph edges are used to 
describe the geometrical properties of each graph. Now, 
given )},,{(

321 iiii eeeG = , a test graph, and 

)},,{(
321 jjjj eeeG = , a model graph, the dissimilarity 

between the geometry of the graphs can be measured by:  
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By combining Equations 6 and 7, the final graph 
similarity function takes the form: 

),(),(),( jijiji GGZGGYGGS α−=  (12) 

where α determines the relative importance of appearance 
and geometry similarities (in our system α =0.3).   

V.  EXPERIMENTS 

In order to validate the robustness of our technique for 
face recognition, several experiments were performed on 
two of the publicly available and widely used face 
datasets, the ORL [12] and the FERET [16]. 

Our first experiment was performed on the ORL face 
set. ORL contains 400 images from 40 individuals (10 for 
each), with variations in pose, facial expression and a 
certain amount of scale and viewpoint (see Fig.3 for an 
example). The first five images for each individual have 
been used for training and the other five images for 
testing. PCA was applied to a dataset of 30,000 feature 
description vectors extracted from training images (150 
features form each of the 40x5 training images), and the 
dimensionality of feature vectors was reduced from 40 to 
8 (with 72.3% of non-zero eigenvalues retained). In graph 
space estimation, mixture models with 10 Gaussians were 
used for each individual, to model the joint distributions 
of the nodes’ factorized description vectors. Our system 
achieved an accuracy rate of 100% in this experiment on 
the ORL face dataset (see [17] for a comparative study of 
several face recognition techniques on the ORL dataset). 

Although the ORL dataset is one of the most 
challenging publicly available face datasets, the small 
number of contained individuals (40) cannot provide a 
good estimate of the ability of a face recognition system 
in working with datasets with large number of individuals 
(e.g., greater than 1000). To this aim, we have tested our 
face recognition algorithm on the FERET test set. Two 
FERET image sets were used in our experiments: FA, 
which contains frontal images of 1196 subjects (one 
image per person); and FB, which contains frontal images 
of 1195 of the subjects available in FA, with an 
alternative facial expression than in FA photographs. We 
detected the faces manually from all images and resized 
them to 112x92 pixels. The face images in FA were used 
for training and the FB images for testing the system. The 
performance of our technique in this experiment is shown 
in Table I7, in comparison with the results of five state-of-
the-art methods: Elastic Bunch Graph Matching (EBGM), 
LDA+PCA, Bayesian Intra-personal/Extra-personal 
Classifier (BIC), Boosted Haar Classifier [13], and the 
work of Timo et al. [15] based on the LBP (Local Binary 
Patterns) texture analysis. The comparisons indicate that 
our method achieved better results than the other 
evaluated methods. 

 
 
 

                                                            
7 When comparing the results in Table I, note that almost similar face 
normalization algorithms were used in all techniques, except [4]. 

     

     
 

Figure 3. Images of an individual from ORL. The first 5 images are 
used for training and the other 5 for testing. 

 

TABLE I.   
COMPARISON OF OUR RESULT ON THE FERET DATASET WITH THE 

RESULTS OF SEVERAL STATE-OF-THE-ART FACE RECOGNITION METHODS 

Methods Recognition 
Rates 

(EBGM) - Wisskott et al. [4] 95.5% 
(LDA + PCA) - Etemad et al. [2] 96.2% 

(BIC) – Moghaddam et al. [3] 94.8% 
(Boosted Haar) – Jones et al. [13] 94.0% 

(LBP) - Timo et al. [15] 97% 
Our method 98.4% 

 
The computational time of our method directly 

depends on the number of features, extracted from each 
face image, as the most time consuming process of our 
method is feature extraction. The computational time for 
extracting 150 features from a face image takes about 1.4 
second on a 3.2 GHz CPU. However, in contrast to most 
of the available face recognition techniques, the overall 
computational time of our recognition method does not 
depend very much on the number of individuals learned, 
which is an advantage of our method.  

VI.  CONCLUSIONS 

Face recognition, because of its many applications in 
automated surveillance and security, has garnered a great 
deal of attention. While there have been many papers 
published in this area, much of the debate has now moved 
outside of the academic area. Since details of many of the 
best commercial algorithms are not publicly available, it 
can be difficult to compare results or gauge progress. 

In this paper we presented a novel technique for face 
recognition which represent face images by a set of 3-
node labeled graphs, each containing information on the 
appearance and geometry of a 3-tuple of face feature 
points. Our method automatically learns a model set and 
builds a graph space for each individual. A two-stage 
method for fast matching is used in recognition, where in 
the first stage a MAP solution based on PCA factorization 
is used to efficiently prune the search space and select 
very few candidate model sets, and in the second stage a 
nearest neighbourhood classifier is used to find the 
closest model graphs to the query image graphs. Our 
proposed technique achieves perfect results on the ORL 
face set and an accuracy rate of 98.4% on the FERET 
face set, which shows the superiority of the proposed 
technique over all considered state-of-the-art methods. 
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