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Robust Face Recognition via Multimodal Deep

Face Representation
Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE

Abstract—Face images appeared in multimedia applications,
e.g., social networks and digital entertainment, usually exhibit
dramatic pose, illumination, and expression variations, resulting
in considerable performance degradation for traditional face
recognition algorithms. This paper proposes a comprehensive
deep learning framework to jointly learn face representation
using multimodal information. The proposed deep learning struc-
ture is composed of a set of elaborately designed convolutional
neural networks (CNNs) and a three-layer stacked auto-encoder
(SAE). The set of CNNs extracts complementary facial features
from multimodal data. Then, the extracted features are concate-
nated to form a high-dimensional feature vector, whose dimension
is compressed by SAE. All the CNNs are trained using a subset
of 9,000 subjects from the publicly available CASIA-WebFace
database, which ensures the reproducibility of this work. Using
the proposed single CNN architecture and limited training data,
98.43% verification rate is achieved on the LFW database.
Benefited from the complementary information contained in
multimodal data, our small ensemble system achieves higher than
99.0% recognition rate on LFW using publicly available training
set.

Index Terms—Face recognition, deep learning, convolutional
neural networks, multimodal system.

I. INTRODUCTION

FACE recognition has been one of the most extensively

studied topics in computer vision. The importance of face

recognition is closely related to its great potential in multime-

dia applications, e.g., photo album management in social net-

works, human machine interaction, and digital entertainment.

With years of effort, significant progress has been achieved

for face recognition. However, it remains a challenging task

for multimedia applications, as observed in recent works [1],

[2]. In this paper, we handle the face recognition problem for

matching internet face images appeared in social networks,

which is one of the most common applications in multimedia

circumstances.

Recognizing the face images appeared in social networks is

difficult, due to the reasons mainly from the following two per-

spectives. First, the face images uploaded to social networks

are captured in real-world conditions; therefore faces in these

images usually exhibit rich variations in pose, illumination,

expression, and occlusion, as illustrated in Fig. 1. Second,

face recognition in social networks is a large-scale recognition

problem due to the numerous face images of potentially large

amount of users. The prediction accuracy of face recognition
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Fig. 1. Face images in multimedia applications usually exhibit rich variations
in pose, illumination, expression, and occlusion.

algorithms usually degrades dramatically with the increase of

face identities.

Accurate face recognition depends on high quality face

representations. Good face representation should be discrim-

inative to the change of face identify while remains robust

to intra-personal variations. Conventional face representations

are built on local descriptors, e.g., Local Binary Patterns

(LBP) [3], Local Phase Quantization (LPQ) [4], [5], Dual-

Cross Patterns (DCP) [6], and Binarised Statistical Image

Features (BSIF) [7]. However, the representation composed

by local descriptors is too shallow to differentiate the com-

plex nonlinear facial appearance variations. To handle this

problem, recent works turn to Convolutional Neural Networks

(CNNs) [8], [9] to automatically learn effective features that

are robust to the nonlinear appearance variation of face images.

However, the existing works of CNN on face recognition

extract features from limited modalities, the complementary

information contained in more modalities is not well studied.

Inspired by the complementary information contained in

multi-modalities and the recent progress of deep learning on

various fields of computer vision, we present a novel face

representation framework that adopts an ensemble of CNNs

to leverage the multimodal information. The performance of

the proposed multimodal system is optimized from two per-

spectives. First, the architecture for single CNN is elaborately

designed and optimized with extensive experimentations. Sec-

ond, a set of CNNs is designed to extract complementary

information from multiple modalities, i.e., the holistic face

image, the rendered frontal face image by 3D model, and

uniformly sampled face patches. Besides, we design different

structures for different modalities, i.e., a complex structure is

designed for the modality that contains the richest information

while a simple structure is proposed for the modalities with
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less information. In this way, we strike a balance between

recognition performance and efficiency. The capacity of each

modality for face recognition is also compared and discussed.

We term the proposed deep learning-based face representa-

tion scheme as Multimodal Deep Face Representation (MM-

DFR), as illustrated in Fig. 2. Under this framework, the face

representation of one face image involves feature extraction

using each of the designed CNNs. The extracted features

are concatenated as the raw feature vector, whose dimension

is compressed by a three-layer SAE. Extensive experiments

on the Labeled Face in the Wild (LFW) [10] and CASIA-

WebFace databases [11] indicate that superior performance

is achieved with the proposed MM-DFR framework. Besides,

the influence of several implementation details, e.g., the usage

strategies of ReLU nonlinearity, multiple modalities, aggres-

sive data augmentation, multi-stage training, and L2 normal-

ization, is compared and discussed in the experimentation

section. To the best of our knowledge, this is the first published

approach that achieves higher than 99.0% recognition rate

using a publicly available training set on the LFW database.

The remainder of the paper is organized as follows: Section

II briefly reviews related works for face recognition and deep

learning. The proposed MM-DFR face representation scheme

is illustrated in Section III. Face matching using MM-DFR is

described in Section IV. Experimental results are presented in

Section V, leading to conclusions in Section VI.

II. RELATED STUDIES

A. Face Image Representation

Popular face representations can be broadly grouped into

two categories: local descriptor-based representations and deep

learning-based representations.

Traditional face representations are based on local descrip-

tors [12], [13]. Local descriptors can be further divided into

two groups: the handcrafted descriptors and the learning-based

descriptors. Among the handcrafted descriptors, Ahonen et

al. [3] proposed to employ the texture descriptor LBP for

face representation. LBP works by encoding the gray-value

difference between each pixel and its neighboring pixels into

binary codes. Ding et al. [6] proposed the Dual-Cross Patterns

(DCP) descriptor to encode second order statistics along the

distribution directions of facial components. Other effective

handcrafted local descriptors include Local Phase Quantiza-

tion (LPQ) [4] and Gabor-based descriptors. Representative

learning-based descriptors include Binarised Statistical Image

Features (BSIF) [7], [14] and Discriminant Face Descriptor

(DFD) [15], et al.. Compared with the handcrafted descriptors,

the learning-based descriptors usually optimize the pattern

encoding step using machine learning techniques. An extensive

and systematic comparison among existing local descriptors

for face recognition can be found in [6]; and a detailed

summarization on local descriptor-based face representations

can be found in a recent survey [1]. Despite of its ease of use,

the local descriptor-based approaches have clear limitations:

the constructed face reprsentation is sensitive to the non-linear

intra-personal variations, e.g., pose [16], expression [17], and

illumination [13]. In particular, the intra-personal appearance

change caused by pose variations may substantially surpass

the difference caused by identities [16].

The complicated facial appearance variations call for non-

linear techniques for robust face representation, and recent

progress on deep learning provides an effective tool. In the

following, we review the most relevant progress for deep

learning-based face recognition. Taigman et al. [8] proposed

the DeepFace architecture for face recognition. They use the

softmax loss, i.e., the face identification loss, as the supervi-

sory signal to train the network and achieve high recognition

accuracy approaching the human-level. Sun et al. [9] proposed

to combine the identification and verification losses for more

effective training. They empirically verified that the combined

supervisory signal is helpful to promote the discriminative

power of extracted CNN features. Zhou et al. [18] investigated

the influence of distribution and size of training data to the

performance of CNN. With a huge training set composed of

5 millions of labelled faces, they achieved an accuracy of

99.5% accuracy on LFW using naive CNN structures. One

common problem for the above works is that they all employ

private face databases for training. Due to the distinct size and

unknown distribution of these private data, the performance

of the above works may not be directly comparable. Recently,

Yi et al. [11] released the CASIA-WebFace database which

contains 494,414 labeled images of 10,575 subjects. The

availability of such a large-scale database enables researchers

to compete on a fair starting line. In this paper, the training

of all CNNs are conducted exclusively on a subset of 9,000

subjects of the CASIA-WebFace database, which ensures the

reproducibility of this work. The CNN architectures designed

in this paper are inspired by two previous works [19], [11],

but with a number of modifications and improvements, and our

designed CNN models have visible advantage in performance.

B. Multimodal-based Face Recognition

Most of face recognition algorithms extract a single face

representation from the face image. However, they are re-

strictive in capturing the diverse information contained in the

face image. To handle this problem, Ding et al. [6] proposed

to extract the Multi-directional Multi-level DCPs (MDML-

DCPs) feature which includes three holistic-level features

and six component-level features. The set of the nine facial

features composes the face representation. Similar strategies

have been adopted in deep learning-based face representations.

For example, the DeepFace approach [8] adopts the same CNN

structure to extract facial features from RGB image, gray-level

image and gradient map. The set of face representations are

fused in the score level. Sun et al. [9] proposed to extract

deep features from 25 image patches cropped with various

scales and positions. The dimension of the concatenated deep

features is reduced by Principle Component Analysis (PCA).

Multimodal systems that fuse multiple feature cues are also

employed in other topics of multimedia and computer vision,

e.g., visual tracking [20], image classification [21], [22], [23],

and social media analysis [24], [25], [26], [27], [28].

Our multimodal face recognition system is related to the

previous approaches, and there is clear novelty. First, we
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Fig. 2. Flowchart of the proposed multimodal deep face representation (MM-DFR) framework. MM-DFR is essentially composed of two steps: multimodal
feature extraction using a set of CNNs, and feature-level fusion of the set of CNN features using SAE.

extract multimodal features from the holistic face image,

rendered frontal face by 3D face model, and uniformly sam-

pled image patches. The three modalities stand for holistic

facial features and local facial features, respectively. Different

from [8] that employs the 3D model to assist 2D piece-wise

face warping, we utilize the 3D model to render a frontal

face in 3D domain, which indicates much stronger alignment

compared with [8]. Different from [9] that randomly crops

25 patches over the face image using dense facial feature

points, we uniformly sample a small number of patches with

the help of 3D model and sparse facial landmarks, which is

more reliable compared with dense landmarks. Second, we

propose to employ SAE to compress the high-dimensional

deep feature into a compact face signature. Compared with

the traditional PCA approach for dimension reduction, SAE

has advantage in learning non-linear feature transformations.

Third, the large-scale unconstrained face identification prob-

lem has not been well studied due to the lack of appropriate

face databases. Fortunately, the recently published CASIA-

WebFace [11] database provides the possibility for such kind

of evaluation. In this paper, we evaluate the identification

performance of MM-DFR on the CASIA-WebFace database.

III. MULTIMODAL DEEP FACE REPRESENTATION

In this section, we describe the proposed MM-DFR frame-

work for face representation. As shown in Fig. 2, MM-DFR

is essentially composed of two steps: multimodal feature

extraction using a set of CNNs, and feature-level fusion of the

set of CNN features using SAE. In the following, we describe

the two main components in detail.

A. Single CNN Architecture

All face images employed in this paper are first normalized

to 230×230 pixels with an affine transformation according to

the coordinates of five sparse facial feature points, i.e., both

eye centers, the nose tip, and both mouth corners. Sample

images after the affine transformation are illustrated in Fig. 1.

We employ an off-the-shelf face alignment tool [29] for facial

feature detection. Based on the normalized image, one holistic

face image of size 165 × 120 pixels (Fig. 3a) and six image

patches of size 100×100 pixels (Fig. 3b) are sampled. Another

holistic face image is obtained by 3D pose normalization using

OpenGL [16]. Pose variation is reduced in the rendered frontal

face, as shown in Fig. 3a.

Two CNN models named NN1 and NN2 are designed,

which are closely related to the ones proposed in [19], [11], but

with a number of modifications and improvements. We denote

the CNN that extracts feature from the holistic face image

as CNN-H1. In the following, we take CNN-H1 for example

to illustrate the architectures of NN1 and NN2, as shown

in Table I and Table II, respectively. The other seven CNNs

employ similar structure but with modifications in resolution

for each layer. The major difference between NN1 and NN2

is that NN2 is both deeper and wider than NN1. With larger

structure, NN2 is more robust to highly non-linear facial

appearance variations; therefore, we apply it to CNN-H1. NN1

is smaller but more efficient and we apply it to the other seven

CNNs, with the underlying assumption that the image patches

and pose normalized face contain less nonlinear appearance

variations. Compared with NN1, NN2 is more vulnerable to

overfitting due to its larger number of parameters. In this paper,

we make use of aggressive data augmentation and multi-stage

training strategies to reduce overfitting. Details of the two

strategies are described in the experimentation section.

NN1 contains 10 convolutional layers, 4 max-pooling lay-

ers, 1 mean-pooling layer, and 2 fully-connected layers. In

comparison, NN2 incorporates 12 convolutional layers. Small

filters of 3 × 3 are utilized for all convolutional layers. As

argued in [19], successive convolutions by small filters equal

to one convolution operation by a large filter, but effectively

enhances the model’s discriminative power and reduces the

number of filter parameters to learn. ReLU [30] activation

function is utilized after all but the last convolutional layers.

The removal of ReLU nonlinearity helps to generate dense

features, as described in [11]. We also remove the ReLU non-

linearity after Fc6; therefore the projection of convolutional
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TABLE I
DETAILS OF THE MODEL ARCHITECTURE FOR NN1

Name Type
Input

Size

Filter

Number

Filter Size

/stride /pad

With

Relu

Conv11 conv 165×120 64 3×3 /1 /0 yes

Conv12 conv 163×118 128 3×3 /1 /0 yes

Pool1 max pool 161×116 N/A 2×2 /2 /0 no

Conv21 conv 80×58 64 3×3 /1 /0 yes

Conv22 conv 78×56 128 3×3 /1 /0 yes

Pool2 max pool 76×54 N/A 2×2 /2 /0 no

Conv31 conv 38×27 64 3×3 /1 /1 yes

Conv32 conv 38×27 128 3×3 /1 /1 yes

Pool3 max pool 38×27 N/A 2×2 /2 /1 no

Conv41 conv 20×14 128 3×3 /1 /1 yes

Conv42 conv 20×14 256 3×3 /1 /1 yes

Pool4 max pool 20×14 N/A 2×2 /2 /0 no

Conv51 conv 10×7 128 3×3 /1 /1 yes

Conv52 conv 10×7 256 3×3 /1 /1 no

Pool5 mean pool 10×7 N/A 2×2 /2 /1 no

Dropout dropout 6144×1 N/A N/A N/A

Fc6 fully-conn 512×1 N/A N/A no

Fc7 fully-conn 9000×1 N/A N/A no

Softmax softmax 9000×1 N/A N/A N/A

features by Fc6 layer is from dense to dense, which means

that Fc6 effectively equals to a linear dimension reduction

layer that is similar to PCA or Linear Discriminative Analysis

(LDA). This is different from previous works that favor sparse

features produced by ReLU [8], [9], [31]. Our model is

also different from [11] since [11] simply removes the linear

dimension reduction layer (Fc6). The output of the Fc6 layer is

employed as face representation. In the experimental section,

we empirically justify that the dense-to-dense projection by

Fc6 is advantageous to produce more discriminative features.

The forward function of ReLU is represented as

R(xi) = max(0,WT
c xi + bc), (1)

where xi, Wc, and bc are the input, weight, and bias of the

corresponding convolutional layer before the ReLU activation

function. R(xi) is the output of the ReLU activation function.

The dimension of the Fc6 layer is set to 512. The dimension of

the Fc7 is set to 9000, which equals to the number of training

subjects employed in this paper. We employ dropout [32] as a

regularizer on the first fully-connected layer in the case of

overfitting caused by the large amount of parameters. The

dropout ratio is set to 0.4. Since this low-dimensional face

representation is utilized to distinguish as large as 9,000

subjects in the training set, it should be very discriminative

and has good generalization ability.

The other holistic image is rendered by OpenGL with the

help of 3D generic face model [16]. Pose variation is reduced

in the rendered image. We denote the CNN that extracts deep

feature from this image as CNN-H2, as illustrated in Fig. 2.

Therefore, the first two CNNs encode holistic image features

from different modalities. The CNNs that extract features from

the six image patches are denoted as CNN-P1, CNN-P2, to

TABLE II
DETAILS OF THE MODEL ARCHITECTURE FOR NN2

Name Type
Input

Size

Filter

Number

Filter Size

/stride /pad

With

Relu

Conv11 conv 165×120 64 3×3 /1 /0 yes

Conv12 conv 163×118 128 3×3 /1 /0 yes

Pool1 max pool 161×116 N/A 2×2 /2 /0 no

Conv21 conv 80×58 64 3×3 /1 /0 yes

Conv22 conv 78×56 128 3×3 /1 /0 yes

Pool2 max pool 76×54 N/A 2×2 /2 /0 no

Conv31 conv 38×27 128 3×3 /1 /1 yes

Conv32 conv 38×27 128 3×3 /1 /1 yes

Pool3 max pool 38×27 N/A 2×2 /2 /1 no

Conv41 conv 20×14 256 3×3 /1 /1 yes

Conv42 conv 20×14 256 3×3 /1 /1 yes

Conv43 conv 20×14 256 3×3 /1 /1 yes

Pool4 max pool 20×14 N/A 2×2 /2 /0 no

Conv51 conv 10×7 256 3×3 /1 /1 yes

Conv52 conv 10×7 256 3×3 /1 /1 yes

Conv53 conv 10×7 256 3×3 /1 /1 no

Pool5 mean pool 10×7 N/A 2×2 /2 /1 no

Dropout dropout 6144×1 N/A N/A N/A

Fc6 fully-conn 512×1 N/A N/A no

Fc7 fully-conn 9000×1 N/A N/A no

Softmax softmax 9000×1 N/A N/A N/A

(a) (b)

Fig. 3. The normalized holistic face images and image patches as input for
MM-DFR. (a) The original holistic face image and the 3D pose normalized
holistic image; (b) Image patches uniformly sampled from the original face
image. Due to facial symmetry and the augmentation by horizontal flipping,
we only leverage the six patches illustrated in the first two columns.

CNN-P6, respectively, as illustrated in Fig. 2. Exactly the same

network structure is adopted for each of the six CNNs.

Different from previous works that randomly sample a

large number of image patches [9], we propose to sample

a small number of image patches uniformly in the semantic

meaning, which contributes to maximizing the complementary

information contained within the sampled patches. However,

the uniform sampling of the image patches is not easy due to

the pose variations of the face appeared in real-world images,
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Fig. 4. The principle of patch sampling adopted in this paper. A set of 3D
landmarks are uniformly labeled on the 3D face model, and are projected
to the 2D image. Centering around each landmark, a square patch of size
100× 100 pixels is cropped, as illustrated in Fig. 3b.

Fig. 5. More examples about the uniformly detected landmarks that are
projected from a generic 3D face model to 2D images.

as shown in Fig. 1. We tackle this problem with a recently

proposed strategy for pose-invariant face recognition [33]. The

principle of the patch sampling process is illustrated in Fig. 4.

In brief, nine 3D landmarks are manually labeled on a generic

3D face model and the 3D landmarks spread uniformly across

the face model. In this paper, we consistently employ the

mean shape of the Basel Face Model as the generic 3D face

model [34]. Given a 2D face image, it is first aligned to the

generic 3D face model using orthogonal projection with the

help of five facial feature points. Then, the pre-labeled 3D

landmarks are projected to the 2D image. Lastly, a patch of

size 100 × 100 pixels is cropped centering around each of

the projected 2D landmarks. More examples of the detected

2D uniform landmarks are shown in Fig. 5. It is clear that the

patches are indeed uniformly sampled in the semantic meaning

regardless of the pose variations of the face image.

B. Combination of CNNs using Stacked Auto-Encoder

We denote the features extracted by the set of CNNs as

{x1, x2, · · · , xK}, where xi ∈ R
d×1, 1 ≤ i ≤ K. In this

paper, K equals to 8 and d equals to 512. The set of features

represents multimodal information for face recognition. We

conduct feature-level fusion to obtain a single signature for

each face image. In detail, the features extracted by the eight

CNNs are concatenated as a large feature vector, denoted as:

x̂ = [x1;x2; · · · ;xK ] ∈ R
Kd×1. (2)

x̂ is high dimensional, which is impractical for real-world

face recognition applications. We further propose to reduce the

dimension of x̂ by SAE. Compared with the traditional dimen-

sion reduction approaches, e.g., PCA, SAE has advantage in

learning non-linear feature transformations. In this paper, we

employ a three-layer SAE. The number of the neurons of the

three auto-encoders are 2048, 1024, and 512, respectively. The

output of the last encoder is utilized as the compact signature

of the face image. The structure for the designed SAE is

illustrated in Fig. 2.

Nonlinear activation function is utilized after each of the

fully-connected layers. Two activation functions, i.e., sigmoid

function and hyperbolic tangent (tanh) function, are evaluated.

The forward function of the sigmoid activation function is

represented as

S(xi) =
1

1+exp(−WT
f
xi−bf )

. (3)

The forward function of the tanh activation function is repre-

sented as

T (xi) =
exp(WT

f xi+bf )−exp(−WT
f xi−bf )

exp(WT
f
xi+bf )+exp(−WT

f
xi−bf )

, (4)

where xi, Wf , and bf are the input, weight, and bias of

the corresponding fully-connected layer before the activation

function. Different normalization schemes of x̂ are adopted for

the sigmoid and tanh activation functions, since their output

space is different. For the sigmoid function, we normalize the

elements of x̂ to be within [0, 1]. For the tanh function, we

normalize the elements of x̂ to be within [−1,+1]. In the

experimentation section, we empirically compare the perfor-

mance of SAE with the two different nonlinearities.

IV. FACE MATCHING WITH MM-DFR

In this section, the face matching problem is addressed

based on the proposed MM-DFR framework. Two evaluation

modes are adopted: the unsupervised mode and the supervised

mode. Suppose two features produced by MM-DFR for two

images are denoted as y1 and y2, respectively. In the unsuper-

vised mode, the cosine distance is employed to measure the

similarity s between y1 and y2.

s(y1, y2) =
yT1 y2

‖y1‖‖y2‖
. (5)

For the supervised mode, a number of discriminative or

generative models can be employed [35], [36], [37], In this

paper, we employ the Joint Bayesian (JB) model [36] as it is

shown to outperform other popular models in recent works [6].

For both the unsupervised and supervised modes, the nearest

neighbor (NN) classifier is adopted for face identification. JB

models the face generation process as

x = µ+ ε, (6)

where µ represents the identity of the subject, while ε repre-

sents intra-personal noise.
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JB solves the face identification or verification problems

by computing the log-likelihood ratio between the probability

P (x1, x2|HI) that two faces belong to the same subject

and the probability P (x1, x2|HE) that two faces belong to

different subjects.

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)
, (7)

where r(x1, x2) represents the log-likelihood ratio, and we

refer to r(x1, x2) as similarity score for clarity in the experi-

mental part of the paper.

V. EXPERIMENTAL EVALUATION

In this section, extensive experiments are conducted to

present the effectiveness of the proposed MM-DFR frame-

work. The experiments are conducted on two large-scale

unconstrained face databases, i.e., LFW [10] and CASIA-

WebFace [11]. Images in both databases are collected from

internet; therefore they are real images that appear in multi-

media circumstances.

The LFW [10] database contains 13,233 images of 5,749

subjects. Images in this database exhibit rich intra-personal

variations of pose, illumination, and expression. It has been

extensively studied for the research of unconstrained face

recognition in recent years. Images in LFW are organized into

two “Views”. View 1 is for model selection and parameter

tuning while View 2 is for performance reporting. In this paper,

we follow the official protocol of LFW and report the mean

verification accuracy and the standard error of the mean (SE)

by the 10-fold cross-validation scheme on the View 2 data.

Despite of its popularity, the LFW database contains limited

number of images and subjects, which restricts its evaluation

for large-scale unconstrained face recognition applications.

The CASIA-WebFace [11] database has been released recently.

CASIA-WebFace contains 494,414 images of 10,575 subjects.

As images in this database are collected in a semi-automatic

way, there is a small amount of mis-labeled images in this

database. Because there is no officially defined protocol for

face recognition on this database, we define our own protocol

for face identification in this paper. In brief, we divide CASIA-

WebFace into two sets: a training set and a testing set. The

10,575 subjects are ranked in the descent order by the number

of their images contained in the database. The 471,592 images

of the top 9,000 subjects compose the training set. The 22,822

images of the rest 1,575 subjects make up the testing set.

All CNNs and SAE in this paper are trained using the 9,000

subjects in the defined training set above. Images are converted

to gray-scale and geometrically normalized as described in

Section III. For NN1, we double the size of the training set by

flipping all training images horizontally to reduce overfitting.

Therefore, the size of training data for NN1 is 943,184. For

NN2, we adopt much more aggressive data augmentation

by horizontal flipping, image jittering1, and image down-

sampling. The size of the augmented training data for NN2

1For image jittering, we add random gaussian noise on the coordinates of
the five facial feature points. The noise is distributed with zero mean and
standard deviation of four pixels.
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Fig. 6. Training data distribution for NN1 and NN2. This figure plots the
number of images for each subject in the training set. The long-tail distribution
characteristic [18] of the original training data is improved after the aggressive
data augmentation for NN2.

is about 1.8 million. The distribution of training data for NN1

and NN2 is illustrated in Fig. 6. It is shown that the long-tail

distribution characteristic [18] of the original training data is

improved after the aggressive data augmentation for NN2.

We adopt the following multi-stage training strategy to

train all the CNN models. First, we train the CNN models

as a multi-class classification problem, i.e., softmax loss is

employed. For all CNNs, the initial learning rate for all

learning layers is set to 0.01, and is divided by 10 after

10 epochs, to the final rate of 0.001. Second, we adopt the

recently proposed triplet loss [38] for fine-tuning for 2 more

epochs. We set the margin for the triplet loss to be 0.2 and

learning rate to be 0.001. It is expected that this multi-stage

training strategy can boost performance while converge faster

than using the triplet loss alone [38]. For SAE, the learning

rate decreases from 0.01 to 0.00001, gradually. We train each

of the three auto-encoders one by one and each auto-encoder

is trained for 10 epochs. In the testing phase, we extract

deep feature from both the original image and its horizontally

flipped image. Unless otherwise specified, the two feature

vectors are averaged as the representation of the input face

image. The open-source deep learning toolkit Caffe [39] is

utilized to train all the deep models.

Five sets of experiments are conducted. First, we empirically

justify the advantage of dense features for face recognition by

excluding two ReLU nonlinearities compared with previous

works. The performance of the proposed single CNN model

is also compared against the state-of-the-art CNN models on

the LFW database. Next, the performance of the eight CNNs

contained within the MM-DFR framework is compared on face

verification task on LFW. Then, the fusion of the eight CNNs

by SAE is conducted and different nonlinearities are also

compared. We also test the performance of MM-DFR followed

with the supervised classifier JB. Lastly, face identification

experiment is conducted on the CASIA-WebFace database

with our own defined evaluation protocol.
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Unsupervised Supervised

NN1 96.82% 98.02%

NN1+C52R 96.78% 97.85%

NN1+C52R+Fc6R 95.45% 96.95%
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Fig. 7. Performance comparison on LFW with different usage strategies of
ReLU nonlinearity.

A. Performance Comparison with Single CNN Model

In this experiment, we evaluate the role of ReLU non-

linearity using CNN-H1 as an example. For fast evaluation,

the comparison is conducted with the simple NN1 structure

described in Table I and only the softmax loss is employed

for model training. Performance of CNN-H1 using the NN2

structure can be found in Table IV. Two paradigms2 are

followed: 1) the unsupervised paradigm that directly calculate

the similarity between two CNN features using cosine distance

metric. 2) the supervised paradigm that uses JB to calculate

the similarity between two CNN features. For the supervised

paradigm, we concatenate the CNN features of the original

face image and its horizontally flipped version as the raw

representation of each test sample. Then, we adopt PCA for

dimension reduction and JB for similarity calculation. The

dimension of the PCA subspace is tuned on the View 1 data

of LFW and applied to the View 2 data. Both PCA and JB are

trained on the CASIA-WebFace database. For PCA, to boost

performance, we also re-evaluate the mean of CNN features

using the 9 training folds of LFW in 10-fold cross validation.

The performance of three structures are reported in Fig. 7

and Fig. 8: 1) NN1, 2) NN1 with ReLU after Conv52 layer

(denoted as NN1+C52R), and 3) NN1 with ReLU after both

Conv52 and Fc6 (denoted as NN1+C52R+Fc6R). For both

NN1+C52R and NN1+C52R+Fc6R, we replace the average

pooling layer after Conv 52 with max pooling accordingly. It

is shown in Fig. 7 that the ReLU nonlinearity after Conv52 or

Fc6 actually harms the performance of CNN. The experimental

results have two implications: 1) dense feature is preferable

than sparse feature for CNN, as intuitively advocated in [11].

However, there is no experimental justification in [11]. 2) the

linear projection from the output of the ultimate convolutional

layer (Conv52) to the low-dimensional subspace (Fc6) is

better than the commonly adopted non-linear projection. This

is clear evidence that the negative response of the ultimate

convolutional layer (Conv52) also contains useful information.

The performance by single CNN models on LFW is reported

in Table. III. The performance of the state-of-the-art CNN

2Similar to previous works [8], [11], both the two paradigms defined in
this paper correspond to the “Unrestricted, Labeled Outside Data Results”
protocol that is officially defined in [10].

TABLE III
PERFORMANCE COMPARISON ON LFW USING SINGLE CNN MODEL ON

HOLISTIC FACE IMAGE

Accuracy (Unsupervised) Accuracy (Supervised)

DeepFace [8] 95.92 ± 0.29 97.00 ± 0.87

DeepID2 [9] - 96.33 ± -

Arxiv2014 [11] 96.13 ± 0.30 97.73 ± 0.31

Facebook [41] - 98.00 ± -

MSU TR [40] 96.95 ± 1.02 97.45 ± 0.99

Ours (NN1) 97.32 ± 0.34 98.05 ± 0.22

Ours (NN2) 98.12 ± 0.24 98.43 ± 0.20
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Fig. 8. ROC curves of different usage strategies of the ReLU nonlinearity
on LFW.

models is also tabulated. Compared with Fig. 7, we further im-

prove the performance of NN1 by fine-tuning with triplet loss.

It seems that the triplet loss mainly improves the performance

for the unsupervised mode in our experiment. It is shown that

the proposed CNN model consistently outperforms the state-

of-the-art CNN models under both the unsupervised paradigm

and supervised paradigm. In particular, compared with [11],

[40] that all employ the complete CASIA-WebFace database

for CNN training, we only leverage a subset of the CASIA-

WebFace database. With more training data, we expect the

proposed CNN model can outperform the other models with

an even larger margin.

B. Performance of the Eight CNNs in MM-DFR

In this experiment, we present in Table IV the performance

achieved by each of the eight CNNs contained within the MM-

DFR framework. We report the performance of CNN-H1 with

the NN2 structure while the other seven CNNs all employ

the more efficient NN1 structure. The same as the previous

experiment, both the unsupervised paradigm and supervised

paradigm are followed. For the supervised paradigm, the PCA

subspace dimension of the eight CNNs is unified to be 110.

Besides, features of the original face image and the horizon-

tally flipped version are L2 normalized before concatenation.
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TABLE IV
PERFORMANCE COMPARISON ON LFW OF EIGHT INDIVIDUAL CNNS

Accuracy (Unsupervised) Accuracy (Supervised)

CNN-H1 98.12 ± 0.24 98.43 ± 0.20

CNN-H2 96.47 ± 0.44 97.67 ± 0.28

CNN-P1 96.83 ± 0.26 97.30 ± 0.22

CNN-P2 97.25 ± 0.31 98.00 ± 0.24

CNN-P3 96.70 ± 0.25 97.82 ± 0.16

CNN-P4 96.17 ± 0.31 96.93 ± 0.21

CNN-P5 96.05 ± 0.27 97.23 ± 0.20

CNN-P6 95.58 ± 0.17 96.72 ± 0.21

We find that this normalization operation typically boosts the

performance of the supervised paradigm by 0.1% to 0.4%.

When combining Table III and Table IV, it is clear that

CNN-H1 outperforms CNN-H2 with the same NN1 struc-

ture, although they both extract features from holistic face

images. This maybe counter-intuitive, since the impact of

pose variation has been reduced for CNN-H2. We explain

this phenomenon from the following two aspects: 1) most

images in LFW are near-frontal face images, so the 3D pose

normalization employed by CNN-H2 does not contribute much

to pose correction. 2) the errors in pose normalization bring

about undesirable distortions and artifacts to facial texture,

e.g., the distorted eyes, nose, and mouth shown in Fig. 3(a).

The distorted facial texture is adverse to face recognition, as

argued in our previous work [1]. However, we empirically

observe that the performance of MM-DFR drops slightly on

View 1 data if we exclude CNN-H2, which indicates CNN-

H2 provides complementary information to CNN-H1 from a

novel modality. The contribution of CNN-H2 to MM-DFR is

also justified by the last experiment in this section. Besides,

the performance of the patch-level CNNs, i.e., CNN-P1 to

CNN-P6, fluctuates according to the discriminative power of

the corresponding patches.

C. Fusion of CNNs with SAE

In this experiment, we empirically choose the best non-

linearity for SAE that is employed for feature-level fusion

of the eight CNNs. The structure of SAE employed in this

paper is described in Fig. 2. For each CNN, we average the

features of the original image and the horizontally flipped

version. L2 normalization is conducted for each averaged

feature before concatenating the features produced by the

eight CNNs. Similar to the previous experiment, we find this

normalization operation promotes the performance of MM-

DFR. The dimension of the input for SAE is 4,096. Two

types of non-linearities are evaluated, the sigmoid non-linearity

and the tanh non-linearity, denoted as SAE-SIG and SAE-

TANH, respectively. The output of the third encoder (before

the nonlinear layer) is utilized as the signature of the face

image. Cosine distance is employed to evaluate the similarity

between two face images. SAE are trained on the training

set of CASIA-WebFace, using feature vectors extracted from

both the original images and the horizontally flipped ones.

The performance of SAE-SIG and SAE-TANH is 98.33% and
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Fig. 9. Performance comparison between the proposed MM-DFR approach
and single modality-based CNN on the face verification task.

97.90% on the View1 data of LFW, respectively.

SAE-TANH considerably outperforms SAE-SIG. One im-

portant difference between the sigmoid non-linearity and the

tanh non-linearity is that they normalize the elements of the

feature to be within [0, 1] and [−1, 1], respectively. Compared

with the tanh non-linearity, the sigmoid non-linearity loses

the sign information of feature elements. However, the sign

information is valuable for discriminative power.

D. Performance of MM-DFR with Joint Bayesian

The above three experiments have justified the advantage of

the proposed CNN structures. In this experiment, we further

promote the performance of the proposed framework.

We show the performance of MM-DFR with JB, where the

output of MM-DFR is utilized as the signature of the face

image. We term this face recognition pipeline as MM-DFR-JB.

For comparison, the performance achieved by CNN-H1 with

the JB classifier is also presented, denoted as “CNN-H1 + JB”.

The performance of the two systems is tabulated in Table V

and the ROC curves are illustrated in Fig. 9. It is shown

that MM-DFR considerably outperforms the single modal-

based approach, which indicates the fusion of multimodal

information is important to promote the performance of face

recognition systems. By excluding the five labeling errors in

LFW, the actual performance of MM-DFR-JB reaches 99.10%.

Our simple 8-net based ensemble system also outperforms

DeepID2 [9], which includes as much as 25 CNNs. Some more

recent approaches that were published after the submission of

this paper, e.g. [38], [31], achieve better performance than

MM-DFR. However, they either employ significantly larger

private training dataset or considerably larger number of CNN

models. In comparison, we employ only 8 nets and train the

models using a relatively small training set.

E. Face Identification on CASIA-WebFace Database

The face identification experiment is conducted on the test

data of the CASIA-WebFace database, which includes 22,822
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TABLE V
PERFORMANCE EVALUATION OF MM-DFR WITH JB

#Nets Accuracy(%)±SE

CNN-H1 + JB 1 98.43 ± 0.20

DeepFace [8] 7 97.25 ± 0.81

MSU TR [40] 7 98.23 ± 0.68

DeepID2 [9] 25 98.97 ± 0.25

MM-DFR-JB 8 99.02 ± 0.19

TABLE VI
THE RANK-1 IDENTIFICATION RATES BY DIFFERENT COMBINATIONS OF

MODALITIES ON CASIA-WEBFACE DATABASE

Identification Rates

CNN-H1 + JB 72.26%

CNN-H2 + JB 69.07%

CNN-H1&H2 + JB 74.51%

CNN-P1 to P6 + JB 76.01%

MM-DFR-JB 76.53%

images of 1,575 subjects. For each subject, the first five images

are selected to make up the gallery set, which can generally be

satisfied in many multimedia applications, e.g., social networks

where each subject has multiple face images. All the other

images compose the probe set. Therefore, there are 7,875

gallery images and 14,947 probe images in total.

The rank-1 identification rates by different combinations

of modalities are tabulated in Table VI. The corresponding

Cumulative Match Score (CMS) curves are illustrated in

Fig. 10. It is shown that although very high face verification

rate has been achieved on the LFW database, large-scale face

identification in real-world applications is still a very hard

problem. In particular, the rank-1 identification rate by the

proposed approach is only 76.53%.

It is clear that the proposed multimodal face recognition

algorithm significantly outperforms the single modal based

approach. In particular, the rank-1 identification rate of MM-

DFR-JB is higher than that of “CNN-H1 + JB” by as much as

4.27%. “CNN-H1 + JB” outperforms “CNN-H2 + JB” with

a large margin, partially because CNN-H1 is based on the

larger architecture NN2 and trained with more aggressively

augmented data. However, the combination of the two modal-

ities still considerably boosts the performance by 2.25% on the

basis of CNN-H1, which forcefully justifies the contribution of

the new modality introduced by 3D pose normalization. These

experimental results are consistent with those obversed on the

LFW database. Experimental results on both datasets strongly

justify the effectiveness of the proposed MM-DFR framework

for multimedia applications.

VI. CONCLUSION

Face recognition in multimedia applications is a challeng-

ing task because of the rich appearance change caused by

pose, expression, and illumination variations. We handle this

problem by elaborately designing a deep architecture that

employs complementary information from multimodal image

data. First, we enhance the recognition ability of each CNN
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Fig. 10. CMS curves by different combinations of modalities on the face
identification task.

by carefully integrating a number of published or our own

developed tricks, such as deep structures, small filters, care-

ful use of ReLU nonlinearity, aggressive data augmentation,

dropout, and multi-stage training with multiple losses, L2

normalization. Second, we propose to extract multimodal

information using a set of CNNs from the original holistic

face image, the rendered frontal pose image by 3D model,

and uniformly sampled image patches. Third, we present the

feature-level fusion approach using stacked auto-encoders to

fuse the features extracted by the set of CNNs, which is ad-

vantageous to learn non-linear dimension reduction. Extensive

experiments have been conducted for both face verification

and face identification experiments. As the proposed MM-DFR

approach effectively employs multimodal information for face

recognition, clear advantage of MM-DFR is shown compared

with the single modal-based algorithms and some state-of-the-

art deep models. Other deep learning based approaches may

also benefit from the structures that have been proved to be

useful in this paper. In the future, we will try to integrate more

multimodal information into the MM-DFR framework and

further promote the performance of single deep architecture

such as NN2.
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