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Abstract: Recently, compressive sensing (CS) has attracted increasing attention in the 

areas of signal processing, computer vision and pattern recognition. In this paper, a new 

method based on the CS theory is presented for robust facial expression recognition. The 

CS theory is used to construct a sparse representation classifier (SRC). The effectiveness 

and robustness of the SRC method is investigated on clean and occluded facial expression 

images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and 

local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. 

Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the 

nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression 

database demonstrate that the SRC method obtains better performance and stronger 

robustness to corruption and occlusion on robust facial expression recognition tasks. 

Keywords: compressive sensing; sparse representation; facial expression recognition; 

Gabor wavelets representation; local binary patterns; corruption and occlusion 

 

1. Introduction  

The traditional human computer interaction (HCI) system, in which a single user faces a computer 

and interacts with it via a mouse or a keyboard, were developed to emphasize the transmission of 

explicit messages while ignoring implicit information about the user, such as the user’s changes in the 

affective states. Such interactions are thus frequently perceived as incompetent, cold, and socially inept. 
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This fact has inspired an active research field of “affective computing” [1], which aims at enabling 

computers to recognize, express, model, communicate and respond to a user’s emotion information. 

One of the most important applications of affective computing is to make HCI become more human-like, 

more effective, and more efficient. Specifically, such computers with the ability of affective computing 

could detect and track a user's affective states and initiate communications based on this information, 

rather than simply responding to a user’s commands.  

Affective arousal modulates all nonverbal communication cues such as facial expression, vocal 

intonations, body gesture and movement. Facial expression is the most natural and efficient means for 

humans to communicate their emotions and intentions, as communication is primarily carried out face 

to face. During the past decade, facial expression recognition has attracted a significant interest in the 

scientific community, as it plays a vital role in the field of HCI. 

Generally, a basic automatic facial expression recognition system consists of three steps [2]: face 

acquisition, facial feature extraction and representation, and facial expression recognition. Face acquisition 

is a preprocessing stage to automatically find the face regions in input images or sequences. Many face 

detection methods have been proposed to detect faces in an arbitrary scene. Viola and Jones [3] presented a 

robust real-time face detector based on a set of rectangle of features. Heisele et al. [4] developed a 

component-based framework to detect frontal and near-frontal views of faces in still gray images.  

El-Bakry [5] proposed a principal component analysis (PCA) based real-time face detection method by 

performing cross-correlation in the frequency domain between the input images and eigenvectors. The 

detected face regions are usually aligned based on the eye positions that can be detected in the 

face regions. 

Facial feature extraction and representation aims to extract facial features to represent the facial 

changes caused by facial expressions. Two types of features, i.e., geometric features and appearance 

features, are usually used for facial representation [2]. Geometric features present the shape and 

locations of facial components such as mouth, eyes, brows, and nose. The facial components or facial 

feature points are extracted to form a feature vector that represents the face geometry. Fiducial facial 

feature points have been widely adopted as geometric features for facial representation. For instance, 

the geometric positions of 34 fiducial points on a face are usually used to represent facial images [6,7]. 

In contrast to geometric features, appearance features encode changes in skin texture such as wrinkles, 

bulges and furrows. The representative appearance features contains the raw pixels of facial images, Gabor 

wavelets representation [8,9], Eigenfaces [10], and Fisherfaces [11], etc. In recent years, a new face 

descriptor called local binary patterns (LBP) [12], have been widely used as appearance features for facial 

representation [13–16] due to its tolerance against illumination changes and computational simplicity. 

Facial expression recognition is to use the extracted facial features to recognize different 

expressions. Depending on whether the temporal information is considered, facial expression 

recognition approaches can be categorized as frame-based or sequence-based. The frame-based method 

does not take the temporal information of input images into account, and use the extracted features 

from a single image to recognize the expression of that image. In contrast, the sequence-based method 

attempts to capture the temporal pattern in a sequence to recognize the expression for one or more 

images. So far, various classifiers, including artificial neural network (ANN) [17], the nearest neighbor 

(NN) or K-nearest neighbor (KNN) [18,19], support vector machines (SVM) [20], and so on, have 

been applied for frame-based expression recognition. For sequence-based expression recognition, the 
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widely used techniques are hidden Markov models (HMM) [21], dynamic Bayesian networks [22], 

SVM [23]. 

Among the above mentioned three steps, facial expression recognition is the most critical aspect for 

any successful facial expression recognition system. The performance of a facial expression 

recognition system is mainly decided by a classifier. Therefore, designing a good classifier is a crucial 

step on facial expression recognition tasks.  

The recently-emerged compressive sensing (CS) (also called compressive sampling) theory [24–26], 

which originally aims to address signal sensing and coding problems, has shown tremendous potential 

for other problems like pattern recognition [27,28]. Recently, Nagesh and Li [29] have successfully 

employed the CS theory to develop a promising technique for expression-invariant face recognition. 

Nevertheless, they did not exploit the performance of the CS theory on the robust classification of 

occluded facial expression images. Note that, in real-world sceneries, facial images are usually 

corrupted by noise or outliers, that is, some pixels that do not belong to the facial images are depicted. 

Therefore, a study on robust facial expression recognition is more practical and meaningful. In 

addition, most existing facial expression recognition systems [13–23] focus on expression 

classification on clean facial images without any corruption. Motivated by little studies on the robust 

classification of facial expression with the CS theory, in this paper a new method of robust facial 

expression recognition based on the CS theory is presented.  

The remainder of this paper is organized as follows: Section 2 gives the background and related 

work. In Section 3, facial feature extraction, including Gabor wavelets representation and local binary 

pattern (LBP), is reviewed briefly. The experiment verification is presented in detail in Section 4. 

Section 5 gives the conclusions. 

2. Background and Related Work 

In this section, we briefly review the CS theory, and then present the details of the recently-emerged 

sparse representation classifier (SRC) based on the CS theory. 

2.1. Compressive Sensing (CS) 

Given a system of under-determined equation: 

1 1,    m m n ny x m n   A  (1) 

Its known that the above Equation (1) has no unique solution, since the number of variables is larger 

than the number of equations. In signal processing terms, the length of the signal ( n ) is larger than the 

number of samples ( m ). However, according to the CS theory, if the signal is sparse, it is necessarily 

unique, and can be reconstructed by practical algorithms. 

Suppose that the signal is k-sparse if it is a linear combination of only k basis vectors. That is, there 

are only k non-zero values in x , and the remainder are all zeroes. In this case, it is possible to find the 

solution to Equation (1) by a brute force enumeration of all the possible k-sparse vectors of length n . 

Mathematically speaking, this problem can be expressed as: 

0
min ,  subject to x y x A  (2) 
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where 
0
is the 0l -norm and denotes the number of non-zero elements in the vector. Equation (2) is 

known to be an NP(non-deterministic polynomial) hard problem, and is thus not a practical solution to 

Equation (1). The CS literatures [24–26] indicates that under a certain condition on the projection 

matrix A, i.e., restricted isometry property (RIP), the sparsest solution to Equation (1) can be obtained 

by replacing the 0l -norm in Equation(2) by its closest convex surrogate, the 1l -norm (
1
). Therefore, 

the solution to Equation (2) is equivalent to the following 1l -norm minimization problem: 

1
min ,  subject to x y x A  (3) 

where the 1l -norm, 
1
, denotes the minimization of the sum of absolute values of elements in the 

vector, and serves as an approximation of the 0l -norm. 

In practice, the equality y x A  is often relaxed to take into account the existence of measurement 

error in the sensing process due to a small amount of noise. Suppose the measurements are inaccurate 

and consider the noisy model: 

y x e A  (4) 

where e  is a stochastic or deterministic error term. Particularly, if the error term e  is assumed to be 

white noise such that 
2

e  , where   is a small constant. A noise robust version of Equation (3) is 

defined as follows: 

1 2
min ,  subject to x y x  A  (5) 

To solve the 1l -minimization of Equations (3) and (5), various efficient algorithms have been 

developed. Two typical algorithms based on the interior-point idea, are l1-magic [30] and l1-ls [31]. 

The l1-magic algorithm [30] recasts the 1l -minimization problem as a second-order cone program and 

then applies the primal log-barrier approach. The l1-ls algorithm [31] is a specialized interior-point 

method for solving the large-scale 11-regularized least-squares programs that uses the preconditioned 

conjugate gradients algorithm to compute the search direction. 

2.2. Sparse Representation Classifier (SRC) 

Recently, a sparse representation classifier (SRC) has been developed based on the CS theory [27,28]. 

In the SRC algorithm, it is assumed that the whole set of training samples form a dictionary, and then 

the recognition problem is cast as one of discriminatively finding a sparse representation of the test 

image as a linear combination of training images by solving the optimization problem in Equation (3) 

or (5). Formally, for the training samples of a single class, this assumption can be expressed as: 

, ,1 ,1 ,2 ,2 , , , ,
1

k

k k

n

k test k k k k k n k n k k i k i k
i

y y y y y     


        (6) 

where ,k testy  is the test sample of the thk class, ,k iy  is the thi training sample of the thk  class, ,k i  is the 

weight corresponding weight and k  is the approximation error. 

For the training samples from all c  object classes, the aforementioned Equation (6) can be 

expressed as:  



Sensors 2012, 12                            

 

 

3751

1

, 1,1 1,1 ,1 ,1 , , , ,

1, 1, , , , ,
1 1

       

k k c c

k c

k test k k k n k n c n c n

n nn

i i k i k i c i c i
i i k i

y y y y y

y y y

    

   
  

       

       

  

 
 (7) 

In matrix-vector notation, Equation (7) can be rewritten as:  

,k testy  Aα  (8) 

where 1

1

1,1 1, ,1 , ,1 ,

'
1,1 1, ,1 , ,1 ,

[ ]

[ ]

k c

k c

n k k n c c n

n k k n c c n

A y y y y y y

     

 


α

    

    
 

The linearity assumption in the SRC algorithm coupled with Equation (8) implies that the weight 

vector α  should be zero except those associated with the correct class of the test sample. To obtain the 

weight vector α , the following 0l -norm minimization problem should be solved: 

,0 2
min ,    . .   k tests t y


 α Aα  (9) 

It is known that Equation (9) is an NP-hard problem. The NP-hard 0l -norm can be replaced by its 

closest convex surrogate, the 1l -norm. Therefore, the solution of Equation(9) is equivalent to the 

following 1l -norm minimization problem: 

,1 2
min ,    . .   k tests t y


 α Aα  (10) 

This is a convex optimization problem and can be solved by quadratic programming. Once a sparse 

solution of α  is obtained, the classification procedure of SRC is summarized as follows: 

Step 1: Solve the 1l -norm minimization problem in Equation (10). 

Step 2: For each class i , compute the residuals between the reconstructed sample 

recons , ,1
( ) in

i j i jj
y i y


 and the given test sample by , 2

( , ) ( )test k test reconsr y i y y i  . 

Step 3: The class of the given test sample is determined by identify ( ) arg min ( , )test i testy r y i . 

3. Facial Feature Extraction 

In this section, two types of facial feature extraction: Gabor wavelets representation and local 

binary pattern (LBP), are briefly introduced. 

3.1. Gabor Wavelets Representation  

Gabor wavelets model quite well the receptive field properties of cells in the primary visual 

cortex [8,9]. The Gabor wavelets kernels exhibit strong characteristics of spatial locality and 

orientation selectivity, making them a suitable choice for image feature extraction when one’s goal is 

to derive local and discriminating features for facial expression classification. The Gabor wavelet 

kernels can be defined as: 
2 2

2,

2 ,

,

2

, 2 2
2

( ) [ ]
k z

ik zk
z e e e

 

 

 


  


 
   (11) 
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where   and   denote the orientation and scale of the Gabor kernel, ( , )z x y ,   denotes the norm 

operator, and the wave vector ,k   is defined as: 

,
ik k e 

    (12) 

where max /k k f    and / 8  . maxk  is the maximum frequency, and f  is the spacing factor 

between kernels in the frequency domain. 

As done in [20,32], we used 40 Gabor wavelet kernels at five scales, {0,1, , 4}   , and eight 

orientations, {0,1, , 7}   , with max2 , / 2k    , and 2f  . Figure 1 shows the real part of the 

Gabor wavelet kernels at five scales and eight orientations, and their magnitudes. The Gabor wavelets 

representation is essentially the concatenated pixels of the 40 modulus-of-convolution images obtained 

by convolving the input image with these 40 Gabor kernels. In practice, the magnitude of Gabor 

wavelets representation is used for facial expression recognition. As suggested in [33], before 

concatenation each output image is down-sampled by a factor of 16 and normalized to zero mean and 

unit variance.  

Figure 1. (a) The real part of the Gabor wavelet kernels at five scales and eight 

orientations; (b) The magnitude of the Gabor wavelet kernels at five scales. 

 

3.2. Local Binary Patterns  

The local binary pattern (LBP) operator [12] is a gray-scale invariant texture primitive statistic, 

which has shown excellent performance in the classification of various kinds of textures. For each 

pixel in an image, a binary code is produced by thresholding its neighborhood with the value of the 

center pixel. The LBP code of the center pixel in the neighborhood is obtained by converting the 

binary code into a decimal one. Based on the LBP operator, each pixel of an image is labeled with an 

LBP code. The 256-bin histogram of the labels contains the density of each label and can be used as a 

texture descriptor of the considered region. 
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The process of LBP features extraction is summarized as follows: firstly, a facial image is divided 

into several non-overlapping blocks. Secondly, LBP histograms are computed for each block. Finally, 

the block LBP histograms are concatenated into a single vector. As a result, the facial image is 

represented by the LBP code. Figure 2 presents the process of LBP features extraction. 

Figure 2. The process of LBP features extraction 

 

4. Experiment Verification  

To verify the effectiveness and robustness of SRC on facial expression recognition tasks, the 

popular Cohn-Kanade database [34], are used for experiments. Three typical facial features, including 

the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to testify 

the performance of SRC on facial expression recognition tasks. To reduce the feature length of Gabor 

wavelets representation, principal component analysis (PCA) [35] is used for dimensionality reduction. 

The reduced feature dimension is confined to the range (0, 100) with an interval of 10. The 

performance of SRC is compared with the nearest neighbor (NN), linear SVM as well as the recently 

developed non-parametric nearest subspace (NS) method [36]. Note that, for the SRC method, it’s 

necessary to normalize the training and testing data with unit 2l -norm. The experiment platform is 

Intel CPU 2.10 GHz, 1 G RAM memory, MATLAB 7.0.1 (R14). 

A 10-fold cross validation scheme is employed in 7-class facial expression recognition experiments, 

and the average recognition results are reported. In detail, each classification model is trained on nine 

tenths of the total data and tested on the remaining tenth. This process is repeated ten times, each with 

a different partitioning seed, in order to account for variance between the partitions. We provide facial 

expression recognition results and analysis in two aspects. On one hand, facial expression recognition 

experiments are directly performed on original clean images without any occlusion. On the other hand, 

facial expression recognition experiments are conducted when the random pixel corruption and the 

random block occlusion occur in the test images resized with 32 × 32 pixels. 

4.1. Database and Pre-Processing 

The Cohn-Kanade database [34] consists of 100 university students aged from 18 to 30 years, of  

which 65% were female, 15% were African-American and 3% were Asian or Latino. Subjects were 

instructed to perform a series of 23 facial displays, six of which were based on description of 

prototypic emotions. Image sequences from neutral to target display were digitized into 640 × 490 pixels 

with 8-bit precision for grayscale values. Figure 3 shows some sample images from the Cohn-Kanade 
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database. In this work, 320 image sequences were selected from the Cohn-Kanade database. The selected 

sequences, each of which could be labeled as one of the six basic emotions, come from 96 subjects, with 1 

to 6 emotions per subject. For each sequence, the neutral face and one peak frames were used for 

prototypic expression recognition. Finally, 470 images (32 anger, 100 joy, 55 sadness, 75 surprise,  

47 fear, 45 disgust and 116 neutral) were obtained for experiments. 

Figure 3. Examples of facial expression images from the Cohn-Kanade database. 

 
 

For the raw pixels extraction, the size of original facial images is directly down-sampled to  

32 × 32 pixels. The only reason for resizing the image with 32 × 32 pixels is that all the experiments 

can be performed within the memory size of MATLAB on a typical PC.  

For Gabor wavelets representation and LBP features extraction, our pre-processing is similar to that 

used in [13,15]. We normalized the eye distance of facial images to a fixed distance of 55 pixels once 

the centers of two eyes were located. Generally, it is observed that the width of a face is roughly two 

times of the distance, and the height is roughly three times. Therefore, based on the normalized value 

of the eye distance, a resized image of 110 × 150 pixels was cropped from an original image. 
The cropped facial images of 110 × 150 pixels contain facial main components such as mouth, eyes, 

brows and noses. The Gabor wavelets representation is obtained by convolving the whole region of the 

cropped facial image with the Gabor kernels. Likewise, the LBP features are obtained by applying the 

LBP operator to the whole region of the cropped facial images. Similar to the settings in [13–15,38], 

we selected the 59-bin operator, 2
,

u
P RLBP , where the notation (P, R) denotes a neighborhood of P equally 

spaced sampling points on a circle of radius of R that form a circularly symmetric neighbor set, and the 

superscript u2 in 2
,

u
P RLBP  indicates using only uniform patterns and labeling all remaining patterns with 

a single label. And then we divided the 110 × 150 pixels facial images into 18 × 21 pixels regions, 

giving a good trade-off between recognition performance and feature vector length. Thus facial images 

were divided into 42 (6 × 7) regions, and represented by the LBP histograms with the length of  

2,478 (59 × 42). 
  

surprise         sadness            fear             disgust            anger              joy               neutral 
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4.2. Experimental Results without Occlusion 

When using the raw pixels (i.e., the resized images of 32 × 32 pixels) and LBP features for 

experiments, the corresponding recognition results and standard deviations (std) of different methods, 

including NN, SVM, NS, as well as SRC, are given in Table 1. The recognition results of different 

methods along with reduced dimension of Gabor wavelets representation are presented in Figure 4. 

Table 2 shows the best accuracy of different methods with the corresponding reduced dimension of 

Gabor wavelets representation. The results in Tables 1–2 and Figure 4 reveal that SRC achieves an 

accuracy of 94.76% with the raw pixels, 97.14% with LBP features, and 98.1% at best with 50 reduced 

dimension of Gabor wavelets representation, outperforming the other used methods. This confirms the 

validity and high performance of SRC for facial expression recognition. 

Tables 3–5 displays the confusion matrix of recognition results of SRC with the raw pixels, LBP 

features, and Gabor wavelets representation, respectively. From the results in Tables 3–5, we can see 

that most of seven expressions are identified very well with an accuracy of 100%. 

The obtained recognition accuracy of SRC (i.e., 97.14% with LBP features, and 98.1% with Gabor 

wavelets representation) on 7-class facial expression recognition tasks is highly competitive, compared 

to previously reported results on the Cohn-Kanade database. In [14], on 7-class facial expression 

recognition tasks they employed LBP-based SVM to give the best accuracy of 88.4%. In [13], with 

LBP features and SVM they reported a 7-class recognition accuracy of 91.4% at best. In [37], they 

obtained the highest accuracy of 93.4% with SVM on 7-class tasks, but they used an improved LBP 

features called local directional pattern (LDP). 

Table 1. Recognition results (%) of different methods with the raw pixels and LBP features. 

Methods NN SVM NS SRC 
Raw pixels 92.29 ± 1.9 93.80 ± 2.1 92.74 ± 1.9 94.76 ± 1.7 

LBP 96.22 ± 4.6 95.24 ± 4.2 95.71 ± 5.8 97.14 ± 3.9 

 

Table 2. Best results (%) of different methods with reduced dimension of Gabor wavelets 

representation. 

Methods NN SVM NS SRC 
Dimension 60 80 60 50 
Accuracy 97.14 ± 3.7 96.17 ± 4.0 96.94 ± 4.3 98.10 ± 3.8 

 

Table 3. Confusion matrix of recognition results of SRC with the raw pixels. 

 
Anger 
(%) 

Joy 
(%) 

Sadness
(%) 

Surprise 
(%) 

Disgust 
(%) 

Fear 
(%) 

Neutral 
(%) 

Anger 90 10 0 0 0 0 0 
Joy 0 100 0 0 0 0 0 

Sadness 0 0 90 0 10 0 0 
Surprise 0 0 0 100 0 0 0 
Disgust 0 0 0 0 100 0 0 

Fear 0 0 0 0 0 100 0 
Neutral 0 0 6.67 0 3.33 6.67 83.33 
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Table 4. Confusion matrix of recognition results of SRC with LBP features. 

 
Anger 
(%) 

Joy 
(%) 

Sadness
(%) 

Surprise 
(%) 

Disgust 
(%) 

Fear 
(%) 

Neutral 
(%) 

Anger 90 0 0 0 0 0 10 
Joy 0 100 0 0 0 0 0 

Sadness 3.33 0 90 0 0 0 6.67 
Surprise 0 0 0 100 0 0 0 
Disgust 0 0 0 0 100 0 0 

Fear 0 0 0 0 0 100 0 
Neutral 0 0 0 0 0 0 100 

 

Table 5. Confusion matrix of recognition results of SRC with 50 reduced Gabor wavelets 

representation. 

 
Anger 
(%) 

Joy 
(%) 

Sadness
(%) 

Surprise 
(%) 

Disgust 
(%) 

Fear 
(%) 

Neutral 
(%) 

Anger 100 0 0 0 0 0 0 
Joy 0 100 0 0 0 0 0 

Sadness 0 0 100 0 0 0 0 
Surprise 0 0 0 96.67 0 0 3.33 
Disgust 10 0 0 0 90 0 0 

Fear 0 0 0 0 0 100 0 
Neutral 0 0 0 0 0 0 100 

 

Figure 4. Recognition results of different methods with reduced dimension of Gabor 

wavelets representation. 
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4.3. Experimental Results with Occlusion 

In this section, we used the resized image of 32 × 32 pixels from the Cohn-Kanade database to 

verify the robustness of SRC to two kinds of occlusions, i.e., the random pixel corruption and the 

random block occlusion. 
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Figure 5. A corrupted image example (a) Original image of 640 × 490 pixels; (b) Resized 

image of 32 × 32 pixels; (c) 50% corrupted image. 

 

At first, we consider the recognition of facial expressions with different percentage of image pixels 

corrupted at random. The percentage of the pixels are randomly chosen from each of test image and 

replaced by random values in the range [0, Mi], where Mi is the maximum pixel value in the ith test 

image. The percentage of corrupted pixels varies from 0% to 90%. Figure 5 gives an example of a 50% 

corrupted face image on the resized image of 32 × 32 pixels. As shown in Figure 5, beyond 50% 

corruption, the corrupted images are scarcely identified as facial images. Figure 6 plots the recognition 

accuracy of all used methods, i.e., NN, SVM, NS and SRC, under different percentage corrupted from 

0% to 90%. It can be observed that the performance of all used methods decreased as the percentage 

corrupted increased. Nevertheless, SRC still dramatically outperforms the other used methods at 

various levels of corruption. This indicates SRC is more robust to the random pixels corruption than 

the other used methods. 

Figure 6. Recognition accuracy under different percentage corrupted. 
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We next investigate the robustness of SRC to the random block occlusion. We simulate this 

situation under different percentage occluded, from 0% to 50%, by replacing a randomly located 

square block of each test image with an unrelated image of a baboon, as shown in Figure 7(a). Note 

that, the location of occlusion is randomly chosen for each image and is unknown to the algorithm. 

Figure 7 shows an example of a 30% occluded face image. To the human eye, beyond 30% occlusion, 

(a)                                     (b)                                     (c) 
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the entire facial regions have been almost completely occluded. In this case, it’s a difficult recognition 

task even for humans. Figure 8 gives the recognition performance of SRC and its three competitors, as 

a function of the percentage occluded from 0% to 50%. As illustrated in Figure 8, we can see that the 

recognition accuracy of SRC significantly exceeds that of other used methods at various levels of 

occlusion. This demonstrates SRC achieves a higher level of robustness to the random block occlusion 

in comparison with the other used methods. 

Figure 7. An occluded image example (a) Baboon; (b) Original image of 640 × 490 pixels; 

(c) Resized image of 32 × 32 pixels; (d) 30% occluded image. 

 

Figure 8. Recognition accuracy under different percentage occluded. 
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5. Conclusions 

In this paper, we present a new technique of robust facial expression recognition via sparse 

representation classifier (SRC) based on the CS theory. Experimental results on the popular  

Cohn-Kanade facial expression database demonstrate that SRC obtains promising performance on 

facial expression recognition without occlusion, and exhibits a strong robustness to the random pixel 

corruption and the random block occlusion occurred in facial expression images. It’s worth pointing 

out that in this work for simplicity we only focus on the static 2D facial expression recognition. In 

recent years, 3D facial expression recognition has been considered as a major solution to handle the 

unsolved issues of reliable 2D facial expression recognition, i.e., illumination and pose changes. 

(a)                             (b)                               (c)                              (d) 
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Therefore, it’s also an interesting task to investigate the performance of the presented method for 3D 

facial expression recognition. 
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