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Abstract

While fully-convolutional neural networks are very

strong at modeling local features, they fail to aggregate

global context due to their constrained receptive field. Mod-

ern methods typically address the lack of global context

by introducing cascades, pooling, or by fitting a statisti-

cal model. In this work, we propose a new approach that

introduces global context into a fully-convolutional neural

network directly. The key concept is an implicit kernel con-

volution within the network. The kernel convolution blurs

the output of a local-context subnet, which is then refined

by a global-context subnet using dilated convolutions. The

kernel convolution is crucial for the convergence of the net-

work because it smoothens the gradients and reduces over-

fitting. In a postprocessing step, a simple PCA-based 2D

shape model is fitted to the network output in order to filter

outliers. Our experiments demonstrate the effectiveness of

our approach, outperforming several state-of-the-art meth-

ods in facial landmark detection.

1. Introduction

Facial landmark detection is a well-studied topic in the

field of computer vision with many applications such as face

analysis, face recognition, or face modeling; see [22] for

a review. The high variability of shapes, poses, lighting

conditions, and possible occlusions makes it a particulary

challenging task even today. In contrast to face recognition,

where modern approaches using convolutional neural net-

works (CNNs) are beyond human-level performance [33],

computers are still below par at facial landmark detec-

tion [8].

Classical CNN-based architectures start off with a num-

ber of convolutional layers that are aggregated by fully-

connected layers at the end. Recently, the trend has

shifted towards using fully-convolutional networks, dis-

pensing with full connections. Fully-convolutional net-

works did not only prove successful in facial landmark de-

tection [40], but also in other applications such as image

classification [26, 32] or object detection [25]. This is be-

cause fully-convolutional architectures come with several

advantages that are especially useful for heatmap regression

tasks in general and facial landmark detection in particular:

1. They are independent of image resolution

2. They do not depend on proper regions of interest such

as bounding boxes from a face detector

3. They can handle both empty and multiple outputs per

input (e.g., multiple faces)

4. They can handle cropped or occluded images to a rea-

sonable extent, degrading gracefully

5. They require fewer trainable parameters and conse-

quently have a lower memory footprint

Fully-convolutional networks also come with a huge

drawback: They have a limited receptive field and thus lack

global context [21]. In other words, global context must be

introduced by other measures that do not share the disad-

vantages of fully-connected architectures [24].

Our method builds on the idea that global context can

be integrated in a fully-convolutional network by rigorously

extending the effective receptive field of the network. This

extension is achieved by a channel-wise convolution with a

two-dimensional kernel, or simply kernel convolution, fol-

lowed by a global-context subnet based on dilated convolu-

tions. We will refer to the extended local context as global

context, but learned patterns are still purely relative rather

than absolute. For example, there is no bias on the face

location within the image due to the fully-convolutional de-

sign.

The major contributions of this work are the following:

• We incorporate a kernel convolution directly within a

neural network.

• We exploit the kernel convolution in order to robustly

increase the receptive field (i.e., context) of the net-

work using dilated convolutions.
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• We demonstrate the effectiveness of our approach by

improving upon the state of the art on 300-W [28] and

a cross-data set test on Menpo [41].

• We demonstrate qualitatively that our approach does

not depend on prior face detections

2. Related work

Related work can be divided into two general groups:

Facial landmark detection-specific methods and heatmap

regression methods relying on fully-convolutional architec-

tures. The former methods can be subdivided further into

model-based and regression-based methods.

2.1. Modelbased landmark detection

Saragih et al. [30] built a constrained local model based

on the concept of a regularized mean shift. Another con-

strained local model based on neural fields (CLNF) was

developed by Baltrušaitis et al. [4]. More recently, He et

al. [12] expressed the problem of landmark detection as a

non-linear mapping between an input image and a shape,

which they modeled via a deep cascade of convolutional

subnets. Specifically addressing profile faces, a 3D dense

face alignment (3DDFA) was suggested by Zhu et al. [45]

who used a CNN to update the parameters of a 3D mor-

phable model. Similarly, Güler et al. [11] built a CNN to

regress a statistical shape model by computing a bijective

mapping from a 3D template mesh to the 2D image.

2.2. Regressionbased landmark detection

Zhang et al. [43] trained a task-contrained CNN to a set

of features trained from multiple tasks (TCDCN). Sun et

al. [31] suggested a coarse-to-fine shape regression method

and, similarly, Zhu et al. [44] performed a cascaded coarse-

to-fine shape searching (CFSS). Xiong and De la Torre [37]

developed the supervised descent method (SDM) which it-

eratively finds the shape of the face by minimizing an L2

loss. It is also possible to linearly regress the features ex-

tracted by a coarse-to-fine autoencoder (CFAN) as demon-

strated by Zhang et al. [42]. Tzimiropoulos [35] developed

the method of project out cascaded regression (PO-CR)

which is another cascaded regression technique. Xiao et

al. [36] built a recurrent 3D regressor network that itera-

tively refines the output of a (regressional) feature network.

Regressing heatmaps from local patch experts,

Asthana et al. [1] propose a discriminative response

map fitting approach (DRMF). Finally, Zadeh et al. [40]

used a constrained local model supported by convolutional

experts to regress facial landmarks from heatmaps (CE-

CLM). Both Asthana et al. [1] and Zadeh et al. [40] train a

set of local patch experts; global context is later induced by

a point distribution model. That is, global context is only

considered by the models, not by the patch responses.

2.3. Fullyconvolutional heatmap regression

Heatmap regression in the domain of deep learning is

most commonly used for dense pixel-wise classification

problems such as foreground-background segmentation [2]

or object segmentation [3, 23]. Recently, however, heatmap

regression has been applied successfully to sparse problems

such as human pose estimation [6, 24, 34]. While all three

of these works found that using a kernel convolution is ben-

eficial, they did not incorporate this convolution into the

network. Their networks thus have to waste resources on

learning how to reconstruct the kernel in the output. Pfis-

ter et al. [24] furthermore noticed the lack of global con-

text in their fully-convolutional network and consequently

increased the receptive field by using larger filters (e.g.,

15×15) for the convolutional layers in a separate spatial fu-

sion branch. The problem with larger filters is that they are

overfitting very easily and the increase in context is very

limited.

Context aggregation of heatmaps with the help of dilated

convolutions was first proposed by Yu and Koltun [39] in

the setting of object segmentation. They do not use any ker-

nel, which works well in their application because objects

are large compared to facial landmarks.

3. Local-global context network

We pursue a heatmap regression approach similar to

Zadeh et al. [40]. The major advantage of our approach

is that the network takes into account global context, which

is then refined by a point distribution model during post-

processing. Furthermore, our network is more robust since

it does not rely on region proposals, which constitute an

additional source of errors. Both Zadeh et al. [40] and Pfis-

ter et al. [24] place a normal distribution on the ground truth

labels. In contrast to their approaches, our kernel convolu-

tion is applied implicitly, which allows the network to fo-

cus fully on landmark detection. By using dilated convolu-

tions to increase the context of the network, the overfitting

problems of Pfister et al.’s approach are avoided. Note that

the successful use of dilated convolutions for global context

heavily depends on the implicit kernel convolutions.

3.1. Preprocessing

The training and test data is generated by cropping the

images to the (squared) bounding boxes provided by the

data sets. The cropped images are then scaled to 96×96px,

defensively following the findings of Knoche et al. [18],

who showed that landmark detection performance typically

caps at face resolutions larger than approximately 50×50px.

We convert all input images to grayscale since our experi-

ments revealed that performance is on par with or some-

times even superior to RGB or HSV input, probably due to

overfitting. This is no requirement for our method, images
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Figure 1. The network architecture used throughout this work.

could be scaled and padded in any fashion. If not for paral-

lelized training in mini-batches, the images could even be of

different sizes due to the network being fully convolutional.

Each landmark is represented by a separate heatmap,

which can be interpreted as a grayscale image in the range

[0, 1]. The ground-truth landmark coordinates are set to

white, bilinearly interpolated on a black background. In

other words, each ground-truth heatmap contains up to 4
non-zero pixels per face that sum up to 1.

3.2. Network architecture

The general structure of our network is illustrated in Fig-

ure 1. In summary, the network consists of four consecutive

parts, which will be addressed individually in the following

subsections:

1. Local-context, fully-convolutional network

2. Convolution with a (customizable) static kernel

3. Global-context, dilated fully-convolutional network

4. Square error-like loss versus kernel-convolved labels

3.2.1 Local-context subnet

The local-context subnet serves as a local detector of fa-

cial landmarks from low-level features. On image resolu-

tions such as 96×96px, facial landmarks are already very

discriminative on the local level. The local-context subnet

thus plays an important role in the overall performance of

the network. Our local-context subnet consists of a stack of

15 zero-padded convolutional layers, followed by a linear

1×1 convolution at the end to compensate batch normaliza-

tion [14].

3.2.2 Kernel convolution

The output of the local-context subnet is convolved with

a kernel in channel-wise fashion. The kernel convolution

can also be interpreted as a grouped convolution [13] with

group size 1. It is computed explicitly both during training

and inference. Nevertheless, we refer to this convolution

as implicit because it is transparent to the network during

backpropagation. So to speak, the local-context subnet does

not “know” that a kernel convolution is actually applied, al-

lowing the local-context network to produce clear and sharp

outputs.

The kernel convolution serves two main purposes:

1. The pixel-wise square loss now correlates with the dis-

tance between prediction and ground truth.

2. The global-context subnet can take advantage of di-

lated rather than dense convolutions.

Without the kernel convolution, the predicted and

ground-truth heatmaps are basically discrete indicator func-

tions of the landmark position (neglecting sub-pixel posi-

tions). Since the square loss between two indicators is 1
almost everywhere, the slightest mistakes would be penal-

ized just as much as big mistakes. This ultimately leads to

the network converging to a state where it is very hesitant to

output anything. The kernel acts as a blurring mechanism

on those indicator functions. In terms of the loss function to

be minimized, the kernel smoothens the surface, reducing

local minima by making them more shallow. At the same

time, the global minimum’s position is unaffected, but being

less steep, it is more accessible via gradient descent.

The design of the kernel is flexible and can be used to

trade off accuracy versus outlier robustness. We restrict our

analysis to the kernel that performed overall best in our ex-

periments, that is, a sum of five Gaussian functions, normal-

ized to a maximum of 1 at the center:

K =
2π

5

5
∑

s=1

(2s− 1)2N2

(

0, (2s− 1)2
)

, (1)

where N2(µ, σ
2) is the symmetric bivariate normal dis-

tribution with mean µ and variance σ2. For computational
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Figure 2. Best viewed in color. Top left: Visualization of the kernel

K (Eq. 1). Top right: Square error of two kernels shifted against

one another, normalized to twice the kernel square area. Bottom:

Centered slice through the top right figure. The horizontal line

separates reward (i.e., below threshold) and penalty (i.e., above

threshold) for the network.

efficiency, we truncate the kernel to 45×45px. We empiri-

cally found that this kernel yields a good trade-off between

accuracy and robustness. Figure 2 visualizes the effect of

the square error between two such kernels shifted against

one another. The network is rewarded for predictions closer

or equal to approximately 11px and penalized otherwise.

The square error reveals very smooth gradients in this case,

which is beneficial for the convergence properties of the net-

work.

3.2.3 Global-context subnet

The global-context subnet’s task is to aggregate the output

of the local subnet. Pfister et al. [24]’s approach is to create

a second branch in the network using comparatively large

convolutions, for example, 15×15px. Using large convolu-

tions makes the network overfit very easily due to the vast

amount of parameters. We avoid overfitting by using dilated

convolutions instead. The dilated convolutions increase the

receptive field of the network substantially while keeping

the number of parameters low.

On the downside, dilated convolutions undersample the

input, which creates non-continuous outputs for sparse in-

puts. In the application of facial landmark detection, a non-

continuous output is problematic because there may be a lot

of undesirable outlier activations. From a signal processing

point of view, dilated convolutions can lead to sampling arti-

facts, which again may lead to Moiré patterns in the output.

Our approach is very resistant against such artifacts because

the input is already smoothened by the kernel convolution

(i.e., it is low-pass filtered).

Figure 3. Best viewed in color. Examples of paired heatmap ac-

tivations of the local-context and full network. Top row: Kernel-

convolved output of the local-context subnet, i.e., K ∗ O
l. Bot-

tom row: Output Ω of the full network. Note that the output

of the global-context subnet can be expressed in terms of both:

O
g
= Ω − K ∗ O

l (Eq. 2). In practice, most of the outputs look

like the leftmost image.

As mentioned in Section 3.2.1, local features are very

discriminative. Consequently, the local-context subnet

alone performs relatively well already. Therefore, instead

of having the global-context subnet predict the landmark

positions from scratch, it is only supposed to refine the pre-

dictions of the local-context subnet. This is achieved by

summation of the local output Ol and the global output Og

in the final network output Ω:

Ω = Ol
∗K +Og. (2)

The rationale behind our approach is that the global-

context subnet should not focus on pixel accuracy but rather

on the big picture. For example, the local-context subnet

may produce two distinct “right eye” activations; maybe it

could not distinguish the left from the right eye, or maybe

there are two faces on the image. The dilated convolutions

permit the network to check whether there were conflict-

ing (e.g., “left eye”) or supportive activations (e.g., “right

eyebrow”) in the vicinity. The gathered information is then

used to reduce or reinforce those activations accordingly.

Figure 3 juxtaposes the kernel-convolved output of the

local-context subnet with the final output. While the local-

context subnet is able to detect many landmarks on its own,

it is confused a number of times and cannot find unique

landmark locations. The global-context subnet is able to

consider all output channels of the local-context subnet si-

multaneously, but with a much broader field of view. In

situations where the local features are not discriminative

enough, the global-context subnet will jump in and try to

find a plausible prediction. Otherwise it is mostly inactive.

Our global-context subnet consists of seven consecutive

zero-padded dilated convolutions with dilation factor d = 4
(i.e., every 4th pixel is sampled) and kernel sizes 3×3, fol-

lowed by a linear 1×1 convolution at the end to compen-

sate batch normalization [14]. We also considered using

deformable convolutions [7] and found that they achieve

similar performance, but at a higher computational cost.
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3.2.4 Loss

Training data for facial landmark detection is not always

complete, which is problematic during training. Most

databases are only partially labeled, for example, if land-

marks are heavily occluded. We address this problem by ex-

cluding non-labeled landmarks from the loss. Furthermore,

we weight each of N landmarks depending on whether they

lie within the image boundary:

wij = V (i, j) +
L(i, j)

10
+

L(i, j)

2N

N
∑

k=1

V (i, k), (3)

where V (i, j) and L(i, j) are indicator functions with

L(i, j) = 1 iff landmark j in face i is labeled and V (i, j) =
1 iff landmark j in face i is within the image boundary, zero

otherwise. Note that L(i, j) = 0 implies V (i, j) = 0. The

loss function of the network is then computed as a weighted

square error:

ǫi =
N
∑

n=1

win

(

((Ol
n−Gn)∗K)2+(Og

n−Gn ∗K)2
)

. (4)

Ol
n and Og

n are the nth channels of the local- and global-

context subnet outputs, respectively. K is the kernel (Eq. 1)

and Gn the ground truth heatmap for landmark n. For ef-

ficiency, the kernel convolution after stacking is reused for

the loss. Only Og is used for inference, but including Ol

in the loss function proved to have a positive regularization

effect on the network. This is intuitive given that the global-

context subnet starts off from whatever the local-context

subnet generates.

We also tested a pixel-wise cross entropy loss for the

heatmaps, using an additional channel for background such

that probabilities sum up to 1. The overall prediction per-

formance on 300-W [28] was worse using cross entropy.

However, preliminary experiments with the Kaggle facial

keypoint challenge data set [16] suggested that cross en-

tropy outperforms square error by a considerable amount.

Kaggle provides comparatively few facial landmarks (i.e.,

15); although we did not find conclusive evidence, we rea-

son that cross entropy works better for small numbers of

landmarks. On the one hand, cross entropy creates bene-

ficial competition between landmarks. On the other hand,

if the landmarks are too crowded, the competition may be-

come too strong, impairing performance.

3.3. From heatmaps to coordinates

In order to compute the inter-pupil normalized error,

landmark coordinates must be extracted from the heatmaps

created by the network. Since our approach is not re-

stricted to tightly cropped images, there may be multiple

faces and/or truncated faces to account for. A simple max-

imum search is therefore only adequate in benchmark set-

tings where the number of visible landmarks (and faces) is

known a priori.

The most trivial approach is to apply a threshold and con-

sider the channel-wise local maxima as positive detections.

We found that this works pretty well already, but can some-

times result in outliers. So instead, we interpret the output

heatmaps as likelihoods and fit an outlier-robust PCA-based

2D shape model. The model is able to recover from false

detections, but also reconstruct occluded or truncated land-

marks to a reasonable extent.

For fitting, we first find the approximate rotation of the

face using Kabsch’s algorithm [15] on the heatmap activa-

tions. Next, we generate a linear system of equations, where

each heatmap pixel accounts for an equation, weighted by

the pixel value. The equations are solved via linear least

squares. Only those equations with weights greater than

1% per landmark are considered to save computations.

To reduce the impact of outliers, the fitting result is it-

eratively refined by considering only those pixels within a

certain radius around the prediction. In total, we run three

iterations: Global, 20px, and 7px. The model is trained on

the same training sets as the network.

4. Experiments

We provide all configurations, models, and code at

https://www.mmk.ei.tum.de/cvpr2018/. The

network is trained with Microsoft’s Cognitive Toolkit

(CNTK) [38] in minibatches of 20 images using stochastic

gradient descent with momentum. Especially at the begin-

ning of training, the gradients are very large due to the high

number of sparsely activated heatmap pixels. We therefore

apply gradient clipping with a threshold of 10% in order to

avoid exploding gradients. Except for the output layers, all

layers are subject to batch normalization [14] with ReLU

activations and 10% dropout. On a GTX 1080 Ti, training

runs at about 20 samples per second; training 75 epochs on

300-W takes about 2.5 hours per augmentation.

We use 90% of the data for training and 10% for vali-

dation. After splitting, the training data is augmented via

horizontal mirroring, ±12.5% scaling, and ±30◦ rotation,

increasing the training set size by a factor of 18. The model

that performs best on the validation set is then selected for

testing. Specifically for Menpo [41], since no bounding

boxes are provided, we take the tight (squared) bounding

box around the ground truth landmarks, enlarged by 17%.

For a fair comparison with other works, we deliber-

ately refrain from using computationally expensive post-

processing methods such as model-averaging via test-time

dropout [9] or test-time data augmentation. We found that

the error can be reduced by 5 − 10% (relative) on average

with a tenfold ensemble using either of those methods.

785

https://www.mmk.ei.tum.de/cvpr2018/


0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

size normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CLNF

CFAN

3DDFA

CFSS

TCDCN

CE-CLM

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

SDM

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

SDM

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

IOD normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CE-CLM

CLNF

3DDFA

DRMF

CFSS

TCDCN

SDM

ours

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

size normalized MAE

0

0.2

0.4

0.6

0.8

1

p
ro

p
o
rt

io
n
 o

f 
im

a
g
e
s

CLNF

CFAN

3DDFA

CFSS

TCDCN

PO-CR

SDM

DRMF

CE-CLM

ours

Figure 4. Best viewed in color. Quantitative results of our approach trained on the 300-W training set. Top/bottom row: With/without

face outline. From left to right: 300-W [28], iBUG [29], LFPW [5] + HELEN [20], Menpo frontal train set [41]. The dashed line depicts

the performance of our network without model fitting (i.e., simple heatmap-wise maximum). Our approach is clearly more robust against

outliers than other methods, most prominently on the challenging iBUG test set. Most of the time we are also more accurate.

4.1. Quantitative results

We evaluate our approach using the code provided

by Zadeh et al. [40]. Where possible, we com-

pare against the model-based approaches CLNF [4] and

3DDFA [45] (Section 2.1) as well as the regression-

based approaches TCDCN [43], CFSS [44], SDM [37],

CFAN [42], PO-CR [35], DRMF [1], and CE-CLM [40]

(Section 2.2). Figure 4 illustrates the results for inter-ocular

distance (IOD) normalized mean absolute error (MAE) on

the 300-W benchmark [28] and on a cross-data set test with

Menpo [41]. Note that we use fewer data augmentations

during training than CE-CLM (×18 vs. ×56). Furthermore,

some works train on slightly different data than 300-W, for

example, Multi-PIE [10] instead of AFW [46] (e.g., CE-

CLM [40]). Nevertheless, the differences are relatively

marginal so that the comparison is still fair overall.

From the top row of Figure 4, most notably, our approach

is much more outlier robust than other methods, especially

for the very challenging iBUG test set. Only 4 of the 689
300-W test images have an error of more than 10% IOD,

whereas the next-most robust algorithm CE-CLM [40] fails

for 28 images. At the same time, we outperform the other

methods over most of the spectrum. Interestingly, not

much performance is gained from the 2D PCA-based shape

model, which is proof that our local-global context network

indeed learned to interpret global context on its own.

The face outline is considered to be very challenging

due to the high variation and inaccurate ground truth labels.

When the face outline is not considered (Figure 4, bottom

row), we are still better, but the margin to CE-CLM shrinks.

We derive that our model deals very well with label vari-

ance and succeeds in finding good face outlines even under

occlusion.

Following Zadeh et al. [40], we also report the median

landmark error on 300-W and the Menpo cross-data set

test in Table 1. Comparing the median error, we still per-

form overall better than CE-CLM by Zadeh et al. [40], but

the differences are less significant compared to Figure 4.

This indicates that the local patch experts of Zadeh and

colleagues provide better local predictions than our local-

context subnet.

4.2. Qualitative results

Some qualitative results on the 300-W challenge data

set [28] are presented in Figure 5. The top four rows show a

selection of images with difficult poses, expressions, light-

ing conditions, and/or occlusions. The results demonstrate

that our approach is very robust even under difficult condi-

tions. The bottom row depicts the worst 10 results from the

benchmark set. Arguably, not all among the 10 worst results

are failure cases, which is partly due to debatable ground

truth labels, especially for the face outlines. The most

challenging images are profile images with self-occlusions.

This is mostly because the PCA-based 2D model is not able

to accurately represent 3D rotational information and dis-

torts the shape of the face near the occlusion, for example,

in the 5th image of the bottom row.

4.3. Face detectionless landmark detection

While the benchmark results so far revealed superior per-

formance compared to other methods, the experiments were

done in a controlled setting: Only one face per image with

uniform image and face resolutions. In the wild, this is usu-

ally achieved via a robust face detector. One benefit of our

approach compared to other methods is that no face detec-

tor is required. In this section, we present a proof of concept

for this claim.
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Method

Data
iBUG [29]

LFPW [5] +

HELEN [20]

Menpo [41]

(frontal)

CLNF [4] 6.37/4.93 3.47/2.51 2.66/2.10
SDM [37] − /10.73 − /3.31 − /2.54

CFAN [42] 8.38/6.99 − /− 2.87/2.34
DRMF [1] 10.36/8.64 4.97/4.22 − /3.44
CFSS [44] 5.97/4.49 3.20/2.46 2.32/1.90

TCDCN [43] 6.87/5.56 4.11/3.32 3.32/2.81
3DDFA [45] 12.31/8.34 7.27/5.17 4.51/3.59
PO-CR [35] − /3.33 − /2.67 − /2.03

CE-CLM [40] 5.62/4.05 3.13/2.23 2.23/1.74

Ours (no model fit) 5.55/4.36 3.04/2.34 2.27/1.90
Ours 5.29/4.18 2.86/2.21 2.14/1.79

Table 1. Median IOD-normalized MAE with/without face outline for iBUG [29] and LFPW [5] + HELEN [20]. Median image size-

normalized MAE with/without face outline for Menpo [41]. The best performance is highlighted in bold. While our approach does not

achieve the best median performance on all datasets, the performance is very consistent.

Figure 5. Best viewed in the digital version. Qualitative results of our approach on the 300-W benchmark. The images are sorted according

to their error (top left is best, bottom right is worst). All but the first two images shown are worse than the average case. More precisely,

the mean and median errors of the images in rows 1 through 4 are in the 76.5% and 83.6% quantiles of the test set, respectively. The 5th

row displays the 10 worst results. Note that the results are displayed in color, but our network only uses grayscale information.

First, the network is trained with one slight modifica-

tion: We add 30 000 non-face images from IJB-B [17] to the

training set. This is not a strict requirement, but without the

non-face background images from IJB-B, there would be

more outlier activations in the background. Everything else

remains unchanged. Weighting the loss according to Equa-

tion 3 is key when training with background images, oth-

erwise the network focuses too much on background rather

than faces.

With this adapted network in place, we manually se-

lect images with multiple faces at multiple scales from

AFLW [19] and feed them through the network. We start

at the original resolution, iteratively reducing resolution by

factors of two. The process stops with the first resolution

below 96×96px. For example, a 640×480px image would

require four iterations, the last one being 80×60px. The

heatmap outputs are then scaled up to the original resolu-

tion and combined via a pixel-wise hard maximum. Local
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Figure 6. Best viewed in the digital version. Proof of concept for our face detection-less landmark detection on a selection of AFLW

images [19]. Left: Full pipeline with resulting landmark predictions. Right: Three further examples. For the purpose of better visualization,

we normalize the heatmaps to a maximum of 1 per channel and enhance the contrast. We compute and display the per-pixel maximum of

the heatmaps generated by our local-global context network at different scales of the input image (×1 −×8). The combined heatmap is

again the pixel-wise maximum of all four resampled outcomes. After clustering the groups of candidate detections into regions of interest,

we apply a 2D PCA-based shape model to the non-normalized heatmaps, yielding the final landmark predictions.

maxima above a simple threshold within each heatmap rep-

resent candidate detections. The candidate detections are

clustered to generate face hypotheses which are verified or

rejected by fitting the PCA-based shape model from Sec-

tion 3.3. Some qualitative results using this approach are

illustrated in Figure 6.

5. Conclusion

We proposed a new network architecture for facial land-

mark detection via fully-convolutional heatmap regression.

The core concept is an implicit kernel convolution between

a local-context subnet and a global-context subnet com-

posed of dilated convolutions. The local-context subnet is

responsible for landmark proposals, which are refined by

the global-context subnet. In a postprocessing step, a PCA-

based 2D shape model is fitted to the heatmaps generated by

the network in order to retrieve landmark coordinates. Our

approach beats the state of the art on 300-W [28] and on a

cross-data set test with Menpo [41]. We demonstrated that

our network, in contrast to other methods, does not require

a face detector and can handle multiple faces at multiple

resolutions.

Although we apply our approach specifically to facial

landmark detection, the concept can be generalized to any

heatmap-like regression tasks, for example, foreground-

background segmentation [2], object segmentation [39], hu-

man pose estimation [6, 24, 34], etc. Specifically, net-

works building on fully-convolutional architectures such as

U-Net [27] or SegNet [3] may profit from our approach.
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[11] R. A. Güler, G. Trigeorgis, E. Antonakos, P. Snape,

S. Zafeiriou, and I. Kokkinos. Densereg: Fully convolutional

dense shape regression in-the-wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6799–6808, 2017. 2

788



[12] Z. He, J. Zhang, M. Kan, S. Shan, and X. Chen. Robust

fec-cnn: A high accuracy facial landmark detection system.

In Proceedings of the International Conference on Computer

Vision and Pattern Recognition (CVPRW), Faces-in-the-wild

Workshop/Challenge, volume 3, page 6, 2017. 2

[13] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi.

Deep roots: Improving cnn efficiency with hierarchical fil-

ter groups. arXiv preprint arXiv:1605.06489, 2016. 3

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International Conference on Machine Learning, pages 448–

456, 2015. 3, 4, 5

[15] W. Kabsch. A solution for the best rotation to relate two

sets of vectors. Acta Crystallographica Section A: Crystal

Physics, Diffraction, Theoretical and General Crystallogra-

phy, 32(5):922–923, 1976. 5

[16] Kaggle. Facial keypoint detection competition. 2016. 5

[17] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney,

K. Allen, P. Grother, A. Mah, and A. K. Jain. Pushing

the frontiers of unconstrained face detection and recognition:

Iarpa janus benchmark a. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1931–1939, 2015. 7

[18] M. Knoche, D. Merget, and G. Rigoll. Improving facial land-

mark detection via a super-resolution inception network. In

German Conference on Pattern Recognition, pages 239–251.

Springer, 2017. 2

[19] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. An-

notated facial landmarks in the wild: A large-scale, real-

world database for facial landmark localization. In IEEE

International Conference on Computer Vision Workshops,

pages 2144–2151, 2011. 7, 8

[20] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. In-

teractive facial feature localization. In European Conference

on Computer Vision, pages 679–692. Springer, 2012. 6, 7

[21] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding

the effective receptive field in deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 4898–4906, 2016. 1

[22] B. Martinez and M. F. Valstar. Advances, challenges, and op-

portunities in automatic facial expression recognition. In Ad-

vances in Face Detection and Facial Image Analysis, pages

63–100. Springer, 2016. 1

[23] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1520–

1528, 2015. 2

[24] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets

for human pose estimation in videos. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1913–1921, 2015. 1, 2, 4, 8

[25] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 1

[26] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in Neural Information Processing Systems, pages

91–99, 2015. 1

[27] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 234–241. Springer,

2015. 8

[28] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou,

and M. Pantic. 300 faces in-the-wild challenge: Database

and results. Image and Vision Computing, 47:3–18, 2016. 2,

5, 6, 8

[29] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.

300 faces in-the-wild challenge: The first facial landmark

localization challenge. In Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, pages

397–403, 2013. 6, 7

[30] J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable model

fitting by regularized landmark mean-shift. International

Journal of Computer Vision, 91(2):200–215, 2011. 2

[31] Y. Sun, X. Wang, and X. Tang. Deep convolutional network

cascade for facial point detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3476–3483, 2013. 2

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 1

[33] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1701–1708, 2014. 1

[34] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-

ing of a convolutional network and a graphical model for

human pose estimation. In Advances in Neural Information

Processing Systems, pages 1799–1807, 2014. 2, 8

[35] G. Tzimiropoulos. Project-out cascaded regression with an

application to face alignment. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3659–3667, 2015. 2, 6, 7

[36] S. Xiao, J. Li, Y. Chen, Z. Wang, J. Feng, S. Yan, and A. Kas-

sim. 3D-assisted coarse-to-fine extreme-pose facial land-

mark detection. In Proceedings of the International Confer-

ence on Computer Vision and Pattern Recognition (CVPRW),

Faces-in-the-wild Workshop/Challenge, volume 3, page 6,

2017. 2

[37] X. Xiong and F. De la Torre. Supervised descent method

and its applications to face alignment. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 532–539, 2013. 2, 6, 7

[38] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang,

B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al.

An introduction to computational networks and the compu-

tational network toolkit. Microsoft Technical Report MSR-

TR-2014–112, 2014. 5

[39] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

2, 8

[40] A. Zadeh, Y. C. Lim, T. Baltrušaitis, and L.-P. Morency.
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