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The advances in topological condensed matter physics enable the manipulation of classic waves in different

ways, such as unidirectional propagation featuring the suppression of backscattering and the robustness against

impurities and disorder, making it possible to endow classical phenomena with topological properties. Fano

resonance, a widely spread and basic kind of resonance, features an asymmetric line shape with an ultrahigh

quality factor Q that usually requires delicate designs and precise fabrication. In this work, we achieve a robust

Fano mechanical resonance with topological protection by engineering band inversion of two different vibrating

symmetries of a pillared beam that gives rise to dark and bright edge modes. The Fano resonance results

from the constructive and destructive interferences between topological dark and bright modes. It is further

demonstrated that the Fano asymmetric shape of the transmission peak and its frequency are robust against

random perturbations in the pillars’ position as long as the symmetry is conserved. If random perturbations break

the symmetry and only band inversion is involved, the asymmetric line shape of the Fano resonance weakens

until disappearing before the closure of the bulk band gap, since the excitation will couple all fundamental

modes of the beam. The analysis of the robustness of Fano resonance originating from band inversion and

symmetry protection reveals the nature of topological protection which can be applied to design topological

high-Q resonance in sensing application.

DOI: 10.1103/PhysRevB.101.024101

I. INTRODUCTION

Fano resonance [1] refers to the asymmetric spectral peaks

in wave scattering that widely exist in quantum systems,

optics, plasmonics, photonic or phononic crystals, and meta-

materials [2–6]. It can be theoretically interpreted as the

coupling of two resonant states with largely different quality

factors. The constructive and destructive interferences of these

two resonances, each featuring a sharp spectrum, can generate

an asymmetric line shape beneficial for various applications,

such as beam filters, sensors, low threshold lasers, and signal

communications [7–13]. However, the realization of a very

high quality factor Q Fano resonance poses great challenges

to the fabrication processes and operating environments. In

these situations, geometrical imperfections (defects, impuri-

ties, disorders, etc.) can easily occur, resulting in the shift

of the resonances and the disappearance of the asymmetric

line shape.

Recently, the rapid development of topological insulators

[14–16], featuring both the suppression of the backscat-

tered waves and robustness against impurities, has been

extended from condensed matter physics to classical areas

of physics, including acoustics and elasticity of continuous

media [17–29]. Such an extension provides an alternative

approach to realize robust wave guiding and topologically
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selective wave splitting in finite-hole-drilled phononic crystal

plates at Bragg frequency range [30] or in pillared phononic

crystal plates in the subwavelength scale [29], which can

be applied to information transmission. Topologically pro-

tected propagation can be obtained at a domain wall between

insulating phononic crystals with different bulk topological

properties, consistently with the well-known bulk-edge cor-

respondence. By specifically engineering the corresponding

constituents, topological edge states featuring either a high

Q (dark mode with a narrow-band transmission) or a low Q

(bright mode with a wideband transmission) can be achieved.

Furthermore, by optimizing the designs in such a way that

these two modes overlap in a common frequency interval, a

topological Fano resonance may be formed which is immune

to geometrical perturbations. The achievement in an airborne

acoustic configuration was recently reported in Ref. [31].

However, the realization of topological Fano resonance in

elastic media has not been explored yet, despite the fact

that the topologically protected Fano resonance in elastic

continuous systems is strongly desired for solid functional

devices intended for signal processing and sensing [32] at

the nano- and microscales. Unlike airborne sound waves with

only one polarization, elastic waves in continuous media have

different polarizations (e.g., four polarizations in a beam as

studied in this work) which are usually coupled, making it

more challenging in mode characterizations and experimental

measurements.
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FIG. 1. (a) Unit cell of a phononic beam with the pillar spacing

as d = 100 μm. Periodic boundary conditions along the x axis are

applied to the two beams’ boundaries. (b) Dispersion curves of

the pillared phononic beam where each color refers to a particular

symmetry of the corresponding branch: band 1 (AS in blue), band

2 (SA in green), band 3 (AA in red), and band 4 (SS in black).

Accidental double Dirac cones of symmetric and antisymmetric

shear modes appear at 1.66 MHz for kx = π/a. (c) Real part of the

displacement field uy for the four eigenstates at the double Dirac

points as indicated by the red and green arrows.

In this work, we realize a Fano resonance with topological

protection in a pillared phononic beam in an elastic contin-

uous system. Topological band gaps for the symmetric and

antisymmetric shear modes are designed by engineering a

band inversion. Then a high-Q (dark) and a low-Q (bright)

edge mode are constructed by leveraging the antisymmetry

and symmetry of the beam’s shear vibration, respectively.

A topological Fano resonance with ultrahigh Q is formed

after constructive and destructive interference between the

topological dark and bright modes. To probe the topological

robustness, different random perturbations are introduced and

the robustness of the Fano asymmetric-shape transmission

line is numerically demonstrated and discussed in terms of

symmetry.

II. PILLARED PHONONIC BEAM WITH

TOPOLOGICAL TRANSITION

The considered elastic model is shown in Fig. 1(a). This

is a double-sided pillared beam unit with periodic boundary

conditions applied to the two lateral boundaries along the

x axis whose lattice constant is set to be a = 400 μm. The

beam has a width of 200 μm along the y direction with a

free boundary condition and a thickness of 100 μm along the

z direction. The four identical pillars, symmetrically placed

over the matrix, have a diameter of 100 μm and a height of

135 μm. The internal distance between two pillars on each

side is d = 100 μm. Figure 1(b) shows the corresponding

band structure. The structure displays two symmetry planes,

namely, xOy and xOz, which suggests that the branches in

the dispersion curves can be represented according to their

symmetric (S) or antisymmetric (A) characters with respect to

each of these two symmetry planes. In this respect, the four

fundamental bands marked as 1–4 can be respectively labeled

as AS, SA, AA, and SS (as summarized in Table I). They

correspond to the flexural, symmetric shear, antisymmetric

shear (torsional), and longitudinal motions of the beam. These

modes can be studied independently of each other as long

TABLE I. Symmetry properties of the four bands marked in the

dispersion curves with respect to the symmetry planes xOy and xOz.

“A” and “S” are for antisymmetric and symmetric, respectively.

xOy plane xOz plane

Band 1 (blue) A S

Band 2 (green) S A

Band 3 (red) A A

Band 4 (black) S S

as the perfect symmetry of the structure is conserved, for

instance, without introducing any disorder. They can also be

excited independently or simultaneously depending on the

symmetry of the incident wave. The introduction of disorder,

as we see later, will mix some of the modes.

Two Dirac cones of the AA band 3 and SA band 2 coincide

at 1.66 MHz for kx = π/a. It should be noted that exact

accidental degeneracy is not crucial, but only a common band

gap for bands 2 and 3 from lifting the degenerate points is

required. The eigenstates (real part of displacement uy) of each

mode at the Dirac points are presented in Fig. 1(c), clearly

illustrating the AA and SA nature of the shear modes.

Now, we set the pillar spacing in one unit cell, respectively,

to d = 60 μm and d = 140 μm while keeping the period of

the unit cell as a = 400 μm. The corresponding dispersion

curves are displayed in Fig. 2. One can observe that the band

structures in both cases are exactly the same, especially the

double Dirac cones that are degenerated to form a common

band gap for bands 2 and 3. The degenerated states above

or below the band gap are also presented. The eigenstates

above the band gap for d = 60 μm, shown in the red dotted

box, are flipped to the eigenstates below the band gap for

d = 140 μm. The same goes for the degenerated states in the

blue dotted box. This band inversion achieved by varying the

pillar spacing is symptomatic of a topological transition [33],

where the Zak phase of the associated bands is identically zero

for the crystal with small interval between the two pillars in

the unit cell but is nonzero for the large-interval case [31].

Therefore, our system provides two different bulk structures

with topological or trivial properties characterized by different

symmetries in shear vibrations, which can be further used

to design a Fano asymmetric line shape in the transmission

spectrum.

Topological interface states and topological Fano resonance

A Fano resonance can be composed of the interaction

of a dark mode and a bright mode with distinct lifetimes.

If both dark and bright modes are topological edge modes,

a topological Fano resonance is consequently formed. We

construct a finite stripe with an interface between a topological

and a trivial beam, each composed of ten units, as illustrated

in Fig. 3(b). Periodic boundary conditions are applied to both

edges along the x axis as the period of the supercell stripe,

20a, is sufficiently large to calculate the interface edge states.

Since the topological property is characterized by symmetry,

we separately calculate the dispersion of the edge modes for

symmetric (green) and antisymmetric (red) shear vibrations.

We show the results in the left- and right-hand panels in
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FIG. 2. Dispersion curves for the crystal with short interval d = 60 μm (left-hand panel) between the pillars in the unit cell and large

interval d = 140 μm (right-hand panel). They show exactly the same band structure. The eigenstates of the symmetric and antisymmetric shear

modes above and below the gap (shown as the green and red arrows) are presented beside the dispersion. From d = 60 μm to d = 140 μm,

the eigenstates shown in red and blue dotted boxes flip as band inversion.

Fig. 3(a), respectively. In the dispersion curves, the part in

between the two shaded areas indicates the topological band

gap for shear modes, containing a bright edge band and a dark

edge band for symmetric and antisymmetric cases (marked

as green and red), respectively. The bright edge mode shows

a more pronounced dispersive character than the dark edge

FIG. 3. A finite-length stripe consists of topological (10a) and

trivial 10a beams with an interface in the middle (red dotted line).

The total length of the stripe is 20a = 8000 μm, which is sufficiently

large to reveal the interface modes when periodic boundary condi-

tions are applied to the two beam’s edges along the x axis. (a) The

dispersion curves show bright and dark shear edge modes (in green

and red) in the topological band gap, respectively. (b) The eigenstates

of the two edge modes (absolute displacement uy). (c) Normalized

displacements in pillars along the beam for bright (left) and dark

(right) edge modes.

mode, resulting from a weaker confinement of the eigen-

state. This clearly appears in the displacement field shown in

Fig. 3(b). It is noted that the folded bulk bands in the left-

and right-hand panels of Fig. 3(a) are the SS (longitudinal)

and AS (flexural) modes in Fig. 1, respectively. Since their

polarizations and excitations are different from shear bands 2

and 3, the excitation of shear edge modes will not excite the

modes in bands 1 and 4 in this ordered system. The designed

band gaps apply only for shear modes as shown in Fig. 3(a).

The displacement of the edge mode decays exponentially

away from the interface with a decay factor which is inverse

to the Dirac velocity [34]. From Fig. 1(b), the Dirac velocity

of band 3 is smaller than that of band 2, so the decay factor

for the dark edge mode is higher than that for the bright one.

In Fig. 3(c), we show the normalized displacement profile of

vibrating pillars along the beam, supporting the exponential

attenuation away from the interface and the higher decay

factor for the dark edge mode.

The bright and dark edge modes directly relate to the sym-

metry of the beam’s shear vibrations that can be excited with

different symmetries of shear forces. Line forces along the y

axis are applied to the top and bottom edges of the beam cross

section. The bright edge state (related to the symmetric shear

vibration) can be excited when the upper and lower line forces

are oriented in the same direction, whereas the dark edge state

(related to the antisymmetric shear vibration) can be excited

when these forces are pointing in opposite directions. We

consider a finite pillared beam built by merging a topological

and a trivial subspace (one supercell in Fig. 3) with a length

of 20a in total. The transmission spectra of the two edge

states are calculated and displayed in the left-hand panel of

Fig. 4, where the dark-edge-mode-induced transmission peak

is much sharper than its bright mode counterpart.

If a single line force is applied to either the top or the

bottom edge, both symmetric and antisymmetric shear vi-

brations can be excited, allowing for the dark and bright

edge modes to couple and to interact with each other. Such

an interaction will lead to constructive and destructive inter-

ferences that further generate a Fano asymmetric line-shape

transmission, as proved in the right-hand panel of Fig. 4. The

Fano resonance has an extrasharp shape with an extremely

high quality factor Q = fc/� f over 5000, where fc and � f
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FIG. 4. Left: Dark and bright transmission spectra with single symmetric and antisymmetric shear vibration excitation, respectively. Right:

When both shear vibrations are excited, the dark and bright modes will couple and interfere to generate the high-Q Fano asymmetric shape

transmission.

are the midfrequency and the common width of the peak and

dip of the Fano resonance, respectively. Due to the high Q

property, the Fano resonance gets easily disturbed and loses

the asymmetric line shape as a result of random perturbation

or fabrication defects. However, here the dark and bright edge

states are topologically protected and therefore the induced

Fano resonance, being of topological nature, is robust against

perturbations. It should be noted that topological Fano reso-

nance can also be achieved by band inversion from bands 1

and 4 with optimizing parameters.

To verify the robustness of the topological Fano resonance,

we introduce randomness in the pillars’ position in two ways:

maximum position perturbation δx along the x axis and δy

along the y axis. The result is presented in Fig. 5. For the sake

of simplicity, we keep the symmetry with respect to the middle

xOy plane of the beam and assume that any pair of upper and

lower pillars with central symmetry moves simultaneously.

For random perturbation along the x axis, one can notice that

the symmetry with respect to the vertical xOz plane is still

preserved, which means that the classification of the modes

as AS, SA, AA, and SS remains unaltered. In other words,

it is the symmetry of the incident wave which defines if

each type of mode is excited independently of the others or

simultaneously with some of them. In the upper panels of

Fig. 5, one can notice that going to higher δx, it decreases

the peak of the dark mode which further slightly reduces the

peak of Fano resonance. It is observed that the dark, bright,

and Fano asymmetric shapes are always conserved and their

frequencies are almost unchanged for any of the considered

random perturbations δx, which is of primary interest for

signal information communication application in microscale.

For random perturbation along the y axis, the symmetry with

FIG. 5. Robustness of topological (a), (d) dark mode, (b), (e) bright mode, and (c), (f) Fano resonance against perturbation in the pillars’

position with random degree δ along the x (a)–(c) and y (d)–(f) axes. The position profiles of δx = 20 μm and δy = 20 μm are shown at the top

and bottom, respectively.
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respect to the xOz plane is broken, so one can expect a

coupling between modes 1 and 3 (originally AS and AA) and

between modes 2 and 4 (originally SA and SS). Therefore,

in Fig. 5(d) the excitation of the dark torsional mode 3 by

means of an antisymmetric shear wave produces a coupling

with the flexural mode 1 and one observes that increasing

δy up to 20 μm significantly decreases the peak of the dark

mode and also slightly downshifts its frequency. Meanwhile,

the excitation of the bright mode in Fig. 5(e) by means

of a symmetrical shear wave produces a coupling with the

longitudinal mode 4 but almost no influence is observed on the

bright mode, presumably due to the different nature of modes

2 and 4 and also to the already broad bright mode. Finally, in

Fig. 5(f), both dark and bright modes are excited simultane-

ously, which results in a coupling between all branches 1–4.

We clearly observe that the frequency of the Fano resonance

redshifts and the asymmetric profile weakens for large random

degree. However, this behavior can essentially be attributed to

the weakening of the dark mode alone as already shown in

Fig. 5(d). Since the Fano resonance is still guaranteed by the

band inversion, the asymmetric Fano shape remains before

disappearing, which is an essential difference from trivial

Fano resonance [31].

The explanation of these results in terms of symmetry-

protected topological states can be inspired by the work

in Ref. [35] dealing with acoustic waveguides, while some

differences need also to be highlighted. In the latter reference

it is shown that the topological modes in one-dimensional

multiple scattering systems are symmetry protected, namely,

that the topology protects only against disorder that does not

change the individual scattering matrix of a pillar for the

relevant excitation. This can apply to the disorder along the

x axis where each type of mode keeps its symmetry and can

be treated independently of each other. On the other hand,

the disorder along the y axis partly breaks the symmetry of

the modes and produces a coupling between different modes,

which means the scattering matrix displays at least two in-

going and outgoing channels. This is a general property of

elastic systems, in contrast to acoustic waveguides, owing to

the existence of several types of vibrational modes. Therefore,

it is likely that the symmetry protection is lost, resulting in the

vanishing of the Fano resonance, while the bulk band gap is

not yet closed.

III. SUMMARY

In summary, we endowed the conventional Fano resonance

with topological properties in a pillared phononic beam, the

shear motions of which exhibit symmetric and antisymmetric

modes. Thanks to a proper design of the structure, double

Dirac cones appear in the dispersion of both, which can further

be degenerated to form a common topological band gap by

band inversion. A high-Q dark edge mode and a low-Q bright

edge mode with topological protection are further designed

with topological and trivial bulk pillared phononic beams. A

topological Fano resonance with extrahigh quality factor is

therefore induced from the coupling of the two edge modes.

This resonance exhibits strong robustness against random per-

turbation in the pillars’ position. It is found that the robustness

of the Fano resonance originates both from band inversion and

from symmetry protection of vibrating modes associated to

geometry. If both protections are conserved, the asymmetric

shape as well as the frequency of the Fano resonance are

kept unchanged. On the other hand, if vibration symmetry

is broken and only band inversion remains, the asymmetric

shape weakens but keeps the shape until disappearing before

the closing of the bulk band gap. The frequency of the topo-

logical Fano resonance is insensitive to random perturbation

along the beam’s longitudinal direction whereas a slight fre-

quency shift appears when introducing any transverse random

perturbation. The realization of topological high-Q resonance

in solids may open a route for many applications in wave

functional devices in nano- and microscales such as sensing

and information processing [36].
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