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Robust Fault Detection and Estimation for Descriptor Systems

based on Multi-Models Concept

H. Hamdi†, M. Rodrigues‡, C. Mechmeche†and N. Benhadj Braiek†

Abstract: This paper addresses the robust fault detection and estimation problem of nonlin-

ear descriptor system with unknown inputs observers. The considered nonlinear descriptor

system is transformed into an equivalent multi-models form by using the Takagi-Sugeno

(T-S) approach. Two cases are considered: the first one deals with the multi-models with

measurable decision variables and the second one assumes that these decision variables are

unmeasurable. Then, a residual generator based on an unknown observer is designed for fault

detection and estimation. Stability analysis and gain matrices determination are performed

by resolving a set of Linear Matrices Inequalities (LMIs) for both cases. The performances

of the proposed fault detection and estimation method is successfully applied to an electrical

circuit.

Keywords: Fault detection and estimation, descriptor multi-models, residual generation,

Linear Matrices Inequalities (LMIs).

1. INTRODUCTION

It is well recognized that many practical dynamical

systems are subject to various environmental changes,

unknown disturbances and varying operating conditions.

Thus sensors, actuators or components faults in those

systems are inevitable. Since any fault in a dynamical

system may lead to significant performance degradation,

serious system damages and even loss of human life,

it is essential to be able to detect and identify faults

so that necessary protective actions can be taken in

advance. Hence, fault diagnosis of dynamic systems

has received more attention and significant progress

has been made in recent years for model-based fault

diagnosis techniques. More attention has been devoted

to the development of robust fault detection meth-

ods under external disturbances for continuous time

systems modeled by Ordinary Differential Equations

(ODE) [15]. Differential-Algebraic Equations (DAEs),

singular or descriptor systems are important in fault

detection context since DAE systems appear in a large

class of technical process like mechanical, electrical and

chemical systems [3, 17].

With regard to state estimation or controller design,

many approaches have been developed to design ob-

servers for descriptor systems. In [12], local asymptotic
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observer is obtained for general nonlinear descriptor

systems by means of a coordinate transformation. [6]

studies observer issued for continuous nonlinear de-

scriptor systems via a convex optimization. In addition

in [10], a robust extended strictly positive real (ESPR)

analysis and control for continuous-time descriptor

systems with norm-bounded uncertainty was studied.

Until now, the design of fault diagnosis algorithm is a

crucial problem for several physical process that are

modeled by nonlinear DAEs [21]. The expansion of

faults diagnosis approaches of ordinary systems [14, 15]

to descriptor systems, requires to resolve DAEs on line.

In practice, it may not be possible to employ standard

estimation schemes described by DAEs for on line

health monitoring due to difficulties in solving DAEs.

Therefore, it is highly desirable to develop fault diag-

nosis algorithms that are based on ordinary differential

equations. The design of these algorithms can become

very difficult even impossible according to the type and

the complexity of the employed model, from where

the importance to have a mathematical model of the

system where it’s at the same time, simple and precise.

The multi-models approach is a powerful technique of

modeling nonlinear systems which make it possible to

get a good compromise between the precision and the

complexity of the model [14]. Multi-models are recog-

nized for their capacity to take into account the changes

in the operating mode of the system and to reproduce

its behavior with precision in a broad operating range.

Moreover, they offer mathematical properties which

can be profitable during the design of observers. More

recently, a lot of works have appeared that consider

fault detection and estimation problem for multi-models
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systems [7]. Nevertheless, the authors in [5] have

developed an observer for robust residual generation

which minimizes the sensitivity to the disturbances

and maximizes the sensitivity to the faults. In [16]

the authors have synthesized observers for nonlinear

systems modeled by decoupled multi-models. However,

all these previous results have been realized only for

regular systems and not for descriptor systems.

For descriptor systems, a few works on fuzzy control

have attracted a lot of attention during the last few

years [18, 19]. Concerning the fault diagnosis problems,

very few results have been generalized to the descriptor

multi-models. In [8] and [9] the problem of fault

detection isolation and estimation for LPV polytopic

descriptor system has been studied by using unknown

inputs observer and proportional integral observer

respectively.

In fact several works are devoted to the state estimation

by the use of multi-models with measurable decision

variables which are especially represented by the input

variables or the outputs of the system. Unfortunately,

in many situations, these decision variables are the

state variables, whose measurements are not always

available. Only few results like [5] are dedicated to the

use of these models for state estimation and in [4] for

fault estimation. But, these results were only obtained

for ordinary nonlinear systems and from the authors’

knowledge and besides the recent new paper by [2]

which offers an unknown input observer for descriptor

multi-models with unmeasurable decision variables, no

work addresses the state estimation and fault estimation

for singular multi-models with unmeasurable decision

variables.

So, this paper presents some novelty by the study of

singular systems represented by descriptor multi-models

with unmeasurable decision variables which generalize

the well-known multi-models approach for ordinary

systems. Moreover, this paper brings some new results

for the state estimation and fault estimation dedicated

to descriptor multi-models with unmeasurable decision

variables. Then, in a first step, an unknown input

observer is designed in order to detect actuator faults

based on descriptor multi-models subject to distur-

bances. In a second step, an augmented observer for an

augmented singular multi-models with unmeasurable

decision variables is proposed for fault estimation. The

presented fault estimation concept is a generalized study

of a particular class of nonlinear descriptor system

under Lipschitz constraints proposed by [20, 21] when

the results are valid only in a neighborhood of a single

nominal operating point. However, this concept has

not been adapted for regular multi-models synthesis

either for descriptor multi-models with measured or

unmeasured decision variable. So, this paper aims at

developing this strategy for such systems. Moreover, the

stability analysis of the dynamic state estimation error

is performed by using the Lyapunov method for two

cases; the first one concerns the descriptor multi-models

with measurable decision variable and the second case

is made with unmeasurable decision variable. These

two cases have been realized through the use of a set of

Linear Matrices Inequalities (LMIs).

The paper is organized as follows: the structure of the

studied systems is defined in section 2 and the design

method to detect faults and stability analysis are detailed

in section 3. Section 4 is dedicated to reconstruct the

fault by using an augmented form of the faulty system

and a dedicated unknown inputs observer is designed.

Before ending with some conclusions, the proposed

singular multi-models is applied to an electrical circuit

and observers are designed in section 5 in order to

illustrate the effectiveness of the proposed method.

In this paper, the notation is standard. R denotes the

set of real numbers, C is the complex plane, A+ denotes

the generalized inverse of A; Q > 0 or (Q < 0) indicates

the symmetric matrix Q is positive (or negative) definite;

∥ .∥ denotes the standard norm symbol. Also, ∀ means

"for all".

2. DESCRIPTOR MULTI-MODELS
STRUCTURE

Consider the following continuous-time nonlinear de-

scriptor system:

{

Eẋ(t) = F (x(t),u(t),d(t))
y(t) = G (x(t),u(t),d(t))

(1)

where x(t) ∈ R
n is the singular state vector, u(t) ∈ R

p is

the input vector, y(t)∈R
m is the output vector. F (.) and

G (.) are continuous and infinitely differentiable nonlin-

ear functions. E is a singular matrix with constant pa-

rameters and rank(E) = r.

The multi-models approach allows to represent nonlin-

ear systems into a convex combination of linear submod-

els [2, 15]. Let us consider the nonlinear descriptor sys-

tem (1) represented by a multi-models as follows:















Eẋ(t) =
h

∑
i=1

hi(ξ (t))[Aix(t)+Biu(t)+Rid(t)

+Fi f (t)+∆xi]
y(t) =Cx(t)+Gd(t)

(2)

where Ai,Bi, Ri,Fi,C and G are jacobian matrices relat-

ing to the ith operating point. ∆xi is a vector witch de-

pends on the ith operating point. d(t) ∈ R
q (q ≤ m) is a

disturbance vector and f (t) ∈ R
k is a fault vector. ξ (t)

is a decision variable (also called premise variable [2])

that can be measurable or unmeasurable. hi(ξ (t)) are the

weighting functions that measure the relative contribu-

tion of each local model to build the global model. The
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functions hi(ξ (t)) check the properties of the following

convex set:






h

∑
i=1

hi(ξ (t)) = 1

0 ≤ hi(ξ (t))≤ 1

(3)

The multi-models structure makes possible to provide a

mean of generalization of tools developed for linear sys-

tems to nonlinear systems. The theory for the observer

design is derived for singular systems under the assump-

tion that the system has the global observability. This

concept implies the observability of the algebraic part

and the differential part of a descriptor system [2, 13].

Then, the observability for descriptor multi-models no-

tion requires that all the subsystems are observable [8].

Assumptions A2 and A3 extend the observability proper-

ties to the descriptor multi-models.

Assumption A1: rank(CRi) = rank(Ri).
Assumption A2: The row vectors of the matrices C and

E must be a basis of the n-dimensional vector space:

rank

[

E

C

]

= n (4)

Assumption A3: Each local model of the descriptor

multi-models (2), has to be observable ∀ i = 1, ...,h.

rank

[

sE −Ai

C

]

= n, ∀ s ∈ C . (5)

The following section is dedicated to generate an alarm

signal when a fault occurs and produce an accurate esti-

mate of the fault vector f (t).

3. ROBUST FAULT DETECTION IN
DESCRIPTOR MULTI-MODELS

In this section, the design of a residual generator

based on unknown input observer for descriptor multi-

models is developped. The global residual generator is

defined by:















ż(t) =
h

∑
i=1

hi(ξ (t))[Niz(t)+Giu(t)+Liy(t)+∆zi]

x̂(t) = z(t)+T2y(t)
r(t) = M1z(t)+M2y(t)

(6)

where r(t) is the residual vector, z(t) and x̂(t) are the

state vector and the estimated state vector respectively.

The residual generator design is reduced to determine

the gains Ni, Gi, ∆zi, Li, M1, T2 and M2 such that the

state estimation error is stable. Then, to analyze the con-

vergence of the residual generator, let consider the esti-

mation error from (2) and (6) such that:

e(t) = x̂(t)− x(t)

e(t) = z(t)− (In −T2C)x(t)+T2Gd(t) (7)

Under Assumption A2, there exists nonsingular matrices

T1 ∈ R
n×n and T2 ∈ R

n×m such that:

T1E +T2C = In (8)

The dynamic estimation error is then described by:

ė(t) = ż(t)−T1Eẋ(t)+T2Gḋ(t) (9)

which is equivalent to

ė(t) =
h

∑
i=1

hi(ξ (t))[Niz(t)+Giu(t)+Liy(t)+∆zi

−T1Aix(t)−T1Biu(t)−T1Rid(t)−T1Fi f (t)−T1∆xi]
(10)

The estimation error is finally given by:

ė(t) =
h

∑
i=1

hi(ξ (t))[Nie(t)+(NiT1E +LiC−T1Ai)x(t)

+(Gi −T1Bi)u(t)+(LiG−NiT2G−T1Ri)d(t)
−T1Fi f (t)+T2Gḋ(t)+∆zi −T1∆xi]

(11)

From (6), the general expression of the residual vector

can be written as:

r(t) = M1z(t)+M2y(t) (12)

and by using the estimation error (7), it follows:

r(t) = M1e(t)+(M1T1E +M2C)x(t)

+(M2 −M1)T2Gd(t) (13)

If the following conditions hold true ∀ i = 1, ...,h:

NiT1E +LiC−T1Ai = 0 (14)

M1T1E +M2C = 0 (15)

Gi −T1Bi = 0 (16)

LiG−NiT2G−T1Ri = 0 (17)

T2G = 0 (18)

∆zi −T1∆xi = 0 (19)

then, the estimated error e(t) and residual r(t) become:

ė(t) =
h

∑
i=1

hi(ξ (t))[Nie(t)−T1Fi f (t)] (20)

r(t) = M1e(t) (21)

Therefore, the design of the residual generator (6) is re-

duced to satisfy the constraints (14) to (19) by taking into

the stability of (20). In order to establish the gains ma-

trices of the designed residual generator, the substitution

of (8) into (14) yields to:

T1Ai = Ni(In −T2C)+LiC (22)

Ni = T1Ai +(NiT2 −Li)C (23)

Ni = T1Ai +KiC (24)

where

Ki = NiT2 −Li
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To design matrices T1 and T2, let consider equation (8)

under equality (18), one can write the following relation-

ship:
[

T1 T2

]

[

E 0

C G

]

=
[

In 0
]

(25)

Under Assumption A1, a solution
[

T1 T2

]

exists if

and only if the matrix

[

E 0

C G

]

is a full column rank

[13]. Then, a particular solution of (25) is given by using

the generalized inverse matrix such that:

[

T1 T2

]

=
[

In 0
]

[

E 0

C G

]+

(26)

then, by takeing,

T =
[

In 0
]

[

E 0

C G

]+

∈ R
n×(n+m)

we can write:

T =
[

1,...,n
T1 |

n+1,...,n+m

T2

]

(27)

After, to compute matrices M1 and M2, equation (15) can

be rewritten as:

[

M1 M2

]

[

T1E

C

]

= 0 (28)

To solve equation (28), it is equivalent to write:

[

T1E

C

]T
[

MT
1 MT

2

]T
= 0 (29)

Hence, (29) admits a solution
[

MT
1 MT

2

]T
in the null

space of

[

T1E

C

]T

i.e.:

[

MT
1 MT

2

]T
⊆ Ker

[

T1E

C

]T

(30)

Then, a solution can be chosen as follows:

[

MT
1 MT

2

]T
= ker

[

T1E

C

]T

(31)

if we express

∆T = ker

[

T1E

C

]T

it’s equivalently to,

∆T =
[

MT
1 MT

2

]T

then, one can write:

∆ =
[

1,...,n
M1 |

n+1,...,n+m

M2

]

(32)

3.1. Design and stability analysis

In this subsection, the stability problem is studied for

two cases:

Case A: when the decision variable of the weighting

function depends of a measured state variable.

Case B: when this variable depends of an unmeasured

state variable.

Case A: Measurable decision variable

From the following dynamic state estimation error:

ė(t) =
h

∑
i=1

hi(ξ (t))[Nie(t)−T1Fi f (t)] (33)

and by using (24), it becomes:

ė(t) =
h

∑
i=1

hi(ξ (t))[(T1Ai +KiC)e(t)−T1Fi f (t)] (34)

The stability of the dynamic estimation error (34) can be

verified by the following Theorem.

Theorem 1: The estimation error equation (34) is

globally asymptotically stable, if the fault f (t) satisfies

∥ f (t)∥ ≤ µ , µ > 0 and if there exists real parameters α
and β , a common positive definite matrix Q and matrices

Wi = QKi such that, ∀ i = 1, ...,h:

[

(T1Ai)
T Q+Q(T1Ai)+αIn +CTW T

i +WiC Q(T1Fi)
(T1Fi)

T Q − 1
β Ik

]

< 0

(35)

s.t.

WiG+QT1Ri = 0 (36)

�

Proof:

Consider the Lyapunov function with the following

quadratic form:

V (e(t)) = eT (t)Qe(t)> 0 (37)

Stability condition for the estimation error yields to that

the time derivative of the Lyapunov function should be

negative definite over (3). The derivative of V (e(t)) with

respect to time evaluated on the trajectories of the error

equation (33) is:

V̇(e) =
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

−2eT(t)Q(T1Fi)f(t)}

If ∥ f (t)∥ ≤ µ , then

V̇(e(t))≤
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

−2µ
∥

∥eT(t)Q(T1Fi)
∥

∥}
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Since µ > 0, the derivative of V (e(t)) becomes:

V̇(e(t))<
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

+2µ
∥

∥eT(t)Q(T1Fi)
∥

∥}

For any positive scalar α , we have the following inequal-

ity:

2µ
∥

∥eT(t)Q(T1Fi)
∥

∥≤ α−1µ2
∥

∥eT(t)Q(T1Fi)
∥

∥

2
+α

Hence,

V̇(e(t))<
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

+α−1µ2
∥

∥eT(t)Q(T1Fi)
∥

∥

2
+α}

Let take β = α−1µ2 then:

V̇(e(t))<
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

+βeT(t)Q(T1Fi)(T1Fi)
T
Qe(t)+α}

V̇(e(t))<
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi

+βQ(T1Fi)(T1Fi)
T
Q]e(t)+α}

(38)

∀ i = 1, ...,h
h

∑
i=1

hi(ξ (t)) = 1 and hi(ξ (t)) ≥ 0, the in-

equality (38) is definite negative if:

NT
i

Q+QNi +βQ(T1Fi)(T1Fi)
T Q+αIn < 0

While replacing Ni by the expression (24) and for Wi =
QKi, the last inequality can be written ∀ i = 1, ...,h such

that:

(T1Ai)
T Q+Q(T1Ai)+αIn+(WiC)T +WiC+βQ(T1Fi)(T1Fi)

T Q< 0

(39)

Using Schur complement, the last inequality becomes

∀ i = 1, ...,h:
[

(T1Ai)
T Q+Q(T1Ai)+αIn +CTW T

i +WiC Q(T1Fi)
(T1Fi)

T Q − 1
β Ik

]

< 0

(40)

The obtained gains matrices Ki must satisfied the con-

straint (17) ∀ i = 1, ...,h. Then, the equation (17) can be

written as follows:

(NiT2 −Li)G+T1Ri = 0 (41)

and under equation (24), it can be expressed as:

KiG+T1Ri = 0 (42)

for Ki = Q−1Wi ∀ i = 1, ...,h, equation (42) becomes:

WiG+QT1Ri = 0 (43)

Then, gains matrices Ki will be obtained by solving

LMIs (40) under constraint (43). Therefore, Theorem

1 implies that the state estimation error e(t) is globally

asymptotically stable in spite of the presence of fault

which acts like additive input. �

Case B: Unmeasurable decision variable

For Case B, the descriptor multi-models (2) can be

rewritten [5] as:











Eẋ(t) =
h

∑
i=1

hi(x̂(t))[Aix(t)+Biu(t)+Rid(t)

+Fi f (t)+∆xi +w(t)]
y(t) = Cx(t)+Gd(t)

(44)

where

w(t) =
h

∑
i=1

(hi(x(t))−hi(x̂(t))) [Aix(t)+Biu(t)

+Rid(t)+Fi f (t)+∆xi]
(45)

and w(t) acts like a disturbance on the dynamic of the

descriptor multi-models. The dynamic of the estimation

error becomes:

ė(t) =
h

∑
i=1

hi(x̂(t))(Nie(t)−T1Fi f (t)−T1w(t)) (46)

Then, to ensure stability of the estimation error (46)

when w(t) = 0 and to attenuate the influence of the dis-

turbance when w(t) ̸= 0, the L2 approach is used.

Theorem 2: The estimation error (46) is globally

asymptotically stable if the term w(t) and f (t) satisfies

respectively ||e(t)||2 ≤ γ ||w(t)||2 and ∥ f (t)∥ ≤ µ and if

the conditions (14) to (19) hold and if there exists real

parameters α and β , a common positive definite matrix

Q and matrices Wi = QKi such that ∀ i = 1, ...,h:





Πi Q(T1Fi) −QT1

(T1Fi)
T Q − 1

β Ik 0

−T T
1

Q 0 −δ In



< 0 (47)

s.t.

WiG+QT1Ri = 0 (48)

where

Πi = (T1Ai)
T Q+Q(T1Ai)+αIn +(WiC)T +(WiC)+ In

and δ = γ2
�

Proof:

To find convergence conditions, a Lyapunov quadratic

function is chosen as: V (e) = eT (t)Qe(t), differentiating

it along (46) and using (38), it becomes:

V̇(e(t))≤
h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

+βeT(t)Q(T1Fi)(T1Fi)
T
Qe(t)+α

−eT(t)QT1w(t)−w
T(t)TT

1 Qe(t)}

(49)

In order to attenuate the effect of w(t) on the state esti-

mation error, we use a L2 approach. The aim is to mini-

mize the L2 gain from w(t) to e(t) is bounded by γ i.e:

||e(t)||2 ≤ γ ||w(t)||2, γ > 0. Then, the L2 gain from e(t)
to w(t) is bounded by γ if:

V̇ (e(t))− γ2wT (t)w(t)+ eT (t)e(t)< 0
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By substituting V̇ (e(t)), we obtain:

h

∑
i=1

hi(ξ (t)){e
T(t)[NT

i Q+QNi]e(t)

+βeT(t)Q(T1Fi)(T1Fi)
T
Qe(t)+α

−eT(t)QT1w(t)−w
T(t)TT

1 Qe(t)

−γ2wT(t)w(t)+ e
T(t)e(t)}< 0

(50)

The previous inequality can be written as follows ∀ i =
1, ...,h:

ΩTΨiΩ < 0 (51)

where

ΩT =
[

eT (t) wT (t)
]

Ψi =

[

NT
i Q+QNi +αIn +βQ(T1Fi)(T1Fi)

T Q+ In −QT1

−T T
1 Q −γ2In

]

and Ω =

[

e(t)
w(t)

]

< 0

So, V̇ (e(t))< 0 if, ∀ i = 1, ...,h:
[

NT
i Q+QNi +αIn +βQ(T1F)(T1Fi)

T Q+ In −QT1

−T T
1 Q −γ2In

]

< 0

(52)

To obtain an equivalent constraint LMI, one can pose the

change of variables as: Wi = QKi and by using the Schur

complement, the inequality (52) becomes




Πi Q(T1Fi) −QT1

(T1Fi)
T Q − 1

β Ik 0

−T T
1

Q 0 −δ In



< 0 (53)

where

Πi = (T1Ai)
T Q+Q(T1Ai)+αIn +(WiC)T +(WiC)+ In

and δ = γ2.
Now, as shown in the proof of Theorem (1), the obtained

matrices Ki must satisfy the constraints (17) or its equiv-

alent (43). For this way, the linear inequality (53) can

be solved in Q and Wi via numerical approach within the

LMI framework under constraint (43). The existence of

those resulted matrices ensure the stability of the estima-

tion error. �

4. ROBUST FAULT ESTIMATION

To estimate the fault after the alarm has been gener-

ated, we consider the following descriptor multi-models

subjects to faults f (t) and disturbances d(t) given by:










Eẋ(t) =
h

∑
i=1

hi(x̂(t))[Aix(t)+Biu(t)+Rid(t)

+Fi f (t)+∆xi +w(t)]
y(t) =Cx(t)+Gd(t)

(54)

where hi(x̂(t)) is a weighting function depend on the un-

measurable state. Let us assume that f (t) is differen-

tiable and:

ζ j(t) = f (l− j)(t) (55)

where l is the class of f (t) and j = 1, ..., l is the jth

derivative of this fault.The following relationships [20]

hold:


















ζ̇1(t) = f (l)(t)

ζ̇2(t) = f (l−1)(t) = ζ1(t)
...

ζ̇l(t) = f (t) = ζl−1(t)

(56)

The descriptor multi-models (54) and the equations set

(56) can be written in an augmented form as follows:















Ē ˙̄x(t) =
h

∑
i=1

hi(x̂(t))[Āix̄(t)+ B̄iu(t)+ R̄id̄(t)

+∆̄x̄i + w̄(t)]
y(t) = C̄x̄(t) = Ḡd̄(t)

(57)

where

x̄T (t) =
[

xT (t) ζ T
1 (t) ... ζ T

l (t)
]T

∈ R
n̄, n̄= n+kl

Ē =













E 0 · · · 0 0

0 Ik · · · 0 0
...

...
. . .

...
...

0 0 · · · Ik 0

0 0 · · · 0 Ik













, Āi =















Ai 0 · · · 0 Fi

0 0 · · · 0 0
... Ik

. . .
...

...
...

...
. . .

...
...

0 0 · · · Ik 0















B̄i =











Bi

0
...

0











, R̄i =











Ri 0

0 Ik

...
...

0 0











, ∆̄x̄i =











∆xi

0
...

0











w̄(t) =











w(t)
0
...

0











, d̄(t) =

[

d(t)

f (l)(t)

]

, Ḡ = [G 0...0]

and C̄ = [C 0...0].
Consider the following multi-observer for the aug-

mented descriptor multi-models described by (57):







˙̄z(t) =
h

∑
i=1

hi(x̂(t))[N̄iz̄(t)+ Ḡiu(t)+ L̄iy(t)+ ∆̄z̄i]

ˆ̄x(t) = z̄(t)+ T̄2y(t))
(58)

where z̄(t) ∈ R
n̄ is the state of the multi-observer and

ˆ̄x(t) ∈ R
n̄ is the estimated state of the augmented state

vector x̄(t). N̄i, L̄i, Ḡi and T̄2 are matrices with appro-

priate dimensions. If the following conditions hold true

∀ i = 1, ...,h:
T̄1Āi = N̄iT̄1Ē + L̄iC̄ (59)

Ḡi = T̄1B̄i (60)

∆̄z̄i = T̄1∆̄x̄i (61)

(L̄i − N̄iT̄2)Ḡ− T̄1R̄i = 0 (62)

T̄2Ḡ = 0 (63)

In̄ = T̄1Ē + T̄2C̄ (64)
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Then, the dynamic of the state estimation error becomes:

˙̄e(t) =
h

∑
i=1

hi(ξ̂ (t))[N̄iē(t)− T̄1R̄id̄(t)− T̄1w̄(t)] (65)

If the above estimation error (65) is stable, the aug-

mented state estimated ˆ̄x(t) will converge to the real state

x̄(t).

Theorem 3: For d̄(t) and w̄(t) with bounded norms,

the multi-models description (58) is a robust observer for

the augmented descriptor multi-models (57) such that:

∥ē(t)∥2 ≤ η ∥w̄(t)∥2 (66)

if there exists a common positive definite matrix Q̄ such

that:




Π̄i Q̄(T̄1R̄i) −Q̄T̄1

(T̄1R̄i)
T Q̄ − 1

η1
Iq+k 0

−T̄ T
1 Q̄ 0 In̄



< 0, ∀ i = 1, ...,h

(67)

s.t.

W̄iḠ+ Q̄T̄1R̄i = 0 (68)

where η1 = α−1η2 and

Π̄i =(T̄1Āi)
T Q̄+Q̄(T̄1Āi)+(α−γ2)In̄+(W̄iC̄)T +(W̄iC̄)

�

Proof:The proof is similar as for Theorem 2, and is thus

omitted. �

As a result, the estimated state vector includes the com-

ponents such as the estimated state x̂(t), the estimates

ζ̂i(t) (i = 1,2, ..., l − 1) for the derivatives of the fault,

and the fault estimation ζ̂l(t)= f̂ (t) . Therefore, the aug-

mented observer (58) is a simultaneous state and fault

estimator.

5. APPLICATION: AN ELECTRICAL
CIRCUIT

The studied process is an electrical circuit [11] shown

in Figure 1.

Fig 1: An electrical circuit with an ideal voltage source

and three nonlinear components.

This circuit consists of a voltage source, a resistor, a ca-

pacitor and an inductor. The voltage source is assumed

to be ideal, i.e. having no internal resistance and giv-

ing the voltage u(t). The inductor is assumed to have a

ferromagnetic core resulting in a saturated magnetic flux

Φ(t) for large currents i(t).
If the notation x1(t) = uC(t), x2(t) = φ(t), x3(t) = i(t)
and x4(t) = uL(t) are used, then the system can be de-

scribed by the following nonlinear descriptor model:














































ẋ1(t) =
x3(t)

1+0.01x1(t)

ẋ2(t) = x4(t)
0 = x2(t)− arctan(x3(t))+d(t)
0 =−x1(t)− x3(t)− x3

3(t)− x4(t)+u(t)

y(t) =





1 0 1 0

0 0 1 0

0 1 0 0



x(t)+





0.5
0.8
0



d(t)

(69)

5.1. Multi-models representation

The previous nonlinear model can be linearized

around four operating points. Then, a descriptor multi-

models form can be formulated as follows:














Eẋ(t) =
4

∑
i=1

hi(x̂(t))[Aix(t)+Biu(t)+Rid(t)

+∆xi +w(t)]
y(t) =Cx(t)+Gd(t)

(70)

The numerical values of those matrices are given by:

E =







1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0






, A1 =







0.0198 0 1.0215 0

0 0 0 1

0 1 −0.2169 0

−1 0 −11.83 −1







A2 =







0.0075 0 0.9671 0

0 0 0 1

0 1 −0.6098 0

−1 0 −2.92 −1






,Bi = B =







0

0

0

1







A3 =







−0.0073 0 0.9579 0

0 0 0 1

0 1 −0.6098 0

−1 0 −2.92 −1






,R1 =R3 =







0

0

1

0







A4 =







−0.0189 0 1.0173 0

0 0 0 1

0 1 −0.2301 0

−1 0 −11.0357 −1






,R2 =R4 =







0

0

0.5
0







C =

[

1 0 1 0

0 0 1 0

0 1 0 0

]

,G =

[

0.5
0.8
0

]

,∆x1 =







0.04

0

0.67

−17.6







∆x2 =







−0.02

0

−0.48

5.94






,∆x3 =







0.03

0

0.27

1.15






,∆x4 =







−0.03

0

−0.65

12.6







Let consider the studied case B where the decision vari-

able is unmeasurable, the weighting functions depend on
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the estimated state x̂4(t) as follows:

hi(x̂4(t)) =
µi(x̂4(t))

4

∑
i=1

µi(x̂4(t))

where µi(x̂4(t)) are defined by

µ1(x̂4(t)) = exp(−1/2(
x̂4 +2

2
)2)

µ2(x̂4(t)) = exp(−1/2(
x̂4 −2

2
)2)

µ3(x̂4(t)) = exp(−1/2(
x̂4 +3

2
)2)

µ4(x̂4(t)) = exp(−1/2(
x̂4 −3

2
)2)

For u(t) = 10sin(0,2πt) and d(t) a gaussian signal of

variance 1 and zero average, the characterization of the

global behavior of the nonlinear system by the multi-

models is obtained after the estimation of the state vector

to reconstruct the weighting functions. The outputs of

the nonlinear system and the multi-models are shown in

the following Figures (2-4).
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Fig 2: Nonlinear and multi-models outputs
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Fig 3: Nonlinear and multi-models outputs
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Fig 4: Nonlinear and multi-models outputs

These figures consider the multi-models form with the

nonlinear system. They illustrate the superposition of

the nonlinear outputs with those coming from the multi-

models representation. We can see that the multi-models

well approximate the nonlinear dynamic behavior.

5.2. Fault detection

In this paragraph, the main task of fault detection is to

generate a residual signal which is insensitive to the sys-

tem disturbances. To detect the fault, the residual has to

be sensitive to this fault. According to the study in sec-

tion (3.), the descriptor multi-models (70) with unknown

input and fault can be described as:














Eẋ(t) =
4

∑
i=1

hi(x̂4(t))[Aix(t)+Biu(t)+Rid(t)+Fi f (t)

+∆xi +w(t)]
y(t) =Cx(t)+Gd(t)

(71)

where Fi = F =
[

0 0 0 1
]T

is the fault vector and

w(t) is defined as (45). The system is subjected of fault

f (t) of the following form:

f (t) = (4−4exp(−0,2(t −20)))ε(t)

where
{

ε(t) = 1 f or 20 ≤ t ≤ 25

ε(t) = 0 elsewhere

and the unknown input d(t) is a white Gaussian noise

with variance 0.01 and zero average.

Second, to design the residual generator (6), it can be

shown that conditions (4) and (5) are satisfied. Using

(26), one can obtain matrices T1 and T2 and the LMIs

(47) can be efficiently solved under constraints (48) via

numerical approach within the LMI toolbox in order to

compute the gains matrices. Therefore, these inequali-

ties are fulfilled with:

K1 =









−0.9402 1.0634 0

−0.0036 0.0022 −177.4767

1.1739 −2.0024 0

0 0 −0.0072
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K2 =









−0.9144 1.0595 −0.0002

0.0680 −0.0425 −177.4767

1.1050 −1.9920 −0.0001

0 0 −0.0072









K3 =









−0.8985 1.0506 −0.0001

0.0174 −0.0109 −177.4767

1.0628 −1.9681 0

0 0 −0.0072









K4 =









−0.9043 1.0385 0

−0.0046 0.0029 −177.4767

1.0781 −1.9359 0

0 0 −0.0072









The result of the residual signal response is shown in the

following figure.
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Fig 5: The residual signal r(t)

It’s clear from the above figure (5) that the residual is

almost zero throughout the time simulation run for fault-

free residuals despite noisy environment and increase in

magnitude considerably, when fault occurs between time

t = 20s and t = 25s.

5.3. Fault estimation

The occurred fault can be approximated by a polyno-

mial function as follows:

f (t) = (0.8(t −20)−0.08(t −20)2)ε(t)

Let us construct the augmented descriptor multi-models

as defined in (57) with l = 2 and solving the LMIs (67)

under constraints (68), one can obtain:

K̄1 =















2.1808 10.4296 0

0 0 −9.5122

−8.0280 −25.1471 0

0 0 −0.2532

19.6191 71.1435 0

12.6064 47.1630 0















K̄2 =















2.2019 10.4594 0

0 0 −9.5122

−8.0821 −25.2203 0

0 0 −0.2532

19.6683 71.0525 0

12.6376 47.1054 0















K̄3 =















2.2065 10.4582 0

0 0 −9.5122

−8.0946 −25.2202 0

0 0 −0.2532

19.6051 71.0872 0

12.5975 47.1274 0















K̄4 =















2.1852 10.4133 0

0 0 −9.5122

−8.0417 −25.1155 0

0 0 −0.2532

19.4099 71.2857 0

12.4738 47.2531 0















These gains matrices are used to determine the remain-

ing matrices of the augmented multi-observer. The es-

timated fault is then, given by the following figure (6).

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

4

time (s)

fa
u
lt
s

 

 

original fault

estimated fault

Fig 6: The original fault and its estimated

From the above simulation results, it has been shown that

the fault reconstruction algorithm is effective in estimat-

ing the fault behavior, for a descriptor system subject to

a large class of fault signals such as time-invariant and

time-varying signals.

6. CONCLUSION

For nonlinear descriptor systems that can be repre-

sented by a set of sub-models, a multi-models residual

generation is designed. This concept is used for fault

detection and estimation problems for descriptor multi-

models. To estimate the fault, an augmented residual

generator is designed for an augmented descriptor

multi-models. Sufficient conditions for the existence

of residual generator have been established and the

analysis of the stability have been also designed for

two cases. One case is dedicated when the decision
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variable of the weighting function do not depend on the

unmeasured state variables. The other case is dedicated

when the decision variable depends on the unmeasured

state variables. The method has been successfully

applied to experimental data coming from an electrical

circuit with an ideal voltage source and three nonlinear

components.
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