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Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the
appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and
facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have
gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method
for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of
the real system and neural model, incidence of the faults can be identi�ed. In this paper, by utilizing a comprehensive dynamic
model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. �e
presented FDS detects faults of the generator’s angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the
FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the
faults shortly and it has very low false and missed alarms rate.

1. Introduction

Nowadays the economy and daily life rely on power dis-
tribution networks, such that occurrence of a fault in any
components of them can a	ect performance of the overall
system. In general, a fault is a phenomenon that changes the
behavior of a system in such away that it is not able to perform
its tasks [1]. A feature, which is very important for every
structure, is reliability and it can be insured by removing the
earlier weaknesses and faults. One way to achieve reliability is
implementation of condition monitoring systems and FDSs.
Recently, the problem of fault detection for industrial appli-
cations, namely, applications where lives are not at risk, has
gained extreme importance. In such systems, user satisfaction
and economic issues are important. Among these systems,
electricalmachines [2, 3], power systems, building ventilation
systems, andWECSs [4–15] can bementioned. Repair actions
can be performed in a timely manner without the need for
an immediate action and this fact is extremely important
for o	-shore plants where bad conditions (such as storm)
can delay any repair operation for several weeks [16, 17].
Although initially FDSs implementation requires investment,

producing energy continuously without any interruptions
will compensate for initial investment costs. Hence, an FDS
for a WECS has advantages such as avoidance of premature
breakdown, reduction of maintenance costs, supervision at
remote sites, remote diagnosis, improvement of the capacity
factor, and support for further development of a WECS [16].

In general, fault detection techniques can be categorized
into two categories: hardware redundancy (HR) and ana-
lytical redundancy (AR). Furthermore the AR techniques
can be classi�ed as quantitative model-based methods and
qualitative model-based ones. In recent years, extensive
researches have been performed on quantitativemodel-based
methods [18, 19] and qualitative model-based methods [20–
22]. Generally these methods can be classi�ed as observer-
based, signal processing, expert system, and arti�cial intel-
ligence approaches. Over the past two decades, arti�cial
neural networks have been studied extremely by researchers
and they have been used successfully for modeling and
control of dynamical systems [20, 23]. Also they were used
to design FDSs [20, 22]. Among the many structures for
neural networks, two notable structures are the feedforward
and recurrent ones. Feedforward networks are used typically
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for pattern recognition purposes, while recurrent ones are
used to prepare dynamical model of a process. Among neural
networks that have been used frequently in FDSs, multilayer
feedforward neural networks (MFNNs), radial basis function
neural (RBFN) networks, and globally and locally recurrent
networks can be mentioned.

In structure of recurrent neural networks, dynamic neu-
rons replace the standard ones. In one type of dynamic
neurons, the dynamics are applied by introducing an IIR �lter
into the neuron structure. �is network structure does not
have any global feedbacks. In fact, this network has a structure
that is somewhere in between a feedforward and a globally
recurrent structure [20].�e recurrent neural network with a
neuron model using the IIR �lter has been used successfully
for modeling, fault detection, and time series prediction. In
[20, 24] this kind of network was used for fault detection
of a sugar evaporation process. Also in [20], applications
for fault detection by using the mentioned network were
presented.�is network was utilized to detect faults in a �uid
catalytic cracking and a DC motor. In [2], this network was
used for fault detection and isolation of induction motors.
In [25], by using this network, an FDS for protecting and
monitoring systems of power networks was designed in such
a way that reliability of the power grid has risen up. In [26],
by combining the RBFN and the neuron model with the IIR
�lter, a network was proposed and it was used to predict time
series. In [27, 28], it was utilized to predict both the wind
speed and power in wind farms. Finally, in [29], it was used
to detect faults of a turbocharger.

In addition, fault detection of theWECSs has attracted the
attention of many researchers in recent years. For instance,
in [4, 7], using a linear model of mechanical parts of a wind
turbine (electrical parts were neglected), a fault-tolerant con-
troller was presented by utilizing the linear parameter varying
control which was replaced with the reference controller. In
these two researches, the occurred faults were diagnosed and
then the controller was recon�gured. In [5], fault detection
of a wind turbine was performed using the linear model
of the mechanical parts and only occurrence of a fault was
considered. In [6], faults of the induction generator were
considered. Also the linearmodel of themechanical parts was
used to detect two categories of faults using the Kalman-�lter
in [8]. Utilizing the supervisory control and data acquisition
(SCADA) in [9], the occurred faults in a wind turbine were
detected. In [10] by using the data-mining approach, bearing
faults were detected. In [11], utilizing the real data obtained
from a condition monitoring system, faults of the braking
system of a wind turbine were detected. In [12], a fault
tolerant controller was proposed using fuzzy observers. In
[14], utilizing the Set-Membership approach and a model
for the mechanical parts, various faults of a wind turbine
were detected. Also in [15] numbers of faults were detected
using amodel for themechanical parts and the counter-based
residual thresholding method.

As it is obvious, in researches that have been performed
so far, either a small number of faults have been studied, or
the WECS has not been modeled completely, or the linear
models have been used to design the FDS. It is obvious that
using the more accurate nonlinear model will lead us to the

results which are closer to the real ones. Another important
issue is robustness of the proposed scheme. Robustness
can be achieved either by active approaches or by passive
ones [20]. Active approaches consider the desired robustness
from the beginning of the design procedure [30–32], while
passive approaches utilize adaptive thresholds architecture
in decision making block to achieve the desired robustness
[20]. In this paper, by utilizing a comprehensive nonlinear
model of the WECS, an FDS is suggested which has the
capability to detect faults in the generator’s angular velocity
sensor, pitch sensors, and pitch actuators.�e presented FDS
is composed of the dynamic neural network with the IIR
�lter as the dynamic neuronmodel. Additionally, an adaptive
threshold is employed to achieve the anticipated robustness.
�e proposed FDS can be utilized to detect the faults in other
parts of the WECS.

�e structure of this paper is organized as follows:
dynamic model of the WECS is presented in Section 2. In
Section 3, the RNN with the IIR �lter as neuron model is
introduced. Section 4 presents the design procedure of the
FDS. In Section 5, the robustness of the proposed FDS is
investigated.

2. Dynamic Model of the WECS

�e block diagram of the considered model in this paper
is shown in Figure 1. In this �gure, the yaw mechanism
is neglected and wind speed is the exogenous input. �e
aerodynamic torque of the turbine’s rotor,��(�), is transferred
to the generator through the drive train. �e drive train
includes a high speed sha�, a low speed sha�, and a gearbox.
�e induction generator converts the mechanical energy to
the electrical one and is connected to the power grid. An
interface is used for calculation of the active and reactive
generated power. �e grid model includes a local load,
transformers, transmission lines, and the in�nite-bus at the
end. Converters, a dc link, rotor, and grid side controllers are
modeled in this study.

Equations for modeling of the mechanical parts of the
WECS are as follows [4, 33–36]:

V� (�) = V� (�) + V�� (�) + V�� (�) + V�� (�) , (1)

where in (1), which is related to the modeling of the wind,
V�(�) is the wind speed including the tower shadow, wind
shear, and turbulence components. In this equation, V�(�) is
the mean wind speed, V��(�) is the wind shear component,
V��(�) is the wind speed tower shadow component, and V��(�)
is the wind speed turbulence component. Consider

�� (�) = 0.5��V3� (�) �� (	 (�) , 
 (�)) ,
�� (�) = �� (�)

�� (�) = 1
�� (�)0.5��V

3
� (�) �� (	 (�) , 
 (�)) . (2)

Equations (2) are used to model wind turbine’s aerody-
namic, where ��(�) is the captured power by the turbine’s
rotor, 
(�) is the pitch angle, 	(�) is the tip-speed ratio,
��(	(�), 
(�)) is the power coe�cient, � is the rotor swept
area, V�(�) is the rotor e	ective wind speed, � is the air
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Figure 1: Block Diagram of the dynamic model of the WECS.

density, and ��(�) is the aerodynamic torque which is applied
to the turbine’s rotor. Equation (3) represents the aerody-
namic thrust where ��(	(�), 
(�)) is the thrust coe�cient.
��(	(�), 
(�)) and ��(	(�), 
(�)) can be utilized by look-up
tables in simulations. Consider


� (�) = 0.5��V2� (�) �� (	 (�) , 
 (�)) . (3)

By drive train, the aerodynamic torque is transferred to
the generator. �e gearbox scales up the rotational speed to
the required generator’s angular velocity by a factor that is
called gear ratio. Equations (4) are used to model the drive
train which includes a low speed sha�, a gearbox, and a
high speed sha�. In these equations, �� is the inertia of the
rotor, �� is the torque acting on the low speed sha�, �� is the
turbine’s rotor speed, ��� is the spring sti	ness coe�cient of
a massless viscously damped rotational spring, ��� is viscous
damping parameter,�	 is the gear ratio, �	 is the inertia of the
gearbox, high speed sha�, and generator, �	 is the generator
torque, and �	 is the rotational speed of the generator’s rotor.
Consider

���̇� = �� − ����
 − ��� ̇�
,
�	�	�̇	 = −�	�	 + ����
 + ��� ̇�
,

̇�
 = �� − �	
�	 .

(4)

�e thrust makes the tower to sway back and forth. �e
tower is modeled by a mass-spring-damper according to (5).
In this equation, 
�ℎ(�) is the force acting on the tower at hub
height, �� is the tower damping coe�cient, �� is the tower
spring coe�cient,�� is the topmass of the tower, and ��(�) is
the displacement of the nacelle from its equilibrium position.
�e swaying of the tower changes the e	ective wind speed

seen on the turbine’s rotor. �e rotor e	ective wind speed is
modeled using (6). Consider the following:

���̈� (�) = 
�ℎ (�) − ���̇� (�) − ���� (�) , (5)

V� (�) = V� (�) − �̇� (�) . (6)

�e pitch system is a hydraulic system and it can be
modeled using (7) where 
ref(�) is the reference pitch angle,
�� is the natural frequency of the pitch actuator model, and �
is the damping ratio of the pitch actuator model. Equation
(7) explains the operation of the pitch actuators when it
operates within limitations, so physical limitations should be
considered in modeling:

̈
 (�) = −2��� ̇
 (�) − �2�
 (�) + �2�
ref (�) . (7)

Equations for modeling of the electrical parts of the
WECS are as follows [37–39]:

�
� = ���
� + �
���
� + �����,

��� = ����� + �
����� − ���
�,

�
� = ���
� + �
���
� + (�� − ��) ���,

��� = ����� + �
����� − (�� − ��) �
�.

(8)

Equations (8) are stator and rotor voltages of the induc-
tion machine in the synchronous reference frame. In this
model, the synchronous reference frame was used to trans-
form variables from the ��� frame to the � reference
frame. All electrical variables are referred to the stator. In
these equations, �� and �� are stator and rotor resistance,
respectively, �� is the synchronous angular velocity, �� is the
electrical angular velocity, ��� and �
� are the stator � and  
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axis �uxes, and ��� and �
� are the rotor � and  axis �uxes.
Consider the following:

�
� = ! ��
� + !��
�,
��� = ! ���� + !����,
�
� = !��
� + !��
�,
��� = !���� + !����.

(9)

Also the stator and rotor �uxes are expressed by (9),
where ! � = ! �� + !� is the total stator inductance and !� =! �� + !� is the total rotor inductance. �e electromagnetic
torque is expressed by (10) where " is the number of pole
pairs. Consider

�� = 1.5" (����
� − �
����) . (10)

Two equations of the mechanical parts of the machine
are as (11) where % is the combined rotor and load inertia
constant, 
 is the combined rotor and load viscous friction
coe�cient, �	 is the mechanical torque, �	 is the angular
velocity of the rotor, and �	 is the rotor angular position:

�
���	 =

1
2% (�� − 
�	 − �	) ,
�
���	 = �	.

(11)

Equations (12) can be used to model the grid side
converter (GSC) and DC link capacitor, where �	 and !	 are
the resistance and inductance of the circuit between the GSC
and the grid,� is the DC link capacitance,��� is the capacitor
voltage, �� is the active power exchanged between the rotor
and the rotor side converter (RSC), and�	 is the output active
power of the GSC:

��	 = �	��	 + !	 ��� ��	 − ��!	�
	 + ���,

�
	 = �	�
	 + !	 ��� �
	 + ��!	��	 + �
�,

�	 = 3
2 (���&�	 + �
�&
	) ,

����
�� = �

���� = �� − �	
���� = �� − �� − �	

���� .

(12)

�e WECS contains three categories of controllers: RSC
controller, GSC controller, and pitch angle controller. To
control the RSC, the following equation can be used [39]:

�∗�� = '!����� + ����� − *��'!��
� − *�� (!�
! � )�
�,

�∗
� = '!���
� + ���
� + *��'!���� + *�� (!�
! � )���,

(13)

where control voltages ���� and ��
� can be obtained using the

PI controllers.�ese voltages are calculated by comparing ���
and �
� currents with reference �∗�� and �∗
� as follows:

���� = ����
�� = ��1 (�∗�� − ���) + ��1 ∫ (�∗�� − ���) ��,

��
� =
��
�
�� = ��1 (�∗
� − �
�) + ��1 ∫ (�∗
� − �
�) ��,

(14)

where��1 is the proportional gain and��1 is the integral gain
of the PI controller. �e following equations can be used to
control the GSC [39]:

�∗�	 = �	��	 + !	���	 − ��!	�
	 + ���,
�∗
	 = �	�
	 + !	��
	 + ��!	��	 + �
�,

(15)

where the control voltages���	 and��
	 are obtained using the
PI controller as follows:

���	 =
���	
�� = ��2 (�∗�	 − ��	) + ��2 ∫(�∗�	 − ��	) ��,

��
	 =
��
	
�� = ��2 (�∗
	 − �
	) + ��2 ∫ (�∗
	 − �
	) ��.

(16)

�e pitch angle controller is responsible for increment or
decrement of the pitch angle and it can be implemented by a
PI controller. �is controller acts on the di	erence between
the reference angular velocity and the measured angular
velocity of the generator. In modeling of the WECS, it is
usual to neglect the dynamics of the sensors, because they are
much faster than the dynamics of the wind turbine. �e only
expectation is the anemometer which is modeled as a �rst-
order low-pass �lter with a half a second time constant [3]. In
this study, allmeasured signalswere emulated by adding zero-
mean Gaussian distributed noise to deterministic values.

3. Dynamic Neural Network

In recurrent neural networks, the dynamic neurons replace
the standard static ones. In the structure which is utilized in
this paper, dynamics are created by introducing an IIR �lter
into the neuron architecture where the neuron reproduces
its own past inputs and activations by using the input signal
6�(7), for � = 1, 2, . . . , 8 and the output signal 9(7). �e
structure of the considered neuron model is shown in Figure
2. First the weighted sum of inputs is calculated according to
the following equation [20, 29]:

� (7) =
�
∑
�=1

;�6� (7) . (17)

�e weights of this network are such as the weights
of static feedforward networks. �e weights and activation
function are responsible for approximation properties of
the model. �e IIR �lters are linear dynamic systems of
di	erent orders which consist of feedback and feedforward
paths weighted by the weights ��, � = 1, 2, . . . , < and ��,
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Figure 2: Structure of the neuron model with the IIR �lter.

� = 0, 1, . . . , <, respectively. �e behavior of this linear system
can be expressed by the following equation:

> (7) =
�
∑
�=0

��� (7 − �) −
�
∑
�=1

��> (7 − �) , (18)

where �(7) is the �lter input and >(7) is the �lter output.
Eventually the output of the neuron is obtained by the
following equation:

9 (7) = ' (?2 (> (7) − ?1)) , (19)

where'(⋅) is a nonlinear activation function and?1 and?2 are
the bias and the slope parameters of the activation function.
�ere are di	erent methods to train these networks; the
threemajormethods are extended dynamic back propagation
(EDBP), adaptive random search (ARS), and simultaneous
perturbation stochastic approximation (SPSA). Each of these
methods has its own advantages and disadvantages. �e ARS
method was used in this paper to train the network. �e
advantage of this method is that it is easy to implement and
it has very wide applicability. �e information required to
implement this method is only the input-output data, where
the parameters’ vector � is the input and the cost function �(�)
is the output. All network parameters can be represented by
the parameters’ vector �. �e main purpose of training is to
adjust the elements of the vector � so that the cost function is
minimized as follows [20]:

�∗ = min
�∈C

� (�) , (20)

where �∗ is the optimal network parameter vector, � : R� →
R
1 is the cost function to be minimized, " is the dimension

of the vector �, and C ⊆ R
� is the constraint set de�ning the

permissible values for the parameters �.�e cost function can
be de�ned as follows:

� (D; �) = 1
2
�
∑
�=1

(9� (7) − 9 (7; �))2, (21)

where 9�(7) and 9(7; �) are the desired output of the network
and the actual response of the network on the given input
pattern6(7),� is the dimension of the training set, and D is the
iteration index.�e above cost function should beminimized
based on a given set of input-output patterns. In the ARS
method, it is not required to compute the gradient of �. Table
1 represents the ARS training algorithm [20]. Assuming that

the sequence of solutions �̂0, �̂1, . . . , �̂� is obtained already, to

achieve the next point �̂�+1, the following equation is used
[20]:

�̂�+1 = �̂� + <�, (22)

where �̂� is the estimate of �∗ at the 7th iteration and <�
is the perturbation vector generated randomly according to

the normal distribution N(0, V). �e new solution �̂�+1 is
accepted when the cost function �(�̂�+1) is smaller than �(�̂�),
otherwise �̂�+1 = �̂�. In order to start the optimization pro-

cess, it is necessary to specify the initial value �̂0 and the
variance G. Assuming �∗ is a global minimum that should be

found, when �̂� is far away from �∗, <� should have a large
variance to allow large displacements. �is causes to escape

local minima. However, when �̂� is close to �∗, <� should have
a small variance to allow precise exploration of the parameter
space. Far from its convenience of training, the algorithm
has the global convergence property and adaptive parameters
of the algorithm reduce the possibility of trapping in local
minima [20].

4. FDS Scheme

In this research, among the possible faults of the WECS,
the pitch sensors, generator’s angular velocity sensor, and
pitch actuators faults were studied; because according to the
information of the fault analysis which is given in [4], these
three categories of faults have more severity and occurrence
indices than the other faults. Internal faults of the generator
and converter were not studied in this research in order
to prevent the research from becoming too complex and
extensive. It is also assumed that no fault has occurred in the
control systems of the WECS and they continue to function
properly. �us it can be said that the normal operation
conditions of the WECS are as follows:

(i) the control systems are healthy;

(ii) any type of faults has not occurred in the WECS;

(iii) any fault has not occurred in the power grid con-
nected to the WECS.

Also the faulty operation conditions are as follows:

(i) the control systems are healthy and they continue to
act normally when a fault has occurred;

(ii) one of the faults in the pitch sensors, pitch actuators,
or generator’s angular velocity sensor has occurred; it
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Table 1: �e ARS training algorithm.

Step Operation

(1) Initialization phase: �̂0, 8max
, G0 and �

min
should be selected and 8 = 1, �̂best = �̂0;

(2) Variance selection phase:

� = 1, 7 = 1, �̂� = �̂0;
while (� < 5)

while (7 ≤ 100/�)
�e trial point algorithm is executed;
7 = 7 + 1;

end
� = � + 1, 7 = 1, �̂� = �̂0;
end

(3) Variance exploration phase:

7 = 1, �̂� = �̂best, � = �best;
while (7 ≤ 100)

�e trial point algorithm is executed;
7 = 7 + 1;

end
if ((8 = 8

max
) or (�(�̂best) < �

min
))

Break;
else �̂0 = �̂best, 8 = 8 + 1 and go to Step 2.;
end

�e trial point algorithm:

G� = 10−�G0, �̂�� = �̂� + <�;
if (�(�̂��) ≤ �(�̂�))

�̂�+1 = �̂��;
else �̂�+1 = �̂�;
end
if (�(�̂��) ≤ �(�̂best))

�̂best = �̂��;�best = �;
end

is assumed that these faults do not occur at the same
time;

(iii) any fault has not occurred in the power grid con-
nected to the WECS.

In design of the FDS, studying the two signals of the
generator’s angular velocity and pitch angles causes to detect
the faults in the pitch system and generator’s angular velocity
sensor. According to themodel of theWECS, bothmentioned
signals can be considered as a nonlinear function of the
turbine’s rotor speed and the measured wind speed. �ese
two measurements are available from the healthy sensors.
Because the closed-loop control system performance varies
under di	erent wind speeds, the wind speed is regarded as an
input of the nonlinear functions. So the following relations
can be considered:

�	 = ℎ1 (��, ��) , (23)


1,2,3 = ℎ2 (��, ��) , (24)

where ℎ1(⋅) and ℎ2(⋅) are nonlinear functions.�us according
to the measured values of the signals in the input of these
functions, their outputs can be estimated by the mentioned
dynamic neural network.�ese neural models can be used to
emulate the normal system behavior. �e neural models are
then placed in parallel with the system and fault detection
is acquired by comparing the outputs of the neural models
with the real system outputs. First, the generator’s angular

velocity is modeled by neural network. �e process to be
modeled is described by (23). �is process has two inputs
and one output. �e training process was carried out o	-line
using the ARS algorithm. �e learning set consisted of 1000
samples for di	erent mean wind speeds whilst the testing
set consisted of 2000 samples for the mean wind speed of
16m/s. First these samples were converted to the p.u. accord-
ing to their base values and then the p.u. values were used to
train the network. �e best model was selected by using two
information criteria. �ese criteria are the Akaike informa-
tion criterion (AIC) and the �nal prediction error (FPE).
�e AIC determines the model complexity by minimizing
an information theoretical function, LAIC, which is de�ned
as follows [20]:

LAIC = log (�) + 2�
� , (25)

where � is the sum of squared errors between the desired

output, 9�� , and the network output 9�, � is the number of
samples used in the computation of �, and� is the number of
model parameters. Another criterion is the FPE,which selects
the model order minimizing the function FPE, LFPE, which is
de�ned as follows [20]:

LFPE = � (1 + (�/�))
(1 − (�/�)) . (26)

�e results of the appropriate network structure selection
to model �	 are presented in Table 2. In this table � is the
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Table 2: �e training and testing results for the network structure selection to model �	.

Network structure � Training Testing

� LFPE LAIC � LFPE LAIC
N22,3,1(1) 25 0.0282 0.0296 −3.5148 0.0126 0.0129 −4.3491
N22,4,1(1) 33 0.0379 0.0405 −3.2068 0.0200 0.0207 −3.8790
N22,5,1(1) 41 0.0258 0.0286 −3.5554 0.0151 0.0157 −4.1521
N22,6,1(1) 49 0.0521 0.0575 −2.8566 0.0573 0.0602 −2.8105
N22,7,1(1) 57 0.0406 0.0455 −3.0900 0.0664 0.0703 −2.6551
N22,3,1(1) 31 0.0268 0.0285 −3.5574 0.0134 0.0138 −4.2815
N22,4,1(1) 41 0.0417 0.0453 −3.0953 0.0424 0.0442 −3.1196
N22,5,1(1) 51 0.0378 0.0419 −3.1734 0.0409 0.0430 −3.1456
N22,6,1(1) 61 0.0349 0.0394 −3.2333 0.0327 0.0348 −3.3594
N22,7,1(1) 71 0.0795 0.0917 −2.3900 0.0850 0.0913 −2.3941
N32,3,2,1(2-2) 50 0.1286 0.1421 −1.9510 0.0365 0.0384 −3.2604
N32,4,2,1(2-2) 61 0.0902 0.1019 −2.2837 0.0767 0.0815 −2.5069
N32,4,3,1(2-2) 73 0.1135 0.1314 −2.0300 0.0141 0.0152 −4.1886

number of network parameters, � is the sum of squared
errors, and���,V,�(<) represents theM layered dynamic neural
network with 8 inputs, V hidden neurons, and * outputs in
which neurons are of the < order of the IIR �lters. �e best
results (marked with the bold text) were obtained for the
�22,3,1(2) structure for the training set. However, for the test-
ing set,�22,3,1(1) structure shows better performance. Eventu-

ally the�22,3,1(1) architecture, which corresponds to the mini-
mum criteria in testing, was selected as optimal to model
behaviors of �	, because this structure has better generaliza-
tion capability than the one selected for the training set. Each
neuron of the dynamic network model has the hyperbolic
tangent activation function and is of the �rst order of the IIR
�lter. Figure 3 shows the comparison of the real �	 and the
estimated �	 by the designed dynamic neural network in the
normal operation conditions. As it is obvious, the designed
neural network estimates �	 desirably and estimation error
is minimal. All simulations were carried out inMatlab/Simu-
link version R2008a environment. �e parameters of the
system are presented in the appendix.

In order to form the FDS of the generator’s angular
velocity, two types of faults were considered which will be
discussed below. In the basic FDS, the constant threshold was
used to evaluate the residual signals. �is threshold level was
considered equal to ±4 rad/s. In the �rst simulation, the +2%
abrupt proportional fault was introduced at time instant 30 s
for duration of 20 s and the−5% abrupt proportional fault was
introduced at time instant 70 s for duration of 20 s. Figure 4
shows the simulation result in this case.

According to Figure 4, in the case of the generator’s angu-
lar velocity deviation from its healthy value, a residual is
obtained by neural model estimator which is compared with
the threshold level; hence the fault occurrence is detectable.
In this �gure, between the moments of 30 to 50 seconds
and 70 to 90 seconds, the obtained residual passes the
±4 rad/s threshold level and this event indicates that a fault
has occurred in the generator’s angular velocity sensor. As
a result, it can be argued that the FDS has the capability of
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Figure 3: Residual signal of the generator’s angular velocity sensor
resulting from the WECS simulation for the mean wind speed of
14m/s in normal conditions.

detecting the abrupt proportional faults in the generator’s
angular velocity sensor.

�e second simulation was performed when an incipient
proportional fault occurred in the generator’s angular velocity
sensor. In this case, output of the generator’s angular velocity
sensor was deviated from its real value at time instant 30 s
until it reached to 1.1 times greater than its real value at time
instant 90 s; that is, during 60 seconds, an incipient fault was
introduced in the generator’s angular velocity sensor. In this
case, the simulation result is presented in Figure 5. According
to Figure 5, the FDS has the ability to detect the introduced
incipient fault at time instant 40.7 s. It means that it takes
about 11 seconds until the FDS detects this type of fault which
is so desirable in detection of incipient faults. According
to the obtained results for the abrupt proportional fault,
incipient proportional fault, and �xed output fault (which is a
special case of the incipient fault), it can be concluded that the
designed FDS can detect faults well in di	erent wind speeds
(which a	ects the dynamics of the system). �is FDS has
capability of the early detection of faults.�e signi�cant point
in this system is a very low number of false alarms which is
desired in any FDSs.
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Table 3: �e training and testing results for the network structure selection to model 
1.
Network structure � Training Testing

� LFPE LAIC � LFPE LAIC
N22,3,1(1) 25 0.2447 0.2583 −1.3536 0.2510 0.2574 −1.3573
N22,4,1(1) 33 0.1023 0.1099 −2.2083 0.1471 0.1520 −1.8836
N22,5,1(1) 41 0.0394 0.0431 −3.1451 0.0821 0.0855 −2.4588
N22,6,1(1) 49 0.0422 0.0465 −3.0673 0.0964 0.1012 −2.2902
N22,7,1(1) 57 0.0509 0.0561 −2.8799 0.1150 0.1208 −2.1138
N22,3,1(1) 31 0.0304 0.0325 −3.4261 0.0793 0.0818 −2.5035
N22,4,1(1) 41 0.0781 0.0854 −2.4609 0.1078 0.1123 −2.1865
N22,5,1(1) 51 0.0471 0.0526 −2.9450 0.1037 0.1091 −2.2153
N22,6,1(1) 61 0.0348 0.0384 −3.2601 0.0873 0.0917 −2.3894
N22,7,1(1) 71 0.0457 0.0527 −2.9437 0.0782 0.0936 −2.3686
N32,3,2,1(2-2) 50 0.0641 0.0714 −2.6390 0.0952 0.1001 −2.3018
N32,4,2,1(2-2) 61 0.0373 0.0426 −3.1566 0.0849 0.0902 −2.4053
N32,4,3,1(2-2) 73 0.0282 0.0325 −3.4103 0.1012 0.1089 −2.2177

Table 4: Faults speci�cations in the integrated test.

Location Type Start time Stop time

Generator’s angular velocity sensor Proportional +2% (f 1) 30 70

Pitch actuator of the blade 1 Change in � and �� (f 2) 80 120

Generator’s angular velocity sensor Proportional −10% (f 3) 120 150

Pitch sensor of the blade 1 Positive bias +1∘ (f 4) 160 180

Generator’s angular velocity sensor Proportional +5% (f 5) 190 210

Generator’s angular velocity sensor Proportional −2% (f 6) 220 230

Pitch sensor of the blade 1 Negative bias −0.8∘ (f 7) 240 260

Pitch actuator of the blade 1 Change in � and �� (f 8) 265 290
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Figure 4: �e residual of the generator’s angular velocity for
the mean wind speed of 14m/s during occurrence of the abrupt
proportional fault in the generator’s angular velocity sensor.

�e next phase in design of the FDS is related to the
pitch system fault detection. In the pitch system, the pitch
sensors and actuators are subjected to the faults. �erefore,
the pitch system should be modeled by neural network. �e
process to be modeled is described by (24). �e training
process was carried out o	-line using the ARS algorithm.
�e learning set consisted of 1000 samples for di	erent mean
wind speeds and the testing set consisted of 2000 samples
for the mean wind speed of 16m/s. First these samples were
converted to the p.u. values according to their base values
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Figure 5: �e residual of generator’s angular velocity for the
mean wind speed of 12m/s during occurrence of the incipient
proportional fault in the generator’s angular velocity sensor.

and then the p.u. values were used to train the network. �e
best model was selected by using the AIC and FPE criteria.
�e results of the appropriate network structure selection
are presented in Table 3. �e best results were obtained for
the �22,3,1(2) structure for the both training and testing sets.

�us, the �22,3,1(2) architecture was selected as optimal to
model behaviors of the pitch system in the normal operation
conditions. Each neuron of the dynamic network model
has the hyperbolic tangent activation function and is of the



Computational Intelligence and Neuroscience 9

0 20 40 60 80 100

0

1

Time (s)

E
rr

o
r 

(d
eg

)

−1

Figure 6: Residual signal of the pitch system of the blade 1 resulting
from the WECS simulation for the mean wind speed of 14m/s in
normal conditions.
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Figure 7: Residual evaluation by the constant threshold for the
mean wind speed of 14m/s during occurrence of three categories
of faults in the pitch system.

second order of the IIR �lter. Figure 6 shows the comparison
of the real 
1 and the estimated 
1 by the designed dynamic
neural network in normal operation conditions. As it can be
seen, the estimation error is minimal and the designed neural
network has good ability to mimic the pitch angles behaviors.

In order to form the FDS of the pitch system, three types
of faults were considered. Faults of the pitch system were
categorized such that an increase in the output of the blade
1 pitch sensor (positive bias) was considered as the category 1,
a decrease in the output of the blade 1 pitch sensor (negative
bias) was considered as the category 2, and faults of the pitch
actuator which were modeled by changing the � and �� were
considered as the category 3. To study the residual signal,
the +0.75∘ bias fault was introduced at time instant 30 s for
duration of 10 s, the −1∘ bias fault was introduced at time
instant 50 s for duration of 10 s, and the pitch actuator fault
which is an abrupt fault was introduced at time instant 70 s
for duration of 30 s. Figure 7 shows the residual signal under
these conditions. In the basic FDS, the constant threshold
can be used to evaluate the residual signal. �is threshold
level was considered equal to ±0.3∘. As it can be seen, the
occurred faults can be detected using the constant threshold.
According to Figure 7, it takes 1.3 s, 2.1 s, and 2.5 s to detect the
positive bias, the negative bias, and the pitch actuator faults,
respectively. Using this residual and the constant threshold,
the minimum detectable fault is equal to ±0.5∘. Obviously,
the threshold value can be reduced to further speed up

the detection process; however, by reducing the detection
time, false alarms will increase. In fact, a tradeo	 should be
considered between the detection time and false alarms rate.

To evaluate the FDS performance in the presence of
the pitch sensors and actuators and the generator’s angular
velocity sensor faults, �rst it is necessary to point out that
occurrence of a fault in the angular velocity sensor of the
generator a	ects the residual signal of the pitch system.
To investigate this issue, the +5% proportional fault in the
generator’s angular velocity sensor was introduced at time
instant 30 s for duration of 10 s, the +1∘ bias fault in the
blade 1 pitch sensor was introduced at time instant 50 s for
duration of 10 s, and the pitch actuator fault was introduced
at time instant 70 s for duration of 20 s. Figure 8 represents
the residual signals which were obtained from the FDS. As
it can be seen from the results, by introducing a fault in the
generator’s angular velocity sensor, the residual signal of the
blade 1 pitch sensor was a	ected and changed. Conversely, by
introducing a fault in the pitch system, the residual signal of
the generator’s angular velocity was not a	ected.

Consequently, to form an integrated FDS, it should be
considered that if both of the residuals have passed the
threshold level, it means that a fault has occurred in the
generator’s angular velocity sensor. But if only the residual of
the blade 1 pitch angle has passed the threshold level, it means
that a fault has occurred in the pitch system. �e general
algorithm for detection of the studied faults in the WECS is
suggested as follows:

(1) if both of the residuals of the generator’s angular
velocity sensor and pitch system remain within the
threshold level, no fault has occurred in the WECS;

(2) if both of the residuals of the generator’s angular
velocity sensor and pitch system pass the threshold
level, a fault has occurred in the generator’s angular
velocity sensor;

(3) If the residual of the generator’s angular velocity
remains within the threshold level but the residual of
the pitch system passes the threshold level, a fault has
occurred in the pitch system.

In order to evaluate performance of the FDS together
with the proposed algorithm, various faults were introduced
to the WECS for duration of 300 s according to Table 4.
In this case, the residual signals are shown in Figure 9. In
this �gure, a value of 1 means occurrence of a fault and a
value of zeromeans that the corresponding element functions
properly. As it can be seen from the results, performance of
the designed FDS is very good togetherwith theminimal false
fault detections. In this �gure, there are very few false alarms
which are signi�cant and desirable. To reduce the number
of false detections, the threshold level can be increased, in
order to avoid false alarms due to noises, disturbances, and
uncertainties. However an increase in the threshold level will
be followed by the sensitivity reduction of the FDS. Always
a compromise should be considered to reduce the number
of false alarms and to achieve the desired sensitivity when a
constant threshold is utilized.
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Figure 8: �e residual signals for occurrence of three types of faults: (a) the residual signal of the generator’s angular velocity sensor and (b)
the residual signal of the pitch system of the blade 1.
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Figure 9: �e residual signals under occurrence of the faults speci�ed in Table 4: (a) the residual signal of the generator’s angular velocity
sensor and (b) the residual signal of the pitch system of the blade 1.

5. The Robustness Issue

Since there are disturbances, uncertainties, andmeasurement
noises in practical systems, decision making can be sensitive
to them. �e mentioned factors cause the robustness issue
to be so important in FDSs. �e robustness problem in
FDSs is to minimize the number of false alarms and to
maximize its sensitivity simultaneously. As it is described
in [20], robustness of FDSs can be acquired by two general
methods:

(1) active methods in which the robustness issue is con-
sidered from the beginning of the design procedure
of the FDS so that it is not sensitive to disturbances,
uncertainties, and measurement noises. Generally,
these approaches utilize unknown input observers,
robust parity equations, and linear parameter varying
observers [30–32];

(2) passive methods in which the robustness issue is
achieved in the decision making component of the
FDS. In these approaches, robustness is obtained by
an adaptive threshold. As it is stated in [20], the
passive method has an advantage over the active one,
since the desired robustness can be acquired in spite
of uncertain parameters of the model.

To avoid false alarms in passive approaches, the value
of the constant thresholds should be selected large enough
because of unmodeled dynamics, disturbances, uncertainties,
andmeasurement noises. On the other hand, a large value for
the constant threshold causes the sensitivity degradation of
the FDS. As it is mentioned earlier, when a constant threshold
is utilized, a compromise should be considered to reduce the
number of false alarms and to attain the desired sensitivity.
�erefore, it is suggested to use the adaptive threshold. In
the adaptive threshold, the value of the threshold varies in
time according to the obtained information from the residual
signal. In this paper, to achieve the robustness of the FDS, the
proposed adaptive threshold in [20] is utilized. �is adaptive
threshold is described by the following equations:

� (7) = ��] (7) ± M (7) ,
] (7) = N] (7) + (1 − N) ] (7 − 1) ,

M (7) = NM (7) + (1 − N)M (7 − 1) ,
(27)

where ](7) and M(7) are the variance and mean value of the
residual signal for the past 8 samples, respectively, and N is
the momentum parameter which is considered close to 1.
Furthermore, the signi�cance level, O, relates to probability of
exceeding the residual signal from a random value, ��, with
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Figure 10: Residual evaluation by the adaptive threshold during occurrence of three categories of faults in the pitch system: (a) the residual
and adaptive threshold and (b) decision making by means of the adaptive threshold.

Table 5: �e number of false and missed alarms.

�reshold type
Number of
false alarms

Number of missed alarms

Constant 8 382

Adaptive 5 57

N(0, 1). �e following equation describes the signi�cance
level [20]:

O = �(QQQQQQQ
< − M
]

QQQQQQQ > ��) . (28)

To investigate performance of the de�ned adaptive
threshold, the residual signal in Figure 7 was considered
again and the adaptive threshold was calculated. In this
case, the simulation result is shown in Figure 10. As it is
obvious from the obtained result, the adaptive threshold indi-
cates the satisfactory behaviors. Additionally, the number of
false and missed alarms for both the adaptive and constant
thresholds is calculated and results are gathered in Table 5.
�e statistical analysis con�rms that the performance of the
adaptive threshold (Figure 10) is considerably better than the
constant threshold (Figure 7). By using the adaptive thre-
shold, the number of both false and missed alarms is reduced
signi�cantly.

Furthermore, to study the e�ciency of the presented FDS,
the integrated test, which is presented inTable 4, is performed
again. To compare the performance of the FDS together
with the adaptive threshold and the FDS together with the
constant threshold, three indices are utilized. �ese indices
are the number of false and missed alarms and detection
time, �detect. Table 6 shows the obtained results in this case.
It is noteworthy that in Table 6, the number of false alarms is
calculated for whole residual signal; however, the number of
missed alarm is calculated for each type of fault separately.
Simulation results verify the validity of the proposed FDS.
�e presented FDS together with the adaptive threshold
has good sensitivity and the number of its missed alarms

is appropriate. Likewise its detection time is very low and
favorable.

6. Conclusion

In this paper, an FDS was proposed for the WECS. �e
dynamicmodel of theWECSwas a comprehensive onewhich
contained both the electrical andmechanical parts. Detection
of faults was performed in such a way that two neural models
were used to emulate the normal system behaviors.�eywere
then placed in parallel with the system and fault detection
was acquired by comparing their outputs. �e designed FDS
can detect faults in the generator’s angular velocity sensor, the
pitch sensors, and actuators. �e FDS employed the dynamic
RNN and the ARS method was used to train the network.
�is kind of dynamic neural networks presented very high
ability to estimate both the generator’s angular velocity and
pitch angle. In order to attain the robustness, it was suggested
to use an adaptive threshold because the constant threshold
was so sensitive tomeasurement noises and disturbances.�e
simulation results for di	erent operation conditions verify
that the proposed FDS operates fast, precisely, and accurately
and detects the faults appropriately and its false and missed
alarms are very low.

Appendix

Parameters of the System

� = 2MW, �� = 690 v, L� = 60Hz, �	,nom = 195.8 rad/s,
Number of blades = 3, �	 = 85, ��� = 1.0383 × 108, ��� =
1.0383 × 106, ℎ = 60m, � = 30.56m, �� = 8.7 × 106 kgm2,
�	 = 150 kgm2, �� = 250 × 103 kg, �� = 5.55 × 106Nm,

�� = 2.98 × 103N/m/s, V�,cut-in = 4m/s, V�,cut-o	 = 25m/s,

� = 1.225 kg/m3, Number of poles = 4, �� = 0.0069314 p.u.,
�� = 0.00906 p.u., ! �� = 0.08083 p.u., ! �� = 0.09934 p.u.,
!� = 3.29 p.u., ���,nom = 1200 v, � = 10000 × 10−6 F,
�	 = 0.0015 p.u., !	 = 0.15 p.u.
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Table 6: Evaluation of the suggested FDS for the constant and adaptive thresholds.

Fault type
Number of false alarms Number of missed alarms �detect

Constant Adaptive Constant Adaptive Constant Adaptive

f 1

29:
for all of the
samples
during 300
seconds

13:
for all of the
samples
during 300
seconds

3 2 0.2 0.05

f 2 348 74 0.3 0.4

f 3 3 3 0.25 0.1

f 4 235 41 1.5 0.6

f 5 3 1 0.2 0.2

f 6 3 2 0.1 0.1

f 7 79 11 0.1 0.3

f 8 245 39 0.5 0.35
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