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Robust Fault Diagnosis of Non-linear Systems

using Interval Constraint Satisfaction

and Analytical Redundancy Relations
Sebastian Tornil-Sin, Carlos Ocampo-Martinez, Vicenç Puig and Teresa Escobet

Abstract—In this paper, the robust fault diagnosis pro-

blem for non-linear systems considering both bounded

parametric modelling errors and noises is addressed using

parity equation based Analytical Redundancy Relations

and Interval Constraint Satisfaction techniques. Fault

detection, isolation and estimation tasks are considered.

Moreover, the paper addresses the problem of determining

the uncertainty in the parameters of the used uncertain

ARRs. To illustrate the usefulness of the proposed ap-

proach, a case study based on the well known wind turbine

benchmark is used.

Index Terms—Fault detection, robustness, intervals, set-

membership estimation, constraint satisfaction.

I. INTRODUCTION

M
ODEL-BASED fault detection and isolation

(FDI) of dynamic systems relies on the use of

the analytic redundancy provided by the model. Model-

based FDI systems check the consistency between known

variables, inputs and measured outputs, according to the

relations provided by a normal operation model of the

system. The consistency is normally expressed in terms

of residuals, computable expressions that evaluate to

zero in absence of faults. One residual is enough for

fault detection, several residuals allow fault isolation.

When building a model of a dynamic system to

monitor its behaviour, there is always some mismatch

between the modelled and the real behaviour, e.g., some

effects are neglected, some non-linearities are linearised

in order to simplify the model, some parameters have

tolerance when are compared between several units of

the same component, some errors in parameters or in
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the structure of the model are introduced in the model

calibration process, among others. These modelling er-

rors introduce some uncertainty in the model. Accorging

to the FDI literature (see [1] and [2], among others), the

goal of a robust fault detection method is to discriminate

between fault and uncertainty effects. In practice, a

robust fault detection system has to simultaneously ma-

ximize sensitivity to faults while minimizing sensitivity

to uncertainties. According to [1], two types of robust

approaches have been proposed: active and passive.

Active robust approaches face modelling errors as if

they were disturbances, using a disturbance decoupling

principle and trying to obtain residuals sensitive to faults

but not to these errors. Techniques such as unknown

input observers [3], eigenstructure assignment [1] or

structured parity equations [2], among others, can be

found in the literature. On the other hand, process and

measurement noises are usually stochastically modelled

(the typical assumption is a zero-mean white noise) and

their effect is considered by using statistical decision

methods [4] to evaluate the residuals.

However, such approaches show several drawbacks.

Regarding modelling errors, the first problem con-

sists in the difficulty of representing them as distur-

bances and solving the associated decoupling problem

(the distribution matrix is normally unknown and time

varying). Moreover, the number of decoupled distur-

bances/modelling errors is limited by the degree of

freedom in the residual generation procedure [2]. Finally,

if the fault detection system is insensitive to modelling

errors then it will be also insensitive to parametric faults.

As an alternative strategy, disturbances/modelling errors

may be assumed to be bounded and their effects propa-

gated to the residual using, for example, interval methods

[5]. Regarding measurement noises, in some practical

situations it is not realistic to assume the availability of

a known statistical distribution law. For instance, when

the volume of collected data is small or when the mea-

surement uncertainty is corrupted by some deterministic

systematic errors, due to not considered model errors

and/or disturbances. If noise bounds are available, several



types of mathematical tools can be applied, e.g. uniform

distributions, Monte Carlo methods or interval analysis.

Hence, the so called set-membership approach [6] can be

used in the context of fault detection as suggested by [7].

The advantage of the bounded description of uncertainty

is that it does not require restrictive assumptions (e.g.,

a small number of unknown disturbances/parameters,

known statistical distribution law). However, a limitation

is that faults that produce a residual deviation smaller

than the residual uncertainty due to model uncertainty

will remain undetected (missed detection).

In this paper, the robust fault diagnosis problem for

non-linear systems considering both bounded parametric

modelling errors and noises is formulated using the

mathematical framework of Interval Constraint Satisfac-

tion Problems (ICSPs). A constraint satisfaction problem

is defined by a set of constraints imposing relations to

be satisfied by the related variables and by predefined

domains for these variables. This general setup is here

applied to the formulation of the fault detection, isolation

and estimation tasks in presence of bounded uncertainty,

being this the main contribution of the paper. The pro-

posed fault detection procedure checks the consistency

between the observed and the normal system behaviour

using a set of Analytical Redundancy Relations (ARRs),

which relates the values for measured variables accord-

ing to a model of normal operation (fault-free) for the

monitored system. When some inconsistency is detected,

the fault isolation mechanism is activated in order to

identify the possible fault. The fault isolation is based

on identifying the inconsistent ARRs and identifying the

fault that corresponds with such signature. Finally, a fault

estimation procedure also formulated as a CSP is used

to estimate the fault magnitude.

The use of interval constraint satisfaction for fault

detection in presence of uncertainty has been already

proposed by [8] and [9] using observers and state es-

timators, respectively. These methods improve the ap-

proach for uncertain systems proposed by [10], which

only considers system trajectories obtained from the

uncertain parameter interval vertices assuming that the

monotonicity property holds. On the other hand, this

paper proposes to address the fault detection problem by

using constraint satisfaction and ARRs in parity equation

form. The advantage of using parity equations instead of

state estimation/observers is that the state of the system

is not required to be estimated since only measured

inputs/outputs are used. This paper can be considered

an adaptation of the non-linear ARR approach proposed

in [11] in the case that noise and model parameters are

modelled in the set-membership context and included in

the ARRs. In case of linear systems, [12] has suggested

the evaluation of uncertain ARRs generated using the

parity space approach using set computations. However,

to the best of the authors’ knowledge, the fault detection

problem in presence of bounded uncertainty has not been

considered before by using parity equations and ICSPs

within the non-linear context. The problem of how to

derive the ARRs is not considered in the paper. It is

assumed that ARRs have been already been obtained

from the model equations using any of the available

ARR generation algorithms [13], [14]. Compared to

previous works (see [8] and [9]), other contributions of

this paper are highlighted as follows. First, not only the

fault detection problem but also the fault isolation and

fault estimation problems are considered (by using the

same ICSP framework). Second, a method to quantify

the uncertainty in the model (uncertain parameter esti-

mation) using data collected from the system in non-

faulty scenarios is provided. Finally, the methodology is

applied to a realistic example that is used as a benchmark

by the research community in fault diagnosis and fault-

tolerant control: the wind turbine benchmark.

The paper is structured as follows. Section II outlines

a basic background on constraint satisfaction. In Sec-

tion III, robust fault detection using ARRs is formulated

as a ICSP. In Section IV, fault isolation and estimation

task using ARRs are also formulated as ICSPs. Sec-

tion V shows how to estimate the uncertainty in the

system model parameters using data collected in a non-

faulty scenario. The description of the whole integrated

diagnosis methodology is addressed in Section VI. In

Section VII, to illustrate the usefulness of the proposed

approach, it is applied to the wind turbine benchmark.

Finally, in Section VIII, the conclusions are drawn.

II. CONSTRAINT SATISFACTION BACKGROUND

A. Constraint Satisfaction Problems

A CSP on sets can be formulated as a 3-tuple

H = (Z,D, C) [15], where

• Z = {z1, · · · , zn} is a finite set of variables,

• D = {D1, · · · ,Dn} is the set of variables domains

represented by closed sets, and

• C = {c1, · · · , cm} is a finite set of constraints,

where each constraint ci is specified by a pair

(Zi,Ri) such that Zi is a subset of Z , called the

constraint scope, and Ri, called constraint relation,

is a relation specifying the allowed combination of

values for the variables in Zi.

Solving a CSP consists in finding all variable value

assignments such that all constraints are satisfied. The

variable value assignment (z̆1, · · · , z̆n) ∈ D is a solution

of H if all constraints in C are satisfied. The set of all



solution points of H is called the global solution set and

denoted by S(H). The variable zi ∈ Z is consistent in

H if and only if ∀z̆i ∈ Di

∃ (z̆1 ∈ D1, · · · , z̆i−1 ∈ Di−1, z̆i+1 ∈ Di+1, · · · , z̆n ∈ Dn)

such as (z̆1, · · · , z̆n) ∈ S(H).
The solution of a CSP is said to be globally consistent

if and only if every variable is consistent. A variable

is locally consistent if and only if it is consistent with

respect to all directly connected constraints. Thus, the

solution of the CSP is said to be locally consistent if all

variables are locally consistent. An algorithm for finding

an approximation of the solution set of a CSP can be

found in [15].

B. Implementation using Intervals

It is well known that the solution of CSPs involving

sets has a high computational complexity [15]. In order

to reduce complexity, the CSPs derived from the fault

diagnosis problem are relaxed to Interval Constraint

Satisfaction Problems (ICSPs) [16].

Available interval constraint satisfaction solvers allow

to combine techniques with local and global consistency.

Local consistency can be obtained by using domain

contraction and propagation, global consistency requires

bisection.

Contraction: First of all, consider the following defi-

nition.

Definition 2.1 (Contractor): A contractor is an opera-

tor that reduces domains. Applied to the solution H of

a CSP, an operator CH : IRn → IR
n is a contractor if it

satisfies

∀[z] ∈ D :

{

CH([z]) ⊂ [z]
CH([z]) ∩ S(H) = [z] ∩ S(H).

(1)

Contractors are algorithms that reduce the interval

domains of variables which comply with a set of cons-

traints. The purpose of a contractor is to reduce any box

[z] without loosing any solution point in S(H). In [15],

a number of contractors for a variety of sets are given.

The application of the contractor operator is therefore

known as contraction.

Propagation: Consider now the following definition.

Definition 2.2 (Propagator): A propagator is an ope-

rator that sequentially performs contractors until no more

significant contraction can be observed when several

constraints are involved.

The procedure of applying propagators is known as

propagation. The interval propagation method converges

to a box which contains all solution vectors of the

constraint set. If this box is empty, it means that there is

no solution. It can be shown that the box to which the

method converges does not depend on the order to which

the contractors are applied [15], but the computation time

is highly sensitive to this order. There is no optimal order

in general, but in practice, one of the most efficient is

called forward-backward propagation.

Bisection: The combined use of contraction and prop-

agation leads only to obtain a local consistent solution.

The locality problem is due to the strategy for reducing

domains processes every constraint projection indepen-

dently. To escape from local consistency, every resultant

box from the application of contraction and propagation

should be bisected in two sub-boxes, sharing all variable

domains of the original box, except the one with largest

width, which is split by its mid point. Then, contractors

and propagation are applied on the new resultant sub-

boxes. This process, called bisection, is iterated until no

refinement of those sub-boxes below to a pre-established

amount is achieved.

C. Computational and implementation issues

Contractors are algorithms that present polynomial

complexity in the number of uncertain variables. Unfor-

tunately, since they only assure local consistency, their

use may lead to over-bounded solutions depending on

the considered problem. To avoid this, contractions are

combined with bisections. However, the use of bisections

leads to a branch and bound algorithmic structure with

exponential complexity.

To obtain the results presented in the case of study,

the Real Paver solver [17] has been used. Real Paver

allows to use or to limit bisections, which according

to the previous discussion has a direct impact in the

obtained solutions and in the computation time. This

allows to adapt the solver to the particular properties

of the considered problem.

III. ROBUST FAULT DETECTION AS ICSP

A. System Modelling

Consider that the behaviour of system to be monitored

may be described by the following discrete-time non-

linear model:

xk+1 = g(xk, uk, θk) + wk,

yk = h(xk, uk, θk) + vk,
(2)

where x ∈ R
nx is the vector of system states, u ∈ R

nu

is the vector of system inputs and y ∈ R
ny is the

vector of system outputs; θk ∈ R
nθ is a vector of

uncertain parameters; wk ∈ R
nw and vk ∈ R

nv are

process and measurement noises; g : R
nx 7→ R

nx and

h : R
nx 7→ R

ny are the state-space and measurement

non-linear functions, respectively.



The proposed model is able to represent different types

of uncertainties through θk, wk and vk. Unmodelled dy-

namics, disturbances and errors due to the discretization

process may be captured in the process noise wk. Errors

in sensors are represented in the measurement noise vk.

Parameter uncertainty is represented through θk. It is

asumed that all uncertain parameters, process and mea-

surements noises are unknown (i.e., their instantaneous

values) but bounded in (known) intervals. All this latter

may be expressed in compact form as

θk ∈ Θ =
{

θ ∈ R
nθ | θ ≤ θ ≤ θ̄

}

, (3)

wk ∈ W = {w ∈ R
nw | w ≤ w ≤ w̄} , (4)

vk ∈ V = {v ∈ R
nv | v ≤ v ≤ v̄} , (5)

where Θ, W are V axis-aligned n-dimensional boxes

(Cartesian products of intervals).

Different cases may be considered with respect to the

time variance of the parameter vector θk (uncertainty

in vk and wk is naturally assumed to be time-variant).

If no additional conditions are stated, according to (3)

the system is considered time variant with parameters

bounded but freely varying inside Θ. But sometimes the

inter-sample variance is known to be bounded. This can

be represented by adding to the system description (2)

the following equations

θk+1 = θk + pk, (6)

pk ∈ P =
{

p ∈ R
np | p ≤ p ≤ p̄

}

(7)

Finally, it can be assumed that the monitored system

is time invariant. This can be easily represented as

particular case with pk = 0.

A key aspect about the use of uncertain models is how

the uncertainty bounds are obtained. Regarding process

and measurement noises, it is assumed in this work

that a priori theoretical or practical considerations allow

to obtain useful intervals that define the boxes W and

V . This is the case, for instance, when the precision

or the maximum absolute errors of the used sensors

are known. Or when starting from a given continuous-

time model a particular discretization method is used.

Regarding the parameter uncertainty, it is assumed that

a priori initial intervals can also be obtained, leading

to an initial box Θ0. For instance, this is the case

when tolerances for the values of components or limits

for physical coefficients are known. A problem appears

when these intervals are too wide and their direct use

limit seriously the detectability of faults. To avoid this

problem, set-membership parameter estimation [6] can

be applied. An algorithm implementing such type of

parameter estimation is proposed in Section V. Applied

to data collected in a fault-free scenario, the algorithm

will obtain the reduced parameter box Θ that will be

used for fault diagnosis purposes.

B. ARR Generation using Structural Analysis

The design of model-based diagnosis systems may be

based on utilizing the system model in the construction

of diagnosis tests based on ARRs. These latter are static

or dynamic constraints deduced from the system model

that link the time evolution of the known variables

(inputs and measured outputs) when the system operates

in a non-faulty condition, and commonly represented as

equalities of the form ri = 0. To obtain ARRs for state-

space representations such as (2), it is necessary to ma-

nipulate the model to eliminate the unknown state x. As

a consequence of this model manipulation, the obtained

ARRs relate the values of the known variables not only

in the current time instant but along a time horizon of

length L. For linear systems, the unknown state may

be eliminated by using the parity-space approach [18].

For particular types of non-linear systems, elimination

methods (e.g., elimination theory, Gröebner bases or

characteristic sets) may be used [11]. For complex and

non-linear systems in general, it is possible to obtain

ARRs, by using, among others (e.g., state observers),

the structural methods presented in [19].

Let define the sequences of values for the variables

involved in (2) as

q̃k = {qj}
k
j=k−L, q ∈ {u, y, θ, w, v, p}. (8)

Any equation obtained from manipulation or combina-

tion of the equations in (2) can be represented in the

following way:

ri = Ψi(ũk, ỹk, θ̃k, w̃k, ṽk, p̃k) = 0, (9)

where Ψi is called the ARR expression. Strictly speaking,

it can not be said that (9) is an ARR because it depends

on several unknown variables, but this will be taken into

account later. For a more compact notation, if all the

unknown but bounded variables are represented together

δ̃k =
(

θ̃k, ṽk, w̃k, p̃k

)

, (10)

then the general expression for an uncertain ARR is

ri = Ψi(ũk, ỹk, δ̃k) = 0. (11)

The structural analysis of the system will provide a set

of ARRs that agree with the previous general form. This

set can be represented as

R = {ri = Ψi(ũk, ỹk, δ̃k) = 0 , i = 1, . . . , nr}, (12)

where nr is the number of obtained ARRs.



Remark 3.1: According to (11), the use of ARRs is

preferred since it allows to reduce the ICSP compu-

tational burden. However, the proposed methodology

also allows to consider directly the initial non-linear

equations when their combination is not possible.

C. Fault Detection using ARRs and ICSP

Using the set of generated ARRs, the fault detection

procedure must check at each time instant whether or not

they are consistent with the observations. If all the vari-

ables in the ARRs expressions were known, this would

mean to check if all ARR expressions evaluate to zero

or not. However, only some of the variables are known

and a different type of consistency checking procedure

is needed to deal with the uncertain variables. If the

unknown variables are simply not taken into account

in the evaluation of the ARR expressions (evaluating

simplified expressions commonly called computational

forms), then non-zero values will be obtained in the

non-faulty case. If the model parameters were precisely

known and statistical distributions for the noises were

available, an statistical framework might be adopted

to determine whether these deviations from zero had

to be attributed to the uncertainty or to the presence

of faults. See the book [4] for further details about

such type of statistical FDI techniques. Here, instead,

considering the unknown but bounded description of the

noise, disturbances and parametric uncertainty in (2), the

consistency checking procedure is performed as follows.

Definition 3.1 (Consistency for sets of ARRs): Given

a set of ARRs expressed according to (12) and a

sequence of measured system inputs ũk and outputs

ỹk at time k, the set of ARRs is consistent with those

measurements and the known bounds of uncertain

parameters and noises if there exist valid sequences

(with values inside their corresponding intervals) for

these uncertain variables that simultaneously satisfy the

ARRs, i.e.

∃δ̃k ∈ D̃δ

∣

∣

∣

(

Ψi(ũk, ỹk, δ̃k) = 0
)nr

i=1
, (13)

where δ̃k ∈ D̃δ means that every element in the sequence

δ̃k is inside the domain given by (the × operator repre-

sent the Cartesian product)

Dδ = Θ×W × V × P. (14)

The previous definition directly provides a way to

implement fault detection. If the set of ARRs (12) is

proven to be inconsistent (not consistent according to the

previous definition) at a given time instant k, then the

system behaviour can not be explained by the model (2)

and a fault is detected. Inconsistency can be verified by

Algorithm 1 Fault detection using ICSP

1: for k = 0 to N do

2: Get current measured input/output data (uk, yk)
3: Update measured input/output sequences (ũk, ỹk)
4: Z ⇐ {δ̃k}
5: D ⇐ {D̃δ}
6: C ⇐ {Ψi(ũk, ỹk, δ̃k) = 0, i = 1..nr}
7: Hk = (Z,D, C)
8: Sk = solve(Hk)
9: if Sk = ∅ then

10: Exit (Fault detected)

11: end if

12: end for

solving an ICSP whose variables are the ones involved in

(10), their domains are given by (14) and the constraints

correspond to the ARRs in (12), and checking whether

the obtained result is the empty set. This procedure is

summarized in Algorithm 1. Notice that the sequences

ũk and ỹk are considered as parameters (not variables)

in the ICSP formulation and that the total number of

variables in the problem is (nθ + nw + nv + np)L.

Remark 3.2: The requirement about the existence of

sequences for the uncertain variables that simultaneously

satisfy all the ARRs allows to take into account that for

a variable that appear in several ARRs the associated

unknown value (for a given time instant) must be the

same in all these ARRs. If this fact would not be

considered then some sensitivity to faults would be lost.

Remark 3.3: Since outer approximations are com-

puted by ICSP solvers, if the obtained result is the empty

set then it can be assured that the exact solution is in fact

the empty set. It is therefore preserved in practice the

expected property associated to a bounded description

of uncertainty by which false alarms are avoided.

IV. FAULT ISOLATION AND ESTIMATION AS ICSPS

A. Fault Isolation as ICSPs

Once a fault is detected by using Algorithm 1, fault

isolation is considered. Fault isolation aims at identifying

the fault acting on the system in a set of possible faults

or fault hypothesis set F =
{

f1, f2, . . . , fnf

}

. It is

assumed that just one fault may be acting on the system

at a given time instant.

Fault isolation is based on identifying at time instant

k those ARRs that are consistent and those that are not

and implementing a diagnostic reasoning that leads to the

identification of the fault present in the system, assum-

ming that different faults affect different ARRs. This fact

means that, unlike for fault detection, consistency has to



be evaluated independently for each ARR. This can be

done according to the following definition.

Definition 4.1 (Consistency for a single ARR):

Given an ARR expressed according to (11) and a

sequence of measured system inputs ũk and outputs

ỹk at time k, the ARR is consistent with those

measurements and the known bounds of uncertain

parameters and noises if there exist valid sequences for

these uncertain variables that satisfy the ARR, i.e.

∃δ̃k ∈ D̃δ | Ψi(ũk, ỹk, δ̃k) = 0. (15)

Using the previous definition, fault isolation

starts by obtaining the observed fault signature

{φ1k, φ2k, . . . , φnrk}, where each single fault signal

indicator φik is defined as

φik =

{

0, if rik is consistent,
1, if rik is inconsistent.

(16)

Standard fault isolation reasoning exploits the know-

ledge about the binary relation between the set of fault

hypothesis and the set of ARRs that is stored in the so

called Fault Signature Matrix (FSM), denoted as M . An

element mij (i indicates rows, j indicates columns) of

M is equal to 1 if the fault f j affects the computation of

the ARR ri; otherwise, the element mij is zero-valued.

A column of M is known as a theoretical fault signature

and indicates which ARRs are affected by a given fault.

A set of faults is isolable if all the columns in M are

different (two columns that are equal indicate two faults

that can not be distinguished).

Based on the use of FSMs, different reasoning pro-

cedures have been proposed in the literature, see for

instance [20]. The accepted as standard procedure by the

FDI community involves finding a matching between the

observed fault signature and one of the theoretical fault

signatures. However, this reasoning is not appropriate in

an unknown but bounded context. Due to the uncertainty,

when a fault is present in the system, an undefined

number of the ARRs affected by the fault can be found

inconsistent, mainly depending on the sensitivity of each

ARR with respect to the fault and on the fault magnitude.

In other words, the observed fault signature will not

exactly match the theoretical signature of the present

fault. In this case, if the column-matching procedure is

used, then the particular fault will not be identified. An

appropriate reasoning should only consider the ARRs

that are inconsistent when searching for the fault (incon-

sistency is relevant, consistency is not). An ARR that is

found inconsistent indicates that one of the faults that

affect the ARR is acting on the system. But the contrary

is not true, if an ARR is satisfied this do not assures

that none of the associated faults is present. According

to the established terminology [20], the used algorithm

must avoid single-fault exoneration (which is implicit in

the column matching reasoning).

Under single-fault assumption, this can be easily

achieved by taking into account that the fault that is

actually present in the system has to affect all the

ARRs that have been found inconsistent according to the

observed fault signature (if not the single fault hypothesis

can not explain the observed behaviour). Algorithm 2

summarizes an isolation procedure based on this idea.

Notice that the procedure requires the solution of nr

ICSP problems with the same number of variables that

the one needed to solve the fault detection problem.

This fact justifies the use of Algorithm 1 for real-time

fault detection (Algorithm 2 may be directly applied

for simultaneous fault detection and isolation, but at

expenses of a higher computational cost).

Remark 4.1: Since consistency is checked indepen-

dently for ARRs that share uncertain variables, some

sensitivity to faults is lost. On one hand, this is a second

argument that justifies the use of Algorithm 1 for fault

detection. On the other hand, this means that some faults

may be correctly detected but not isolated.

Remark 4.2: Due to the uncertainty, it is possible that

the observed fault signature may be attributed to more

than one fault and hence more than one fault candidate

is provided by Algorithm 2. On other hand, it can always

be assured that the real fault present in the system is one

of the proposed fault candidates.

B. Fault Estimation

Once a fault f j (j ∈ {1, . . . , nf}) has been isolated

at time k, fault estimation is considered. The goal of the

fault estimation task is to estimate the fault magnitude

f j
k . This is useful, for instance, for implementing fault-

tolerant control strategies. Due to the uncertainty, the

estimation of the magnitude of a given fault at a given

time instant will be obtained as an interval. The fault

estimation procedure described here is based on modi-

fying the consistency checking procedure introduced in

Definition 3.1.

Unlike for fault isolation, where it is not necessary, the

estimation of the fault magnitude requires the modelling

of the way the fault affects the system. In general, if the

effect of the isolated fault f j
k is included in the system

model (2) as

xk+1 = g(xk, uk, θk, f
j
k) + wk,

yk = h(xk, uk, θk, f
j
k) + vk,

(17)

then the application of the structural analysis approach

leads to a set of ARRs that include the fault effect. This



Algorithm 2 Fault isolation using ICSP

1: k ⇐ fault detection time

2: Z ⇐ {δ̃k}
3: D ⇐ {D̃δ}
4: for i = 1 to nr do

5: Ci ⇐ {Ψi(ũk, ỹk, δ̃k) = 0}
6: Hi = (Z,D, Ci)
7: Si = solve(Hi)
8: if Si = ∅ then

9: φik = 1
10: else

11: φik = 0
12: end if

13: end for

14: FC ←
{

f1, f2, . . . , fnf

}

15: for i = 1 to nr do

16: if φik = 1 then

17: for j = 1 to nf do

18: if mij = 0 then

19: FC ← FC − f j

20: end if

21: end for

22: end if

23: end for

24: Fault candidate set FC

set of fault-dependent ARRs can be represented as

Rj = {ri | ri = Ψ
fj

i (ũk, ỹk, δ̃k, f̃
j
k) = 0, i = 1, . . . , nrj},

(18)

where f̃ j
k is the sequence of fault magnitudes along a

horizon of length L and nrj is the number of ARRs

that are affected by the fault f j . It must be noticed that

the previous nomenclature is valid for both additive and

multiplicative (parametric) faults.

The fault estimation procedure requires an interval

bounding the possible fault magnitudes. Sometimes this

interval can be obtained from theoretical or practical con-

siderations about the nature of the fault. But if this is not

possible then the initial interval can be chosen arbitrary

large. For parametric faults, the initial interval used by

the fault estimation algorithm can be the same used as

initial interval by the parameter estimation algorithm (see

Section V).

In general, assume that

f j
k ∈ F

j =
{

f j
k | f

j ≤ f j
k ≤ f̄ j

}

. (19)

Definition 4.2 (Fault magnitude estimation): Given

an isolated fault f j and the sequence of measured

system inputs ũk and outputs ỹk at time k, the estimated

magnitude for the fault at time k is given by

F j
k =

{

f j
k ∈ F

j
∣

∣

∣
∃ (δl ∈ Dδ)

k
l=k−L ,

∃
(

f j
l ∈ F

j
l

)k−1

l=k−L
,

(

Ψfj

i (ũk, ỹk, δ̃k, f̃
j
k) = 0

)nrj

i=1

}

,

(20)

with F j
k ⊂ R.

Notice that the previous definition is recursive in time,

i.e., the computation of F j
k uses the previously estimated

values F j
l , l = k−L..k−1. Once again, the previous set

can be approximated by the solution of an ICSP. This is

reflected in Algorithm 3, where ki indicates the isolation

time and where the domains for the values in the fault

magnitude sequence, represented by F̃ j
k , agree with (20),

i.e., f j
k ∈ F

j , f j
l ∈ F

j
l , l = k − L..k − 1.

Remark 4.3: When several fault candidates are indi-

cated by the fault isolation algorithm, the fault estimation

algorithm is applied independently to all of them. For a

given fault candidate, if the associated ICSP is found

inconsistent (empty solution set) then the fault can be

excluded as candidate. On the other hand, if the ICSP is

consistent then an interval of possible fault magnitudes

will be obtained.

Remark 4.4: The application of the ICSP framework

assumes that the estimated sets F j
k are intervals (the

result obtained at a given time instant is used as interval

domain in the ICSP for the next time instant), but

according to Definition 4.2 this fact can not be assured

for any type of ARR expressions (for discontinuous

expressions, for instance). Hence, it is assumed that

interval enclosures are obtained at each time from the

solution provided by the ICSP solver (which in general

will be a union of connected or disconnected intervals).

Remark 4.5: If f j is known to be an abrupt fault

(its magnitude remains constant once it has appeared),

then the domain for f j
k can be fixed as the previously

estimated interval F j
k−1

(instead of the a priori known

interval F j).

V. ARR UNCERTAIN PARAMETER ESTIMATION AS

ICSP

One of the key points in passive robust model based

fault detection is how models and their uncertainty

bounds are obtained. Classical system identification

methods [21] are formulated under a statistical frame-

work. Assuming that the measured variables are cor-

rupted by additive noises with known statistical distribu-

tions and that the model structure is known, a parameter

estimation algorithm will provide nominal values for the



Algorithm 3 Fault estimation using ICSP for a given f j

1: F̃ j
k ⇐ {F

j}
2: for k = ki to N do

3: Get current measured input/output data (uk, yk)
4: Update measured input/output sequences (ũk, ỹk)
5: Z ⇐ {δ̃k, f̃k}
6: D ⇐ {D̃δ, F̃

j
k}

7: C ⇐ {Ψfj

i (ỹk, ũk, δ̃k, f̃
j
k) = 0, i = 1..nrj}

8: Hk = (Z,D, C)
9: Sk = solve(Hk)

10: Estimated fault size F j
k

11: end for

parameters together with descriptions of the associated

uncertainty in terms of the covariance matrix or confi-

dence regions for a given probability level [22], [23].

However, this type of approaches can not be applied

when measurement errors are described as unknown

but bounded values and/or modelling errors exist. The

problem of bounding the model uncertainty has been

mainly stated in many references coming from robust

control field. Recently, some methodologies that provide

a model with its uncertainty have been developed but

always thinking on its application to control [24]. One

of the methodologies assumes the bounded but unknown

description of the noise and parametric uncertainty. This

metholodogy is known as bounded-error estimation or

set-membership estimation [6], which produces a set of

parameters consistent with the model structure selected

and the pre-specified noise bounds. In [25], it is sug-

gested that bounded error estimation problem can be

solved using constraint satisfaction tools. This is the type

approach used for estimating parametric uncertainty of

the ARRs in (12).

Regarding the uncertain variables that appear in (2),

it is assumed that a priori theoretical or practical con-

siderations allow to obtain useful intervals associated to

process and measurement noises, leading to known boxes

W and V . Moreover, if a bounded-rate time varying

formulation is used, then it is assumed that the intervals

defining P are also known. The goal of the parameter

estimation algorithm is to characterize the parameter

box Θ consistent with the data collected in a fault-

free scenario. The parameter estimation algorithm is

quite similar to the fault estimation algorithm described

in the previous subsection, the differences rely on the

estimation of parameters and the off-line nature of its

implementation. An initial box Θ0 is required, but it can

also be chosen arbitrarily large.

Definition 5.1 (Feasible Parameter Set (FPS)):

Given the set of ARRs (12) and a sequence of inputs

ũk and outputs ỹk at time k, the set of parameters

consistent with the measurements and the noise and

parameter variation bounds, W , V and P , is given by

Θk = {θk ∈ Θ0 | ∃ (θl ∈ Θl)
k−1

l=k−L ,

∃ (wl ∈ W)kl=k−L ,

∃ (vl ∈ V)
k
l=k−L ,

∃ (pl ∈ P)
k
l=k−L ,

(

Ψi(ũk, ỹk, θ̃k, w̃k, ṽk, p̃k) = 0
)nr

i=1

}

,

(21)

with Θk ⊂ R
nθ .

The previous set identifies the set of parameters

compatible with the observations and the uncertainty

bounds at time instant k (this includes observations in

the temporal window k − L..k). If measurements along

a complete time horizon k = 0..NF (NF >> L) are

available for a fault-free scenario, the parameter set

Θ which is compatible with all the available data is

of interest. This set will be computed in a different

way depending on the assumed time variance for the

parameter set. If a time variant behaviour is assumed

then Θ is given by the union of all the individual Θk

computed along the horizon. If the system is assumed to

be time invariant then Θ is given the intersection between

the different Θk. In the latter case, the intersection can be

computed implicitly by using Θk−1 as the search domain

Θk. This is reflected in the following definition.

Definition 5.2 (Time-Invariant FPS): Given the set of

ARRs (12) and sequences of inputs and outputs from

k = 0, the set of LTI parameters consistent with the

measurements and the noise bounds W and V is given

by

Θk = {θ ∈ Θk−1 | ∃ (wl ∈ W)kl=k−L ,

∃ (vl ∈ V)
k
l=k−L ,

(Ψi(ũk, ỹk, θ, w̃k, ṽk) = 0)nr

i=1
} .
(22)

The previous definition directly leads to the parameter

estimation procedure reflected in Algorithm 4.

Remark 5.1: The application of the ICSP framework

assumes that the estimated set Θk is a box, but in general

it would be an arbitrary shaped set. Hence, it is assumed

that the interval hull (smallest box that approximates the

set of interest) is obtained at each time instant from the

solution provided by the ICSP solver.



Algorithm 4 ARR uncertain parameter estimation using

ICSP
1: for k = 0 to N do

2: Get current measured input/output data (uk, yk)
3: Update measured input/output sequences (ỹk, ũk)
4: Z ⇐ {θ, w̃k, ṽk}
5: D ⇐ {Θk−1, W̃ , Ṽ}
6: C ⇐ {Ψi(ũk, ỹk, θ, w̃k, ṽk) = 0, i = 1..nr}
7: Hk = (Z,D, C)
8: Sk = solve(Hk)
9: Estimated parameter set Θk

10: end for

VI. DESCRIPTION OF THE WHOLE INTEGRATED

DIAGNOSIS METHODOLOGY

For clarity purposes, the whole diagnosis methodol-

ogy is summarized in this section. The methodology is

developed in two different phases. The Off-line phase is

completed by the following sequence of steps:

1) By using a-priori physical knowledge about the

system, define the model structure, i.e., functions

g and h and uncertainty bounds Θ0, W , V and P .

2) Define the set of faults of interest or fault hypoth-

esis set F =
{

f1, f2, . . . , fnf

}

.

3) Using structural analysis [19], derive the set of

ARRs that will be used for fault detection and

isolation R = {Ψi(...), i = 1..nr} and the fault

signature matrix M .

4) Using R, apply Algorithm 4 to data collected in a

fault-free scenario to obtain the parameter box Θ.

5) Include the fault effects in the ARRs to obtain the

sets of fault dependent ARRs that will be used

for the magnitude estimation of each fault Rj =
{Ψj

i (...), i = 1..nrj}, j = 1..nf .

The On-line phase is given by the execution, at each

time instant k, of the following conditional steps:

1) Apply Algorithm 1 for fault detection.

2) If a fault is detected then apply Algorithm 2 for

fault isolation.

3) If exactly one fault candidate f j is obtained at pre-

vious step then use Algorithm 3 for the estimation

of the fault magnitude f j
k .

VII. CASE OF STUDY

This section illustrates the effectiveness of the pro-

posed fault diagnosis approach by applying it to the Wind

Turbine based benchmark proposed in [26].

A. System Description

Wind turbines generate electrical energy from the

wind kinetic energy. The wind turbine described in the

Fault Tolerant Control benchmark proposed in [26] is a

three blade horizontal axis variable speed wind turbine

with a full converter coupling. The basic operation prin-

ciple is that the wind energy is captured by the blades and

transformed into mechanical rotational energy through

the rotor and the shaft. This energy conversion can be

optimized by changing the aerodynamics of the turbine

by pitching the blades or by controlling the relative

rotational speed of the turbine against the wind speed.

The mechanical energy is in turn converted into electrical

energy by a generator fully coupled to a converter.

Between the rotor and the generator, a drive train is used

to increase the rotational speed from the rotor to the

generator. The converter can be used to set the generator

torque, which consequently can be used to control the

rotational speed of the generator as well as the rotor.

The objective of the overall control system is to follow

a power reference.

A system block diagram is presented in Figure 1,

showing the relations between the different subsystems:

Blade & Pitch, Drive Train, Generator & Converter

and the Controller. The controlled inputs are the pitch

position reference for the blades βr and the converter

reference τg,r. The pitch position of each blade is mea-

sured using two sensors to ensure physical redundancy:

β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2. The generator

and rotor speeds are also measured with two sensors

each: ωr,m1, ωr,m2, ωg,m1, ωg,m2.

The model that details the operation of each subsystem

can be found in the original reference [26].

B. Fault Scenarios

The benchmark specifies the use of a given wind speed

sequence and a set of faults that includes eight faults

with different locations and types. The input sequence

corresponds to real measured wind data from a wind

park, sampled with fs=100Hz along a 4400s time period.

The set of selected faults is the following:

1) Fault 1: βf
1,m1

= 5o (sensor fault, fixed value) in

the time period 2000s-2100s.

Figure 1. Block diagram of the wind turbine.



2) Fault 2: βf
2,m2

= 1.2 ∗ β2,m2 (sensor fault, gain

factor) in the time period 2300s-2400s.

3) Fault 3: βf
3,m1

= 10o (sensor fault, fixed value) in

the time period 2600s-2700s.

4) Fault 4: ωf
r,m1

= 1.4 m/s (sensor fault, fixed value)

in the time period 1500s-1600s.

5) Fault 5: ωf
r,m2

= 1.1 ∗ ωr,m2 (sensor fault, gain

factor) and ωf
g,m1

= 0.9 ∗ωg,m1 (sensor fault, gain

factor) in the time period 1000s-1100s.

6) Fault 6: parameters in pitch actuator 2 abruptly

change from {ωn, ξ} (pitch actuators are modelled

as second order systems) to {ωn2, ξ2} (actuator

fault, changed dynamics), due to a hydraulic pres-

sure drop, at time t=2900s; the initial value is

recovered in t=3000s.

7) Fault 7: parameters in pitch actuator 3 change

from {ωn, ξ} to {ωn3, ξ3} (actuator fault, changed

dynamics), due to the presence of air un the oil,

following a given temporal evolution: change from

the initial to the final value linearly over 30s,

then maintained during 40s, and finally slowly

decreasing up to the initial value during 30s; the

fault begins at 3500s and ends at 3600s.

8) Fault 8: τ fg = τg + 2000 (actuator fault, offset)

from 3800s to 3900s.

C. Analytical Redundancy Relations

According to [27], after applying structural analysis

[19] with the aid of the SaTool [28] to the set of

equations provided in [26], the set of twelve ARRs given

in (24)-(35) can be obtained, where a.., b.. and c.. are

model parameters that have to be estimated (ηg is a

known coefficient). This is the set of ARRs that will be

used for fault detection and isolation. It must be noticed

that a non-linearity is hidden in some of the ARRs due

to the use of the variable τr, which is estimated from the

wind speed vw by using the relation

τr(k) = ρπR3Cq(λ(k), β(k))vw(k)
2/2. (23)

Moreover, SaTool provides the FSM represented in

Table I, which captures the relation between residuals

and faults and where a cross ’x’ indicates that a given

ARR is affected by a given fault (according to the

notation used in Section IV-A, mij = 1 where there

is a cross, mij = 0 elsewhere).

Notice that this paper is not focused on how to obtain

the ARRs. Structural methods have been actually used

to obtain the ARRs for the example, but other methods

could be considered and the proposed ICSP formulation

could also be applied to the resulting set of ARRs. For

instance, it would be possible to apply the methodology

Table I

FAULT SIGNATURE MATRIX

ARR f1 f2 f3 f4 f5 f6 f7 f8

r1 x x

r2 x x x x x x x

r3 x

r4 x x x x x x x

r5 x

r6 x

r7 x

r8 x x

r9 x

r10 x x

r11 x

r12 x

to the complete set of ARRs obtained for the wind

turbine benchmark in [29].

D. Uncertainty and Parameter Estimation

The parameter estimation procedure described in Al-

gorithm 4 has been applied to the fault-free scenario

specified in the benchmark in order to obtain the intervals

for the parameters of the ARRs that will be used for fault

detection and isolation purposes.

The parameter estimation algorithm requires the a

priori knowledge of bounds for the process and measure-

ment noises. For each measured variable, the noise bound

has been chosen as the maximum difference, along the

fault-free scenario data, between the values provided by

the two sensors that measure the variable. On other hand,

model errors and the uncertainty in the measurement

of the wind speed, which act as a model input, might

be represented as process errors. Alternatively, process

errors are assumed to be null and the effect of these

sources of uncertainty will be captured as parameter

uncertainty after the estimation.

Besides the bounds for the noises, the parameter

estimation algorithm requires initial intervals for the

parameters (initial parameter box Θ0) that are going to be

estimated. These initial intervals could be simply chosen

as [−∞,+∞], but a different option has been used,

based on the results of a nominal parameter estimation.

Hence, classical parameter estimation has been applied

to estimate some nominal parameters for each ARR (ex-

cept for the ARRs that just compare two measurements

of the same variable) and then each initial interval has

been chosen as [0, 2∗θi,nom] if the nominal value for the

parameter is positive, or as [2 ∗ θi,nom, 0] if the nominal

value is negative.

Results of this uncertain parameter estimation are

summarized in Table II. For each parameter appearing



r1(k) = ωr,m1(k)− ωr,m2(k) (24)

r2(k) = ωr,m2(k)− a21ωr,m2(k − 1)− b21τr(k − 1)− c21τg,m(k − 1) (25)

r3(k) = ωg,m1(k)− ωg,m2(k) (26)

r4(k) = ωg,m2(k)− a41ωg,m2(k − 1)− b41τr(k − 1)− c41τg,m(k − 1) (27)

r5(k) = β1,m1(k)− β1,m2(k) (28)

r6(k) = β1,m2(k)− a61β1,m2(k − 1)− a62β1,m2(k − 2)− b61βr(k − 1)− b62βr(k − 2) (29)

r7(k) = β2,m1(k)− β2,m2(k) (30)

r8(k) = β2,m2(k)− a81β2,m2(k − 1)− a82β2,m2(k − 2)− b81βr(k − 1)− b82βr(k − 2) (31)

r9(k) = β3,m1(k)− β3,m2(k) (32)

r10(k) = β3,m2(k)− a101β3,m2(k − 1)− a102β3,m2(k − 2)− b101βr(k − 1)− b102βr(k − 2) (33)

r11(k) = τg,m(k)− a111τg,m(k − 1)− b111τg,r(k − 1) (34)

r12(k) = Pg,m(k)− ηgωg,m2τg,m (35)

Table II

UNCERTAIN PARAMETER ESTIMATION

Parameter Initial interval Final interval

a21 [0,1.9837] [0.7107,1.4523]

b21 [0,1.7345e-009] [0,1.7345e-009]

c21 [0,7.4906e-007] [0,7.4906e-007]

a41 [0,1.9998] [0.9785,1.9677]

b41 [0,3.3113e-008] [2.0303e-008,3.1808e-008]

c41 [-3.2095e-006,0] [-2.9952e-006,-2.8157e-008]

a61 [0,3.6371] [0.0834,3.6371]

a62 [-1.6715,0] [-1.6715,0]

b61 [-2.7357e-004,0] [-2.7357e-004,0]

b62 [0,0.0345] [0,0.0345]

a81 [0,3.6395] [0.0743,3.6395]

a82 [-1.6738,0] [-1.6738,0]

b81 [0,0.0017] [0,0.0017]

b82 [0,0.0325] [0,0.0325]

a101 [0,3.6382] [0,3.6382]

a102 [-1.6728,0] [-1.6728,0]

b101 [-2.0893e-004,0] [-2.0893e-004,0]

b102 [0,0.0347] [0,0.0347]

a111 [0,1.2131] [0.5443,0.6727]

b111 [0,0.7869] [0.3272,0.4556]

in the set of ARRs, the first column indicates the

initial interval for this parameter, selected by using the

previously described procedure, while the second column

indicates the final interval obtained after applying the

uncertain parameter estimation algorithm to the fault-

free scenario data. As example of the refinement, Figure

2 details the evolution of the estimated intervals for a21.

Finally, it must be noticed that, in order to validate

the completeness of the obtained intervals (in fact, the

completeness of the initial intervals), the fault detection

Algorithm 1 has been applied to the fault-free scenario

and it has been verified that no false alarms are reported.
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Figure 2. Evolution of the estimation interval for a21 provided by

the uncertain parameter estimation.

E. Fault Detection and Isolation

The fault detection and isolation procedures summa-

rized in Algorithm 1 and Algorithm 2 have been applied

to the eight fault scenarios specified in subsection VII-B.

Satisfactory results (fault detected and isolated) have

been obtained in all scenarios except for fault scenario

6, in which the fault effects are small enough to be

undetectable given the uncertainty. Table III shows the

isolation times obtained in the eight fault scenarios.

The results are quite similar (including that Fault 6 is

undetected) to the ones reported in [27], obtained using

a zonotope set-membership approach. For comparison

with other approaches, the reader is referred to papers

presented in the two invited sessions about the wind

turbine benchmark competition at IFAC 2011.



Table III

FDI RESULTS FOR THE SET OF CONSIDERED FAULT SCENARIOS.

Fault scenario Fault time Fault Diagnosis time

1 2000s 2000.04s

2 2300s 2307.33s

3 2600s 2600.03s

4 1500s 1500.07s

5 1000s 1000.01s

6 2900s Undetected

7 3500s 3534.97s

8 3800s 3800.01s
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Figure 3. Evolution of φ2, φ4, φ5 and φ6 during the appearance of

Fault 1.

Next, the results for fault isolation in two of the

fault scenarios are discussed in detail. Consider the

fault scenario associated to Fault 1. Figure 3 shows

the evolution of the components φ2, φ4, φ5 and φ6 of

the observed fault signature (the ones that are sensitive

according to Table I) when Fault 1 appears. Notice that

only φ5 is activated (only the ARR r5 is inconsistent), the

other components remain not activated due to the present

uncertainty. Remember that this situation is considered

by the isolation procedure (Algorithm 2) in such a way

that the current fault will not be excluded from the

generated diagnosis although other fault candidates may

be indicated. In fact, since f5 is the only fault that affects

r5, Fault 1 is correctly isolated (it is found as the unique

fault candidate). Regarding the temporal behaviour, the

fault is correctly isolated once it has been detected at

t=2000.04s (four samples after the fault appearance) and

since φ5 is active during all the time in which the fault

is active, a correct diagnosis is maintained.

As a second example, Figure 4 shows the evolution of

φ1, φ2, φ3 and φ4 when Fault 5 appears. Notice now that

φ3 is active during all the time the fault is present. On
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Figure 4. Evolution of φ1, φ2, φ3 and φ4 during the appearance of

Fault 5.

other hand, φ4 is activated just when the fault appears

and when it disappears (this is a common behaviour,

some ARRs are specially sensitive to fault magnitude

changes), φ1 is activated just for one time instant in

the middle of the period of fault activity and φ2 is not

activated at all. However, since the isolation algorithm is

not sensitive to lost ones in the observed signature fault

and since there is no other fault affecting r3, Fault 5 is

properly isolated.

F. Fault Estimation

Fault 2 is now considered to illustrate the fault estima-

tion procedure. Fault 2 is a gain sensor fault that can be

parametrised as βf
2,m2

= Kf2 ∗ β2,m2. According to the

FSM shown in Table I, this fault affects the ARRs given

by r2, r4, r7 and r8. For the sake of simplicity, only r7 is

considered. By including the fault effect in this relation,

the following fault dependent ARR is obtained:

r7,f2(k) = β2,m1(k)−
1

Kf2

β2,m2(k). (36)

The fault estimation procedure summarized in Algo-

rithm 3 has been applied to the Fault 2 scenario data

starting from t = 2300s. The used initial interval for

Kf2 is [0, 2], which includes the real fault magnitude

(Kf2 = 1.2). Figure 5 details the evolution of the

uncertain fault magnitude estimation along the first ten

seconds, showing an important refinement. No further

refinement is obtained after processing the rest of the

scenario and the obtained final interval for the fault

estimation is [1.1115, 1.3169].
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Figure 5. Evolution of the uncertain magnitude estimation for Fault

2.

VIII. CONCLUSIONS

This paper has proposed a new approach for the robust

fault diagnosis of non-linear systems in presence of

bounded parametric modelling errors and noises, based

on using Analytical Redundancy Relations and Interval

Constraint Satisfaction techniques.

The proposed fault detection procedure checks the

consistency between the measurements using a set of

Analytical Redundancy Relations (ARRs) derived from

a normal operation model of the monitored system. In

presence of bounded uncertainty, this consistency che-

cking is formulated as an Interval Constraint Satisfaction

Problem (ICSP) that can be solved using appropriate

solvers. Accordingly to the bounded nature of the un-

certainty, the method assures the elimination of false

alarms but faults whose effects do not exceed the level

of uncertainty will remain undetected. The fault isolation

procedure, executed when a fault has been detected, is

based in the solution of several ICSPs, one for each

ARR, and in the implementation of a binary diagnostic

reasoning that takes into account the fact that due to the

uncertainty some of the ARRs that are sensitive to the

present fault may be found consistent. The procedure

may return several fault candidates, but it assures that

the real fault is one of them. Finally, the fault estima-

tion procedure uses a set of fault-dependent ARRs and

again an ICSP formulation to estimate the actual fault

magnitude. Moreover, the paper addresses the problem

of determining the uncertainty in the parameters of the

used uncertain ARRs. The proposed procedure is similar

to the one used for fault estimation and it is applied

off-line to data collected in fault-free operation of the

system.

The usefulness of the proposed approach is illustrated

through its application to the well known wind turbine

benchmark. Satisfactory results have been obtained com-

pared to those reported in the literature.

There are two main directions for future research.

First, the multiple fault assumption has to be consid-

ered. Although algorithms for multiple fault isolation

are available in the literature, the problem of estimating

the magnitude of simultaneous faults in presence of

uncertainty has to be studied. In particular, it is necessary

to study under which conditions it is possible to identify

and quantify the contribution of each fault. Second,

fault isolability is currently limited by the use of a

standard binary FSM. According to [30], information

about the sensitivities of the ARRs against the faults

and/or information about the dynamics of the ARRs

during the appearance of faults can be used to improve

fault isolation and estimation. This will be integrated

with our approach in the future.
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