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Dissertation Director: Professor Louis Steinberg

This thesis presents and demonstrates ideas for improved robustness in diagnostic

prol)lem solving of complex physical systems in operation, or operative diagnosis. The

first idea is that graceful degradation can be viewed as reasoning at higher levels of

a.bstraction (l(_ss detail) wh(,ncver the more detailed levels prove to be incomplete o1'

inadeqnate. A form of abstraction is defi_led that appli(,s this view to the problem

of diagnosis. In this form of abstraction, named status abstraction, we define two

levels. The lower level of abstraction corresponds to the level of detail at which most

current knowledge-based diagnosis systems reason. At the higher level, this thesis

presol_ts a graph representation that describes the, real-world physical system. Th(,

thesis demonstrates an incremental, constructive approach to manipulating this graph

representation that supports certain characteristics of operative diagnosis. We show

the suitability of this constructive approach for diagnosing fault propagation behavior

over time, and for sometimes diagnosing systems with feedback. We also show a way to

represent different semantics in the same type of graph representation to characterize

differeztt types of fault propagation behavior. We demonstrate an approach that treats

these different behaviors as different fault classes, and the approach moves to other





classeswhenpreviousclassesfail to generatesuitablehypotheses.

Theseideasareimplementedin a computerprogramnamedDraphys(Diagnostic

ReasoningAbout Physical Systems) a.nd d(_monstratcd for the (Ioma.in of inflight aircraft

subsystems, specifically a propulsion system (containing two turbofan engines and a fuel

system) and hydraulic subsystem.
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Chapter 1

Introduction

Diagnosis of complex physical systems can be a difficult business, and automation of

this diagnostic process for real-world physical systems must address many important

issues. One particularly important issue is robustness, or the ability to reazon about

a variety of faults in a reasonable way, including the ability to degrade gracefully in

response to unanticipated inputs. Another important issue is ability to reason about

fault behavior in complez physical systems, including feedback and fault propagation.

This thesis research addresses aspects of both of these issues. In particular, the research

is concerned with diagnosis of complex physical systems in operation, or operative

diagnosis.

Robustness is important because a diagnostic system cannot be designed to specif-

ically anticipate every possible fault situation. Such situations are inevitable, because

the number of ways a complex system can fail is so large, and our ability to identify

every possibility in detail is limited. One goal of the research is to identify and ex-

plore ideas for achieving robust problem solving behavior in diagnosis in general, and

operative diagnosis in particular.

Fault behavior in physical systems can be complex in many ways. One such way

is that a single initial fault can have multiple consequences. In operating physical

systems, this set of consequences can increase as time passes and the effect of the fault

propagates. These systems are often very interconnected and have feedback, making

the fault propagation behavior more complex. Therefore, another goal of the research

is to explore ways to diagnose such systems while in operation.

The research explores these issues in the domain of non-digital devices. In particular,
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the approach is implemented for an aircraft propulsion system (including two turbofan

engines and a fuel subsystem) and hydraulic system in a computer program cMled

Draphys (Diagnostic Reasoning About Physical Systems).

The following sections contain a description of the problems addressed by the thesis

research. Current approaches to these problems are discussed, then the specific con-

tributions of this thesis research are presented. The assumptions on which the work is

based axe summarized and an overview of the thesis is given.

1.1 The Problem: Diagnosis of Complex Physical Systems

Diagnosis is the process of determining why some object is not behaving as it should.

Diagnosis of complex physical systems presents particular challenges, some of which are

addressed by this thesis research. We identify these challenges below, first examining

diagnosis of complex systems in general, then the additional issues associated with

operative diagnosis. We then discuss robustness. Robustness in problem solving means

the ability to handle a variety of inputs in a reasonable way, even if the inputs have

never before been encountered. This thesis addresses two aspects of robust problem

solving in diagnosis: graceful degradation and multiple classes of faults.

Before we describe these challenges of diagnosing complex physical systems, it is

appropriate to define some of the basic terminology used throughout the thesis. A

physical system (or just system) is the object being diagnosed; e.g., a human body or

an aircraft engine. A device or artifact is a physical system that was designed and

built by humans. A component is some piece of the physical system; e.g., an engine is

a component of an aircraft. Components may be made up of subpaxts which are also

components; for example, the engine is made up of the fan, compressor, combustor,

and other components. A .fault in a component is something that has broken or gone

wrong with that component; e.g., a fuel line leak (although the description of what is

wrong with a component can be provided at varying levels of detail). Behavior is what

the system does, usually in the form of parameter values that describe various aspects



of operation; e.g., oil temperature or pressure. A symptom is a discrepancy between

expected normal behavior and actual behavior.

1.1.1 Challenges of Diagnosing Complex Physical Systems

Complex physical systems, especially continuous or analog systems, have characteristics

which can make diagnosing faults in them challenging. We address several of those chal-

lenges in this thesis, including multiple consequences of a single initial fault, especially

when the fault does not immediately propagate to all potentially affected components;

different manifestations of the same kind of fault; and having sensors which are not

optimally placed for diagnostic reasoning.

When a component in a physical system fails, the effect of the fault will propagate,

especially (but not necessarily exclusively) to components which normally depend on

the faulty component for their proper operation. This fault propagation results in

multiple consequences of a single failure, although all the propagation may not happen

immediately. Because the components are highly interconnected in physical systems

such as aircraft subsystems, the fault propagation can have many consequences. Since

many of these physical systems also contain feedback among the components and among

subsystems, the resulting behavior of the affected components can be difficult to predict.

Sometimes the affected components fail as a result of these faulty inputs, making the

diagnostic reasoning even more complex. It is desirable for the diagnostic reasoning

to identify those consequences, because corrective actions may be necessary. This is

especially true in operative diagnosis, as we discuss below.

Another challenge in diagnosing complex physical systems is that a particular fault

may manifest itself as many different behaviors. For example, turbine blades may break

off and cause damage in many ways, depending on how many blades separated from

the turbine disk, what other blades they damaged, and what other parts of the device

were physically damaged by the separated blades. Moreover, we cannot model the

behavior of the broken blades in any detail, because we cannot predict the way that the



blade(s)will bouncearound,nor canwepredict the aerodynamiceffectsof the break

on the blades,amongotherbehaviors.Becausethe brokenturbinebladecanmanifest

itself in somanydifferentways,the resultingsystembehaviormaydifferqualitatively

as well as quantitatively. The moredetailedtile descriptionof the fault, the more

differentbehaviorsarepossible.This multitudeof behaviorsmeansthat the mapping

from behaviorto faults isverycomplex.

Theplacementof sensorsthat providemeasurementsaboutthephysicalsystemmay

add additional complexityto the diagnosticprocess.Sensorsprovideinformationon

someaspectof systembehavior,but not necessarilyoperationalstatusof the compo-

nents.Forexample,in anaircraft fuel system,oftenthereis a fuel temperaturesensor.

A normalsensorreadingfor this sensordoesnot necessarilyindicatea normalopera-

tionalstatusof the fuellineto whichit isattached.In contrast,digital circuitsprovide

measurementsof the input or output of components.1 If the output of a componentis

incorrector symptomatic,onecanassumethat the componentis affectedby the fault,

if only becauseits input wasincorrect.It is importantto reasonabouttherelationship

of themeasurementsto thesystembeingdiagnosedto understandwhatexactlyisbeing

measured.Otheraspectsof sensorplacementthat complicatethediagnosticreasoning

includeredundantsensors,sensorswhichare computed (for example, engine pressure

ratio is computed from two sensor readings), and lack of sensors on every component.

1.1.2 Operative Diagnosis

Operative diagnosis, or diagnosis of physical systems in operation, is a variant of diag-

nosis of non-operating systems (such as, maintenance diagnostics), as described in [19],

[50], [53], and as discussed below. Particularly important issues associated with opera-

tive diagnosis include: the information a fault hypothesis must contain, dynamic fault

propagation behavior which means that the diagnosis will take place while the fault

is still propagating, and limited testing for additional information. Although these

1This is generally true at the level of abstraction at which circuit behavior is usually examined.



last two issues can arise in maintenance diagnosis, they are particularly important in

operative diagnosis.

A factor which affects the information that a fault hypothesis contains is the pur-

pose for which the diagnosis is being done. In operative environments, the diagnosis

is done to facilitate continued operation of the system under consideration. Therefore,

the information contained in a hypothesis should support the choice of actions available

to support that continued, safe operation. An example of a type of information that

could prove useful in an operative environments is the paths of interaction in the device

along which the fault is propagating. Knowing the propagation path might lead a hu-

man operator to prefer certain actions to prevent further fault propagation. Moreover,

identifying the effects of the fault can be important, because it is often necessary to take

corrective actions to compensate for the failure's effects, even if affected components

are not physically broken. For example, an airplane engine provides power for one of

the electrical generators. If the airplane engine fails, the generator will stop running,

even though there is nothing physically wrong with the generator itself. Action must be

taken to compensate for the lack of power, so the operator must know that the genera-

tor is no longer running. In another example, in medicine, the goal of the diagnostician

is to prescribe some medication or treatment. Often the symptoms and effects must be

treated as well as the disease itself, so knowing the disease Mone may not be sufficient.

Therefore, the information a hypothesis should contain for operative diagnosis should

include the cause of the fault, its effects (or system status), and the fault propagation

path.

In maintenance diagnosis, however, the purpose is to determine which part to fix

or replace. It is often sufficient to identify the source of the problem, but knowing how

the device is faulted, or the effects of the fault, might be unnecessary. For example,

in electronic troubleshooting, the purpose is usually to determine which part or com-

ponent to replace. In other domains, such as maintenance of mechanical devices, it

is often desirable to repair the part, so knowing what parts are physically affected by

the failure may be important. However, it is only necessary to know the parts that



arephysicallybroken,so in the example of tile electrical generator, it would not be

necessary for the maintenance diagnosti(:ian to repair the generator. As this example

shows, the information contained in a fault hypothesis for maintenance is different from

the information required for operative diagnosis.

Because of the information contained in a fault hypothesis for operative diagnosis,

some automated systems view diagnosis as the process of constructing a model or

explanation of the illness or fault, to account for both cause and effects (e.g., [41]).

Draphys belongs in this group of systems.

Dynamic behavior of the physical system may create other challenges in operative

diagnosis. In an operating physical system, the effect of the fault propagates and the

set of symptoms often changes as time (and the fault) progresses. This reflects the

characteristic of non-zero-time propagation, where not all effects of a fault happen im-

mediately. In maintenance, the diagnosis is usually done after all propagation has taken

place. In operative diagnosis, the propagation often will still be occurring while the di-

agnosis is performed. Therefore, the set of symptoms that must be used to diagnose

faults depends on when the sensor readings are sampled. Moreover, measurements are

usually sampled at predetermined intervals, and each time the sample is taken the set

of symptoms may change. The timing of these changes can be very difficult to predict,

since the time required for fault propagation depends on how the fault manifests it-

self. However, the changes in the set of symptoms reflecting fault propagation behavior

can be a very powerful means of discriminating hypotheses if the diagnostic process

knows how to use them. Most current diagnosis systems assume a static diagnosis

environment.

Even in maintenance diagnosis that takes place before all fault propagation happens

(which occurs much less often than in operative diagnosis), the diagnostic process stops

when the source of the fault is identified. In operative diagnosis, even when the fault has

been identified, the need for system status information requires the reasoning process

to continue to identify when components become affected by the fault.



Another issue associated with operative diagnosis is that the testing for additional

information is even more limited than in other types of diagnosis. In these other types

of diagnosis, measurements usually can be taken to provide discriminatory information,

although this type of testing may be costly. Ilowever, in operative diagnosis, any tests to

obtain additional information about the system's state are limited to those which do not

endanger the system's continued operation. This constraint means that the information

available to discriminate hypotheses is sometimes restricted. Tests can sometimes be

made by perturbing the physical system with known inputs and observing the resulting

behavior, but this must be cautiously done in a faulty system which must continue

operating. We assume in this research that the diagnosis must be accomplished with

the currently available sensor information.

Since fault hypotheses for operative diagnosis are distinguished by their cause, prop-

agation path and system status, the hypothesis space can be large. Considering multiple

types of fault propagation and multiple independent faults makes the space even larger.

Therefore, efficiency of exploring this hypothesis space is an important issue. This thesis

investigates ideas for efficient management of that hypothesis space by using knowledge

in the diagnostic process.

1.1.3 Robustness

Robustness in problem solving means the ability to handle a variety of inputs in a

reasonable way, even if the inputs have never before been encountered. This thesis

addresses two aspects of robust problem solving in diagnosis: graceful degradation and

multiple classes of faults.

Graceful Degradation

Diagnosis is the process of determining why some object is exhibiting abnormal behav-

ior. Many current approaches formulate this problem as the selection of an appropriate

solution from a previously enumerated set of possible solutions, where solutions are the

" ,'.s



identification of the fault. Choice of one of the solutions is determined by the abnormal

behavior of the system, which is often described as symptoms, or discrepancies between

expected normal behavior and the actual behavior of the system. These symptoms are

matched to the set of known faults based on knowledge about specific 2 fault-symptom

associations. However, when faults occur for which there is no associational knowledge,

approaches that depend on such knowledge are inadequate. These approaches degrade

precipitously, even if the variation of problem inputs is small A key point here, and

one which has been discussed extensively, is that attempting to describe in detail all

occurrences of how something can fail is futile [12]. It is futile because there is no way

to guarantee completeness.

A well-established approach to overcoming this precipitous behavior is to reason

about how the system works, rather than how the system fails [11], [13]. By using

models of normal system structure and behavior, and reasoning about discrepancies

between the actual system behavior and the model of normal behavior, faults can be

diagnosed that are not specifically described within the diagnosis system. As pointed

out in [11], a consequence of this reasoning is that one is trading breadth of fault

coverage in the model-based approach for specificity of the empirical associations. This

is a useful approach to achieving a certain amount of graceful degradation in diagnostic

problem solving.

This research expands on that notion, by exploring the idea that graceful degra-

dation can be achieved in a structured way by using abstraction. The basic idea is

that graceful degradation is not achieved by simply exploring whether something is

known about faults, but at what level of detail is it known. Knowledge at different

levels of specificity can provide different fault coverage, but increasing fault coverage is

achieved at the cost of degrading specificity. For example, if we know that the input

to a component is normal and the output of that component is abnormal, we can infer

2llere and throughout the thesis, when we referto specific fault-symptom knowledge, we are referring

to knowledge about how a system fails (e.g., fuel line leak) and symptoms that describe how a parameter

differs from its expected value (e.g., fuel flow high).



that the component is faulted in some way. IIowever, if we want to determine how the

component is abnormal, we need more specific information than just normal/abnormal.

Lacking that specific information, we may still be able to determine that the component

is broken, but we lose specificity of the fault hypothesis. In this thesis, a form of ab-

straction named status abstraction is presented and demonstrated to provide graceful

degradation.

Multiple Classes of Faults

Another aspect of robustness arises because not all faults can be diagnosed using the

same problem solving approach or the same knowledge. Simon discusses this issue for

problem solving of ill-structured problems, and talks about alternating among multiple

problem spaces as necessary [57]. Davis explores this issue for diagnostic problem

solving, by showing that different models of the physical system are useful for diagnosing

different kinds of faults I11]. These different models are useful because they represent

different types of adjacency, or different ways components can be "close," or "interact"

(e.g., components that interact electrically or magnetically).

The definition of fault categories is based on the kind of knowledge available to

diagnose the fault; in Davis' work, the kind of knowledge used was knowledge about

adjacency. This thesis builds on the idea that fault classes should be defined based on

adjacency, and adds the notion of specificity of available knowledge about the fault.

That is, we describe the type of paths of interaction followed by the fault (which are

based on functional or physical adjacency), and the level of detail of information about

the faulted component and what is being propagated. A less detailed description de-

scribes a component as being broken (e.g., fuel pump abnormal), with propagation

of abnormal status to fimctionally adjacent components. A more detailed hypothe-

sis would describe how the fuel pump is abnormal (e.g., clogged) and what abnormal

parameter values are propagated to adjacent components.
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1.2 Contributions

This thesis presents ideas for improved robustness in problem solving, and demonstrates

these ideas for diagnosis of complex physical system in operation. We summarize the

ideas below, then expand on each one.

° Graceful degradation can be viewed as reasoning at higher levels of abstraction

(less detail) whenever the more detailed levels prove to be incomplete or inade-

quate. A form of abstraction is defined that applies this view to the problem of

diagnosis. In this form of abstraction, named status abstraction, we define two

levels. The lower level of abstraction corresponds to the level of detail at which

most knowledge-based diagnosis systems reason.

2. At the higher abstraction level, this thesis presents a graph representation that de-

scribes the real-world physical system. The representation at the higher abstrac-

tion level is simple enough that reasoning can be done, yet not so abstract that

important characteristics are missing. The thesis demonstrates an incremental,

constructive approach to manipulating this graph representation that supports

certain characteristics of operative diagnosis. That is, we show the suitability of

the constructive approach for diagnosing fault propagation behavior over time.

We also show its suitability for diagnosing systems with feedback under some

circumstances.

3. We show a way to represent different semantics in the same graph representation

to characterize different types of real-world fault behavior, and we show a way

to compose hypotheses in a manner which corrcsponds to the way that these

different behaviors occur in the real world.

4. We demonstrate an approach that treats these different behaviors as different

fault classes, and the approach moves to other classes when previous classes fail

to generate suitable hypotheses.
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We now expand on each of these ideas.

1. Graceful degradation can be viewed as reasoning at higher levels

of abstraction (less detail) whenever the more detailed levels prove to be

incomplete or inadequate. A form of abstraction is defined that applies this view to

the problem of diagnosis. This form of abstraction is named status abstraction, because

the operational status of the components of the physical system is being abstracted.

It is useful for graceful degradation because less specific knowledge is needed at higher

levels of abstraction, although a correspondingly less specific hypothesis is generated.

This thesis explores two levels of status abstraction. At the higher level, component

operational status is described as either normal or abnormal. At the lower level, a more

specific description of the component's operational status is described. For example,

at the lower level, a hydraulic line might be described as "clogged." At the higher

abstraction level, the hydraulic line's operational status is abstracted to "abnormal."

Figure 1.1 shows this relationship for this and other examples. The lower level of

abstraction corresponds to the level of detail at which many current knowledge-based

diagnosis systems reason.

The choice of status abstraction was inspired mainly by discussions with diagnos-

ticians. If a major goal of the diagnostician is to select a remedial action to take in

response to the fault, the information should be generated to support that selection.

During the interviews of experts, they described default actions that they would take

if they did not recognize the fault or if there were multiple hypotheses. This action

was generally a conservative response to the fault. For example, if the pilot knew he

had a fan failure, but did not know how the fan was broken, he would shut down the

engine. However, if he knew it was icing, he would turn on the de-icing system. The

important point to notice is that he had an action associated with fan failures that

was (potentially) different from the action associated with the specific fan hypothesis.

Similarly, a doctor who can identify that a patient has a bacterial infection, but cannot

identify what kind of bacteria, will often prescribe a wide-spectrum antibiotic. If the

doctor is able to identify the bacteria, he may prescribe an antibiotic intended for that
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Figure 1.1: Levels of Component Status Abstraction.

particular type of bacteria. : :

Motivated by these and other examples, we characterize the hypotheses that the

diagnosticians used when they did not recognize the fault as being one which they

knew in detail. It appeared the diagnosticians were creating more general hypotheses

as they had less knowledge about the fault. For example, the doctor might recognize the

general characteristics of a bacterial infection, but might not have sufficiently detailed

knowledge to identify the specific type of bacteria. In the aircraft domain, these more

general hypotheses describe less specific information about the operational status of the

components in the physical system.

This form of abstraction is designed so that diagnostic reasoning falls back to the

higher level of abstraction when faults cannot be diagnosed specifically. At the higher

level, hypotheses are produced that identify what component is faulty, without iden-

tifying how the component is broken. Since we abstract the operational status of the

component, we named it status abstraction.
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Figure 1.2: Levels of Parameter Status Abstraction.

Because the diagnostic reasoning at the higher abstraction level is designed to iden-

tify the component that is faulty, but not how it is faulty, the behavior used in the

diagnosis can be abstracted as well. We show that this abstraction is useful for graceful

degradation because less specific information about faulted system behavior is needed

to generate hypotheses. Although it is necessary at the lower level to identify how the

symptomatic sensor reading compares with its expected normal value (e.g., high or low),

it is not necessary to make this distinction at the higher level. It is only necessary to

identify that the value of the sensor is abnormal. This is also status abstraction, but it

is the parameter value status that is abstracted. Figure 1.2 illustrates the relationship.

This abstraction of behavior helps illustrate why this form of status abstraction

is useful as a means of coping with the complexity of the physical system's behavior.

Consider the example of a broken turbine blade. As mentioned earlier, we do not

know how to model many of the possible behaviors of a broken blade (or blades) in

any detail, because we do not know how the blade may bounce against other parts

of the system, nor do we know how to model the aerodynamics of broken blades in
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detail. This inability to provide detailed fault models for all possible manifestations

of broken turbine blades is the reason such an occurrence may appear to be a novel

fault. However, by modeling the behavior of the physical system at the higher level of

status abstraction, we do not have to model the behavior of the broken blade in any

detail. We merely have to identify that the component is abnormal, and identify the

propagation of abnormal status rather the propagation of specific parameter values.

In Draphys, the reasoning at the higher level of abstraction is a generate-and-test

process, although the definition of the abstraction levels is independent of the diagnostic

reasoning technique used at that level, and other techniques besides the one chosen could

be used. When symptoms first appear, the generator localizes the fault in a component

hierarchy, resulting in a set of candidate components that might be the source of the

problem. It then constructs fault hypotheses by simulating fault propagation from each

of the candidates. Each resulting hypothesis is tested to determine if it is valid; that

is, if it explains all the current symptoms. Often this generate-and-test process results

in multiple valid hypotheses.

The contribution here is the idea of using status abstraction as a framework for

supporting graceful degradation in diagnostic problem solving.

2. At the higher status abstraction level, we present a graph representa-

tion that describes the real-world physical system. The thesis demonstrates

an incremental, constructive approach to manipulate this graph representa-

tion that supports certain characteristics of operative diagnosis. The graph

representation describes the physical system as a collection of components and their

interconnections. The nodes in the graph represent the components, and the links

represent potential paths of interactions among the components.

We present an incremental, constructive diagnostic approach to manipulating the

graph representation that is suitable for diagnosing fault propagation behavior over

time, and for sometimes diagnosing systems with feedback. In operative diagnosis, new

symptoms often appear as time passes and the effect of a fault propagates. It is usually
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undesirableto wait until all symptomshaveappearedbeforeperforminga diagnosis,

sincecritical damage can occur that might have been prevented. In this approach,

we incrementally construct hypotheses by simulating fault propagation behavior. This

simulation involves traversal of the graph representation to reflect the propagation path

followed by the fault. We incrementally add to hypotheses created in previous time steps

by continuing the simulation. When new symptoms appear, the previously created

hypotheses are extended to account for the new symptoms. This is done by continuing

the simulation of propagation from the point where propagation had stopped previously.

An advantage to this approach is that it efficiently reasons about new symptoms when

they appear, rather than starting from scratch at each time step.

Another advantage is that this approach can sometimes diagnose systems with feed-

back. That is, given a subsystem with feedback that has several sensors, such as the

engine, not all sensors may reflect the fault's effect immediately. The sequence in which

the sensors become symptomatic may help identify the source of the fault. The diagnos-

tic approach presented in this thesis is designed to take advantage of the sequencing of

symptoms. Of course, if all sensors become symptomatic simultaneously, this approach

cannot distinguish where the problem began.

3. We show a way to represent different semantics in the same type

of graph representation to characterize different types of real-world fault

behavior, and we show a way to compose hypotheses in manner which cor-

responds to the way that these different behaviors occur in the real world.

Tile semantics referred to are different types of fault propagation behavior. The types

of fault propagation that we are concerned with are functional, which is propagation

along the normal, intended paths of interaction designed into the device, and physical,

which is fault propagation along unintended paths of interaction, but it occurs because

of physical adjacency of components. One consideration is that when physical prop-

agation occurs, functional propagation is also likely to follow, although the reverse is

not very likely. Therefore, certain combinations of these two types of fault propagation

behavior are more reasonable to expect than others. We can diagnose such complex
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fault behaviorby composing hypotheses which individually describe a single type of

propagation (either functional or physical) based on heuristics about fault propagation

behavior (e.g., functional propagation follows physical propagation).

Davis first presented the idea about adjacency in different models [11]; our con-

tribution is in using adjacency to look for particular types and combinations of fault

propagation behavior. This approach uses the hypotheses that were constructed for a

single type of fault propagation, so the composition process is efficient and straightfor-

ward. Also, the approach can easily be extended to accommodate other heuristics, such

as "physical propagation can follow functional propagation." This reasoning is at the

higher level of status abstraction, so we do not need to know how the physical damage

will specifically affect behavior.

4. We demonstrate an approach that treats these different fault propa-

gation behaviors as different fault classes, and the approach moves to new

classes when previous classes fail to generate suitable hypotheses. We de-

fine four single-fault classes, each of which is explored in turn when the previous ones

fail to diagnose the current symptoms. These fault classes are: (1) specific, function-

ally propagating faults (this class is the one in which Draphys groups known faults in

fault-symptom associations); (2) abstract, functional-propagation faults; (3) abstract,

physical-propagation faults; and (4) abstract, hybrid-propagation faults (these hypothe-

ses include both physical and functional propagation). The last class, describing mul-

tiple faults, is the final class that would be explored after the single fault classes fail

to produce acceptable hypotheses. This final class is not yet implemented in Draphys,

but most probably would be divided into subclasses describing different combinations

of differently-behaving multiple faults.

The order in which these classes are examined is shown by traversing the leaves of

the tree shown in Figure 1.3 from left to right. The leaves represent the fault classes,

and the nodes at higher levels in the tree represent the assumptions that must be true

for a fault to be a member of this fault class. The order in which these classes are

explored is based on likelihood of occurrence of a fault in that class.
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Figure 1.3: Hypothesis Space Partitioning

We consider this partitioning of the hypothesis space to be a ta_xonomy for diagnos-

tic problem solving, since it associates assumptions about the fault behavior with the

appropriate diagnostic problem solving techniques and physical system models. The

t_Lxonomy that is inq)lement(,d in l)r_phys is not exhaustive, but does provide a frame-

work for integrating new problem solving techniques into the overall diagnostic process.

At present, it does not include, for example, design errors, timing errors, or intermittent

faults.

A few points are worth making about these fault classes. First, they are similar

in several ways to the layered fault categories defined in [11]. They are ordered by

likelihood, a_d they are based on assumptions. Davis' work defined fault categories

i
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based on adjacency; this thesis research adds another dimension, that of abstraction

level. We claim that this contributes to increased robustness by supporting fault classes

at varying levels of specificity, each of which can be explored when previous classes fail

to generate hypotheses.

This notion of fault classes also contributes to efficient management of the hypoth-

esis space. By grouping the elements of the hypothesis space into these fault classes,

and reasoning about these fault classes in order of likelihood, the hypothesis space is

constructed and explored in an efficient, knowledge-directed manner.

1.3 Scope

The purpose of this section is to characterize the scope of the thesis in terms of the

assumptions made, the functionality of the diagnosis, and the implementation of the

ideas.

1.3.1 Assumptions

In this section, we describe the assumptions made in the design and operation of the

diagnostic reasoning. These assumptions include:

• We assume that we can predict normal behavior for every sensor reading available

to the diagnosis system, that we only have the sensors currently available in the

cockpit, and that sensor placement is fixed.

• Faults are not intermittent; that is, a component that becomes abnormal stays

abnormal.

• During the diagnostic process, no action is taken by the human operator that

corrects the problem while it is being diagnosed.

• Abnormality in sensor readings can be detected, and faults are not masked.

• The physical-system models are correct.
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Figure 1.4: Functional Diagram of the Fault Management Process

A major design concern is to identify a general description of the functions involved

when a human operator must manage faults, since diagnosis is only one of those func-

tions. We describe each of these functions, especially the monitoring that provides

inputs to the diagnosis function, to establish the context for discussion of the diagnosis

approach that this thesis presents.

1.3.2 Fault Monitoring, Diagnosis, and Response Generation

It is important to understand where the diagnostic process fits into the total hu-

man/machine system, concerning management of faults. Figure 1.4 depicts a genera/

functional diagram of the fault management process for a physical system in operation

with a human operator. Besides the human operator and the physical system itself,

there are four basic processes or functions that must be done: fault monitoring, fault

diagnosis, response generation, and user interface.
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The Fault Monitor

The physical system provides information to the fault monitor in the form of numerical

sensor information. The monitor is responsible for discrepancy detection, or detecting

when those sensor readings signify an abnormal situation. This detection of abnormal

behavior is done by comparing the actual behavior of the system under consideration

to the expected behavior of a healthy system under normal conditions. For physical

systems, the expected quantitative behavior can be generated using a quantitative

simulation model. Most quantitative simulation models of systems such as aircraft

engines are empirical representations of the normal behavior of the physical system.

Fortunately, such models are usually available for devices such as aircraft engines.

Figure 1.5 shows the fault monitoring process itself, which is implemented for the

aircraft subsystems as described in [52]. The input data to the monitor are the cur-

rent conditions (e.g., altitude, temperature), and control inputs (e.g., throttle setting).

Based on this information, the monitor runs the device model to simulate current ex-

pected, normal behavior in the form of quantitative simulated sensor values. When

the fault monitor detects a discrepancy between the actual and expected values, it

transforms the quantitative sensor reading to qualitative information in the qualitative

symptom.

The information contained in a qualitative symptom includes: the time the sensor

reading was taken; the qualitative value of the sensor reading; the status of that value

compared with the expected value (high or low); the qualitative value of the derivative;

the status of the derivative value compared with the expected value; and the steadiness

of the sensor reading. Both the reading and its derivative can take on qualitative values

of positive (+), zero (0), or negative (.)3. These refer to the instantaneous value of the

sensor reading or its derivative. The status of these values compared with the expected

values are derived from the sign of the error. If the error is positive, the status of the

ZSome values should never be negative (such as engine pressure ratio (EPR)), but even then, such

a sensor could malfunction and produce an erroneous negative reading.
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value is high. Similarly, if the error is negative, the value is low. The steadiness of the

signal can take on the value of stable or fluctuating.

In reality, it is not so straightforward to determine when a signal differs from its

expected value. Two major reasons for this are sensor noise and lack of model fidelity.

Both these issues, together with approaches for handling them, are discussed in detail

in [53]and [52].

Draphys assumes that allsensorscan be monitored at alltimes.Other monitoring

approaches addressthe problem of choosingwhich sensorstomonitor when not allcan

be processed[17],[18].

The Diagnostic Process

The output of the fault monitor is the set of symptoms at the current point in time.

The set of symptoms provide the input to the fault diagnostic process. The diagnostic
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process occurs in stages that correspond to the way humans described their diagnostic

reasoning. The first stage is diagnosis of specific, known, commonly occurring faults

by associational rules. This corresponds to the stimuh_s-response type of reaction that

human operators of physical devices are trained to have. It involves compiled knowledge

about the association between symptoms and faults, so that the operator response in

the presence of a known fault is rapid and efficient. IIowever, when novel faults occur,

this compiled knowledge is inadequate.

When novel situations occur, humans have been observed to revert to reasoning

about underlying domain principles [45]. For physical artifacts, this often involves

reasoning about a mental model of the device under consideration. We designed and

implemented an approach in this second stage that uses models of structure and be-

havior. The models used in this stage are qualitative, in contrast to the quantitative

model used by the fault monitor.

The first diagnosis stage corresponds to our lower level of status abstraction, and

the second stage corresponds to our higher level of status abstraction. The motivation

for the order in which abstraction levels are processed is based on observations of

human diagnostic reasoning. This differs from the typical use of abstraction levels

as exemplified by ABSTRIPS [48], where the processing is abstract-to-specific. We

discuss the motivation for our choice, and some possible consequences and alternatives,

in Chapter 4.

The output of the diagnostic process is a set of fault hypotheses. The information

contained in and associated with a hypothesis includes: the fault type, the cause or

source of the problem, the propagation path, and the system status. The fault type

is either single or multiple fault, where multiple fault refers to multiple independent

faults. The source is the physical component that is broken or the first one affected (e.g.

in a bird ingestion, the fan is the first component affected although there is nothing

physically wrong with it). The specific cause of the fault describes how a component

is broken. The propagation path describes the order and manner in which components

were affected. The system status describes the components affected by the fault and
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their operational status. At present, one way that component operational status is

designated is either definitely affected by the failure when symptom information justifies

it, or possibly affected when there is reason to believe that the component might be

affected but symptom information cannot confirm or refute it. We describe a hypothesis

produced by Draphys as valid if it accounts for exactly the current symptoms, that is,

if the component it identifies could have broken and resulted in the current symptoms.

That is, the hypothesis must form a covering set [46].

Response Generation and Operator Interface

The response generation process takes the fault hypotheses as input and identifies cor-

rective responses to the human operator. A rudimentary capability to generate re-

sponses is implemented, but more extensive work is outside of the scope of this thesis.

An advanced capability for taking the output of Draphys and generating responses is

being explored in [27].

Similarly, the human interface is rudimentary. There are many issues associated

with providing this information to the human operator, such as display formats for

presenting the information [3], and they are outside of the scope of this thesis.

1.3.3 Implementation

The diagnostic ideas presented in this thesis are implemented as part of an overall

fault management system called Faultfinder [1], [38]. Faultfinder, including Draphys,

is implemented on a Symbolics 3600 series computer in Symbolics Common LISP, us-

ing Flavors. The physical system implemented for the present version of Faultfinder

includes two Pratt and Whitney JT8D-7 turbofan engines, oil subsystems for each en-

gine, a fuel subsystem, and the hydraulic system for a Boeing 737 twin-engine transport

aircraft.
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1.3.4 Empirical Evaluation

The ideas presented in this thesis were tested by applying them to actual fault cases that

occurred in civil transport aircraft accidents that resulted in loss Of llfe and property,

and failure incidents that did not result in accidents. The set of accident cases was

divided into two subsets of equal size. The faults in the first set were used to develop

the diagnostic concepts and to identify the capability required to diagnose each real-life

situation. The second set of cases was set aside and not examined until the prototype

computer program was completed. Once Draphys was implemented, the second set

of test cases was reconstructed for evaluation. All the test cases were used to test

Draphys, with very promising results. Out of eight accident cases, Draphys successfully

diagnosed seven, and the eighth case was partially diagnosed. Details are described in

Chapter 6.

1.4 Guide to the Thesis

The remainder of this thesis expands on the ideas briefly summarized in this chapter.

Chapter 2 describes the aircraft subsystems being diagnosed and presents a series

of example faults that illustrate the scope of Draphys' diagnostic capability. These

examples describe what the diagnostic reasoning does rather than how it is done. The

details on how the diagnosis is done are described in later chapters.

Chapter 3 describes the reasoning about fault propagation behavior in known faults.

In particular, the reasoning about sequences of symptoms over time is presented. We

show that the reasoning described here is useful but not sufficient.

Chapter 4 discusses graceful degradation of the problem-solving process in the pres-

ence of novel faults as reasoning at higher levels of abstraction. The choice of abstracting

the information in specific hypotheses is discussed. Again, we show that the reasoning

here and the models are also useful, but not sufficient.

Chapter 5 describes the partitioning of the hypothesis space to accommodate the

multiple problem solving techniques and models needed. The different assumptions
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madeby the diagnosticprocess,the differentproblemsolversrequired,andthe tech-

niquesfor reasoningwith problemsolversandmodelsaredescribed.

Chapter6discussesanexperimentalevaluationof thediagnosticapproachonactual

fault cases.Each case and the resulting hypotheses are presented. An analysis of the

resulting successes and failure show that the diagnostic approach strongly depends on

the models of the physical system and the type of symptoms provided by the fault

monitor. The analysis also highlights the importance of the choice of abstraction level

for particular fault classes. An analytical evaluation is also presented, identifying the

aspects of the approach that are particularly important to its success. As part of the

analytical evaluation, we present a knowledge degradation analysis.

Chapter 7 concludes with a summary of the research contributions. Limitations of

the approach are summarized as well, with implications for future research.

The reader interested in knowing what the diagnostic approach does, without nec-

essarily knowing how it does it, should read Chapter 1, the overview, and Chapter 2,

the examples. The reader interested in more technical depth on any of the major issues

should read Chapters 3, 4, or 5, depending on their particular interest. Anyone with

a desire to thoroughly understand the technical details and how to apply them to a

specific problem should give particular attention to Chapter 6, especially the analytical

evaluation of the approach.
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Chapter 2

Diagnosis Examples

We describe here a series of examples that illustrates the diagnostic problem solving

process proposed in this thesis. The emphasis in this chapter is not on how the pro-

cess works but rather on what the process does and the variety of faults that can be

diagnosed.

We begin by describing the aircraft domain; in particular, we describe a turbofan

engine. We then present a series of examples, each illustrating some diagnostic capa-

bility of the thesis approach. The first example illustrates diagnosis of a known fault

using associative reasoning. Later examples illustrate diagnosis of novel faults, with

progressively complex propagation behavior.

2.1 The Aircraft Domain

To fully understand the examples, a short description of the application domain is

appropriate. The aircraft, a two-engine civil transport, contains hundreds of complex

components. We simplified the aircraft model for this research by only including two

major subsystems, the propulsion and hydraulics systems. This simplification allowed

us to address the complexities of fault diagnosis, including propagation and feedback,

without having to model the entire aircraft. The propulsion subsystem consists of

two turbofan engines and a fuel subsystem. The hydraulics system has two subsystems

that correspond to the control surface in each wing and the required hydraulics support.

Figure 2.1 shows the component hierarchy, where the links shown represent a subpart

relationship. A total of thirty-eight components make up the model. Twenty-eight

are primitive components that have no subparts, and the remainder are composite
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components. It is important to note that several of the primitive components are

sensors, whose purpose is to provide some type of information about system operation.

The examples shown here focus on engine faults. The type of aircraft engine chosen

was a turbofan engine, one commonly used on civil transport aircraft. Figure 2.2 shows

a schematic of the engine.

Its functioning is described here. The air enters the fan, a low-pressure compressor.

The fan compresses the air, which flows to the high-pressure compressor. There the air

is compressed further. It passes to the combustion section, which sprays fuel to mix

with the highly compressed air, and ignites them. Ignition increases the velocity and

temperature of the air, turning the turbines as the air flows to the exhaust section. The

turbine section is divided into two stages. These two stages are connected to the fan

and compressor with concentric shafts. The first turbine stage drives the compressor

and the second stage drives the fan.

The engine has five sensors whose readings provide the following parameter values:

• NI, N2, Fuel flow (FF), exhaust gas temperature (EGT), and engine pressure ratio

(EPR). The Nt and N2 sensors measure the rotational speeds of the fan and high-

pressure compressor, respectively. The fan and compressor generally rotate at different

speeds because they are connected to different turbine stages. Fuel flow measures the

rate at which the fuel is entering the engine. EGT is the exhaust gas temperature.

EPR is a ratio of the air pressure at the exhaust divided by the air pressure at the

engine inlet.

2.2 Diagnosing Known Faults

Suppose a turbine blade fails because of erosion. The initial symptoms will be fluctua-

tion in the sensors that measure characteristics of the turbine section, EPR and EGT.

This may be accompanied or followed by fluctuations in N1 and N2. Subsequently,

EGT will increase because energy is not being extracted properly by the turbines. Be-

cause the turbines are not operating properly, EPR will decrease. When this happens,
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Figure 2.2: Schematic of a Turbofan Aircraft Engine.

N1 and N2 decrease.

Draphys diagnoses faults such as this by matching the sequence of symptoms that

occur with sequences associated with known faults. The associational rules express

temporal relationships among parameters as part of the conditions for rule satisfaction.

The rule for a turbine blade separation is stated in English paraphrase as "EPR and

EGT fluctuating is accompanied or followed by N1 and N2 fluctuating, EPR and EGT

fluctuating is also followed by EGT increasing and EPR decreasing. EGT increasing

and EPR decreasing are followed by N1 and N2 decreasing." Draphys will identify all

rules satisfied by the current set of symptoms.

2.3 Novel Fault Diagnosis, Functional Propagation

Suppose the fault is a fan failure. We describe it as a novel fault because how the

fan is failing is not described in detail in our associational knowledge, as our fan blade
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failure was in the previous section. In such a failure, the first sensor affected would

be the N_ sensor. Since the fan would not compress air properly, the effect of that

failure would propagate to the high-pressure compressor and thus to the N2 sensor.

It would then propagate to the combustor since the under-compressed air would not

ignite as efficiently. Therefore, the expanding gases resulting from combustion would

not turn the turbines as rapidly as they normally would. EGT and EPR would be

symptomatic to reflect this. Also, since the turbines would not be extracting energy,

the fan and compressor would not turn as fast since they derive some of their power

from the turbines. 1 Titus the faulty response would be perpetuated.

For this fault, suppose that the first symptom that Draphys detects is in N1. Since

N1 is an engine parameter, the second diagnosis stage, which performs diagnosis at the

higher abstraction level, is able to localize the fault to the engine subsystem. Each

component in the engine subsystem is then proposed as the responsible component or

source of the fault.

For each proposed responsible component, Draphys generates a fault hypothesis by

qualitatively simulating the fault propagation behavior. That is, it uses simulation to

determine the extent of the failure's effect. For example, in one hypothesis, Draphys

will propose the fan as the responsible component. Draphys reasons about a model of

the engine and its interconnections to determine tilat the high-pressure compressor and

the N1 sensor depend on the fan for their proper operation; that is, they functionally

depend on the fan. This knowledge is modeled in a graph representation that describes

the physical system as a collection of components and their interconnections. The

nodes in the graph represent the components, and the links represent the functional

dependencies among the components. Draphys then uses the same simulation process

from each remaining candidate component to construct the hypothesis corresponding

to that component.

J The fan and compressor would still be turning, because the air flow into the engine provides a

_windmilling" effect, even when the engine is not running. However, the aircraft must be moving

through the air for this _windmilling" to occur.
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Knowing these interconnections, Draphys then attempts to continue simulating the

propagation of the failure to functionally dependent components. In this example, it

checks whether the fault's effect in the actual system has reached the high-pressure com-

pressor. This is done by examining the symptoms to determine if N2 is symptomatic.

If it is, then the failure is assumed to affect the high-pressure compressor and Draphys

continues the process from there. If N2 is not symptomatic, as in this example, simu-

lated propagation halts on this path. Draphys then explores all remaining functional

propagation paths.

In this example, Draphys generates a set of valid hypotheses that has two distinct

possibilities for a responsible component. The first is that the fan is the source, and

the second is that the N1 sensor failed. A fault in either component could result in the

current symptoms. Figure 2.3 shows the hypotheses that result from a symptom in N1.

Note that these hypotheses describe what components are affected, but not how they

are affected, because the reasoning is being performed at the higher abstraction level.

Extending this example further, assume that a short time after the N1 symptom

was first detected, a symptom in N2 is also detected. Draphys then tries to extend the

propagation path of all the valid hypotheses to explain the new symptoms. These paths

are extended by continuing the qualitative simulation from the end of the propagation

path in the old hypotheses. For instance, in one valid hypothesis propagation stopped

at the fan, because the next component on this functional propagation path was the

high-pressure compressor. Since earlier there was no symptom in N2, and because we

could expect N2 to be abnormal if the compressor were abnormal (because we assume

that propagation between the compressor and the N2 sensor to be instantaneous),

Draphys assumed that the compressor was unaffected. Now that there is a symptom in

N2, Draphys updates the system status for this hypothesis and continues the simulated

propagation.

The resulting hypothesis, shown in Figure 2.4, accounts for all symptoms. It is the

only member of the set of old valid hypotheses that can do so. Draphys eliminates all

others because simulation could not extend them to account for the symptom in N2.

---- rz
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HYPOTHESIS 1 OF 2

Current Symptoms:

N1 Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

HYPOTHESIS 2 OF 2

Current Symptoms:

N1 Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: Functional

ResponsibleComponent

DefinitelyAffected

Propagation Type: Functional

Figure 2.3: Valid IIypotheses Resulting From a Symptom in N1.

2.4 Novel Fault Diagnosis, Physical Propagation

Suppose that the fault was fan blade separation and that the fan blade broke off and

damaged a hydraulic line in the wing to which the engine was attached. Draphys detects

symptoms in N1 and in the hydraulic pressure sensor. Draphys cannot explain these

symptoms by simulating functional propagation, because thcre is no functional relation-

ship between them. t[owever, a physical proximity relationship does exist. Therefore,

by knowing that the fan is physically adjacent to the wing containing the hydraulic

line, Draphys can identify propagation from the engine to the wing. This knowledge is

contained in a graph representation similar to the representation of functional depen-

dencies, except that the links in the graph represent potential paths of fault propagation

that are due to physical proximity. Draphys uses a model of the physical propagation

to simulate this type of propagation.

Another hypothesis might be that there are two independent faults, one in the
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Current Symptoms:

N2 Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: Functional

_,_:_.:_:_.:_:_._:_:_:__ Functional Propagation

Physical Propagation

Responsible Component

Definitely Affected

Possibly Affected

Figure 2.4: Remaining Hypothesis After a Symptom in N_.

_.," ,
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engine and one in the hydraulic system. Draphys does not describe the multiple fault,

because it uses a heuristic that it does not produce multiple-fault hypotheses when it

can produce valid single-fault hypotheses that account for the current symptoms.

2.5 Novel Fault Diagnosis, Hybrid Propagation

Once such a fan blade separation has caused damage in both the engine and in the

hydraulic system, the effect of the fault will propagate functionally in both subsystems.

The initial propagation was physical, but later propagation was functional. Therefore

models of both physical and functional structure are required to explain the current

fault behavior. Draphys handles this situation by composing the primitive hypotheses

that describe the propagation within a single model.

Suppose we have a fan blade failure, and resulting symptoms in N1, N2, and the hy-

draulic pressure sensor. The hypothesis Draphys generates for this example is presented

in Figure 2.5. It shows that the fan is the source of the problem, with physical prop-

agation to the hydraulic line, and functional propagation from the fan and hydraulic

to their functionally dependent components. This hypothesis is the composition of

three primitive hypotheses, where each primitive hypothesis describes a single type of

propagation. Each primitive hypothesis is outlined in the figure.

One primitive hypothesis represents the initial physical propagation from the fan to

the hydraulic line. Another primitive hypothesis represents the functional propagation

within the engine resulting from the broken fan, and the third primitive hypothesis

describes the functional propagation that resulted from the hydraulic line damage.

Continuing this example even further, suppose we now see symptoms in EPR and

EGT. The hypothesis shown in Figure 2.5 is extended by continuing simulation from

the point(s) in the propagation path where it stopped, resulting in the hypothesis shown

in Figure 2.6. Once propagation to the turbine is confirmed, the status of the combustor

is updated to "definitely affected," since the reasoning assumes that the fault would

not affect the turbine without affecting the combustor.
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HYPOTHESIS 1 OF 1

Current Symptoms:

N1 Abnormal

N2 Abnormal

Hydraulic Pressure Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

_._;.<.;_:_:::_. Functional Propagation

Physical Propagation

0 Responsible Component

6) Definitely Affected

0 Possibly Affected

__ii _i iiilii!iiiiiiiiiiiil'__J ii i_il

ili_iiiiiilfiii!ii i_ iiii iiiiiii'l !iilii;i_ i i!iiii ii!!!ililiii

iii! iiiiil iiiiiliiiiiii!!i!iiiili!;

! iiiii!iiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiii:iii!i! ii! iiiiiiiii iiiiiii iiiiili,,iii ii:iiiiii!iiiiiii iiiiliiiiiiiiii!i!ii!ii
Propagation Type: Hybrid

Figure 2.5: Composed Hypothesis With Physical and Functional Propagation.
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HYPOTHESIS 1 OF 1

Current Symptoms:

N1 Abnormal

N2 Abnormal

Hydraulic Pressure Abnormal

EPR Abnormal

EGT Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

Control Surfaces

_._:i:i:_.:_:._. Functional Propagation

• Responsible Component

_ _) Definitely Affected"_'::::::" _ Possibly Affected

Propagation Type: Hybrid

Figure 2.6: Hypothesis After Symptoms in EPR and EGT.
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2.6 Summary

In this chapter, we showed a set of increasingly complex fault situations. The initial

example was that of a known fault, or one for which we had specific knowledge about

how the component was faulty and the corresponding symptoms. The later examples

were complex in the following ways: the fault propagation behavior increased the set

of symptoms (and the corresponding consequences) as time progresses, and the fault

behaved in such a way that a single model was not sufficient to diagnose it.

/ .',
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Chapter 3

Diagnosing Known Faults Via Associational Knowledge

Fault propagation results in changes to symptoms as time and the effects of the fault

progress. In this chapter, we discuss reasoning about the patterns of symptoms over

time for known, commonly-occurring faults. We define known faults as faults about

which we have specific knowledge; that is, we have knowledge about how the faulty com-

ponent was broken (e.g., fuel pump clogged), and how the affected system parameters

differ from their expected values (e.g., fuel flow is high).

We should emphasize two points about this chapter and its contents. First, we

include the information in this chapter for completeness and to help clarify the rela-

tionship between known faults and novel faults, but techniques for diagnosing known

faults is not the primary focus of this research. Second, we used associational knowledge

in the diagnostic reasoning, but other techniques could have been used, as described

later in the chapter.

3.1 Associational Knowledge

The approach implemented ill Draphys for diagnosing known faults was to embed rea-

soning with temporal predicates into a rule-based system. The rules express the as-

sociation between a fault and a set of symptoms, and the symptoms' changes over

time.

The fault-symptom associations for the aircraft domain were obtained by interview-

ing domain experts (pilots and engine designers) and by examining actual fault cases.

The experts often described symptoms as a sequence of events over time. For exam-

ple, a foreign object ingestion was described by one pilot in the following way: "First



39

performance values will fluctuate, then EGT and EPR will decrease." The sequence of

symptoms often helped distinguish among different fault hypotheses that had the same

initial symptoms.

To provide the capability of reasoning about sequences of symptoms over time,

a rule-based system was extended to permit temporal reasoning functions within the

rules in a knowledge base. The temporal functions permitted as part of the rules are

summarized in Table 3.1. These functions are the temporal functions developed by

James Allen [4].

As an example, the rule for a possible foreign object ingestion looks like:

( (foreign-obj ec¢)

(and

(equal

(equal

EPR fluctuating

EGT fluctuating)

EPR fluctuating

Fuelflow fluctuating)

(meets EPR fluctuating

EPR decreasing)

(meets EGT fluctuating

EGT decreasing)))

To paraphrase, this rule states that the hypothesis of foreign object is a possibility

when EPR, EGT, and Fuelflow are fluctuating simultaneously, EPR fluctuating is fol-

lowed immediately by EPR decreasing, and EGT fluctuating is followed immediately

by EGT decreasing. When this rule is fired, the intervals during which the parameters

have the qualitative values are tagged with the times during which they occur, and the

relationships between intervals are identified using those time tags.

To illustrate how the diagnosis is tailored to reason about dynamic behavior of the
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Table 3.1: Temporal Functions

Temporal Functions

Starts X Y

Finishes X Y

Before X Y

Overlaps X Y

Meets X Y

During X Y

Equal X Y

Temporal Functions

Explanation of Function

Intervals X and Y

begin at the same

time but X ends

before Y.

XXX

YYYYY

X and Y end at the same

time but X begins

after Y.

XXXX

YYYYYY

X is completed before Y

begins.

XXX YTY

X begins before Y begins

ends after Y starts,

but before Y ends.

XXXX

YYYYY

X ends at the same time

that Y begins.

XXXYYY

The time interval for X

is entirely contained

within Y's time interval.

XXX

YYYYY

X and Y occur during the

same time interval.

XXX

YYY
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physicalsystem, suppose we axegiven the followingsymptoms from the faultmonitor:

Signal Value Time

(EGT fluctuating 5)

(EPR fluctuating 6)

(Fuelflow fluctuating 6)

(EGT decreasing 12)

(EPR decreasing 14)

The symptoms are presented here in a compressed form, so that only the abnormal

aspects of the sensed values are shown. These symptoms represent the qualitative

value of the sensor error at the beginning of the time interval during which the value is

valid. Until a new qualitative value is generated by the fault monitor, this qualitative

value is assumed to hold. In the example presented above, EGT began fluctuating

at time 5 and continued to have that value until time 12. The fault monitor sends

qualitative symptoms to the diagnosis process at the beginning of a time interval, and

only sends another value for that sensor when the qualitative value changes. Thus the

interval during which a symptom's qualitative value holds is the interval used for Allen's

interval-based temporal logic. These symptoms satisfy the rule for the foreign object

ingestion described earlier.

Allen's temporal predicates were chosen because they are based on an interval-based

temporal logic. An interval-based representation was well-suited for representing the

sequences of symptoms, because the qualitative values of sensor data (e.g., EPR high)

generally hold over a time interval. Since we want to reason about the sequences of

qualitative values of the sensors, and not just the set of symptoms, we reason about

them based on the time intervals in which they hold.

Using dynamic information in this stage reflects the diagnostic reasoning described

by human experts in identifying known faults because it helps to distinguish among

-y
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faults which may have the same initial symptoms but different subsequent behavior. In

this application domain, there are several examples of such faults. Two such faults are

icing and foreign object ingestion, since both have initial symptoms of engine perfor-

mance values (EPR and EGT) fluctuating.

3.2 Difficulties With the Specific Associational Reasoning

The reasoning as described provides diagnostic capability to a degree, but it has some

difficulties. The difficulties essentially fall into two problem areas. The first prob-

lem area is that the choice of a rule-based representation leads to some difficulties in

reasoning about the fault propagation. The second area, which is independent of the

representation chosen, is the difficulty in getting the knowledge about faults and their

propagation behavior at this level of detail.

3.2.1 Limitations of The Rule-Based Representation

The temporal functions appear to be adequate for describing the types of temporal

relationship that occur, but the rule-based representation of fault behavior that we

use leads to some difficulty in reasoning about fault propagation. The major problem

arises when the rules are applied before the entire sequence of symptoms has occurred.

For example, if symptoms are detected and the diagnosis process is triggered while the

performance values are fluctuating, it may not be possible to distinguish yet between

icing and foreign object ingestion, since they both have the same initial symptoms.

Therefore, both hypotheses must be maintained. By using a rule-based representation

as described and implemented, the entire sequence of symptoms must take place before

the rule is satisfied, tIowever, it might be important to identify those fault hypotheses

whose initial temporal sequence is satisfied, even if subsequent symptoms have not yet

occurred.

Three approaches could be used to reason about fault propagation in a rule-based

representation: (1) have a separate rule for each possible propagation sequence (or
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extentof propagation) that could occur; (2) have each rule represent a separate prop-

agation step; or (3) change the inference strategy to deal with partial rule satisfaction.

Having a separate rule for each possible propagation sequence would require many

rules for each fault, where each rule would represent a sequence for a different extent of

propagation. Using this approach, the appropriate rule would be fired for a particular

instance of that fault at that point in time, corresponding to the propagation behavior

exhibited.

Each rule could represent a separate propagation step or a temporal change in the

sequence of symptoms for a fault. However, to reason about temporal relationship

among propagation steps for each fault, there would either have to be additional rules

for reasoning about the propagation-step rules, or a means for the rules to communicate

with each other about the possible interrelationships. As discussed in [14], rules are

best used when they do not need to communicate with each other and they represent

independent pieces of knowledge.

Another approach would be to change the inference strategy to allow rules to fire

when some symptoms have occurred that match at least one of the temporal predicates

in the antecedent, but other fault behavior described in that antecedent may not yet

have occurred. This is certainly a feasible approach, but the motivation for making

such a change would be to support reasoning about the behavior of the device as the

effect of the fault propagates. In essence, then, such a change would be made to support

simulation of that behavior. Although the augmented rule-based representation seemed

reasonable at first, we now know some of the representational difficulties that are not

completely overcome by using the temporal predicates.

These approaches for fixing the rule-based representation, while feasible, represent

fixes that are required because of the choice of representation. Another choice of rep-

resentation, such as a graph-based representation, may be more suited to supporting

the simulation of fault propagation behavior. The nodes would represent the quali-

tative symptoms and the links would represent the temporal relationships. Thus the
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graphwould represent a state-transition network, where the states are the qualitative

symptomatic sensor readings. Associated with the states might be the corresponding

components affected, so system status could be easily determined. Such a representa-

tion would be similar to the representation used by Pan [39], and augmented with the

temporal reasoning predicates defined by Allen.

The representation issue has potential consequences of awkwardness in characteriz-

ing the knowledge and in the reasoning. However, even considering the representation

issues resolved, another problem area exists which is independent of the representation:

the difficulty of getting the specific knowledge about faults and their behavior to put

into the representation.

3.2.2 Getting the Fault Knowledge

In most domains, getting complete, detailed knowledge of faults and their behavior is

highly unlikely. In the domain of physical systems such as the one implemented in

Draphys, it is particularly hard to get detailed knowledge of fault behavior, for the

reasons discussed below.

A key to this problem is the term detailed when referring to fault knowledge. In

this thesis, the most detailed behavior we diagnose is the qualitative description of how

sensor readings differ from their expected value. In this domain, the more detail needed,

the less fault coverage that one is likely to get. There are two major reasons that it

is difficult to get detailed knowledge of fault behavior for such physical systems: first,

it can be difficult to predict all the different manifestations that a particular fault can

exhibit; and second, diagnosis at this level of detail had not been attempted before, so

sources of fault knowledge are difficult to find.

Depending on the severity of a fault, the resulting behavior can appear quite dif-

ferent in different occurrences. Take, for example, a foreign object ingestion. Usually

this occurs when birds are ingested into the engine. Depending on the number of birds

.and the current conditions under which the engine is operating, the resulting symptoms
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coulddiffer both quantitativelyand qualitatively. Representingall the differentpos-

siblebehaviorsis not possible,although this situation occurs often enough to warrant

representing as many as possible. The different manifestations for this and many other

faults cannot be completely predicted, because we have not seen them all to get the

empirical knowledge, and because we do not know how to model physical systems well

enough to completely model faulted physical systems (discussed in section 3.3.1).

The second reason it is difficult to get the knowledge is because diagnosis at this

level of detail has not been attempted before, mainly because the type of monitoring

presented in this thesis produces symptoms at a level of detail that was not previously

available. Before this, the monitoring of sensors generally used fixed thresholds, usually

extreme upper and lower bounds that represent the normal operating range of the

physical system. Whenever the sensor readings varied beyond those limits, an alert

was raised. The type of monitoring that provides input to Draphys does not use fixed

thresholds. Rather, the monitor calculates the expected values for each sensors under

the current operating conditions, and raises an alert when the actual and calculated

sensor readings differ by more than some expected sensor noise level. This monitor can

detect abnormal sensor readings before they exceed the fixed threshold; therefore, the

symptoms are detected more quickly.

Because the monitor is more sensitive to sensor deviations from normal, the fault-

symptom associations used in the fixed-threshold approach do not usually apply. Also,

the human experts (in this case, pilots) do not monitor symptoms at the level of detail

of the monitor. The pilots monitor the aircraft systems based on sensor information

presented on the gauges and dials available in the cockpit, in a manner very similar

to operators of other complex process control systems. Therefore, the monitoring of

the sensors is dependent on the resolution of those gauges and dials. Because the

resolution of these devices is not great, the pilots do not depend on instantaneous

detection of aberrant measurements, or transient measurements. Instead, they reason

about behavior over time periods that may be short but are not instantaneous. They

seem to ignore transients and only reason about steady state behavior over a period
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of time, albeit a short period. Because the pilots do not have information at the same

resolution as the monitor, and because they approximate transients (which they may

not be able to detect, very well because of the information's resolution), the pilots were

not always very good sources of fault-symptoms associations.

In contrast, the symptoms generated by the fault monitor for input to Draphys axe

instantaneous. That is, the monitor identifies discrepancies as soon (within some small

allowance for sensor noise) as they occur. Humans can do the same, but it takes much

time, attention, and mental computation. For these reasons, and because humans are

inherently poor monitors [40], pilots do not monitor the aircraft sensor readings in the

same manner that the fault monitor does. Thus Draphys has more detailed information

about the fault's symptoms than the pilots can provide.

Since the pilots do not have the same kind of symptoms provided to Draphys, they do

not perform diagnosis in a way that can use our more detailed symptoms. Indeed, pilots

rarely perform diagnosis at all. Their behavior can best be described as a stimulus-

response behavior; that is, when they see certain symptoms, they take certain actions.

These represent mental shortcuts that skip the diagnostic process. These shortcuts

can have serious consequences [51], if the shortcuts do not include all the information

necessary to correctly and completely respond in the current fault situation. This also

means that we cannot acquire the fault-symptom associations from pilots, because they

do not have the knowledge we need, : : :: _ :

Because of the reasons mentioned above, it is difficult to acquire knowledge empir-

ically or analytically. The point is not that we cannot get any knowledge, but rather

that the knowledge is sure to be incomplete.

3.2.3 Other Issues

Several other issues arise, which include the causal relationships among malfunctions,

temporal duration of symptoms, and reasoning with uncertainty.
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Causal Relationships

Another consideration that affects the issue of representation is causal relationships

among malfunctions and the resulting symptom coverage issue. The issue of symptom

coverage is the question of whether a fault hypothesis should be considered valid if it

only covers a subset of the current symptoms. This question arises because a malfunc-

tion of a particular component (e.g., compressor stall) may cause other components to

malfunction. Stating this a different way, some malfunctions may cause other malfunc-

tions to occur simultaneously. This can occur in a compressor stall, which may cause a

flameout in the combustion section. It is important to recognize that these may not be

mutually exclusive malfunctions, but can be related causally (although each could occur

independently without causing the other). Therefore, it can be important to identify

when a hypothesis does not account for all symptoms, and when multiple hypotheses

could be related causally.

Although this knowledge currently is not included in Draphys, it might be useful to

include it in the future to help direct the reasoning process.

Temporal Duration of Symptoms

Draphys currently does not represent the temporal duration of symptoms. Given two

faults with the same initial symptoms, the length of time that the symptoms last

may allow elimination of one of the hypotheses. However, inclusion of the possible

range of symptoms' duration in our fault knowledge for all possible manifestations of

a fault would be difficult in this domain, for several reasons. First, the knowledge of

the symptom duration would have to describe a range of time. This is because the

duration of a particular symptom will probably vary, depending on factors such as the

severity of the fault. Moreover, this type of duration information may be very difficult

to obtain, as it is in this domain.
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False Positives

In the design of a diagnostic approach, a choice should be considered whether to prefer

false-positive hypotheses (identifying a fault that is not the current problem) by being

less stringent about the requirements on a hypothesis, or whether to prefer false-negative

hypotheses by being more stringent. Draphys was designed to prefer false-positive hy-

potheses to false-negative hypotheses. The motivation behind this was that, in general,

it is better to be conservative, wasting some time thinking something might be faulted

that was not, than to have an accident thinking something was working that was not.

Therefore, the known-fault associations were designed to have minimally stringent con-

ditions.

3.3 Related Work

We describe related work in association-based approaches, temporal reasoning, and

reasoning about fault propagation behavior.

3.3.1 Association-Based Approaches

The output of most diagnosis systems is a set of fault hypotheses that correspond to

the appropriate set of symptoms. These symptoms are either provided as input or

determined as part of the diagnostic process. Diagnostic approaches based on specific

fault-symptom associations have been extensively explored. Here we consider two areas

relevant to operative diagnosis where progress has been made. These areas include

the source of the knowledge, and reasoning about propagation behavior of the fault or

disease over time.

Sources of Associational Knowledge

Associational rules are often used to represent the correspondence between symptoms

and faults. These associational rules are usually generated in one of two ways. The

first, used in expert systems, is to acquire experiential rules from a diagnostic expert in
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the domain ofinterest.I The secondisthe hult dictionaryapproach,which storesfault-

symptom associations,used inconventionalhardware diagnostics.With each approach

the costof generationand retrievalof the compiled knowledge must be considered.

Experientialrulesacquired from experts may provide a very powerful means of

doing diagnosticproblem solving.Experts use heuristicsbased on much experience,

and theseheuristicsoftenwork very well.However, experientialruleshave two major

difficulties:theiracquisitionand theircompleteness.Acquisitionisdii_icultbecause the

expertsoftencannot articulatetheirproblem solvingtechniques.Even ifthisproblem

isovercome, thereisno way toguaranteethatthe setofassociationalrulesiscomplete

fora particulardomain. This lackofcompletenessisa major problem foran automated

diagnosticsystem that only reasonswith specificassociationalknowledge, and itdoes

not reflectthe gracefuldegradationofthe human expert'sproblem solvingcapabilities.

The faultdictionaryapproach commonly usedinhardware troubleshooting[8]usesa

model ofthe physicalsystem tosimulatethe fault'sbehavior.2 The resultingsymptoms

arestoredinfault-symptom associationsthatare retrievedlaterfrom thisdictionaryof

faults.This approach isused inelectroniccircuits,becausethisdomain can be modeled

readilyand theclassoffaultsconsiderediseasytosimulateinthe model. This approach

requiresa realisticmodel capableof simulatingfaultedsystem behavior togetherwith

knowledge of the type offaultsto be simulated.

While thismay be satisfactoryfora specificfaulttype ina domain suchas electronic

circuits,itisdifficulttoapply thisapproach inother domains. For example, in devices

such as a turbofan jetengine,modeling of normal behavior iswellunderstood, but

modeling ofabnormal behaviorisnot. Simulationmodels forthesedevicesare based

on certainassumptions,such as steady statebehavior. By theirvery nature,faults

insuch devicesare oftentransient,although they may eventuallyachievesome steady

statebehavior. Because of th!s,and because of lackof knowledge of the physicsof

1Experts' rules may represent problem solving heuristics as well as fault-symptom associations, but

we only consider the associations here.

_See [11] for a discussion of traditionM approaches to hardware troubleshooting.
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complex devices, modeling of faulted system behavior to acquire symptomatic behavior,

especially behavior over time, is not feasible because of limitations in current modeling

technology [5], [44].

The fault dictionary approach is useful in the electronic circuit domain because it is

easy to model the behavior of the fault that is the most common (a "stuck-at" fault).

However, other types of faults can occur that were not one of the types modeled, such

as a bridge fault. If a fault occurs which was not included in the fault dictionary, the

fault dictionary approach cannot diagnose it.

Each of the two approaches for acquiring associational knowledge has advantages.

The fault dictionary approach may be complete for a particular class of faults, assuming

the model used was complete. IIowever, the experiential rules may represent fault-

symptom associations for fault behavior that we do not know how to model. Moreover,

the expert may provide heuristics that make the problem solving process more efficient.

Even if the fault dictionary were complete, and we assume every type of fault is

represented, one must consider the cost of retrieval at diagnosis time. The cost of

generating a fault dictionary may be quite high, but the compiled fault dictionary

will at least be more efficient than constructing it "on the fly." The cost in time and

storage requirements of searchingfor the appropriate association becomes unacceptable,

especially for operative diagnosis, and particularly if one includes multiple faults.

3.3.2 Temporal Reasoning

As discussed in [56], there are several ontologies for representing temporal relationships.

We chose Allen's interval-based formalism [4], because it was a natural means of ex-

pressing the relationships among qualitative symptoms, where the intervals represent

the time interval during which a sensor maintains the qualitative value. We found this

to be adequate for expressing the associational knowledge.



51

3.3.3 Diagnosing Fault Propagation

In operative diagnosis, the effect of a failed component will propagate through the

device. There are two categories of propagation. One is the case where the fault causes

the component to produce output that is outside its normal operating range, thereby

providing input to another component outside its normal range of input vMues. This

may cause that component to malfunction.

The other category is the case where the faulty component produces output that is

abnormal for the current operating conditions, but is not outside the normal operating

range of the affected component. The component is operating in a degraded mode,

compared with its expected operation under the current conditions. As we discussed

earlier, it can be important to identify when the component is operating abnormally

for the total functioning of the system, even though the component is working correctly

for its inputs.

For the goal of providing corrective actions in operative diagnosis, the distinction

between these two categories may be important. For example, if affected components

are malfunctioning but are not physically broken, they can continue operating. How-

ever, if the component is physically broken (or will be shortly), the action taken in

response may be quite different.

Pan [39] addressed the problem of dependent failures, where a fault in one compo-

nent causes a fault in another. In particular, he addresses the situation where a fault

in one component generates output that takes on values outside of the normal range

of values. Therefore, the input to the downstream component is outside of the normal

input range. He explicitly represented knowledge of how individual components could

fail, and used a state-transition network to represent the causal relationships that result

in dependent failures.

Medical diagnosis must deal with the issue of propagation for much the same rea-

son we do in diagnosis of artifacts: diagnosis of a physical system in operation. The

propagation behavior of diseases is often represented in a causal network that includes
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the differentdiseasemanifestations[58][43][42].

3.4 Limitations

The technology for representing specific associational knowledge is available, and could

be applied to operative diagnosis, ttowever, no matter what approach is pursued for

acquiring and representing associational knowledge, its completeness cannot be guar-

anteed. As these approaches are applied to increasingly complex physical systems, this

lack of completeness becomes a more serious problem. In an association-based diag-

nostic approach, we consider that we have encountered a novel fault when the current

symptoms do not correspond to any of the associational knowledge. In practice, it is

very important to diagnose faults to support the continued, safe operation of the phys-

ical system. An important issue to be addressed, then, is what diagnosis information

should we produce when the symptoms encountered do not correspond to faults in our

knowledge base.

3.5 Summary

In this chapter, we discussed the need to represent the dynamic behavior of faults.

We approached this by acquiring knowledge from human experts, who in our domain

axe pilots. We represented the reasoning that they described in production rules, and

implemented the capability of using temporal predicates in the conditional part of the

rules.

We learned several lessons from this. First, the reasoning they described used the

temporal sequence in which symptoms occurred to disambiguate hypotheses. Next,

it was very difficult to acquire the knowledge. Because the knowledge is difficult to

acquire

Techniques are available for representing associational knowledge about known faults.

The rule-based representation is probably not optimal. Other approaches might im-

prove upon the rule-based representation, but independent of the representation used,
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an important issue (and a primary focus of this research) is diagnosis of faults when

the symptoms do not match the specific associational knowledge. In the next chapter,

we describe our approach to dealing with this issue.
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Chapter 4

Diagnosis of Novel Faults Via Abstraction

Diagnosis of novel faults is generally considered to be a major capability of a diagnostic

system that can degrade gracefully. But what exactly does it does it mean to degrade

gracefully? In hardware, graceful degradation usually means the ability to continue

operating reasonably well even when portions of the hardware system are broken. One

would not expect the performance of the system to be as high as an unbroken system,

but at least to be adequate.

In humans, especially experts, graceful degradation has an additional meaning. It

also refers to the ability to solve problems unlike those seen before and to know the

boundaries of one's knowledge. Problem solving behavior changes when these bound-

aries are reached. Indeed, such a capability is considered to be part of expertise. If an

expert cannot immediately solve a problem, he does not just give up. He tries other

problem-solving approaches and calls on other types of knowledge than those initially

used.

Such robust problem-solving behavior requires that the human know when the cur-

rent problem solving approach is not succeeding, what other problem solving techniques

to use, when he should use the other techniques, and what knowledge is required to

use each technique. In this chapter, we present an approach to robust problem solving

that uses abstraction as a technique for dealing with novel faults. In this approach, we

reason at a higher level of abstraction about the device's operational status. In doing

so, we produce less specific information about the device when novel faults occur. That

is, the specificity of the diagnosis is what degrades.
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4.1 Diagnosis of Novel Faults

What does it mean for a fault to be novel? We define a fault as novel if we do not have

specific knowledge relating the current symptoms to a fault. However, even though

we do not have specific knowledge about the fault, we may still be able to provide

less specific diagnostic knowledge. For example, we may be able to say what is broken

without saying how it is broken. That is, we choose to view diagnosis of novel faults

as an issue of specificity. The basic idea is that graceful degradation is not achieved

by simply exploring whether something is known about faults, but at what level of

detail it is known. Knowledge at different levels of specificity can provide different fault

coverage, but increasing fault coverage is achieved at the cost of degrading specificity.

For historical reasons, we shall continue to use the term "novel fault" to mean a fault

which the diagnostic system cannot identify specifically. If the diagnostic system cannot

identify exactly what the fault is by using specific knowledge about the physical system,

it can still generate useful diagnostic information, even if it is less detailed than desired.

We consider diagnostic information to be useful if providing it to the human operator

helps him continue safe operation of the physical system, either by a more complete

or correct response, or by aiding him in better understanding the status of the faulted

system. An explanation of what motivated the choice of abstraction, and why the less

specific information can be useful, follows.

Before presenting the approach, it is useful to explore what information we should

abstract and why. If the goal of the diagnostician is to select a remedial action to take

in response to the fault, the information should be generated to support that selection.

During the interviews of experts, they described default actions that they would take

if they did not recognize the fault or if there were multiple possible hypotheses. This

action was generally a conservative response to the fault. For example, if the pilot knew

he had a fan failure, but did not know how the fan was broken, he would shut down

the engine. However, if he knew it were an eroded fan blade, he might reduce power on

that engine. The point is that he had an action associated with fan failures that was
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(potentially) different from the action associated with the specific fan hypothesis.

Motivated by this and other examples, it seemed useful to form general categories of

faults with associated default actions, and to examine the relationship of the resulting

hypotheses with the known-fault hypotheses. In the aircraft domain, these categories

are formed according to the components in the physical system, as exemplified above.

When novel faults occur, diagnostic reasoning takes place at a higher level of abstrac-

tion. Hypotheses are produced that identify what component is faulty, without iden-

tifying how the component is broken. The relationship between the so-called known

faults and the general categories is a specificity relationship. That is, the operational

status of the component is abstracted to "normal" or "abnormal," so we named this

abstraction status abstraction.

Since we designed the diagnostic reasoning to identify the component that is faulty,

thus reasoning at the higher level of status abstraction, we can abstract the symptoms,

also. Although it is necessary at the lower level to identify how the symptomatic sensor

compares with its expected value (e.g., high or low), it is not necessary to make this

distinction at the higher level. It is only necessary to identify that the value of the sensor

is "abnormal" compared with the expected value. This is also status abstraction, but

it is the status of the parameter value that is abstracted. Figure 4.1 illustrates the

relationship between the fault hypotheses and the corresponding symptoms at both

abstraction levels currently used. We discuss this abstraction in more detail in section

4.3.2.

Another motivation for the approach taken is that it is useful to the human operator

to identify the faulty component, even if we cannot provide a large amount of detail

about how it failed. One reason is that humans have sensors that cannot easily or

economically be duplicated. They hear things, see things, and use their intuition.

Therefore, the human may have additional information that can help him select a

corrective action.

The pilots also described reasoning in a structural hierarchy to perform localization
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of the fault. Having this localization information seemed to help in narrowing the

choices of actions to take. Providing the localization information may prevent errors,

such as shutting down the wrong engine (as occurred in the recent British Midlands

737 crash). We use structural abstraction in Draphys for localization.

4.2 Diagnostic Reasoning at the Higher Status Abstraction Level

The reasoning at the higher level of status abstraction is a generate-and-test process.

When symptoms first appear, the generator localizes the fault in a component hierarchy,

resulting in a set of candidate components that might be the source of the problem.

It then constructs fault hypotheses by simulating fault propagation from each of the

candidates. Each resulting hypothesis is then tested to determine if it is valid; that

is, if a fault in the hypothesized responsible component could cause all the current

symptoms. Often, this generate-and-test process results in multiple valid hypotheses.

If new symptoms arrive as time progresses, the generator tries to incrementally update

the old hypotheses to determine whether they account for the new symptoms. If they

do, they are retained. Otherwise, they are pruned.

To see how Draphys diagnoses failures, recall the example in Chapter 2 of a fan

failure. We will step through the example again, elaborating each problem solving

step.

4.2.1 Fault Localization

The first Symptom detected is in N1 only. Since Nl is an engine parameter,

Draphys localizes the fault to the engine subsystem.

Localization is the process of reducing the number of candidate faulty components

by refinement within a structural hierarchy of a design description. This structural

hierarchy describes a component hierarchy, where primitive components are grouped

into higher level composite components. 1 Performing localization within a component

aThe grouping Of components into higher level components must follow certain guidelines, as de-

scribed in Chapter 6.



59

hierarchy assumes that fault behavior occurs locally; that is, faults propagate from

one component to another component that is "close" in some way. This assumption is

almost always true for fault behavior over a short time period.

Figure 4.2 depicts the process of localization. Starting at the top of a component

hierarchy, the process first refines to the next level within that hierarchy. The sensors

associated with each component at that level are examined. If all symptoms are a

proper subset of the sensors associated with that component and only that component,

the fault is said to be localized to that component. The process refines the localized

component into its subcomponents. This continues until the fault cannot be localized

further.

As an example, consider symptoms in EPR and EGT and the component hierarchy

depicted in Figure 4.3. The initial input is the airplane representation (Airplane) and

the set of symptoms (EGT and EPR). When we refine in the component hierarchy,

we produce the set of components that are the subparts of Airplane, the Propulsion -

system and the Hydraulic-system. Iterating through this set, start with Propulsion-

system. We then identify all sensors associated with Propulsion - system, resulting in

the set Fuel-flow, EPR, EGT, N1, 3/2. Since the set of symptoms (EGT, EPR) is a

proper subset of this set, we repeat the entire process at the next level in the component

hierarchy.

Note that the localization process is mainly useful when faults first occur. Because of

the propagation behavior, the localization may be increasingly difficult and accomplish

less pruning as time (and the effect of the fault) progresses.

4.2.2 Generating Candidate Components

Each component in the engine subsystem is then proposed as a candidate

responsible component.

Once the fault is localized to a subsystem or set of subsystems, the candidate gen-

eration process can proceed. At present, the set of candidates is the union of the set(s)

of primitive components of the localized subsystem(s). For our example, the fault is
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localized to the engine. The set of primitive components in Engine is then generated,

resulting in the following set: Fan, N_, Compressor, N2, Combustor, Turbine, EGT,

EPR. Each component in this set is then proposed as the source of the fault. (Dra-

phys does not order this set. If a probability of failure were known for each component,

however, Draphys could order the set accordingly.)

4.2.3 Qualitative Simulation of Fault Propagation

For each proposed responsible component, Draphys generates a fault hypoth-

esis by qualitatively simulating the fault propagation behavior. In this example,

Draphys will first propose the fan as the responsible component. Draphys reasons

about a model of the engine and its functional interconnections to determine that

the high-pressure compressor and the N1 sensor functionally depend on the fan.

Knowing these interconnections, Draphys then attempts to continue simulating

the propagation of the failure to functionally dependent components.

The input to this process is the set of symptoms and a candidate component. The

output is a propagation path which begins with the candidate component and which

identifies the system status consistent with the symptoms and candidate component.

Draphys determines the extent of the propagation of abnormal component status

by simulating the propagation of the failure from the candidate component. First, the

candidate component is proposed as the source of the problem. Then, all components

that are dependent on the candidate component for proper operation are examined to

determine whether the fault has affected them.

This simulation process is a traversal of the links in the graph representation of the

functional model. Traversal of a link between two nodes represents simulation of a fault

propagating along the path represented by that link between two components repre-

sented by the nodes connected by the link. Generating a hypothesis is the construction

of a subgraph of the functional model to correspond to the part of the physical system

affected by the fault. As the traversal process continues, each node that is determined

to be affected, and each link that represents a fault propagation between two affected

components, are added to the hypothesis subgraph.

Determining whether a component is affected by a fault is done by examining the
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sensor(s)associatedwith the component. A sensor is associated with a component

if it measures something about that component's operation. We have defined three

association types, or ways that a sensor can be associated with a component. These

three association types are related to what we call infer about the operational status of

the component from the sensor status.

The first association type refers to sensors that can have abnormal readings without

their associated component having abnormal operational status. If the sensor measuring

some characteristic of a component's input is symptomatic, the effect of the fault is

reflected in the input to the component, but it may not yet be affecting the operation

of the component itself. Therefore, we do not consider the component to be affected

by the fault unless further propagation can be identified. As an example, suppose we

have a pressure sensor which measures the pressure of the air entering the fan. There

may be an abnormal drop in air pressure, but this may not affect the fan yet.

The second type of association occurs when the sensor having a normal reading

does not necessarily mean that the component's operational status is normal. For

example, EGT measures the temperature of the exhaust from the turbine. If EGT is

symptomatic, then we consider the turbine to be affected. However, EGT normal does

not necessarily mean that the operation of the turbine is normal, because it might be

faulted in some way without affecting the exhaust temperature.

The third association type occurs with sensors which reflect the operational status

of the component. For example, a Fuel- Pressure sensor measures the pressure of the

fuel coming out of the fuel pump. This sensor status reflects the status of the fuel pump,

since this sensor provides a measure of the component's function. For tracking fault

propagation, we consider a component to be affected if its sensor with this association

type is symptomatic, and unaffected otherwise. That is, the component's operational

status can be identified from the sensor's status.

There are other complicating factors in relating sensor status to component status.

Computed sensors, such as EPR, may have associations with more than one component.
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In Draphys, we identify the association between EPR and the fan and between EPR

and the turbines. When EPR becomes abnormal, we must consider both associated

components, since the individual pressure readings from which EPR is computed axe

unavailable.

If the componeut is determined to be unaffected, simulation of fault propagation

stops along this particular path. Otherwise, propagation continues from each affected

component. Draphys adds each affected component to a directed graph that represents

the propagation path of the fault. The nodes in the graph represent the affected com-

ponents, and a link from one node to another represents the propagation of the effect

of the fault from the component corresponding to the first node to the component rep-

resented by the second node. When this propagation path contains all symptomatic

sensors; i.e., when the explanation of the fault's behavior accounts for exactly the set

of current symptoms, we consider it to be a valid hypothesis.

The model used to simulate functional propagation of a fault is component centered.

It models the functional dependencies among components. The functional dependencies

represent potential paths of intended interaction among components in the physical

system that axe designed into the system; i.e., component B is functionally dependent

on component A if the proper operation of B depends on the proper operation of A.

This occurs, for example, when the input to B depends on the output of A. Thus if

A is malfunctioning, the effect may be that its output is incorrect. The input to B

is abnormal, so B's operation is necessarily affected. B may be operating completely

correctly given the inputs it has, but since the inputs are wrong, B's outputs will be

wrong for the larger context. Thus the notion of abnormal operation of a component

is dependent on the context of the overall operation of the physical system.

It is important to note that the functional dependencies represent potential paths

of interaction. For example, component B may depend on component A for its proper

operation, but only under certain circumstances, such as a switch being turned on. The

context under which the interaction may occur is not modeled in this representation

of functional relationships. A functional dependency between two components only
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Figure 4.4: Functional Model of the E,igine.

suggests that an interaction may occur, not that it must occllr.

Functional depe,dencies are represented by directional links within a directed graph,

where the nodes of the graph represent the components. Figure 4.4 illustrates the

functional model of the engine. Cycles in the graph represent the feedback in the

system.

This is a model of the normal functioning of the physicM system, but it is abstract

enough to model the system with many faults as well. This is mainly because this func-

tional dependency relationship between components does not say how the components

interact, merely that they could. Many faults will cause the components to interact

along the same paths of interaction that are normally foIIowed, so we can use this mode]

to simulate the propagation of abnormal effects _mong the components. In fact, many

faults which do not involve physical damage propagate along normal functional paths

of interaction. It is this which gives the model the power to allow us to make inferences
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aboutfault propagation.

Draphys then explores all remaining functional propagation paths. When all

paths are exhausted, the hypothesis is tested for validity.

Draphys then uses the same simulation process from each remaining candidate

component to construct the hypothesis corresponding to that component. After all

possibilities are explored, two valid hypotheses remain... The first is that the fan is

the responsible component, and the second is that the N1 sensor failed.

The hypotheses created from this process are shown in Figure 4.5. Out of these,

only two are valid. As we mentioned earlier, the propagation paths are subgraphs

of the functional model, augmented by including system status information. When a

subgraph includes all symptomatic sensors, it represents a valid hypothesis.

4.2.4 Discrimination Based On Dynamic Inputs

Extending this example further illustrates the incremental updating of hy-

potheses. Assume that a short time after the N1 symptom was first detected and

diagnosed, a symptom in N2 is detected. Draphys then tries to extend the propaga-

tion path of all the valid hypotheses to explain the new symptoms. These paths are

extended by continuing the qualitative simulation from the end of the propagation

path in the old hypotheses.

The reasoning at the higher abstraction level is designed and implemented to han-

dle new symptoms that arrive after the initial diagnosis is done. To accomplish this,

Draphys uses the same simulation process as when the hypothesis was initially created,

except that it begins the simulation from the point in the valid hypothesis' propaga-

tion path where the propagation ended before. 2 For example, take the valid hypothesis

where the fan is the source of the problem. The propagation ended at the fan rather

than continuing to the compressor, because N2 was not symptomatic when this hy-

pothesis was created. However, when Draphys starts propagation again from the fan,

simulation of propagation can continue to the compressor because its sensor is affected

now. Draphys adds the compressor and N2 sensor to the propagation path and con-

tinue propagating. There is a functional dependency path from the compressor to the

_Note that this assumes that all previously affected components remain affected.

T
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VALID HYPOTHESES

HYPOTHESIS 1 OF 8

Fault Type: Single Fautt

Propagatlon Path And Component Status:

Propagation Type: Fun_onal

Explained Symptoms: NI

O ResponsibleCorrlxment

(_) D_dinitelyA_ected

HYPOTHESIS 2 OF 8
Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: FunctiOnal

Explained Symptoms: N1

INVALID HYPOTHESES

HYPOTHESIS 3 OF 8 HYPOTHESIS 4 OF 8
Fault Type: Single Fault Fault Type: Single Fault

Pmpegalk_n PaR And Component Status: Propagation Path And Component Status:

Propaga,_on Type: Functional

Explained Symptoms: N1

Propagatlo_ Type: Functional

Explained Symptoms: N1

HYPOTHESIS 5 OF 8
Fault Type: Single Fault

Propegation Path And Component Status:

HYPOTHESIS 6 OF 8
Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: Functional

Explained Symptoms: NI

HYPOTHESIS 7 OF 8

Fault Type: Single Fault

Prop_atio_ Path And Component Status:

Propagation Type: Functional

Explained Symptoms: N1

HYPOTHESIS 8 OF Q

Fault Type: Single Fault

Propagation Path And Component Status:

Propaga_ion Type: Functional

Explained Symptoms: N1

Propagation Type: Functional

Explained Symptoms: N1

Figure 4.5: All IIypotheses (Valid and Invalid) Resulting From _ Symptom in N1.
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combustor, but the combustor has no associated sensor to confirm its operational sta-

tus. Therefore, Draphys marks it as "possibly affected" and continues propagation. It

follows a functional dependency path to the turbines, but all turbine sensors are non-

symptomatic. Therefore, Draphys assumes that the turbines are unaffected and stops

propagation at the combustor. If the turbines had been affected, Draphys would have

marked the combustor as definitely affected as well.

Figure 4.6 shows the resulting hypothesis. Note that this accounts for all current

symptoms. Also note that the updated propagation path enlarges the subgraph of the

functional model to accommodate the new symptoms. This example illustrates the

incremental nature of the hypothesis construction, since it builds on previously created

hypotheses to account for new symptoms.

Continuing this example even further, suppose we now see symptoms in

EPR and EGT. The hypothesis shown in Figure _.6 is extended by continuing

simulation from the point(s) in the propagation path where it stopped, resulting

in the hypothesis shown in Figure _. 7. Once propagation to the turbine is con-

firmed, the status of the combustor is updated to "definitely affected," since the

reasoning assumes that the fault would not affect the turbine without affecting the

combustor.

This example illustrates the benefit of the approach for diagnosing systems with

feedback. If the engine were being diagnosed in an environment where the sequence of

symptoms was not available, but the set of symptoms was, then all major (non-sensor)

components would be candidates that could not be discriminated without more de-

tailed information. However, examining the temporal sequence in which the symptoms

appeared permits isolation of the source of the fault.

Note that we did not describe any multiple-fault hypotheses to explain the multiple

symptoms. This is because we use a heuristic that we do not produce multiple-fault

hypotheses when we can produce valid single-fault hypotheses that account for the

current symptoms. The next chapter will discuss this heuristic in the more global

context of multiple classes of faults.



69

Current Symptoms:

N2 Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: Functional

_,_:_:_,_:_:_._::_- Functional Propagation

_,._¢_ Physical Propagation

Responsible Component

Definitely Affected

PossiblyAffected

Figure 4.6: Hypothesis Remaining After a Symptom in N2.
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Current Symptoms:

EPR Abnormal

EGT Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

Propagation Type: Functional

_ Functional Propagation

Responsible Component

(0 Definitely Affected

Possibly Affected

Figure 4.7: Hypothesis After Symptoms in EPR and EGT.
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4.3 General Discussion

The previous section described the approach as implemented in Draphys and illustrated

two major ideas in this research, the use of status abstraction for graceful degradation

and the incremental, constructive approach to generating hypotheses. In the following

sections, we consider both the structural abstraction used in the localization and status

abstraction. We then examine several aspects of the abstractions and the reasoning.

We then discuss the incremental updating of hypotheses, and highlight its advantages.

4.3.1 Structural Abstraction

The component hierarchy shown in Figure 4.3 and used for localization in Draphys

represents an abstraction of the structure of the physical system. The type of abstrac-

tion used is an aggregation of lower level elements into higher level, composite compo-

nents, which we also call subsystems. The resulting relationship between a composite

component and one of its aggregated parts is a part-of relationship. Many diagnostic

approaches use component hierarchies in their reasoning; we include a discussion here

on how the component hierarchy is defined and used in Draphys.

The aggregation of components into higher levels in this component hierarchy was

done based on a functional grouping, a That is, components that contribute to a par-

ticular functionality are grouped together. For example, all components which are

considered to be part of the engine are grouped together. Similarly, components which

contribute to the workings of the hydraulics are grouped together into a hydraulic sub-

system. To support efficient localization, this hierarchy must form a tree, in that a

component may only be part of one composite component. If the hierarchy does not

form a tree, then the localization process cannot prune entire branches.

The purpose of the grouping is to aid in the localization; that is, to support the

efficient exoneration of components. The motivation for using the functional grouping,

as described, is the observation that faults tend to propagate (at least in short time

3The grouping also depends on sensor placement; see chapter 6 for a discussion of this.
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periods) to components that are designed to interact with the responsible component.

Therefore, by grouping the components according to function, we improve the efficiency

of the localization process for many faults.

Components which are functionally grouped may not be physically located together.

For example, the hydraulic subsystem has parts which are physically located through-

out both airplane wings and the fuselage. One could envision a component hierarchy

where the components are aggregated based on physical location rather than function-

ality. Such a component hierarchy can be useful, and we will discuss the use of such a

component hierarchy in the next chapter.

As mentioned previously, the component hierarchy must be defined in a particular

way in order to permit pruning of entire branches of the hierarchy. In Chapter 6, we

identify some knowledge engineering guidelines for building the component hierarchies.

4.3.2 Status Abstraction

In this section, we discuss the form of abstraction that we have named status abstrac-

tion. This form of abstraction is a key factor in our approach to graceful degradation

in diagnostic problem solving, because it supports reasoning about the fault and its

propagation behavior in less detail as more specific knowledge is not available. We first

discuss what is being abstracted, and the corresponding behavioral abstraction. We

then consider other ways of categorizing faults than by operational status of compo-

nents.

In different levels of status abstraction, operational status of a physical component

is described at different levels of detail. 4 For example, at the higher level of status

abstraction, a component's operational status is described as either normal or abnormal.

The lower level describes in more detail how the component is abnormal. For example,

at the lower level, an oil filter would be described as clogged. That description of how the

component is broken is abstracted to abnormal at the higher level of status abstraction.

_We only consider abstraction of the operational status of primitive components here, although the

same could be done for composite components.
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Figure 4.8: Examples of Component Status Abstraction.

Of course, describing how a component is abnormal can be done at differing levels of

detail, but we only implemented one level of detail below the binary level. We show

several examples of components' status and their abstractions in Figure 4.8. Note that

different operational statuses for the fuel line are all grouped together at the higher

level into "fuel line abnormal."

To determine what the operational status of a component is at a particular level of

abstraction, a diagnostician should use a corresponding level of behavior. At the higher

level of status abstraction, we only describe behavior as being normal or abnormal;

that is, a parameter value used to describe the behavior of the device is either normal

or abnormal for the current operating conditions. At the lower level, we are trying

to determine a more detailed description of operational status, so we need to use a

correspondingly more detailed description of behavior.

The advantage of using status abstraction to support graceful degradation is because

we need less detailed descriptions of behavior at higher abstraction levels. For example,

it is easier to determine that a parameter is abnormal than to determine that the same
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parameterwas high or fluctuating, because no reasoning about temporal intervals is

necessary. The difference in determining behavioral descriptions at different levels of

detail may seem insignificant when looking at a single parameter at a single point in

time. However, the difference becomes clearer and more significant when looking at

several parameters' behavior over time and relationship with each other.

There is more to describing behavior than the level of detail of a particular parameter

value, of course. For our diagnostic reasoning, it is also necessary to identify propagation

behavior. This, too, must be described at the appropriate level of abstraction. The

representation of the physical system used to diagnose at a particular abstraction level

should be consistent with the necessary level of behavioral detail.

For the higher level of status abstraction, we must identify the paths of interaction

followed by the fault as it propagates. The functional model used in Draphys is a

model of the normal functional dependencies designed into the physical system, but it

is abstract enough that it allows us to model many faulted systems as well. Moreover,

it allows us to model faulted systems with dependent failures, if the failures follow the

paths of interaction in the normal functioned model (which many do). The reason we

can model even dependent failures is because our description of behavior is so abstract.

As we reason at higher abstraction levels, we achieve greater breadth of fault coverage

at the cost of specificity.

It is important to note that the abstraction levels are independent of the reasoning

techniques applied at those levels. For example, one could use associational reasoning

or model-based reasoning at any level of status abstraction. Another important point is

that this is not just abstraction of abnormal operational status, but normal operational

status as well. However, since we are performing diagnosis, the abnormal status is the

motivation for the abstraction scheme chosen.
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Categorization of the Faults by Component Operational Status

Draphys abstractsfaultsaccordingto the operationalstatusof the physicalcompo-

nents thatmake up the device,but itcould categorizefaultsinother ways. In artifact

diagnosis,we could categorizethe faultsby structuralabstraction.One of the moti-

vatingfactorsbehind performinghierarchicaldiagnosisin a structuralhierarchyisthat

itdoes provide some capabilityforgracefuldegradation.That is,the diagnosisgoes

as far down the hierarchy as it can, providing useful diagnosis information even when

it cannot diagnose to the lowest level in the hierarchy. Another example in medicine

might be disease categories; e.g., cancer is one such category.

The choice of categorization scheme might be based on many motivations. A major

organizational motivation is the existence of a corrective action corresponding to a

fault category. If there is some action or therapy associated with the general fault

category (which may not be the same as actions for specific faults within the category),

then the diagnostician can fall back on that action when the specific fault cannot be

identified. For example, if a doctor can identify a problem as a bacterial infection, but

cannot identify what type, the recommended prescription might be a wide-spectrum

antibiotic. If the specific bacteria type can be identified, the doctor would prescribe an

antibiotic specific to that bacteria.

In Draphys, we assume that identifying the best (safest, most likely to correct

or compensate) response is a major motivating factor, and that specific hypotheses

are associated with the most-preferred actions, but the more general hypotheses and

associated default actions are better than nothing.

Levels of Status Abstraction

Draphys currently uses two status abstraction levels, but could include more levels. It is

possible to have a level of status abstraction between the two current status abstraction

levels that identifies the level of severity of the fault's effect on the component. For

example, at the most specific level we might describe an eroded compressor blade. At
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an intermediatelevel, the compressor's operational status is abstracted to "operating

but at a degraded level." (Another operational status at this level might be "totally

nonoperational.') At the highest abstraction level, the operation status is "abnormal."

An even more detailed status abstraction level might refine "eroded compressor blade"

to a description of how badly eroded it is.

The levels of abstraction chosen might be determined by the information require-

ments of the human operating the physical system. For instance, they might corre-

spond to the default actions available as less specific information about the fault can

be determined. Conversely, overly detailed levels serve no purpose if the additional

discriminating power they appear to provide has no practical consequences. Even when

actions are not available, the information at a particular abstraction level might still be

useful to the human, just as localization can be useful information to the human. This

must be determined by examining the domain itself, and what information the human

operator can use to make decisions.

4.3.3 Constructive Versus Classification Problem Solving

It is interesting to note that the reasoning at the higher level of status abstraction is

constructive. That is, hypotheses are constructed (and tested) via simulation rather

than retrieved from a set of pre-enumerated solutions as in classification problem solving

[9].

We could create associational rules at the higher level of status abstraction, but

this is undesirable for reasons similar to those discussed in the previous chapter, as

follows. First, it is difficult to know how much propagation to express in the rules. If

the rules only express the initial symptoms, a rule can be satisfied as soon as symptoms

appear. This has the disadvantage that we cannot easily use subsequent symptoms to

distinguish hypotheses. Moreover, it is difficult to determine dynamic system status

using associational rules because of the variability of fault propagation, both over time

and extent of effect.
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Second, since we base the reasoning on use of a model of normal functional structure,

there is no need to store or search through a large set of rules that represent each

propagation step. The same model can be used for all faults whose propagation behavior

follows the functional dependency paths designed into the physical system. This is

because the model of the normally operating system used in Draphys is also a model of

the system under many fault conditions as well. Moreover, determining system status

during the simulation process is straightforward.

Third, since all symptoms are treated identically at this level of status abstraction,

a single model and a simple inference technique (simulation of propagation of a single

fault) are sufficient to diagnose faults within this fault class. The only search process

that takes place is the generation of candidates. Because of this, the efficiency of this

reasoning process depends to a great extent on the pruning ability of the localization

process. In turn, the localization process's pruning ability depends on the proper or-

ganization of the component hierarchy, as discussed earlier, and on sensor sampling

rate. If much time passes between samples, more fault propagation will occur, making

it more difficult to isolate the fault to a small set of candidate components. Given a

candidate component, the level of abstraction of the physical system's behavior must

be general enough that using simulation to construct hypotheses will be efficient.

We could do the diagnostic reasoning within the specific level of abstraction using

a constructive approach. To obtain the same detailed fault information as the specific

associational knowledge, such an approach would represent simulation of the broken

device. However, physical-system modeling technology cannot adequately represent

specific system behavior. For example, representing transient behavior is not well un-

derstood; existing modeling techniques typically assume steady state behavior of the

physical system [44]. But a fault by its very nature is often transient, although sub-

sequent behavior may assume some steady state characteristics. This would not be a

problem at the higher abstraction level because the ]eve] of detail at which we describe

the behavior of the system abstracts away details and just identifies paths of interac-

tion. One advantage of empirical associational rules, though, is that they can express



78

empirical relationships between symptoms and faults for which no underlying theory or

model exists. A diagnostician may know from experience that there is an association

between certain symptoms and a particular fault (or corrective action) without knowing

why they are associated. We did not encounter any examples of this in our domain,

but such a situation may occur in other domains.

The issue of constructive versus classification problem solving is explored further in

the next chapter.

4.4 Related Work

We consider related work in both AI and psychology here. In the AI area, we consider

the use of abstraction for problem solving, diagnosis of novel faults, and incremental

diagnosis. Most of the relevant work in diagnosis involves the use of models of structure

and behavior to relieve the brittleness of current knowledge-based systems. We also

address approaches which use multiple kinds of abstraction for diagnosis. In psychology,

human models of performance were developed b_ed on analysis of verbal protocols of

humans doing fault diagnosis.

4.4.1 Using Abstraction for Diagnostic Problem Solving

Abstraction is a powerful technique for problem solving in general [48], [28], [10]. We

consider here those approaches to diagnosis which generate abstract fault hypotheses,

and whether that abstraction is used implicitly or explicitly.

4.4.2 Diagnosing Novel Faults

In AI, most approaches to diagnosis of novel faults use the same definition we do, that

the fault is one for which specific symptom-fault knowledge is not available. These

approaches use model-based diagnostic reasoning based on models of structure and

behavior. First, we will discuss the model-based diagnostic approaches, then we examine

the specificity of the diagnostic output of these approaches. We also discuss their
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appropriateness for operative diagnosis.

Current research in model-based diagnosis involves reasoning about models of struc-

ture and behavior of the device under consideration, also described as reasoning from

first principles, for example [11], [22], [47], [20], [24], [7], [25], [18]; detailed surveys may

be found in [26] and [13].

The model-based diagnosis process is generally viewed as performing prediction,

candidate generation, and discrimination. Prediction is the process of generating ex-

pectations about behavior, and for identifying discrepancies between expectations and

actual system behavior. For example, given a device model built as a network of compo-

nents, each with its own behavior description, behavior prediction can be accomplished

by propagating the individual behaviors of each component. The behavior prediction

in Draphys generates expected behavior for each component compared with the normal

operation of the device as a whole. This computation is discussed in section 1.3.2; we

also describe this process as monitoring rather than prediction. The reason that we use

this type of monitoring is because we need to provide a comprehensive system status

to the human operator. To do that, we must track the progression of the fault, even

when diagnosing systems with feedback.

Candidate generation produces one or more explanations for any discrepancies

found. There are several ways to perform this task. One approach uses only knowledge

of normal system behavior. In this approach, each prediction is associated with the set

of components whose correct behavior supports that prediction. Therefore, any dis-

crepancy between that prediction and actual behavior can be explained by the failure

of one or more of the components in that set. If there are several discrepancies, the

broken components must form a covering set of all discrepancies. This approach is the

basis of the candidate generation procedures in many research efforts, which can be

described as a dependency tracing process, although the details and formality of the

descriptions differ (e.g., [22], [11], [49], [16], [25], [23] and [47]).

Another approach is to use knowledge about how components fail, or fault models
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[6], [39], besidesusing knowledge about how systems work. After finding a compo-

nent whose failure could explain all symptoms, the effects of known failure types are

simulated. Thus the model-based part of the reasoning is used to identify the faulty

component, and the fault models are used to identify the specific failure. If the list of

known failures is exhaustive, this approach can be used to exonerate components, as

done in SOPHIE [6]. Pan [39] uses fault models to represent known dependent failures,

and explicitly reasons about failures causing other failures. This is particularly appro-

priate for diagnosis of complex physical systems, because dependent failures are a real

possibility. ABEL [41] uses fault models to check the consistency of candidates as they

are generated.

Discrimination is usually done by taking additional measurements or providing dif-

ferent inputs to test the resulting output. For example, [16] proposes an information-

theoretic approach to choosing measurements. Shirley [55] presents an approach to

generating test inputs by exploiting designed behavior. In operative diagnosis, discrim-

ination is limited because additional information is hard to acquire.

Many approaches to novel fault diagnosis produce diagnostic information that is

more abstract than the specific associational knowledge Ill], [22], [29], [16], [20], [47].

That is, they identify the component that is the source of the problem and (usually

implicitly) make some assumptions about the fault's propagation behavior being func-

tionai. The class of faults diagnosed in the implementation of these approaches contains

more specific hypotheses than the fault hypotheses generated by functional propagation

in Draphys, because they assume no dependent failures. Figure 4.9 shows the level of

detail produced by some of these other diagnostic approaches.

The approaches that integrate model-based reasoning with fault models are often

performing at multiple levels of abstraction, even if they are not always explicitly la-

belled as such. Examples include [20] and [39]. One approach that uses and explicitly

identifies multiple levels of abstraction was developed by Abu-Hanna and Gold [2].

This approach uses multiple levels of structural and behavioral abstraction. The be-

havioral abstra_:tions correspond to different levels in the structural hierarchy. That
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Figure 4.9: Level of Detail of Hypotheses from Various Diagnostic Approaches

is, a qualitative component behavioral state is an abstraction of several subcomponent

states.

In general, diagnosis programs that use the model-based approach generate hypothe-

ses that are less specific than the associational knowledge (unless they are augmented

with specific fault models). That is, they describe what component is the source of the

problem. The faults they diagnose are faults that propagate within a particular model,

usually the functional model. Except for [11], each diagnoses one class of fault. In the

class of failure diagnosed by most of these approaches, only one component is broken

and it does not cause dependent failures. Symptoms may appear on other components

because the input they are receiving is incorrect, but the components are operating

correctly for the inputs they have. None of the approaches are designed to handle sys-

tems with feedback. As a result, they do not completely address the issue of multiple

consequences of a single initial fault in a system that does have feedback.
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Incremental Diagnosis

One of the contributions of this thesis is the incremental construction of hypotheses.

Diagnosis in Draphys is incremental in that it builds on previously created hypotheses

when new symptoms arrive. Another approach that performs incremental diagnosis

is GDE [16]. GDE is similar in the general idea of incrementally building on previ-

ous computations when new information becomes available to discriminate hypotheses.

Itowever, the new information that GDE uses is a measurement taken to get more in-

formation about the faulty device. GDE assumes that all fault propagation has already

occurred when the diagnosis is done. In contrast, Draphys uses the fault propagation

behavior of the system as a discriminator. Therefore, although both approaches are

incremental, the information they use is quite different and how the information is used

to increment the diagnosis is correspondingly different as well.

4.4.3 Human Performance

Rasmussen's work on human performance modeling both in routine task environments

and during unfamiliar task conditions [45] is an important piece of work. This model

describes human problem-solving performance at three different levels, as shown in

Figure 4.10. The lowest level represents skill-based behavior, which is sensory-motor

performance. Riding a bicycle is an example of a skill-based behavior.

The next higher level represents what Rasmussen calls rule-based behavior. In

this level, familiar situations are typically controlled by a stored rule or procedure

which may have been derived empirically during previous occasions, communicated from

another person's knowledge, or created during problem solving or planning. Rasmussen

states that the boundary between skill-based and rule-based performance is not always

distinct, and that much depends on the level of training and attention of the person.

When an unfamiliar situation arises and no rules for response are available from

previous experience, the performance must move to a higher conceptual level that

Rasmussen calls the knowledge-based level. At this level of reasoning, the internal
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Figure 4.10: Levels of Performance of Skilled Human Operators (from [45]).
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structure of the system being reasoned about is explicitly represented by a "mental

model" which may take severM different forms.

What do these levels have to do with graceful degradation in performance of diag-

nosis? If one considers knowledge-based behavior to be the top level, then as a human

becomes more proficient at some task, the reasoning is compiled into the lower levels.

For instance, as one practices driving a car or playing a musical instrument, perfor-

mance becomes proceduralized eventually to skill-based behavior. Not all behavior

becomes skill-based, but most behavior can be compiled to at least the rule-based level

of performance. Thus familiar problem solving tasks are performed at the lower levels,

but unfamiliar, non-routine tasks must take place at the highest, knowledge-based level.

One reason we attribute the ability to degrade gracefully to humans is because they

can reason at different levels as necessary.

Because humans have limited attention span and short term memory, they use

various techniques to facilitate mental data processing. Rasmussen identifies three such

techniques:

• Aggregation - Elements of a representation are aggregated into larger units, chunks,

within the same category of mental model as familiarity with the context increases.

• Abstraction - The representation of properties of a system or environment is gen-

eraiize or abstracted to a model category at a higher level of abstraction.

• Analogies and Use of Ready-Made Solutions- The representation is transferred

to a category of model in which solutions are already known or rules are available

to generate a solution.

This thesis may be viewed as an exploration of the use of abstraction to provide

a structured way of defining Rasmussen's rule-based and knowledge-based levels of

problem solving. Our specific associational rules correspond to Rasmussen's rule-based

reasoning and our higher level of abstraction corresponds to his knowledge-based level.

We did not encounter a need to use any reasoning corresponding to the skill-based level
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in tile diagnostic task, although the recovery task may utilize such reasoning.

4.5 Limitations of Using a Single Physical-System Model

Even though the diagnostic reasoning at a higher level of abstraction can be used

for diagnosing some novel faults, the reasoning as described assumes that the fault

propagates along the normal functional paths of interaction. Not all faults do. Davis

[11] uses the bridge fault in circuits as an example of a fault that propagates along paths

of interaction in a model of physical rather than functional adjacency. In the aircraft

domain, similar concerns arise. As we discuss in the next chapter, faults can occur

that cause damage because of physical proximity rather than functional interaction of

components. The functional model does not represent such fault propagation behavior.

Therefore, the diagnostic reasoning using a functional model, while necessary for some

faults, is not sufficient for others.

4.6 Summary of Diagnosis of Novel Faults Via Abstraction

This chapter presented an approach based on reasoning at a higher status abstraction

level to diagnose faults which cannot be diagnosed using any of the specific associational

knowledge that is available. The type of abstraction used, called status abstraction,

supports graceful degradation in the presence of novel faults because it requires less

specific knowledge about faults, especially faulted system behavior at the higher ab-

straction level, but still produces useful diagnostic information. It provides a tradeoff

between breadth of fault coverage and specificity of the diagnosis; it is the specificity

of the diagnosis that degrades.

The diagnosis at the higher status abstraction level is done using model-based rea-

soning. We showed that some novel faults can be diagnosed using the functional model

at the higher abstraction level, but not all.
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Chapter 5

Diagnosis of Multiple Propagation Types and Fault

Classes

As we showed in the previous chapter, using only the functional model of the physical

system is not enough, because not all faults propagate locally within the functional

model. In this chapter, we introduce the idea of multiple propagation types, and the

partitioning of the hypothesis space to correspond to different fault classes. In partic-

ular, we consider physical and functional propagation, and multiple as well as single

faults.

5.1 The Need for Multiple Models

Another model than the functional model described in Chapter 4 is necessary to sim-

ulate certain fault propagation behavior. The simplest example of this is the class of

faults where a component physically damages another component, e.g., a component

overheats and the heat damages a physically proximate component. Such a path of

interaction does not follow any path within the functional model. To use Davis' termi-

nology [11], the two components are not adjacent in the functional model. However, the

components are adjacent in the physical model. Here, finding the appropriate model

means finding the appropriate adjacency relationship. Note that although we are re-

ferring to adjacency as though it were a binary relationship (i.e., two components are

either adjacent or not), adjacency is actually more complex than that. For example, in

representing physical proximity, one might say that the smaller the distance between

two components, the more adjacent they are. However, we could formulate that rela-

tionship as a binary one by stating that components closer together than some threshold
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d are adjacent, and all others are not. Moreover, as Davis points out, there are many

different types of adjacency; e.g., magnetic or electrical.

Use of adjacency for diagnosis is based on the assumption that interaction between

two components does not occur at a distance (relative to adjacency, that is), and that

the notion of adjacency pertains to a particular model. While this almost always 1

holds for interaction between two components, that only considers behavior local to

those two components. If one needs a more comprehensive view of a fault's behavior

and associated interactions in all affected components, one needs to take a more global

perspective. We showed that there are faults in this domain where more than one

model is necessary to explain the behavior of a particular fault occurrence. Local

interaction between any two components may occur within a single model, but there are

multiple types of interaction when looking at all interactions among all components in

a particular fault occurrence. For example, when a fan blade damages a hydraulic line,

that unintended interaction is because of their physical adjacency. When the broken

fan fails to drive the compressor properly, that interaction is because of functional

adjacency.

5.2 Partitioning of the Hypothesis Space

In the previous chapter, we showed how we could perform diagnostic reasoning at a

higher abstraction level to support diagnosis of some novel faults. However, abstraction

alone is not sufficient for situations where multiple models of the physical system are

needed. The need for a different model of the physical system can occur within each

abstraction level.

From our view of diagnosis as problem solving in a hypothesis space, the solution

is to partition the (single fault) hypothesis space according to the specificity of the

hypotheses as well as the fault's propagation behavior; that is, by the model(s) used in

1Some fault cases involve interaction at a distance, such as a fan blade becoming a projectile and

damaging another engine, but these are rare.
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the fault's diagnosis. At the higher level of status abstraction, such a partitioning groups

the single-fault hypotheses into three such categories: functional propagation only,

physical propagation only, and hybrid propagation within both physical and functional

models.

This partitioning is not restricted solely to a particular level of abstraction. When

choosing a problem solving technique for a particular fault occurrence, both an abstrac-

tion level and propagation type must be selected. Therefore, we define .fault classes that

organize hypotheses by abstraction level, physical system model necessary to simulate

the fault's propagation behavior, and associated problem solving techniques. Essen-

tially, we define fault classes according to the level of detail of what we know about the

fault and its behavior.

At present, Draphys defines four single-fault classes, as shown in Figure 5.1. Asso-

ciated with each class are the assumptions about the fault's behavior, and the corre-

sponding models, abstraction level, and problem solving techniques. Other single-fault

classes might eventually be included, such as intermittent faults and design errors, but

our purpose in this research was to explore a framework in which such classes might be

included as desired.

We already discussed diagnosis of known, commonly occurring faults in Chapter 3

and novel, functional-propagation faults in Chapter 4. We now explore the diagnostic

reasoning within the remaining fault classes.

5.2.1 Physical Propagation Only

As before, the example for this class of fault described in Chapter 2 is presented together

with the corresponding diagnostic reasoning.

Suppose that the fault was .fan blade separation and that the fan blade broke

off and damaged a hydraulic line in the wing to which the engine was attached.

Draphys detects symptoms in N1 and in the hydraulic pressure sensor...by know-

ing that the fan is physically adjacent to the wing containing the hydraulic line,

propagation .from the engine to the wing can be identified.
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9O

I Hydraulic Line I

I FanA

I Fuel System

CompreasorA CombustorA TurbineA

Figure 5.2: Engine Physical Propagation Model.

Draphys simulates the propagation of the fault's abnormal effects in the physical

propagation model, just as it simulates fault propagation in the functional model. As

in the functional model, a graph represents the components and the interconnections.

In the physical model, the links are not functional dependencies but rather are physical

dependencies. We call them dependencies, although they may better be described as

"potential paths of interaction because of physical proximity." For lack of a more concise

term, we name these links in a consistent manner with the functional dependency rela-

tionships. These links represent paths of interaction followed by the possible physical

damage that can occur between components when a component breaks or malfunctions

and are a subset of the physical proximity relationships in the physical system. The

physical model of the engine that Draphys uses is shown in Figure 5.2.

The possible physical damage occurs because of physical proximity of the two com-

ponents. However, it would be inefficient to represent all the non-directional physical
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proximity relationships if there is no (or very little) possibility of one component phys-

ically damaging another. We used the example earlier of the fan blade breaking off and

damaging the hydraulic line. Because it is known that fan blades can break, the phys-

ical model should include the (physical) potential path of interactions to components

physically proximate to the fan, such as the hydraulic line. However, it is highly un-

likely that the hydraulic line would break and damage the fan, so we do not represent

an interaction path in the other direction. By only representing physical dependen-

cies based on design knowledge, we substantially reduce the number of paths that the

diagnostic reasoning must explore.

Representing physical relationships as just described is based on design knowledge

of how one component might break and physically damage another. In that sense, the

physical relationships included in the model represent knowledge about how the system

breaks. However, it is not a model of how a component breaks and the resultant behav-

ior, but rather it is a fault propagation model, describing the possible fault propagation

paths. It is not making a very strong (i.e., detailed or stringent) statement about what

fault behavior to expect; merely that these are the paths of physical proximity that

one might expect to see a fault follow. As depicted in Figure 5.3, there are varying

degrees of knowledge about faults, depending on how strongly the knowledge identifies

how the physical system will fail. At one end of the continuum, only information about

the normal physical system is included. Model-based troubleshooting as discussed in

[13] falls at this end of the continuum. At the other end, only knowledge about how

the individual components fail is included. As in our physical dependencies, adding

some knowledge about how the system fails can improve efficiency, and still be in the

middle of the continuum. However, it does limit the coverage of faults. The choice of

how much information to include about how the system fails should be made explicitly

when designing the diagnostic approach.
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One important characteristic of the physical dependencies is to note that these rela-

tionships generally represent unintended interactions that result from physical proxim-

ity, where the functional dependencies represent intended physical interactions. How-

ever, when building the model, we must decide which potential interactions to repre-

sent. If we were concerned with externally-caused physical damage (e.g., battle damage

caused by bullets), Draphys' model of physical dependencies would not be sufficient.

We would have to include all physical proximity relationships, because we could not

eliminate possible interactions based on design knowledge. Many more paths in the

model would have to be represented and explored than Draphys now does.

Another interesting point concerning the physical-propagation hypotheses is that

localization must be done in a physical structure hierarchy. In the previous fault class,

that of functional-propagation faults, localization was done in a component hierarchy

where components were aggregated into higher levels based on functional grouping.

However, since we are reasoning about physical propagation, localization in the func-

tional component hierarchy might exonerate a component that is propagating physi-

cally. For example, suppose component A breaks and propagates physically to compo-

nent X. Suppose A and X are functionally part of different subsystems, but physically

grouped together. Localization in the functional hierarchy might exonerate A, if no

sensors in A'B subsystem are symptomatic yet. Therefore, when looking for physical

propagation, localization should be done in the physical component hierarchy.
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Noneof the pilots describedreasoning about physical damage. We will see in the

accident analysis in Chapter 6 that many of the engine faults that resulted in accidents

involved physical damage. It is possible that diagnosing this type of fault propagation

is difficult for humans, or at least this type of fault is often overlooked.

5.2.2 Hybrid Propagation

For some faults, a single model (physical or functional) cannot adequately model the

entire propagation behavior of the fault. In the aircraft domain, this most commonly

occurs when one component physically damages another, resulting in functional prop-

agation from the two damaged components. The example from Chapter 2, partially

shown below, is one where physical propagation caused functional propagation.

Suppose we have a fan blade failure, with resulting symptoms in NI, N2, and

the hydraulic pressure sensor. The hypothesis Draphys generates .for this example

is presented in Figure 5.4.

Given that we know that functional propagation almost always follows physical

propagation, we could modify the generator to simulate propagation of the fault's ef-

fects in the two models simultaneously. However, this is unnecessary. The hypotheses

describing the propagation within a single model were already generated earlier, when

the fault classes for a single propagation type were explored. Therefore, Draphys takes

advantage of the earlier processing by composing the primitive hypotheses together.

Figure 5.4 shows the composition of three such primitive hypotheses. One describes

the physical propagation from the fan to the hydraulic line, one describes the functional

propagation within the engine, and one describes the functional propagation within the

hydraulic system.

This composition is not done randomly, since we can apply knowledge about how

faults propagate in different models. In Draphys, a single heuristic is used to guide the

composition of primitive hypotheses. This heuristic says that physical propagation can

be followed by functional propagation. No other compositions are considered.



94

HYPOTHESIS 1 OF 1

Current Symptoms:

N1 Abnormal

N2 Abnormal

Hydraulic Pressure Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

_-_x_._.. FunctionalPropagation

PhysicalPropagation

_) ResponsibleComponent

_) DefinitelyAffected

Q PossiblyAffected

Propagation Type: Hybrid

Figure 5.4: Composed Hypothesis.
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Using this heuristic reduces substantially the number of compositions examined.

The generator successively examines each physical propagation hypothesis. It assumes

that functional propagation could proceed from any component in the propagation path

of a particular physical hypothesis, so the generator composes the physical hypothesis

with the functional hypotheses from each affected component.

Extending Hybrid Hypotheses

When new symptoms arrive, and we have valid hybrid-propagation hypotheses, Draphys

extends them in a similar manner as described for functional-propagation hypotheses.

Draphys attempts to continue propagation from the components in the propagation

path where propagation halted. In hybrid-propagation hypotheses, the functional-

propagation portions of the hypotheses are extended first. If that does not account

for the new symptoms, then the physical-propagation portions of the hypotheses are

extended.

An example of an extension of the previously-shown hybrid hypothesis is depicted

in Figure 5.5, when new symptoms in EGT and EPR are detected. Draphys attempts

to functionally propagate from the combustor. It is able to extend the hypothesis to

the turbines and to the EGT and EPR sensors. Since this accounts for all the new

symptoms, Draphys stops extension of the hypothesis.

If extending the hybrid hypothesis in the manner described does not account for all

the symptoms, then it would be treated as a multiple fault situation.

Hypothesis Composition

We claim that hypothesis composition is a rational, incremental, and reasonably efficient

approach to explaining complex fault behavior for faults that propagate in multiple

models. The composition is only done when a single model cannot account for all

symptoms, but it uses hypotheses created when those single-model hypotheses were

explored. Moreover, the composition is not done randomly, but rather uses a heuristic



96

HYPOTHESIS 1 OF 1

Current Symptoms:

N1 Abnormal

N2 Abnormal

Hydraulic Pressure Abnormal

EPR Abnormal

EGT Abnormal

Fault Type: Single Fault

Propagation Path And Component Status:

_w_$_ Functional Propagation

Physical Propagation

Responsible Component

O Definitely Affected

Possibly Affected

Propagation Type: Hybrid

Figure 5.5: Extended Hybrid-Propagation Hypothesis.
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to limit the search for compositions. As we show in the next chapter in the evaluation

of Draphys on actual accident cases, this heuristic applies in several cases.

Other Aspects of Fault Propagation

Other combinations of fault propagation behavior can occur, of course. Sometimes

functional propagation results in physical propagation, which might happen when an oil

leak results in bearings overheating, causing physical damage to adjacent components.

Draphys currently does not implement such a heuristic.

If we want to provide more specific information about the physical propagation

behavior, we could extend the current implementation by including knowledge about

what is propagating and the associated behavioral differences. For example, a propa-

gating physical object might be something rigid that is not likely to break up (like a fan

blade) or something that disintegrates (like a bird ingested into the engine). Similarly,

the type of "stuff" propagating might provide information about the distance (within a

model) of propagation. For example, heat would propagate differently than a physical

object or an electrical charge.

Providing such information might be beneficial by improving predictive capability

and determination of fault severity levels. However, there are also costs associated with

it. The physical structure model would have to include more information about the

types of physical dependencies between components and thus the reasoning would be-

come more complex. An improved corrective response may be generated, but this would

increase the computational and representational complexity. The tradeoff between costs

and benefits would have to be evaluated.

5.3 General Discussion

The approach described here provides a structure for relaxing assumptions associated

with fault classes. The contribution to defining fault classes is the addition of specificity

as a criterion. These fault classes provide a means of organizing the hypothesis space
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into subspaces. We argue that this approach supports robust diagnostic problem solv-

ing, by allowing the diagnostic process to move to a new subspace when previous spaces

fail to provide hypotheses. In the following sections, we discuss some general issues as-

sociated with the overall approach to designing fault classes in this manner. These

issues include defining fault classes, the order in which fault classes are processed, and

control of the diagnostic process. We also discuss constructive problem solving, because

the hypothesis composition process is constructive in nature.

5.3.1 Defining Fault Classes

When we define a fault class in Draphys, we are identifying the set of hypotheses at a

particular level of detail with a specified type of fault behavior. That is, we define fault

classes according to what we know about the fault and its behavior. If one considers

the diagnosis process as a search through a space where the elements of the space are

fault hypotheses, these fault classes represent a partitioning of that hypothesis space.

The fault classes in Draphys are not totally independent. For example, at the

specific level of status abstraction, the associational knowledge represents the set of

known, functionally propagating faults. We say they are known faults because we

know the specific qualitative symptoms associated with that fault. This fault class

contains hypotheses which are more specific instances of the functional-propagation

faults that represent a fault class at the higher status abstraction level. Interestingly,

all the faults for which we had specific knowledge were functional-propagation faults, so

there were no fault classes containing specific instances of the other single-fault classes.

In Figure 5.6, we show the relationships among the fault classes diagnosed in the current

implementation of Draphys.

5.3.2 Order of Fault Class Processing

When diagnosing a fault, Draphys checks for membership in each class by traversing

the diagnosis taxonomy (shown in Figure 5.7) in a depth-first fashion. The ordering
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Figure 5.6: Relationships Among Single-Fault Classes in Draphys.
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of fault classes is based primarily on fault likelihood, but it also simplifies the reason-

ing by allowing later fault classes (in particular, the hybrid-propagation fault class) to

build on reasoning done in previously-explored fault classes. Functionally-propagating

faults, whether described specifically or at the higher abstraction level, occur more

often than faults involving physical damage. This seems reasonable, especially since

functional propagation paths represent intended interactions, and physical propaga-

tion paths represent unintended interactions. Draphys checks for physical propagation

(only) before checking for hybrid propagation in multiple models, because it is more

likely that a fault is detected before it propagates in more than one model. The rea-

soning about hybrid-propagation hypot-heses uses the primitive hypotheses created in

the previously-explored fault classes. Lastly, multiple faults are least likely of all. In

the current approach at least, if valid hypotheses can be identified in a fault class, we

assume that there is no need to consider less likely fault classes. The less common fault

classes can be examined later, if new information eliminates the current hypotheses.

This assumes that all hypotheses in one class have the same likelihood compared to all

hypotheses in another class, and that we only want the most likely hypotheses. This

is a domain-specific choice, which may differ for another domain than the one under

consideration.

We are not restricted to this order of processing, however. We can consider two

aspects of the order of fault class processing, moving between levels of abstraction and

moving among fault classes within a level of abstraction. In the first aspect, we start at

the specific level and move up a level of abstraction when necessary. We could also first

reason about the fault classes at the abstract level of reasoning and refine the resulting

hypotheses according to our specific knowledge.

This abstract-to-specific approach has several advantages. It is a potentially efficient

way of grouping the specific knowledge, so that the search process is more efficient. This

is particularly true if there is a large amount of specific knowledge. If, however, the

amount of specific knowledge is not large, or it can be processed very efficiently, the

additional reasoning at the abstract level may not be worth the pruning advantage that
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Figure 5.7: Diagnosis Taxonomy and Fault Classes in Draphys,
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it gives.

Another potential advantage of an abstract-to-specific approach might occur when

the time for diagnostic reasoning is limited. Since the reasoning at the abstract level

is less detailed, it may take less time than reasoning at the specific level, especially if

there is a large amount of specific fault knowledge. Therefore, it could generate useful

information in less time than it takes to reason with specific knowledge. Indeed, if the

time available for diagnosis ends before the specific level has been processed, useful

diagnosis information has still been generated.

Moving between fault classes within an abstraction level is now ordered according

to likelihood. This assumes that all faults in a particul_ class are more likely than any

faults in a class considered later. Other means of ordering the fault classes are possible,

such as ordering them by criticality. In Section 5.3.4, we briefly discuss one means of

choosing a fault class to consider based on the localization process.

The order in which fault classes are processed can have an effect on the reasoning

necessary to generate or identify hypotheses in that fault class. For example, the

fault class at the higher level of status abstraction whlch looks for hybrid propagation

performs composition of hypotheses that were constructed when prior fault classes were

explored. That is, it composes hypotheses created in the functional-propagation and

physical-propagation classes. By doing so, it takes advantage of computation clone

previously. If the order of fault class processing were changed, then the reasoning

within that class may have to change, also.

5,3.3 Reasoning in the Component Hierarchies

Levels in the component hierarchies (both functional and physical) used for localization

are levels of structural abstraction, where the primitive components are aggregated into

subsystems at progressively higher levels. Many diagnostic approaches use such levels

of structural abstraction to perform hierarchical diagnosis, generating hypotheses at

each level in the component hierarchy and progressively refining them.
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We chose not to do thisin Draphys, because we cannot use thisapproach with

hybrid propagation. To understand thispoint,considerthe functionaland physical

component hierarchies.The rulesfororganizingsubsystems are differentfor the two

hierarchies,sinceone isbased on functionalrelationshipsamong components and one

isbased on physicallocation.Therefore,the subsystems in the hierarchiesare quite

differentfrom each other,except at the lowestlevel,sincethe primitivecomponents

are the same in both hierarchies.Since the subsystems are not compatible between

hierarchies,compositionof hypothesescannot be done above the primitivecomponent

level.

5.3.4 Control of the Diagnosis Process

As implemented in Draphys, the order of fault class processing is fixed. One possible

future enhancement might be to make the control more opportunistic. We might modify

the control so that fault classes are explored according to the current fault behavior,

rather than in order of likelihood. The localization process may be useful as a means

of indicating the fault behavior and, thus, the appropriate fault class. For example,

if we can localize a fault to a single subsystem in the physical component hierarchy

but not the functionM component hierarchy, we can bypass the class of functionally

propagating faults. To do this, the notion of what it means to localize in one hierarchy

but not another would have to be clarified. Moreover, we cannot identify the fault class

involving multiple models this way, since a single component hierarchy will not suffice

for localization.

Updating hypotheses is another control issue. At present, Draphys updates hypothe-

ses when new symptom information arrives. This new information is used to determine

whether the old valid hypotheses are consistent with the new symptoms. Therefore,

the diagnostic process is only triggered when new symptoms arrive. However, lack of

symptoms can be useful in pruning hypotheses, when expected behavior does not occur.

If this capability were added, the diagnostic process would have to be triggered more
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often, rather than just when symptoms occur. At a minimum, the diagnostic process

would be triggered at the end of an interval when an expected symptom should have

occurred.

5.3.5 Constructive Problem Solving

As discussed in previous chapters, constructive problem solving is the assembly of a

solution, in contrast to classification problem solving, which is the choice of a solution

from a set of pre-enumerated solutions. This assembly might construct the solution

as a subset of existing knowledge, as in diagnosis of functional propagation faults,

where the generator creates subgraphs of the graph describing the functional model.

The assembly might synthesize pieces of knowledge from various sources, such as the

hypothesis composition in Draphys, or in constraint propagation.

Draphys uses simulation to focus the hypothesis assembly process, but there are

certainly other ways to do it. The simulation-based constructive approach makes sense

for operative diagnosis of physical systems such as aircraft subsystems, because we have

the knowledge of expected propagation behavior.

When is it appropriate to use constructive Versus classification problem solving?

The constructive approach is better when the problem solving must be done often, but

the solutions are not that different. This occurs in cases such as operative diagnosis,

because the time-varying nature of fault propagation means that the hypotheses for two

consecutive time snapshots often will only differ by the amount of additional abnormal

behavior caused by the fault.

Formulating a problem as a constructive problem solving task is more appropriate

when the pre-enumerated solutions would have much redundant information in them,

and a single theory exists from which these solutions could be constructed (e.g., a

model). This is analogous to the distinction made by Davis and King in [14], where they

discuss how a production system is not very appropriate for the class of problems where

unifying principles emphasize the similarities in seemingly different states. Similarly,
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classification problem solving is not as appropriate because we have the model as the

unifying theory for creating the hypotheses.

A constructive approach is better when a desired hypotheses comes from pieces of

multiple sources of knowledge. An example of this is the hypothesis composition in

Draphys. Neither model of the device is sufficient to provide an explanation of all the

faulted system behavior, but the use of two models and heuristics to describe the type

of interaction between them is enough to explain many fault situations.

5.3.6 Diagnosing Multiple Independent Faults

We describedthe classesofsinglefault.Another faultclassto consideristhat ofmul-

tipleindependent faults.Although thishas not yet been completely implemented, a

logicalextensionto Draphys' approach fordiagnosingmultipleindependent faultscould

be done by composing hypotheses.This alsoneed not be done randomly, although it

would certainlybe done differentlyfrom the single-fault,hybrid-propagationhypothe-

ses.First,we need not check compositionsofhypotheses thatwere checked previously

as hybrid propagation. Second, we can look fortwo independent faults,then three,

then four,and so on. Third, we can look for combinations based on the most likely

singlefaults.For example, look for combinations of known faultsbeforelookingfor

combinationsof novelfaults.Another combination might be to lookforthe same type

offailurein similardevices,such as the same kind of failurein multipleengines.2

5.4 Related Work

We discuss two categories of related research. The first is research using multiple models

and in multiple classes of faults. The second is in diagnosis of multiple faults.

2Such a case arose in an L-lOll, which had missing O-rings in MI three engines. This case had a

single cause, that of a maintenance error, but determining that single cause in situ is highly unlikely.

tlowevet, problems having a single cause such as this might be similar in the same kind of component.
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5.4.1 On Using Multiple Models

This need for multiple models when accounting for a particular fault's behavior makes

it necessary to use more than one problem solving approach. Therefore, the question

arises, how do we accommodate the multiple types of reasoning necessary? Simon [57]

proposed a conceptual framework to account for the creative, problem finding aspect

of the ill-structured problem-solving process. Within this framework, methods for the

evocation and synthesis of problem structure alternate with problem solvers of familiar

kinds in the progressive definition, refinement, and eventual solution of problems. He

uses design as an example of such a process, stating: (op cit, p. 190)

The whole design, then, begins to acquire structure by being decomposed

into various problems of component design, and by evoking, as the design pro-

gresses, all kinds of requirements to be applied in testing the design of its com-

ponents. During any short period of time, the architect will find himself working

on a problem which, perhaps beginning in an ill-structured state, soon converts

itself through evocation from memory into a well-structured problem.

Figure 5.8 illustrates the conceptual framework, showing the alternation between a

problem solver working on a well-structured problem, and a recognition system continu-

ally modifying the problem space. Thus two major aspects of the reasoning process are

the problem solver and the noticing-and-evoking mechanism. These two aspects permit

the ill-structured problem to be viewed as a succession of well-structured problems.

We view diagnosis in a similar way. The notice-and-evoking mechanism would iden-

tify when a current fault situation is not among the set of specific diagnostic alternatives

and move to a dlfferent partition of the problem space accordingly. This thesis explores

moving among hypothesis subspaces of the diagnosis problem space to cope with faults

that require different problem solving techniques and models. In short, we cope with

ill-structured diagnosis problems by viewing diagnosis as conducting a search through

a space of spaces.
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Figure 5.8: Schematic Diagram of a System for Ill-Structured Problems (from [57]).

5.4.2 Using Multiple Models for Diagnosis

The most related research on using multiple models, especially for diagnosis, is Davis'

work [11]. He describes both functional and physical structure of a device. He also

describes the advantages to having an ordered set of fault categories, which are similar

to our fault classes. He discusses the notion of simplifying assumptions that correspond

to each fault category, and that exploring the categories is a matter of making and

retracting assumptions. He identified the adjacency principle as a mechanism for deter-

mining which model of the physical system to use; the correct model is one in which the

paths of causal interaction are adjacent. Moreover, he assumes that there is no action

at a distance, and finding the paths of interaction is a matter of finding the right type

of adjacency.

Obviously, this thesis research applies the principles that Davis described. His fault

categories are based on assumptions about adjacency. Draphys' fault classes are similar

in that they are based on assumptions which are successively relaxed when they fail to

provide a satisfactory hypothesis, and the order in which this occurs is determined by

likelihood. However, they differ in the assumptions on which the classes are based. The
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fault classes in Draphys are based on abstraction level and fault propagation behavior.

The notion of fault propagation behavior is analogous to the adjacency assumption,

because the kind of adjacency is the reason a fault propagates the way it does. Moreover,

not all fault classes in Draphys are mutually exclusive. The specific, associational

knowledge represents the class of specific, functionally propagating faults (it just so

happened that all the known faults were functional propagation faults). The members of

this class are specific instances of hypotheses in the higher level, functional-propagation

fault class.

Concerning multiple models, Davis uses the example of a bridge fault to illustrate

the use of both functional and physical knowledge. His program, HT, uses functional

knowledge to generate candidates for the source of the problem. When HT determines

that no single fault could account for the symptoms in the functional model, it looks for

pairs of physically adjacent components among the candidates that might have a bridge

between them. That basic idea, of looking at interaction via paths in a different model,

is quite powerful. Draphys also implements that idea, but in a different way. Draphys

systematically composes hypotheses based on knowledge about how faults propagate

in different models. The composition process uses previously created hypotheses to

incrementally create the composite hypotheses. The composite hypotheses can also be

incrementally updated when new symptoms appear as the fault continues to propagate.

5.4.3 On Diagnosing Multiple Faults

Although not yet implemented, some obvious extensions to this research for diagnosis

of multiple faults exist. We could look at combinations of single-fault hypotheses,

using the approach implemented in GDE and described in [16], although that and

other approaches for multiple-fault diagnosis do not at present reason about different

classes of faults, and do not use different models. For example, they treat faults which

propagate physically as multiple faults, because they do not have the model that would

allow them to diagnose it as a single fault. However, GDE could be expanded to
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accommodate such reasoning.

5.5 Limitations

Although this research has expanded the capability of existing diagnostic systems, there

are still fault classes we cannot diagnose. These include intermittent faults, design

faults, and so on. Moreover, we cannot rank the hypotheses that we have within a fault

class. We also do not include any notion of time duration in our temporal reasoning;

we have abstracted it away because we do not yet know how to represent it.
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Chapter 6

Evaluation of the Fault Diagnosis Approach

This chapter includes two types of evaluation of the diagnostic approach. The first is

an experimental evaluation of the implemented system on actual accident cases. The

second is an analytical evaluation that includes a credit assignment analysis and a

knowledge degradation analysis. In the analysis of credit assignment, we discuss the

characteristics of the approach that are responsible for its success. We describe the

constraints on the design of the diagnostic approach and guidelines for the design of

the models. In the analysis of knowledge degradation, we describe the consequences of

incompleteness or of elimination of types of knowledge in Draphys.

6.1 Experimental Evaluation

This section describes the experimental evaluation of the diagnostic approach on actual

aircraft accident cases involving single engine faults. First, we discuss the experiment

design and the reconstruction of the accident cases. The resulting diagnosis for each

accident is then presented and discussed.

6.1.1 Approach

Eight official National Transportation Safety Board (NTSB) reports on accident cases

were found involving single faults in turbine engines in commercial transport aircraft.

These cases were collected at the beginning of this research. This set of cases was divided

into two sets. One set of four cases was put aside for the experimental evaluation and

was not examined for the design of Draphys. The other four, together with reports on

engine-related problems that did not result in accidents, were used in Draphys' design.
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Whenthe prototype of Draphys was complete, a colleague who was unfamiliar with

the design of the diagnosis system reconstructed all eight accident cases and generated

the symptoms that occurred in the accidents) Although this colleague was unfamiliar

with the diagnostic process, he was familiar with the operation of the fault monitor

which provides inputs to Draphys. He reconstructed the symptoms as though they

were produced by the fault monitor. These reconstructed symptoms were presented to

Draphys as input, and the resulting hypotheses are presented below.

Before discussing the results, some of the limitations of the reconstruction must be

explicated. Numerical sensor data from the engine parameters was not available, so the

symptoms were reconstructed based on the descriptions in the NTSB analysis of each

accident. The symptoms in the report were usually those described by the flight crew,

who normally will not detect deviations in sensor readings as soon as the fault monitor

does. Therefore, the sequence of symptoms could not always be determined completely,

because the flight crew only noticed a problem when several sensors were symptomatic.

In several fault cases it appears that the sensors became symptomatic simultaneously,

which is not very likely. IIowever, the symptoms as described by the crew were used.

Another limitation on the reconstruction was because not all engine faults occurred

in the same type of turbine engine. The design of Draphys is based on a Pratt and

Whitney JT8D-7 engine, but many of the failures occurred in other models of turbine

engines. The reconstruction process generated the symptoms as though the engine were

the JT8D-7. The engines were similar enough qualitatively that this did not create a

problem. For diagnosis, the main differences between engines were the sensors available.

Several turbine engines have vibration sensors. However, the vibration sensors are

notoriously inaccurate, and many airlines disable them. The different engines did not

greatly affect the diagnosis because the diagnostic process depends on qualitative models

and symptoms. If we were evaluating the fault monitor, which uses quantitative models,

we would need numerical sensor data and we would need to examine fault cases for the

11am indebted to Paul Schutte for reconstructing the accident cases and doing the initial evaluation

as described in [54].
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JT8D-7 only.

6.1.2 Results

In this section, we present the results of the experimental evaluation. Table 6.1 presents

a summary of the hypotheses, without system status or propagation path, produced for

the test cases used as test input. We discuss each test case individually, and its results;

we then discuss the major points brought out by the analysis of the results.

Before we begin describing the results, we first must define a successful diagnosis.

In this evaluation, we define a successful diagnosis to be one in which the correct

hypothesis (the actual cause as identified by the NTSB) is among the set of valid

hypotheses produced, and that the remaining hypotheses were such that they were a

reasonable explanation of the situation, given the data available.

While this may not appear to be a particularly stringent definition, it is consistent

with the goal of this thesis research. That is, we are concerned with producing useful

diagnostic information, even in the presence of novel faults. Therefore, it was important

to the goal of this research to be able to generate a correct hypothesis, even for a novel

fault. If we generated a correct hypothesis, we considered that a success. Moreover,

since we cannot rank hypotheses, we could not test Draphys' ability to choose the

correct hypothesis. Also because of our goal, we made the design decision of preferring

false positive hypotheses (hypotheses which said that a component had failed when it

actually had not) to false negatives (not producing a hypothesis for a component which

actually is at fault). In all the cases, Draphys never produced more than six valid

hypotheses.

Note that both status abstraction levels were invoked in all cases, in order to test

the diagnostic reasoning at each level. In each case, the lower abstraction level was

invoked first. For evaluation purposes, even when this level produced hypotheses, the

higher level also was invoked.
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Table 6.1: Summary of Hypotheses (Without System Status) Produced by Accident

Case Analysis

Case Description Stage 1 Hypotheses Stage 2 Hypotheses

1. Turbine Blade

Separation

i, Turbine Blade Separation

2. Flameout

I. Fan

2. Compressor

3. Combustor

4. Turbine

2. Fan Failure I, Turbine Blade Separation I. Fan

3. Fan Failure I. Turbine Blade Separation i. Fan

4. ForeiEn Object none

Ingestion

I. Fan

2. Compressor

3. Combustor

4. Turbine

S. Massive Rain I. Flameout I. Combustor

2. Turbine Blade Separation 2. Turbine

6. Engine Separation i. Fuel System Failure

2. Flameout

i. Engine - Fan

7. Turbine Disk

Separation

1. Turbine Blade Separation I. Combustor

2. Turbine

8. Bearin$ failure I. Flameout i. Compressor

2. Turbine Blade Separation
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Case 1 - Turbine Blade Separation

On July 19, 1970, a United Airlines Boeing 737-222 (Flight 611) crashed shortly after

taking off from the Philadelphia International Airport [30]. During takeoff, the number

1 engine failed. The captain thought that both engines were failing. Therefore, he

decided to reject the takeoff and land the a lrcrat"t on the existing runway. The aircraft

came to a stop past the end of the runway. The NTSB determined that a first stage

turbine blade had failed in the number 1 engine which caused the engine to cease

rotation. The number 2 engine was operable throughout the flight. The probable cause

of the accident was determined to be the captain's inappropriate decision to reject the

takeoff and land the aircraft based on his lack of understanding of the true state of the

aircraft.

The first stage 2 of Draphys's diagnosis process produced two hypotheses, namely

"Turbine Blade Separation" and "Flame-out" for engine number 1. The first hypothesis

was correct. The second hypothesis was also correct even though flame out was caused

by the turbine blade separation. The second stage produced four hypotheses, one for

each major component of the engine, namely the fan, the compressor, the combustor

and the turbine. Since all the engine sensors became symptomatic simtiltaneously,

stage 2 could not distinguish one as the source of the problem. The stage 2 diagnosis

contained one correct hypothesis and three false-positive hypotheses. It is improbable

that all the engine sensors would have become symptomatic at once; however, this was

the only information available from the NTSB report. If a more realistic simulation of

this accident could have been produced, the second stage might have pruned some of

the false-positive hypotheses.

A decision aid such as Draphys may have helped to avoid this accident. The ac-

cident occurred because the pilot was confused about which engine had failed. The

interface design which has already been implemented in Draphys could have reduced

2Note that the first diagnosis stage refers to reasoning at the lower abstraction level, and the second

diagnosis stage is the reasoning at the higher abstraction level.
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the ambiguity between the two engines. The correct diagnosis of the turbine blade

separation might not have been useful until the aircraft landed; however, the correct

locMization of the failure was crucial to the safety of the flight.

Case 2 - Fan Failure

On November 3, 1973, a National Airlines DC-10-10 (Flight 27) suffered an engine

failure and made an emergency landing at Albuquerque International Airport [31]. The

engine fan assembly of the number 3 engine disintegrated and its fragments penetrated

the fuselage, the number 1 and number 2 engine nacelles, and the right wing area.

The resultant damage caused the loss of certain electrical and hydraulic subsystems.

The NTSB determined that the probable cause was the disintegration of the number

3 engine fan assembly as a result of an interaction between the fan blade tips and the

fan case.

Stage 1 of Draphys produced a false-positive hypothesis of "Turbine Blade Sepa-

ration." There is no fault in the set of fault-symptom associations which corresponds

to a fan blade failure. "Turbine Blade Separation" was triggered because of certain

similarities in the symptoms for "Turbine Blade Separation" and "Fan Failure." This

problem could be corrected by extending the fault-symptom association set to handle

fan failures. Before the stage 1 diagnosis, stage 2 of Draphys correctly hypothesized

a problem in the engine fan. Stage 2 tracked the fault propagation into the hydraulic

line. Were Draphys implemented for all aircraft subsystems, more of the propagation

may have been evident.

This case raises an interesting point regarding physical propagation paths in the

stage 2 model of the physical structure. All the physical propagation paths on the

aircraft are stated explicitly within the stage 2 physical system model. As mentioned

above, fragments of the number 3 engine (a wing mounted engine) penetrated the num-

ber 1 engine nacelle (mounted on the opposite wing). This physical propagation is
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highly unlikely and probably would not have been explicitly modeled in a fully imple-

mented system. Draphys would have treated any symptoms in engine 1 as resulting

from a separate fault, totally unrelated to fault in engine 3. If every possible physical

propagation path were stated in the model, the generation of hypotheses would be very

extensive and therefore, very slow. Also, the pruning of hypotheses would be very dif-

ficult. Therefore, the practical option is to only state those propagation paths which

are likely, and treat unlikely propagations as multiple faults.

Case 3 - Fan Failure

On January 31, 1981, a Northwest Airlines DC-10-40 (Flight 79) suffered an engine

failure after departing from Dulles International Airport, ChantiUy, Virginia [35]. The

NTSB determined that the probable cause of the incident was the failure of a fan blade

in the number 3 engine. The failure of the fan blade led to the inflight separation of

the nose cowl assembly and the fan containment case.

Stage 1 of Draphys again produced a false-positive hypothesis of "Turbine Blade

Separation." The symptom set needed to trigger "Turbine Blade Separation" is very

small and therefore, this association is very sensitive. Stage 2 correctly named the fan

as the responsible component, and showed propagation throughout the other engine

components.

This case is similar to Case 2 above in that a fan failure triggered the "Turbine

Blade Separation" hypothesis in stage 1. These two cases demonstrate the need to add

a "Fan Failure" fault to the stage i fault symptom associations.

Case 4 - Foreign Object Ingestion

On November 12, 1975, an Overseas National Airways DC-10-30 (Flight 32) crashed

while attempting to take off from John F. Kennedy International Airport, Jamaica,

New York [32]. During the takeoff roll a large number of sea gulls rose from the runway

and were ingested into the engine. The number 3 engine disintegrated. The takeoff
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was rejectedand the aircraftcrashedoffthe end ofthe runway. The NTSB determined

that the probable cause of the accidentwas the disintegrationand subsequent firein

the number 3 engine when itingesteda largenumber ofsea gulls.

There was no diagnosisproduced from the firststageofDraphys even though one of

the faultsin the fault-symptom associationis"ForeignObject Ingestion."The reason

that thisfaultwas not triggeredwas that the symptoms in the associationcorrespond

to a lightingestionin which the engine continuesto operate during ingestion.In

thistestcasehowever, the massiveingestionalmost immediately destroyedthe engine.

Therefore,the symptoms were different,qualitativelyand quantitatively,from a light

ingestion.Stage 2 produced fourseparatehypotheses,naming each of the followingas

the responsiblecomponents: the fan,the compressor,the combustion section,or the

turbine.The reasonthatallfourof the major enginecomponents were hypothesizedas

the responsiblecomponent isbecause symptoms occurred on allmajor engine sensors

simultaneously.Stage 2 did not have enough informationto prune the hypotheses.

There are severalnoteworthy pointsconcerningthistestcase.One isthat the same

fault may manifest itself in different ways depending on the severity of the fault and the

ambient conditions. Another point concerns the second stage of the diagnosis process

and the fault monitoring stage. If the monitor could discern which sensor became

symptomatic first, instead of reporting that they all became symptomatic at once, the

second stage could reduce the number of hypotheses in its diagnosis. Finally, this test

case demonstrates that there will always be failures which the system cannot completely

diagnose; however, it does provide as much information to the flight crew as possible.

In other words, the system provides a graceful degradation of information instead of

simply providing no information, when it cannot completely determine the cause of the

failure.



118

Case 5 - Massive Water Ingestion

On April 4, 1977 a Southern Airways DC-9 (Flight 242) crashed in New Hope, Georgia

[33]. The aircraft had flown through heavy thunderstorms and had lost both engines.

The crew attempted an emergency landing on a highway and crashed. The NTSB

determined that massive water ingestion into the engines accompanied by thrust lever

movement induced severe stalling in and major damage to the engine compressors. The

NTSB determined that the aircraft might have been able to survive the weather had

the flight crew not made significant movements in the thrust lever.

The first stage of Draphys hypothesized that the failure was either "Turbine Blade

Separation" or "Flame-out" for both engines. This diagnosis was produced after both

engines had failed. "Flame-out" was correct; "Turbine Blade Separation" was a false-

positive hypothesis. Again, there was no association in the set of fault-symptom asso-

ciation which corresponded to "Massive Water Ingestion." Therefore, stage 1 could not

correctly diagnose the original cause of this failure, although it diagnosed "flame-out"

as one of the consequences. Stage 2, however, produced an earlier diagnosis of problems

in either the combustor, turbine or the EPR sensor. This incorrect diagnosis was based

on an early change in EPR which was believed to have occurred before a symptom in

the N2 sensor.

This case identifies an excellent potential benefit of a fully implemented first stage for

both the diagnosis system and recovery planner. The first stage of the diagnosis system

could recognize the symptoms of "Massive Water Ingestion." The recovery planner

could caution the flight crew not to make any significant movements in the throttle

lever.

Case 6 - Engine Separation

On May 25, 1979 an American Airlines DC-10-10 (Flight 191) crashed into an open

field northwest of Chicago-O'Hare International Airport [34]. During takeoff rotation,

the left engine and pylon assembly, and about 3 feet of the leading edge of the left wing
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separated from the aircraft. The aircraft began to roll to the left until the wings were

past the vertical position. During the roll, the aircraft's nose pitched down below the

horizon and crashed. The NTSB determined that the probable cause of this accident

was the asymmetrical stall and the ensuing roll of the aircraft at a critical point dur-

ing takeoff. This was caused by the uncommanded retraction of the left wing outboard

leading edge slats and the loss of the stall warning and slat disagreement indication sys-

tems resulting from separation of the number 1 engine and pylon assembly. The NTSB

determined that the accident would have been survivable had the flight crew known

that the stall warning and the slat disagreement indication systems were inoperative.

This case was actually a multiple fault, in that multiple primitive components failed

simultaneously. Since Draphys does not yet have multiple-fault diagnosis capability, it

does not truly evaluate this particular case. This case is analyzed below, while taking

this factor into consideration.

Both stages of Draphys produced diagnoses for this failure. The first stage produced

two hypotheses, namely "Fuel System Failure" and "Flame-out." The hypothesis of

"Flame-out" is most appropriate since the fault-symptom association dictionary does

not include a fault of "Engine Loss." The second stage hypothesized a physical propa-

gation from an engine failure (specifically the engine fan) to the hydraulic subsystem.

This too was the correct diagnosis since the critical information needed by the crew

was the loss of thrust and the propagation to the hydraulic system. The diagnosis

hypothesized that the responsible component was the fan because the only component

in the stage 2 model of our aircraft with a physical adjacency to the hydraulic line was

the fan.

Again, the significance of this case is that the second stage recognized that the

abnormal sensor readings from the hydraulic system sensors were not the result of a

separate failure in the hydraulic system but a physical propagation from an engine

failure. This demonstrates the concept of recognizing fault propagation between func-

tionally unrelated aircraft systems. Were Draphys implemented for all the aircraft

sensors, it probably could have determined that the stall warning system and the slat
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disagreement indicator were possibly inoperative because of fault propagation from the

engine separation. As indicated above, this information might have greatly increased

the crew's ability to compensate for the failure and survive the failure.

This case highlights an important consideration. A fault which may be a single

fault at a given level in the component hierarchy (as in the subsystems level here,

where our diagnosis was successful) can be a multiple fault at the next level down in

the component hierarchy. Therefore, identifying a fault as single or multiple fault may

depend greatly on the definition of the primitive components.

Case 7 - Turbine Disk Separation

On September 22, 1981, an Air Florida Airlines DC-10-30CF (Flight 2198) suffered a

failure in the number 3 engine during takeoff at Miami International Airport, Miami,

Florida [36]. The takeoff was rejected. The engine disintegrated and the resultant

debris damaged the right wing outboard leading edge slat. Components of the number

1 and number 3 hydraulic systems were also damaged by engine debris. The NTSB

determined that the probable cause of the accident was presence of foreign material in

the low pressure turbine cavity. The foreign material damaged connecting bolts in the

engine, and when these bolts failed the low pressure turbine disk separated from the

its rotor assembly, oversped, and burst.

Stage 1 of Draphys hypothesized this fault as "Turbine Blade Separation." This

diagnosis was correct in the sense that all the blades and the disk itself separated.

There is no fault for "Turbine Disk Separation" in the stage I fault-symptom association

dictionary. The second stage diagnosis hypothesized either the turbine, combustor, or

the EPR sensor as being the responsible component. The reason that the second stage

could not solely identify the turbine as the responsible component is that there is no

specific sensor monitoring the turbine; therefore, it must base its hypotheses on EPR

and EGT information.
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Case 8 - Bearing Failure

On September 22, 1981 an Eastern AirlinesL-1011 (Flight935) experienceda failure

inthe number 2 enginewhich forcedan emergency landingat John F. Kennedy Inter-

nationalAirport,Jamaica, New York [37].Beforethe failure,abnormal sensorreadings

occurred in the N2 sensorof the number 2 engine. The pilotreduced the throttleon

the number 2 engine and itreturned to normal. Later,the enginedisintegrated.The

NTSB determined thatthe probable cause was the thermallyinduced degradationand

consequent failureof the number 2 engine low pressurebearing because ofinadequate

lubrication.After the number 2 enginewas lost,the A, B, and D hydraulicsystems

failed.

Stage 1 of Draphys hypothesizedthe problem as being either"Flame-out" or "Tur-

bine Blade Separation.""Turbine Blade Separation"was incorrect."Flame-out" was

accurateafterthefailure.There isno faultforinadequatelubricationorengineoverheat

inthe stage 1 setoffault-association.Stage 2 of Draphys' diagnosissystem detecteda

problem with the number 2 enginebeforethe engine failed.The hypothesiswas that

the compressor was malfunctioning.As time progressed,the second stagetrackedthe

propagationof thefailureintothe combustor,the turbine,and the fanas wellas the NI,

N2, EGT, and EPR sensors.From the fan,stagetwo trackeda physicalpropagation

to the hydrauliclinewhich isnear the fan.In reality,the hydrauliclinewas cut by a

compressor blade. This hypothesiswas produced because thereisno physicallinkin

the model between the compressor and the hydraulicline.Again thisisa deficiency

in the model which the second stageusesand not in the reasoningconcept.In section

6.2.2,we discussthe generalimplicationsof missingor incomplete knowledge in the

models. Ifthere were a physicallinkin the model between the compressor and the

hydraulicline,stage2 would have hypothesizedthe correctphysicalpropagationofthe

fault.

While the propagation path in the hypothesisfrom stage 2 may not be exactly

correct,itdoes containimportant information(i.e.,the failurehas propagated to the
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hydraulicsystem). Moreover,the remainder ofthe hypothesis,identifyingthe respon-

siblecomponent and the system status,iscorrect.

6.1.3 Discussion

The implications of the results for both the first stage (the specific fault-symptom

associations) and the second stage of diagnosis (the reasoning at the higher level of

status abstraction) are discussed below. For each stage, we consider the false-positive

hypotheses produced and the research areas that still need to be explored.

Concerning false-positive hypotheses, two types are possible. In the first type of

false-positive hypothesis, the diagnosis process identifies a component as the source of

the problem, and a corresponding system status, that cannot be ruled out based on

the current symptoms. The second type of false positive is one that could be ruled

out if the system were smarter. Draphys produced false-positive hypotheses of the

first type, where each hypothesis was a reasonable possible explanation of the current

symptoms, and none of the second type. That is, all the false-positive hypotheses were

such that they were a reasonable explanation of the situation, given the data available,

even though post-crash analysis ruled it out based on closer examination of the physical

components.

The results from the test cases identified three areas of research and development

for the first stage, containing the specific fault-symptom associations. First, the fault-

symptom association dictionary needs to be expanded, and, as discussed in Chapter 3, a

new representation considered. The second area involves a refinement of the first stage

hypothesis validation process. As mentioned above, there were 4 incorrect hypotheses.

Each of these hypotheses was a false-positive hypothesis of "Turbine Blade Separation."

This particular fault-symptom association can be triggered by many different sequences

of symptoms. At present, stage 1 validates a hypothesis if all the symptoms which are

characteristic of that fault are present. However, the fault hypothesized does not have

to account for all the symptoms present as in stage 2. If this second criteria were placed
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on stage 1 hypotheses, "Turbine Blade Separation" (as it is currently characterized in

the fault-symptom association) would not have been triggered as often as it was in these

test cases. The third area involves refining the fanlt-symptom associations to be more

clearly and carefully defined. The repeated hypotheses of "Turbine Blade Separation"

indicate that the fault-symptom association may not accurately describe this fault.

Stage 2 of the diagnosis process, the reasoning at the higher level of status abstrac-

tion, was considered to be very successful, even though all aspects of the hypotheses

were not always correct as determined by the NTSB. There were two factors which lim-

ited the diagnosis success. The first was that the model of the physical and functional

structure had some limitation which prevented an accurate diagnosis. The second fac-

tor involved the reconstruction of the test cases for simulation. As mentioned earlier

in discussing the limitations of the reconstruction, some information was absent from

the NTSB reports. This information should normally be available from the Draphys

monitor. This information could improve the hypotheses generated by the second stage

of Draphys.

Concerning execution time, the computer code was not optimized in any way. It

was executed on a Symbolics 3650, written in Common LISP and Flavors, and was

interpreted, not compiled. The physical system model represented approximately 40

components and 100 interconnections (both the functional and physical dependencies).

The execution time was not measured precisely, but seemed reasonably efficient. In all

cases the diagnosis was done in less than ten seconds, and often took less than that.

This evaluation demonstrates that the Draphys concept shows promise for perform-

ing diagnosis of physical systems in operation. However, further development would be

useful to enhance the present implementation. The implementation should be expanded

to include other subsystems in the aircraft, since most failures are rarely confined to

the engine and hydraulic subsystems. Also, the subsystems now included should be de-

scribed in more detail to handle a greater complexity of failures. This increased depth

could allow improved flight crew procedures for handling inflight failures. Another de-

sirable enhancement is the capability to handle multiple failures. The test cases above
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wereall single failures; however, many accidents are the result of multiple failures.

6.2 Analytical Evaluation

This section first discusses why this diagnostic approach works, and what characteristics

give it its power, particularly at the higher abstraction level. The cost of violating the

constraints on these characteristics, and the cost of eliminating types of knowledge, are

also discussed.

6.2.1 Credit Assignment

Why does Draphys work? The answer lies mainly in three aspects of the approach: the

monitoring that identifies the symptoms, the simulation of fault propagation, and the

system models used. The following section discusses why the success of the approach

depends on these three aspects, a_d the consequences of not having them.

The Symptoms

The entire diagnostic reasoning approach depends on the symptoms identifying when

the parameters become abnormal. By identifying when parameters values differ from

their expected values, the propagation of the fault's effects can be identified. This

differs substantially from the monitoring systems currently operational for aircraft sys-

tems (or many other systems a_ well). Current operational systems identify when a

parameter exceeds its total operating range, which can be a broad range. In contra_t,

the symptoms produced by Draphys' fault monitor axe identified as soon as the param-

eter differs from its expected value (with allowances for sensor noise, etc.), even if the

parameter is still within its normal operating range. This detects abnormalities sooner

than a monitor that waits for the signal to exceed its proper range.

Not having the ability to identify abnormal parameters as soon as they become

abnormal may restrict the applicability of this diagnostic approach. The simulation of

fault propagation depends on knowing when signals become abnormal. If the order in
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which the signals exceed their operating range is the same order in which they become

abnormal (which will not necessarily be the case), the diagnostic approach will still

produce correct information, but it will not be as timely and the effects of the fault

probably will have propagated extensively.

There are disadvantages in requiring the symptoms to satisfy this requirement.

Determining when parameters differ from their expected value requires a model to

calculate what those expected values are. It may be difficult to obtain a numerical

simulation model for some systems. It may also be that in some systems, such as digital

circuits, using the expected binary inputs and outputs will not provide the abnormality

information necessary to track the propagation of the fault. For example, if one input

to an AND gate is zero and the other input is potentially faulty, it is impossible to tell

whether the effect of the fault has reached that far, because the output will be zero.

Moreover, sensor noise and mismodeling are also concerns.

Simulation

This diagnostic approach within the higher abstraction level is considered to be a

simulation-based approach to generating hypotheses because the fault propagation be-

havior is simulated to construct hypotheses. Other approaches could be taken to con-

struct hypotheses, such as, tracing backwards along the dependency links to find a

single "parent" in the graph that describes the physical system. However, this graph is

complex, since the physical system it describes has feedback, among other behavioral

complexities.

The simulation-based approach is parsimonious, in that it focuses attention quickly

on the candidate elements needed to construct a hypothesis. By doing this, the search

for constructed hypotheses is pruned in a very knowledge-intensive manner. Moreover,

the simulation enables incremental updating of hypotheses. This aspect allows very

efficient use of new information when it becomes available, and facilitates the pruning

or confirmation of hypotheses.
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The simulation-based approach has several disadvantages. One of these is that a

model is necessary to do the simulation. As we will discuss in the next section, the

models must be carefully defined. Not having a model defined appropriately for the class

of faults under consideration may very well mean that the class cannot be diagnosed

properly.

Another concern is that the lack of sensor information leads to ambiguity in the

simulation, since the extent of the fault cannot always be accurately tracked. The result

is ambiguity in both the system status and in number of hypotheses generated. This

problem will arise with any approach, though, because of limited sensor information.

However, the implication for the simulation-based approach is that the reasoning must

take into account the relationships among the sensors and non-sensor components.

Another, more major concern is that the definition of a model used for simulation is

inherently based on assumptions. Assumptions must be made to build a model at all.

For example, the functional structure mode] used in Draphys assumes the directionality

of functional interaction is as described. Therefore, if this assumption is violated, the

model can no longer be used to accurately simulate fault propagation behavior for a

class of faults that violate directionality. Davis points out and discusses the issue of

assumptions and their relationship to choice of model in [1 i].

The Models

Because the diagnostic approach is simulation based, the models of the physical system

used in the simulation process are critical to the success of the diagnosis. In the following

discussion, the important characteristics of the models are described, together with the

consequences of not possessing these characteristics.

The functional and physical structure models of the physical system being diagnosed

are defined hierarchically. We first discuss the necessary characteristics of the mode]

within a single level in the component hierarchy; in particular, the primitive component

level. We then discuss the definition of the component hierarchies themselves, or the
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manner in which lower level components must be organized into subsystems.

Choice of Components

The first characteristic we discuss here is the choice of components at the primitive

component level. This addresses two issues: what a component is, and how detailed

our model should be. First, what is a component? A component is a physical part or

set of parts of the device under consideration. A device has any number of components,

depending on how detailed a model is desired. We could conceivably model the device

down to the molecular level, but that is not necessarily desirable or beneficial.

Occam's razor is appropriate for choosing a level of detail for the model. It is un-

desirable to model the device at a greater level of detail than that needed to diagnose

the problem. How the device is divided into components is determined by (1) what

components need to be identified as faulted when they break, (2) whether the com-

ponents can be disambiguated with the sensor placement available, and (3) whether

the components are necessary in the propagation path to determine the propagation of

abnormal status.

We now expand on each of these determining factors. If it is important to identify

when a particular component breaks because, say, it determines or differentiates the

necessary corrective action, then this component should be included in the model.

Hamscher [25] also discusses this, and identifies it as a principle for building models.

If it is not important to identify when a particular part breaks, and none of the other

factors apply, then the component either should not be included in the model or the

model designer should consider aggregating it to the next higher level of detail. For

example, consider the individual fan blades in the fan. It makes no difference when a

particular fan blade breaks, it is only important to know that one of the blades broke.

Therefore, Draphys does not model the individual fan blades.

Another motivation for not modeling the fan blades is that we do not have enough

sensor information to identify individual blades. The cost of modeling at a greater
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level of detail than we have sensor information to discriminate with is ambiguity in

hypotheses. We will have additional hypotheses because we cannot tell them apart.

The third factor is whether the part of the physical system contributes towards

tracking the propagation path. If a component does not satisfy any of the prior criteria,

the model designer should determine whether it can be a factor in the branching of the

propagation path. If a particular component is a branching point in the propagation

path that enables identification of the propagation to other components, it must be

included in the physical system model.

If we leave a part out of the physical system model because of the above factors,

and it breaks and damages another part that is in the physical system, then it is quite

possible that we will suspect the component that is modeled as being the responsible

component. If the action associated with it is the appropriate one, whether that compo-

nent was truly the source of the problem or merely the first one affected, then our goal

for diagnosis is served. Our diagnostic system design choice of preferring false positive

hypotheses over false negative hypotheses may lead to this as a consequence. If the

diagnosis were not for operative systems, this design choice may not be appropriate.

Organization of Subsystems

The localization process as described depends on the subsystems being defined in a

particular way because this grouping into subsystems is important to the pruning ability

of the localization process. The purpose of the localization process is to exonerate sets

of components by pruning whole branches in the component hierarchy. The subsystems

must be defined so that available sensor information can exonerate an entire subsystem

at once. For instance, it is desirable to be able to say that if no engine sensor readings

are symptomatic, then that engine (and by extension, its subcomponents) cannot be

the source of the fault.

To avoid excessive exoneration, the subsystems must be defined so that sensors

"bound" the subsystems by measuring inputs and outputs. It is not usually possible
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Figure 6.1: Inappropriate Subsystem Definition.
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Figure 6.2: Appropriate Subsystem Definition.
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to have sensor readings on all components, so the readings available must be used to

judiciously organize the subsystems. For example, Figure 6.1 illustrates a subsystem

definition that would not permit exoneration of subsystem-l, even when none of its

sensors are symptomatic. If a symptom on sensor-3 came from the fault monitor, it

may have been caused by a fault in component-3. Thus this subsystem organization will

not support the localization process. Given the same sensors and components organized

as shown in Figure 6.2, localization could be done.

Another consideration is that the boundary sensors must measure a parameter of

the component or subsystem that can exonerate upstream components. To illustrate

this point, consider the fuel temperature sensor in the fuel control subsystem. This

sensor measures the temperature of the fuel in the fuel line. However, the function

of the fuel line is to transmit fuel to the combustion section of the engine. Since this

sensor could be normal when the fuel line has an abnormal operational status, it is not

a good sensor to use for bounding a subsystem.

This last consideration highlights the point that sensors are not always placed in

a manner to support diagnosis. However, one result of this thesis research is that we

can identify some principles, as stated above, for placement of sensors to support the

diagnostic process.

Representing Dependencies in the Models

Simulation of fault propagation follows the dependency links in the particular model

being used; i.e., either physical or functional. Since the successful propagation (or lack

thereof) is critical to the construction of hypotheses, these dependency relationships

must be carefully and accurately defined.

The functional dependency links represent the normal, designed interaction among

components in the physical system. When a fault occurs, the effect of the fault is

expected to propagate along the normal paths of interaction in the functional model.

The effect of the fault propagates because the output of the broken component is
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abnormal and thus the input to dependent components is abnormal However, for the

input given, these dependent components operate properly, since they are not damaged.

This is why the model of normal functional interaction can be used to represent faulted

system behavior as well.

Functional dependency links between two components represents a potential inter-

action based on the normally operating system, but does not mean that there will be

an interaction along this path. Whether a normal interaction occurs or not along a par-

ticular path may depend on specific parameter values that are unavailable at the level

of detail of this model. Therefore, by representing all the potential paths of normal in-

teraction, we can represent even those fault cases where the interaction is not intended

under the current circumstances but which happens anyway. Moreover, because we

simulate propagation of abnormal status, and do not simulate the specific qualitative

values (such as high or low) of the system parameters, we can simulate fault behavior

other than a localized failure of function. While the fault propagates along the normal

functional paths of interaction, we can simulate it in this functional model.

6.2.2 Knowledge Degradation Analysis

The purpose of this analysis is to determine the cost of degradation in knowledge.

To examine knowledge degradation in Draphys, we examine the consequences of not

having a particular type of knowledge or of that knowledge being incomplete. This

is straightforward in Draphys, because the types of knowledge are partitioned as the

fault hypotheses are partitioned. Because types of knowledge are associated with fault

classes, we examine each fault class individually.

In general, not having the type of knowledge associated with a fault class means

that membership of faults in that class cannot be determined. We will examine, for

each fault class, what the resulting diagnoses would be for faults in that class if the

knowledge were not available.

The first class is that of specific known faults. The knowledge associated with this
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class is the knowledge of fault-symptom associations for known, commonly occurring

faults. If this knowledge were not available, then the specific fault hypotheses could not

be generated. If all other knowledge is still in Draphys, the removal of this knowledge

would result in hypotheses being generated at only the abstract level.

The second fault class is that of novel faults which propagate functionally. The

knowledge associated with this class is the functional model of the physical system.

Without this model, the propagation behavior of many faults could not be simulated;

therefore, the fault hypotheses could not be constructed or pruned. If we had a physical

structure model but not the functional structure model, then physical propagation

would be identified but not the functional.

Similarly, when the physical model is unavailable, the physical propagation behavior

cannot be identified. Without the model necessary to identify the physical propagation,

this entire class of faults cannot be identified because the type of behavior cannot be

recognized.

When a hybrid of physical and functional propagation occurs, both models are

needed. In the fault class that includes all hybrid propagation, missing either form

of knowledge (physical or functional) will result in the fault appearing to be a differ-

ent fault class, that of multiple faults of the single propagation type. For instance,

consider the fault shown earlier where physical propagation occurred from the fan to

the hydraulic line and subsequent functional propagation occurred in each. Without a

physical model, this fault appears to be two independent functional-propagation faults,

one originating in the fan and one originating in the hydraulic line. However, other

combinations may appear to be possible, such as a fan fault and a hydraulic pressure

sensor fault.

Lastly, if we did not know how to diagnose multiple faults, then any fault whose

behavior did not belong to any of the single fault classes would cause the diagnosis to

fail. Providing multiple fault information is a useful capability, even if the fault was a

single one. Even diagnosing multiple faults when only one occurred may still generate
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appropriate responses.
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Chapter 7

Conclusions

In this thesis, we have presented an approach to robust operative diagnosis of physical

systems. In this chapter, we briefly summarize the contributions of the research and

remaining open research questions.

7.1 Contributions

This thesis described and demonstrated a view of robust problem solving, especially

graceful degradation, as reasoning at higher levels of abstraction (less detail) whenever

the more detailed levels prove to be incomplete or inadequate. A form of abstraction

was defined that applies this view to the problem of diagnosis. This form of abstrac-

tion, named status abstraction, represents the abstraction of the operational status of

components in the physical system. We defined two levels of status abstraction. At the

higher level, we presented a graph representation that describes the real-world physical

system. We demonstrated an incremental, constructive approach to manipulating this

graph representation that supports certain characteristics of operative diagnosis. That

is, we showed the suitability of the constructive approach for diagnosing fault propaga-

tion behavior over time, and for sometimes diagnosing systems with feedback. We also

showed a way to represent different semantics in the same type of graph representation

to characterize different types of fault propagation behavior (physical and functional,

and their combination). We demonstrated an approach that treats these different be-

haviors as different fault classes, and our approach moves to other classes when previous

classes fail to generate suitable hypotheses.

Each of these contributions is described below, beginning with a description of the
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problemof operative diagnosis.

7.1.1 Operative Diagnosis

Operative diagnosis, or diagnosis of physical systems in operation, differs from diagnosis

of non-operating systems (such as maintenance diagnostics) in the following ways: the

information a hypothesis must contain, dynamic fault propagation behavior, and lim-

ited testing for additional information. In operative diagnosis, the diagnosis is done to

facilitate continued operation of the system under consideration. In maintenance diag-

nosis, however, the purpose is to determine which part to fix or replace. This distinction

changes the information that a hypothesis must contain. In operative diagnosis, the

symptoms or effects of the fault often must be treated in addition to the initial failure,

so knowing the source of the fault alone is not always enough. To facilitate continued,

safe operation of the device, the diagnosis must identify the cause and the effects of

the fault. These effects, or system status, must include dependent failures and must

identify components which are working properly but are receiving incorrect inputs.

In an operating physical system, the effect of the fault propagates and the set of

symptoms may change as time (and the fault) progresses. This reflects the characteristic

of non-zero-time propagation, where not all effects of a fault happen immediately. In

operative diagnosis, the propagation often will still be occurring while the diagnosis

is performed. In maintenance, the diagnosis is usually done after all propagation has

taken place.

7.1.2 Robustness

Robustness in problem solving process is a capability that humans exhibit, and a highly

desirable one for knowledge-based systems to exhibit. This thesis described an approach

to improving robustness, particularly graceful degradation, in knowledge-based diagno-

sis through status abstraction.

This research presented and demonstrated the idea that graceful degradation can
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be achieved in a structured way by using abstraction. The basic idea is that graceful

degradation is not achieved by simply exploring whether something is known about

faults, but at what level of detail is it known. Knowledge at different levels of specificity

can provide different fault coverage. Increasing fault coverage is achieved at the cost of

degrading specificity.

For diagnosis, status abstraction of hypotheses is particularly useful when correc-

tive actions are associated with the general fault categories represented by the abstract

hypotheses. However, even when these corrective actions are absent, the localization of

the fault is still useful. Thus, the approach of using different status abstraction levels

for diagnosing novel faults is appropriate when specific hypotheses are most desirable,

but abstract hypotheses are better than nothing. Moreover, some known faults (such

as physical damage) are more appropriately represented at the higher level of abstrac-

tion. This is the case when more specific hypotheses do not improve ability to take

remedial action or the increase in number of specific hypotheses would inhibit their

timely retrieval. The key to success is using a type of abstraction where the higher

level information has some utility.

7.1.3 Incremental Hypothesis Construction

At the higher level of status abstraction, we presented a graph-based representation that

describes the real-world physical system. The representation is particularly important

because it supports reasoning about very complex physical system in a fairly simple

way. The representation captures important characteristics about the physical system

(i.e., fault propagation paths), that enable the diagnostic reasoning to be useful. To

use this representation, we presented and demonstrated an incremental, constructive

approach to producing fault hypotheses by simulating fault propagation behavior. This

fault propagation behavior can be used to discriminate hypotheses, particularly when

symptoms change over time. However, this means that it is desirable for the detection

process to identify when sensor readings become abnormal, not just when they exceed
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the normal operating range. This incremental construction process is important for

efficiently reasoning about new symptoms that arrive as the fault continues to propa-

gate, since it is desirable to build on computations done in previous time steps. We

demonstrated this approach for operative fault diagnosis.

7.1.4 Using Multiple Models

Efficient reasoning with multiple models to explain complex fault behavior is a contri-

bution of this research. The mechanism for using functional and physical models that

are represented in the same graph representation is hypothesis composition, which is

also a constructive process. Individual hypotheses that explain a portion of the fault

propagation within a single model are composed in an efficient manner to explain to-

tal behavior. It is efficient because it builds on previously-created hypotheses and the

composition process uses heuristics about physically realizable combinations to reduce

search.

The constructive nature of the diagnostic reasoning is particularly useful for opera-

tive diagnosis in the chosen domain. In general, the constructive approach is appropriate

when the problem solving must be done often, but the solutions are not that different.

This occurs in cases such as operative diagnosis, because the time-varying nature of

fault propagation means that the hypotheses for two consecutive time snapshots often

will only differ by the amount of additional abnormal behavior caused by the fault.

Formulating a problem as a constructive problem solving task is more appropriate

when the pre-enumerated solutions have much redundant information in them, and a

single theory exists from which these solutions could be constructed (e.g., a model).

Also, a constructive approach is better when a desired hypothesis comes from multiple

sources of knowledge. An example of this is the hypothesis composition in Draphys.

Neither model of the device is sufficient to provide an explanation of all the faulted

system behavior, but the use of two models and heuristics to describe the type of

interaction between them is enough to explain many fault situations.
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Weidentified some knowledge engineering guidelines for these models. These guide-

lines have implications for sensor placement, and are intended to be useful in the design

of new physical systems.

7.1.5 Fault Classes

We showed that fault classes can be defined by level of abstraction and by knowledge

about fault propagation behavior. We defined four single-fault classes: (1) specific,

functionally propagating faults (this class is the one in which Draphys groups known

faults in fault-symptom associations); (2) abstract, functional-propagation faults; (3)

abstract, physical-propagation faults; (4) abstract, hybrid-propagation faults (these

hypotheses include both physical and functional propagation). Each of these classes is

explored in turn when the previous ones fall to diagnose the current symptoms. Davis

defined the notion of adjacency as a means of defining fault classes; we extend that

adding abstraction level to the definition of a fault class. These fault classes partition

the hypothesis space into subspaces, and supports a structured way of retreating from

subspace to subspace when assumptions associated with prior spaces are shown to be

wrong. This approach supports efficient and rational management of the hypothesis

space. In short, we treat diagnosis as searching a space of spaces.

We:consider this partitioning of the hypothesis space to be a taxonomy for diag-

nostic problem solving, since it associates assumptions about the fault behavior with

the appropriate diagnostic problem solving techniques and physical system models.

The taxonomy that is implemented in Draphys is not exhaustive, but does provide a

framework for integrating new problem solving techniques into the overall diagnostic

process.

The partitioning process is applicable to more than diagnosis. Dividing the search

space into classes that require different problem solving techniques and models is a

foundation for an intelligent problem solver.
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7.2 Open Problems

Several open research issues remain. Some were previously existing research issues; some

arose as a result of this research. We present them in the following order: limitations

within the approach itself; fault classes not included here; and other remaining issues.

7.2.1 Limitations Within the Approach

Within the diagnostic approach there are open research issues associated with the two

levels of abstractions in Draphys. Associated with the specific abstraction level, we have

the issues of temporal grain, causal reasoning, extent of propagation, and identifying the

level of fault severity. Associated with both abstraction levels, the issues include rea-

soning with uncertainty, temporal duration, testing for additional information, control

of the diagnostic process, and fault masking.

Temporal Grain

The issue of temporal grain is somewhat subtle. As it currently exists, the associa-

tional reasoning in Draphys is based on the diagnostic reasoning described by domain

experts, who were predominantly pilots. The pilots monitor the aircraft systems based

on sensor information presented on the gauges and dials available in the cockpit, in a

manner very similar to operators of other complex process control systems. Therefore,

the monitoring of the sensors is dependent on the resolution of those gauges and dials.

Because the resolution of these devices is not great, the pilots cannot see small dis-

tinctions on the guage, it takes them too much time, or it is too hard to do. Because

of these human perceptual limitations, they do not depend on instantaneous detection

of aberrant measurements, or transient measurements. Instead, they reason about be-

havior over time periods that may be short but are not instantaneous. They seem to

ignore transients and only reason about steady state behavior over a period of time,

albeit a short period. However, the symptoms generated by the fault monitor for input

to Draphys are instantaneous. Thus Draphys has more detailed information about the
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fault's symptomsthan the expert pilots can provide. It is desirable to take advantage

of these more detailed symptoms, and an open issue is how to acquire knowledge to do

SO.

Causal Reasoning at the Specific Status Abstraction Level

Since the specific level of abstraction reasons about specific malfunctions of particular

components, there is a need to reason about how one of the malfunctions may cause

another. Although one initial malfunction occurred, the propagation of its effects may

cause another malfunction. To explain the fault's behavior at the specific level, knowl-

edge of the causal relationships among malfunctions is desirable. Draphys does not

currently contain such knowledge.

Levels of Severity

One type of information that Draphys does not provide is an indication of the level

of severity of the fault's effect on the component. For example, we might describe

an eroded compressor blade. It is desirable to describe the compressor's operational

status as, for example, "operating but at a degraded level." (Another operational status

might be "totally nonoperational.') Whether the fault severity levels are provided to the

human operating the physical system would be determined by the human's information

requirements in performing the diagnostic task.

Reasoning With Uncertainty

The current implementation does not include any explicit reasoning with uncertainty

(other than the ordering of the fault classes). Therefore, individual hypotheses cannot

be ordered or ranked according to their likelihood compared with other hypotheses

within a fault class. It may be challenging to include reasoning with uncertainty because

of the dynamic behavior and because the likelihood of a particular hypothesis is context

dependent. An example of the former is, when new symptoms are detected that are
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consistent with a current hypotheses, how do we update the certainty of that hypothesis

to reflect this? The latter concern can be illustrated by the example of bird ingestion.

This hypothesis is quite likely if the aircraft is taking off, but is highly unlikely if the

aircraft is cruising at 30,000 feet. Current technology for reasoning with uncertainty

has not yet been applied in Draphys.

Temporal Duration

At present, Draphys does not represent the temporal duration of symptoms in its knowl-

edge. Given two faults with the same initial symptoms, the length of time that the

symptoms last may allow elimination of one of the hypotheses. However, inclusion of

this information in either the fault-symptom associations or the models would be diffi-

cult, for several reasons. First, the knowledge of the symptom duration would have to

describe a range of time, because the duration of a particular symptom will probably

vary, depending on factors such as the severity of the fault, Moreover, this type of du-

ration information may be very difficult to obtain. Currently the duration of symptoms

is ignored in both the abstraction levels, and only the temporal relationships among

entire symptom intervals are used in the diagnostic reasoning. Merely the existence

of new symptoms is used to prune hypotheses, although the lack of symptoms could

potentially be used as well. To perform the latter, however, the diagnostic reasoning

would need to know how long to wait before pruning a hypothesis whose expected future

symptoms did not occur.

Testing for Additional Information

We mentioned earlier that one of the constraints on operative diagnosis is limited test-

ing. However, we can still do some testing. We can use the dynamic response of the

device to the operator's control inputs as additional information for diagnosis. For ex-

ample, the pilot could move the throttle to distinguish between a fan fault and an N1

sensor failure. Similarly, if we suspect a pump failure in the fuel system which has two
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pumps in line, we could turn one off to isolate the faulty pump.

This is a desirable capability for the diagnosis system to have, and it would represent

a significant enhancement. Research on incorporating actions into qualitative reasoning

is being explored [21].

Control of the Diagnostic Process

Control of the diagnostic process is done implicitly in Draphys. A more opportunistic

approach may be beneficial. If we were to incorporate an opportunistic control mecha-

nism, we would have to consider several control issues. These include initiation of the

diagnostic process, moving between levels and types of abstraction, and changing the

fault class under consideration.

The diagnostic process is initiated whenever the fault monitor detects symptoms, or

the symptoms change. This assumes that the symptom appearance triggers the need for

a diagnosis. However, if we have several competing hypotheses, the lack of symptoms

may be as important to the hypothesis pruning process as their presence.

At present, Draphys moves from the specific status abstraction level to the higher

level when the specific level cannot produce a hypothesis. This reflects the diagnos-

tic reasoning described by the human experts. However, reversing the order in which

abstraction levels are explored may have advantages. Determining when to change lev-

els of abstraction and which direction to move are open research questions. Similarly,

moving between abstractions is another issue. The component hierarchies represent a

type of structural abstraction based on aggregating components according to functional

or physical groupings. The status abstraction used for hypothesis construction is an-

other. Coordination between these two types of abstraction and moving among levels

are major open control research issues. Moving between fault classes, and making and

retracting the assumptions associated with each, are also control issues that are still

open questions.
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Fault Masking

One assumption made in the design of Draphys was that we could detect when sensor

readings are abnormal. If this assumption is violated, then faults are masked, because

Draphys would not identify a component as abnormal unless some abnormal sensor

reading gave evidence to that belief.

7.2.2 Other Fault Classes

The fault classes as defined in this thesis are not exhaustive, but the diagnosis taxonomy

in which they are organized does provide a framework for integrating new fault classes.

For example, we assumed that the there were no intermittent faults, which may define a

subclass under one of the existing classes (e.g., abstract functional propagation faults).

Intermittent Faults

There are several types of intermittency. This term is used to describe faults that occur

only under certain circumstances, in which it is often necessary to determine what those

circumstances are in order to diagnose the fault. The term is also used to describe faults

that only appear occasionally, even under the same set of circumstances; e.g., a loose

connection. "Intermittent fault" might also be used to describe a malfunction that

occurs, then the device returns to normal operation after some action or occurrence

takes place, e.g., some corrective action by the operator.

Each one of these types ofintermittency must be diagnosed differently. Draphys does

not currently handle any type of intermittent fault; indeed, the incremental updating

of hypotheses assumes that previously abnormal components remain abnormal. The

reasoning process would have to be modified to accommodate such fault behavior.

Violated Directionality

Draphys currently assumes that the directionality modeled in the physical system mod-

els are correct. If this directionality is violated, the models cannot be used to simulate
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thefault propagationbehavior.Adding a fault class that looks for such occurrences is

possible, although the search process would be extensive. This is a particularly difficult

issue for that reason. In the domain of aircraft subsystems, we did not encounter any

accident or incident cases where this directionality assumption was violated. In other

domains, it may be a more critical issue.

Design Errors and Design Knowledge

Design errors are another fault class that Draphys is not designed to diagnose. We

assume that the design of the device is correct, in that it satisfies the requirements it

is supposed to satisfy. If the design is not correct, but we have design models that

accurately reflect that design, we would never detect that an error had occurred in the

case where the system did not satisfy its design requirements. Similarly, we would not

be able to detect an operator error, because the monitor only detects abnormalities

compared with the operator inputs and the current conditions.

We also assume that our design knowledge, in the physical system models, is correct.

There is no mechanism in Draphys to overcome modeling inaccuracies, although the

fault monitor does have some tolerance for slight numerical inaccuracies.

7.2.3 Other Research Issues

Operator Actions

Draphy.s does not explicitly reason about actions taken by the human operator to

recover from the fault. Since the fault monitor identifies sensor readings as symptomatic

compared with their expected value based on operator input, the only circumstances

that would invalidate the diagnostic reasoning at the abstract level would be if the

operator action corrected the problem, and the abnormal sensor readings returned to

normal. This would affect the diagnostic reasoning because it violates the assumption

that abnormal components remain abnormal. Therefore, relaxing the assumption to

provide reasoning about such circumstances would be a useful extension.
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At the specific level, however, the operator actions have more impact. The specific

associational rules assume no operator actions. Thus, reasoning about operator actions

would be even more useful at this level to accommodate situations that we can expect

to occur. Moreover, if we recommend corrective actions and the operator performs

them, we need to monitor their effectiveness.

Determining Corrective Actions - Recovery Planning

Before this diagnostic approach can be useful in an operational environment, it should

be coupled with a process that takes the diagnostic information and determines the ap-

propriate corrective actions. These must include both short-term actions, and long-term

actions. In the aircraft domain, the short-term actions correspond to the immediate

control inputs made to stabilize or minimize the fault's effects. The long-term action

might be to modify the flight plan to accommodate the reduced functionality of the

airplane, possibly including a new destination.

Short-term actions will be generally be procedures that the operator should follow.

Some of the issues that will arise include: combining procedures necessary for separate

malfunctions, or for different subsystems; constructing procedures for novel faults, and

monitoring the execution of these procedures for effectiveness.

User Interfaces

Because there is a human operator involved, the presentation of diagnostic information

in an effective, comprehensible form must be done. The information should include

the hypotheses, system status, and potentially an explanation of the diagnostic pro-

cess. However, presentation of this information raises many human factors issues than

cannot be ignored if we are to achieve an effective total human/machine system. The

presentation media (e.g., voice output, CRT display) and the presentation format (e.g.,

pictures versus text) are critical issues.

Another aspect of the user interface is to solicit information from the operator.
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Humans have sensors that the diagnostic system cannot use. The human can hear

and see things, thereby obtaining data unavailable otherwise. How does the diagnostic

reasoning solicit and use this information? The interaction between the two involves

several human factors issues. Does the operator enter the information via voice input?

Other possibilities include keyboard and touch panel. How the diagnostic system queries

the operator involves similar questions.

7.3 Human/Machine Performance

We come to one final issue. Why do we want to automate the type of reasoning

explored in this thesis? One of our long-term goals is to maximize performance of

the human/machine system as a total system. This brings up some conflicting issues

in building an intelligent problem solver (IPS) on a computer. On the one hand, we

would like our IPS to be consistent with human cognitive processes, to facilitate the

communication between them. However, we do not want to restrict ourselves to human

reasoning. We should intentionally design our system to help overcome the limitations

of the human. If this is true, then modeling an expert might not be appropriate. In the

diagnosis process, diagnosing physical propagation is an example of such a limitation.

Apparently humans have difficulty identifying the physical damage that a fault can

cause. Yet, we want to have the diagnosis system communicate the reasoning in a

manner that is comprehensible to the human. An automated diagnostic system such

as Draphys has the potential to augment the human and improve human/machine

performance.

7.4 Concluding Remarks

In conclusion, we have explored two ideas for increasing robust diagnosis of physical

systems in operation: the use of status abstraction and definition of fault classes based

on abstraction level and fault propagation behavior. This definition of the fault classes

partitions the hypothesis space into subspaces, and provides a structured way of falling
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backfrom one subspace to another when the fault cannot be diagnosed. We order the

processing of subspaces based on likelihood, and less likely fault classes are not explored

if more likely fault classes can account for the fault. We explored two additional ideas for

efficiently managing the hypothesis space. The first is incremental hypothesis construc-

tion, which takes advantage of previously computed hypotheses when new symptoms

appear. The second is the use of hypothesis composition when multiple physical-system

models are needed to explain complex fault behavior. These ideas were implemented

and demonstrated for operative diagnosis of aircraft subsystems. We discussed their

advantages and limitations, and open research issues.
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complex physical systems in operation, or operative diagnosis. The first idea is that graceful degradation

can be viewed as reasoning at higher levels of abstraction (less detail) whenever the more detailed levels

proved to be incomplete or inadequate. A form of abstraction is defined that applies this view to the

problem of diagnosis. In this form of abstraction, named status abstraction, we define two levels. The

lower level of abstraction corresponds to the level of detail at which most current knowledge-based

diagnosis systems reason. At the higher level, this thesis presents a graph representation that describes the

re'd-world physical system. The thesis demonstrates an incremental, constructive approach to manipulating

this graph representation that supports certain characteristics of operative diagnosis. We show the

suitability of this constructive approach for diagnosing fault propagation behavior over time, and for

sometimes diagnosing systems with feedback. We also show a way to represent different semantics in the

same type of graph representation to characterize different types of fault propagation behavior. We

demonstrate an approach that threats these different behaviors as different fault classes, and the approach

moves to other class when previous classes fail to generates suitable hypotheses.

These ideas are implemented in a computer program named Draphys (Diagnostic Reasoning About Physical

Systems) and demonstrated for the domain of inflight aircraft subsystems, specifically a propulsion system

(containing two turbofan engines and a fuel system) and hydraulic subsystem.
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