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Abstract— Nowadays, industrial plants are calling for high-

performance fault diagnosis techniques to meet stringent 

requirements on system availability and safety in the event of 

component failures. This paper deals with robust fault estimation 

problems for stochastic nonlinear systems subject to faults and 

unknown inputs relying on Takagi-Sugeno fuzzy models. 

Augmented approach jointly with unknown input observers for 

stochastic Takagi-Sugeno models is exploited here, which allows 

one to estimate both considered faults and full system states 

robustly. The considered unknown inputs can be either 

completely decoupled or partially decoupled by observers. For 

the un-decoupled part of unknown inputs, which still influence 

error dynamics, stochastic input-to-state stability properties are 

applied to take nonzero inputs into account and sufficient 

conditions are achieved to guarantee bounded estimation errors 

under bounded unknown inputs. Linear matrix inequalities are 

employed to compute gain matrices of the observer, leading to 

stochastic input-to-state-stable error dynamics and optimization 

of the estimation performances against un-decoupled unknown 

inputs. Finally, simulation on wind turbine benchmark model is 

applied to validate the performances of the suggested fault 

reconstruction methodologies. 

Keywords—robust fault estimation; stochastic Takagi-Sugeno 

systems; unknown input observer; stochastic input-to-state stability 

I.  INTRODUCTION 

Driven by the increasing demands for productivity, the 
level of complexity and technical processes of industrial 
systems are accordingly growing. This leads to the systems 
susceptible to unexpected deviations which have significant 
impacts on safety, economy, and environment. In order to 
monitor these abnormal conditions in their earlier occurrence 
and maintain high safety and reliability standards in practical 
plants, extensive and comprehensive investigations about fault 
diagnosis for control systems have been developed during the 
past decades [1-5]. Nonlinear phenomena, which constitute an 
intrinsic characteristic of many practical systems, could lead to 
quite complex analytic solutions. Additionally, motivated by 
the widespread presence of random factors in the operation of 
systems and the inevitable stochastic error in measurement, 
stochastic systems formulated in It -type stochastic differential 
equations have drawn considerable attention.  Therefore, fault 
diagnosis for stochastic nonlinear systems, which can represent 
the realistic system properties more practically, has been a hot 
issue in both industry and academia recently [6, 7]. Fault 

estimation, also called fault reconstruction, is an advanced fault 
diagnosis approach, for its capability to track faulty features, 
and provide auxiliary full state estimation at mean time. As the 
performance of a control system is inevitably affected by 
various perturbations, robustness has had a vital status for a 
fault estimation module. The interest of unknown input 
observer stems from the great advantage to decouple unknown 
perturbations, and has widespread applications on robust fault 
diagnosis. As a result, unknown input observer-based fault 
reconstruction can take both advantages, thus have been 
dedicated to robust monitoring of many engineering systems 
[8-10]. One constraint of this technique is the completely 
decoupled assumption of unknown inputs, which fails to meet 
wide range of realistic plants. Our early work [11], represents 
the first attempt to introduce unknown input observer-based 
fault estimation into linear systems and Lipschitz nonlinear 
systems subject to partially decoupled unknown inputs, 
associated with linear matrix inequalities to optimize the 
estimation performance. The work has been extended to 
stochastic nonlinear systems satisfying quadratic inner-
bounded conditions in [12]. However, it is worth noting that for 
general forms of stochastic nonlinear systems, this issue meet 
challenges due to lack of systematic way to settle observer 
gains for such complex systems, thus remains to be an area to 
be explored. 

Takagi-Sugeno (T-S) fuzzy logics, which are capable of 
providing the approximation to stochastic processes in mean 
square sense with arbitrary accuracy, have been widely used as 
a convenient tool for handling nonlinearities. Early pioneer 
works for this idea can be traced back to [13], where the 
continuous-time nonlinear dynamics was linearized at several 
valid operating points and the overall model was obtained by a 
fuzzy “blending” of these local linear models through 
appropriate membership functions.  This kind of simplified 
structure provides approach for monitoring nonlinear 
processes. Following the ideas of T–S fuzzy modelling 
schemes, tremendous research efforts have been dedicated to 
fault diagnosis of stochastic T-S fuzzy systems. Specifically, 
[14] presented a robust observer for robust fault estimation of 
T-S fuzzy models; T-S fuzzy unknown input observers were 
investigated in [15] to decouple the influences from unknown 
disturbances; [16] utilized unknown input observer to solve 
state estimation problem for T-S fuzzy models; [17] designed 
sliding mode observers for stochastic T-S fuzzy systems for 



fault estimation. Nevertheless, to the best of the authors’ 
knowledge, no effort has been devoted to do unknown input 
observer-based fault reconstruction for stochastic nonlinear 
systems in presence of partially decoupled unknown inputs.  

Since traditional global asymptotically  stability in 
probability fails to analyze and process the state responses of 
the system with disturbances, stochastic input-to-state stability, 
was originally introduced in [18], to provide a natural setting 
for classification and parameterization of finite-energy inputs 
into finite-energy states, and has been extensively investigated 
by many scholars for stochastic systems. In particular, [19] and 
[20] addressed sufficient conditions of stochastic input-to state 
stability for nonlinear systems combined with Lyapunov 
theory; weighted fuzzy observer was proposed for discrete-
time nonlinear systems based on this property; [22] solved  
filtering problem for stochastic T-S fuzzy plants with time-
varying delays with the aid of stochastic input-to-state stability. 
Therefore, the research of stochastic input-to-state stability-
based robust fault reconstruction is of great meaning for 
stochastic nonlinear systems. 

This paper addresses robust fault estimation methodologies 
for stochastic T-S fuzzy models affected by partially decoupled 
unknown inputs based on stochastic input-to-state stability 
theory. Firstly, unknown input observers are designed for 
augmented expressions of local models to estimate states and 
faults simultaneously, and the global observer is obtained by 
convex combination of these individual observers; then 
stochastic input-to-state stability is employed to analyse the 
convergence of error dynamic against un-decoupled unknown 
inputs; linear matrix inequality (LMI) strategy is combined to 
optimize the estimation performance by attenuating the 
influences from un-decoupled unknown inputs and Brownian 
motion; finally simulation on a wind turbine model  is 
dedicated  to illustrate the effectiveness of proposed methods. 

The rest of paper is organized as follows: Section II states 
some preliminary knowledge and definitions which are 
essential foundation of further analysis; Section III presents the 
methodologies for robust fault reconstruction for stochastic T-S 
fuzzy systems; the theory is applied to simulation on wind 
turbine systems in Section IV to show its validation, followed 
by Section V to conclude the work. 

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation: throughout this paper,  and  always stand 

for -dimentional Euclidean space and   real matrices, 

while  is the set of all nonnegative real numbers.  

represents identity matrix with dimension of , and  

denotes a scalar zero or a zero matrix with appropriate zero 

entries. For any given vector ,  

refers to its Euclidean norm defined by , and 

, while  denotes its super 

norm.  represents mathematical expectation of  and  

means for all.  The superscript  represents the transpose of 

matrices or vectors. The notation  indicates that the 

symmetric  is positive definite. Besides, in a large matrix 

expression, . 

Consider stochastic T-S fuzzy models suffering from faults 

and unknown inputs in the form of It -type differential 

equations as follows: 

IF  is  and …  is , THEN  

  (1) 

where  represents unmeasurable state vector with 

measurable initial value of  at initial time ;  is 

a standard one-dimensional Brownian motion on the complete 

probability space , with  being a sample 

space,  being a -field,  being a filtration and  

being a probability measure.  satisfies  and 

.  stands for control input vector and 

 is measurement output vector;  , 

 are bounded unknown input vectors from plant 

and sensors, respectively;  includes faults from 

both actuators and sensors. Without loss of generality, the 

trends of faults are assumed either to be incipient or abrupt, 

which means the second-order derivatives of their means 

should be zero piecewise. For faults whose second order 

derivatives of means are not zero but bounded signals, the 

bounded signals could be regarded as a part of unknown 

inputs. , and  is the total number of local models, 

 are fuzzy sets and decision vector  involves all individual 

premise variables , . , , , , , , 

 can be obtained by linearization or identification of 

nonlinear systems. In the rest of paper, the symbol  in vectors 

will be omitted for the simplicity of presentation. By using the 

standard fuzzy blending method, the global model of system 

(1) can be inferred as: 

    (2) 

where  are weighting functions, following the convex 

sum properties:  and .        

It should be pointed out that unknown inputs usually 

consist of parameter perturbations, exogenous disturbances, 

measurement errors, and other uncertainties. As a T-S fuzzy 

representation is an approximate of the real model, and the 

modelling errors can also be regarded as a part of unknown 

inputs  and . In this way, plant (2) can describe a wide 

range of engineering systems in presence of faults and extra 

disturbances. The main objective of this paper is to design a 

robust fault reconstruction scheme for system (2) which can 

provide estimations of the trends of full system states and 

considered faults simultaneously while reduce the influences 

of unknown inputs and Brownian motion. Before presenting 

our techniques, the following definitions are introduced as 

preliminaries: 

Definition 1 [23]. A function  is said to be a 

generalized -function if it is continuous with , and 

satisfies 

,     (3)



 is the subset of -functions that are unbounded. 

Definition 2 [23]. A function  is said to be 

a generalized -function if for each fixed , the function 

 is a generalized -function, and for each fixed , it 

decreases to zero as  for some constant .          

Definition 3 [24]. A system is said to be stochastic input-to-

state stable, if , there exist functions , , 

such that for continuous bounded input  and any initial 

condition , we have for , 

  (4)                          

As mentioned in our previous work [12], globally 

asymptotically stability in probability defined in [25] is a 

specific situation of stochastic input-to-state stability when 

input . 

III. ROBUST FAULT ESTIMATION SCHEME

In this section, the methodology to design a robust fault 

reconstruction approach for system (2) is presented. 

Throughout this paper, , , 

 and . We assume that  rather than  

can be decoupled, which means  is of full column rank 

whereas  is not.  

In order to estimate the trends of faults and system states at 

the same time, an auxiliary system is constructed as follows, 

by considering the faults as augmented system states: 

    (5)                                

where 

,  

, 

  

  

To reduce the level of complication for observer design, we 

can choose any   from  as the output coefficient, and the 

differences between other local outputs with the selected one 

are regarded as measurement perturbations. In this way, 

systems (5) is equivalent to the following expression: 

   (6)                                                                                

By letting , system (6) 

can be simplified as: 

    (7)   

In system (7), the component of state vector  involves both 

original state  and fault . By designing unknown input 

observer in the following form 

     (8) 

where   stands for its state vector and  is the estimation of 

, simultaneous estimation of    and   can be achieved.   

Matrices , ,  and  , , are observer gains 

to be designed such that    is close enough to . Obviously, 

the global unknown input observer is also a fuzzy aggression 

of a set of local observers with the same weights of (2).  

Defining estimation error to be , and subtracting 

(8) from (7) leads to the following error dynamic: 

  

      

    

     

                                                          (9)  

If the observer gains satisfy the following conditions: 

                             (10)

(11) 

(12)

(13)

the state estimation error can be reduced to 

 

  (14) 

In order to meet the conditions (10) to (13), we have the 

following assumptions:

(1)

; 

 (2) For ,   is of full column rank;

(3) For , . 

According to [11, 26], the above assumptions are to ensure 

that for each local model, equation (10) can be solved, and one 

solution of  can be obtained as  

          (15) 

where is of full column rank, obtained by            

a non-singular matrix  such that 

            (16)  

Moreover, the model is observable.      

Under these necessary assumptions,  has been decoupled 

by settling , however, ,  and the Brownian motion still 

affect the error dynamic. As a good observer should lead to the 

convergence of error , the design of robust fault estimation 

scheme is converted into attenuating the influences of un-

decoupled unknown inputs and the Brownian motion. 

Global asymptotically stability in probability can be used to 

analyze the convergence system (14) in absence of 

disturbances considering that a small enough perturbation 

should not destroy the stability properties. However, for robust 

fault estimation, understanding how large can the perturbations 

change the phase portrait is beneficial to enhance estimation 

performances. Thus, stochastic input-to-state stability is 

employed in this paper to study the convergence of error 



dynamic (14). For bounded unknown inputs, our target is to 

design observer gains such that estimation error can be mapped 

around equilibrium around a certain distance, which is a 

function of the unknown inputs.  

Similarly to traditional global asymptotic stability in 

probability, a dissipative function should be defined to obtain 

the stochastic input-to-state stable property.  

Definition 4: A function  is called a stochastic input-to-state 

stability-Lyapunov function if there exist  functions 

, , ,  such that  

(i)         (17)                                                                 

(ii)            (18) 

where  is the infinitesimal generator of . 

In our previous work [12], sufficient proof has been 

provided of the following lemma. 

Lemma [12]: A system is stochastic input-to-state stable if 

there exist a stochastic input-to-state stability-Lyapunov 

function. 

Based on the above definition and Lemma, the following 

theorem is addressed as sufficient conditions for checking the 

stochastic input-to-state stability properties of error dynamic 

(14), and achieve robustness to ,  and Brownian motion. 

Theorem: For system (2), there exists a fuzzy unknown input 

observer in the form of (8), resulting in a stochastic input-to-

state stable error dynamic (14) which satisfies , 

if , there exist positive definite matrices and , matrices , 

such that 

   (19)   

where ,  

,  , 

, and  is a performance index 

indicating the level of noise attenuation. 

Proof: based on the lemma, the proof involves establishing a 

dissipation inequality via a suitable storage function. Here, we 

choose the function as , and it is not hard to 

obtain that: 

 
which means it meets (17). Taking the infinitesimal operator 

along the state trajectories of dynamic (14), by using the It  

formula,   can be calculated as: 

  

    

     ] 

  

  

                    (20) 

Adding and subtracting   yields: 

 (21)

where 

 

and   LMI (19) implies 

that , which means 

                  (22) 

Since  is positive, a positive scale  can be found such that  

                  (23) 

Therefore,  is a stochastic input-to-state stability-

Lyapunov function with  and 

. According to the Lemma, dynamic (14) is stochastic 

input-to-state stable. 

We are now in a position to attenuate the influences of  on 

estimation error. Choose  as a performance index, and then 

we define:  

    (24)  

It follows that: 

  

  (   

   

    

      (25)  

where 

in which . 

Under zero initial condition , 

  (26) 

thus  leads to , i.e. LMIs (19) is sufficient to 

make (14) satisfy 

                            (27) 

As a result, for given performance index , LMIs (19) can 

make sure the estimation error to convergence to equilibrium 

within a certain distance, and the error to be reduced to certain 

value.  

It is obvious that conditions in the above theorem can also 

lead to a proof of global asymptotic stability in probability by 

choosing  specially to be null matrix.  

IV. SIMULATION

In this section, the obtained results are applied on wind 
turbine benchmark model represented by T-S fuzzy logic. 
According to [26], the nonlinear benchmark wind turbines 
introduced in [27] can be well modelled by T-S fuzzy logics. 
Here, 18 IF-THEN rules can be chosen to approximate the 
original wind turbine model.  Then the system can be described 



in the form of plant (2). The actuator fault taken into account 
occurs in reference of generator torque with the following 
value: 

  (28) 

And the sensor fault is assumed to be  decrease of the first 
output. The estimation results of full system states and 
concerned faults are shown in Figs. 1-8.  

Fig. 1.  and its estimation 

Fig.2.  and its estimation

Fig.3.  and its estimation 

Fig.4.  and its estimation 

Fig.5.  and its estimation 

Fig.6.  and its estimation 

Fig.7.  and its estimation 



 Fig.8.  and its estimation 

As shown in the above figures, the estimation of both 
system states and considered faults are excellent. For given 
performance index, the estimation errors can converge to 
equilibrium of a certain distance determined by the index, and 
the un-decoupled unknown inputs are attenuated by LMIs 
successfully. 

V. CONCLUSION 

In this work, a novel robust fault estimation technique is 
developed for stochastic T-S fuzzy systems in presence of 
unknown inputs. Based on a fuzzy combination of a set of local 
unknown input observers, an augmented state which includes 
the original system states and considered faults can be 
estimated simultaneously while a part of unknown inputs can 
be decoupled.  The un-decoupled process disturbances can be 
attenuated by solving LMIs which can guarantee that under 
bounded unknown inputs, the error trajectories is also bounded 
within a certain value determined by a performance index. The 
simulation study for a 4.8 MW wind turbine model has well 
demonstrated the effectiveness of the proposed fault estimation 
technique. It is encouraged to develop resilient control 
techniques [28] for wind turbine systems characterized by 
nonlinear stochastic Brownian systems.   
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