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Abstract

In this paper, a novel robust fault estimation scheme to ensure efficient and reliable operation of Wind Turbines

(WTs) has been presented. WTs are complex systems with large flexible structures that work under very turbulent

and unpredictable environmental conditions for a variable electrical grid. The proposed observer-based estimation

scheme consists of a set of possible faults affecting the dynamics, sensors, and actuators of WTs. First, the pitch

and drivetrain system faults occur simultaneously with process and sensor disturbances that are called unknown

input signals. Second, through a series of coordinate transformations, the faulty subsystem is decoupled from the

rest of the system. The first subsystem is affected by unknown inputs and the second one is affected by faults. A

Reduced-order Unknown Input Observer (RUIO) is designed to reconstruct states accurately while a Reduced-order

Sliding Mode Observer (RSMO) is designed for the second subsystem such that it is robust against unknown inputs

and faults. Moreover, the RUIO guarantees the asymptotic stability of the error dynamics using the Lyapunov theory

method and completely removing unknown inputs; on the other hand, RSMO is designed to reconstruct faults for

the faulty subsystem accurately. Until now, authors only focused on an unknown input signal in the dynamics of the

system, especially in non-linear systems. The estimated fault will be adequate to accommodate the control loop, and

sufficient conditions are developed to guarantee the stability of the state estimation error. In the next step, to figure the

effectiveness of the proposed approach, a WT benchmark system model is considered with faults and unknown inputs

scenarios. The simulation results will be used to validate the robustness of proposed algorithms under noise conditions,

and the results show that the algorithm could classify faults robustly.

Keywords

Robust fault estimation, Pitch and drivetrain fault, Reduced-order unknown input observer, Reduced-order sliding mode

observer, Orthogonal transformation, Wind turbine

Introduction

Nowadays renewable energies play a more sufficient role

in power generation in the world. Energy production based

on combustion of fossil fuels, such as coal or oil, has

led to increasing temperature and greenhouse gasses. Wind

turbines (WTs) have to compete with many other energy

sources, and it is essential that they should be cost-effective,

convenient and reliable. WTs are exposed to extremely

variable and harsh conditions such as severe winds, lighting,

arctic cold, hail, and snow; further, they need to meet

different loads and produce stable energy. Marquez et al.

(2012) explained for a 20-year old turbine, the operation,

and maintenance costs of 750Kw turbines might be around

25− 30% of the overall power generation cost or around

75− 90% of the investment cost.

High mechanical stress on WTs because of extremely

variable operating conditions and continuously changing,

leads to more maintenance. Mainly, for WTs are located

offshore. As a result, different approaches on fault diagnosis

and control of WTs using a realistic WT benchmark Odgaard

et al. (2009) and FAST (NREL) Jonkman et al. (2005)

have been highlighted by different researchers in academia

Wang et al. (2019); Witczak et al. (2016); Gao et al. (2016).

The purpose of WT Fault Detection and Isolation (FDI)

systems is to detect and locate degradation and failures

in the operation of WT components as early as possible

so that maintenance operations can be performed in due

time. Therefore, the number of costly corrective maintenance

actions can be reduced and consequently, the loss of

wind power production due to maintenance operations is

minimized. Most of the FDI algorithms for WTs were

based on some form of signal analysis approach Qiao and

Lu (2015). The signals used for fault diagnosis for WTs,

mainly include vibration, acoustic emission (AE), strain,

torque, temperature, lubrication oil parameters, electrical

and supervisory control and data acquisition (SCADA)

system signals. The signal processing approaches for fault

diagnosis used typically includes classical time-domain

analysis methods like statistical analysis Marquez et al.
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(2012), classical frequency analysis methods like Fast

Fourier Transform (FFT) Zhang et al. (2012), classical

time-frequency analysis methods like wavelet transform

Huang et al. (2008) and artificial intelligence (AI) methods

Schlechtingen and Santos (2011). The fault mode and

location can then be identified by a classification technique,

like artificial neural networks (ANNs), support vector

machines (SVMs) Laouti et al. (2011). Signal-based

approaches such as neural networks and experts systems

Sahin et al. (2012) are more suitable for information-poor

systems. Compared with the signal processing methods

for fault diagnosis for WTs, the model-based methods

do not need high-resolution signals. The low-resolution,

low-sampling-rate SCADA signals of a WT can be used

effectively by model-based fault diagnosis. This is effective

in installing additional sensors and data acquisition hardware

to obtain high-resolution signals. In addition, the complex

and costly computations in the signal-based methods to

extract fault features from signals are unneeded in the

model-based methods. The most commonly used approaches

include Observer-based Chen et al. (2011), Parity space

Ghaniee and Shoorehdeli (2011) and Parameter estimation-

based Yin et al. (2012). In general, the parity space and

parameter-based approaches are unsuitable for non-linear

systems and will be unconsidered in this paper. The observer-

based technique has received much attention to design a fault

detection filter and is the base of this paper.

Model-based fault detection and isolation (FDI) is based

on a residual signal that is generated by using the

mathematical model of the system. In these methods,

the objective is commonly obtained by comparing the

system’s measurements with the corresponding signals of its

mathematical model. The difference between these signals

called residuals is sensitive to any unknown input signals

and faults. Since Model-based fault diagnosis methods have

received a high sensitivity to corresponding mathematical

models, it completely requires precise mathematical models

which are not easy to derive. Any difference between the

system and its models such as uncertainties, complexities,

and unknown inputs cause seriously misleading alarms of

faults; therefore, this problem has motivated to robust fault

diagnosis schemes and many related studies have been done

by other researchers Chen and Patton (2012); Nazir et al.

(2017). Over the recent decades, many schemes have been

achieved for FDI of non-linear systems with disturbance and

fault together Lan and Patton (2017). On the other hand, it

is challenging for a FDI scheme to provide the exact fault

information, e.g. fault magnitude and shape. Compared with

FDI strategies, fault identification or estimation technique

can provide accurate fault information and it is able to

react to the system in an Active Fault Tolerant Control

(AFTC) and real-time decision Zhang and Jiang (2008);

Azizi et al. (2019). Chen et al. (2011); Wei et al. (2010)

proposed model-based FDI schemes employing a diagnostic

observer for the pitch system and drivetrain faults on the

benchmark model. Fault detection and isolation have been

supported. Malik and Mishra (2015) a diagnostic technique

for imbalance fault identification based on a probabilistic

neural network was presented. Mathematical and statistical

operations are performed on the measurements in signal

processing fault diagnosis. Fault detection and isolation

scheme in Dong and Verhaegen (2011) is a data-driven

method to overcome the difficulty of modelling. Ghane

et al. (2016); Feng and Liang (2014) demonstrated statistical

change detection for a gearbox model of a wind turbine

using frequency analysis. Fault detection, isolation, and

accommodation to detect faults of the blade pitch systems

have been considered in Cho et al. (2018). In this paper, to

estimate the blade pitch angle, a Kalman filter is designed

and a fault isolation scheme is proposed that could determine

the fault type, location, magnitude. After that, the fault-

tolerant controller with a virtual sensor and shut-down

mode controls WT to avoid unexpected external loads

has been designed. Liu et al. (2017) focuses on robust

fault estimation and tolerant control for T-S fuzzy model.

A certain class of actuator and sensor faults considered

generating an augmented system. Observability and some

restricted conditions are limitations of this design. Simani

and Castaldi (2019) proposed a non-linear relationship

between measurements and faults of the offshore WT model

with neural networks and fuzzy inference. It has been

shown that due to the increased number of data in FWTs,

implementing deep learning algorithms could be effective

in the analysis of the operating condition. Fu et al. (2019)

proposed a convolutional neural network (CNN) to analyse

the temperature data of gearbox bearing. Moreover, in

another research, Wu et al. (2019) designed fault diagnosis

with noisy measurements by denoising autoencoder (DAE)

and Wang et al. (2016) proposed a deep autoencoder as an

indicator of impending blade breakages. Data based methods

need more sensors to analyse vibration, temperature, and

other condition monitoring signals. Although the wind

turbine industry has the interest to exploit effective condition

monitoring methods, these methods suffer from high cost and

complexity.

Fault estimation as one of the most important model-based

fault diagnosis problems, which can also be perceived as

the estimation of an unknown input has been done. In the

literature, some of these fault estimation strategies usually

attention, namely: system augmentation, especially the state

vector by the new states Gao et al. (2016); Raoufi (2010),

unbiased minimum-variance input and state estimation

Gillijns and De Moor (2007), adaptive observers Azmi

and Khosrowjerdi (2016); Guo et al. (2015), sliding mode

observers Tan and Edwards (2003), high gain observers

Veluvolu et al. (2011), Hinf approach Raoufi et al. (2010)

and unknown input observers Saoudi et al. (2015); Raoufi

et al. (2010). The last two decades have witnessed enormous

growth in fault diagnosis and to extend the previous

approaches to non-linear systems. For robust fault estimation

in non-linear systems, the observer-based approaches have

gained many interest Raoufi and Marquezz (2010); Raoufi

et al. (2010); Progovac et al. (2014); Guo et al. (2015).

It should be emphasized that accurate fault estimation is a

significant challenge for the non-linear system particularly

in the presence of disturbances Mellucci et al. (2017) and

definite faults Witczak (2014). Current solutions to robust

fault estimation in a non-linear system are inadequate as

well because there is not a distinct solution for non-linear

observers Hassan (2002). In spite of its shortcomings, these

methods have been widely employed to different kind of non-

linear systems. In Witczak et al. (2016); Raoufi et al. (2010)

Prepared using sagej.cls
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Lipschitz systems are considered that is a familiar form of

uniform continuity for non-linear functions.

Disturbance attenuation by using optimization methods

is generally more than using disturbance decomposition

techniques. In contrast, disturbance decomposition can better

relieve the adverse effects from the disturbances Witczak

et al. (2016); Raoufi et al. (2010); Guo et al. (2015).

A recent review of the literature on this area found

that unknown input observers could completely attenuate

unknown inputs like disturbances Raoufi and Marquezz

(2010); Saoudi et al. (2015); Aldeen and Sharma (2008).

In Raoufi and Marquezz (2010), both actuator and sensor

fault simultaneously considers and augmented system is

formed of a descriptor system. Although descriptor systems

have been shown as conventional systems; it is difficult

to solve their numerical problems, especially in industrial

systems. Sliding mode observers (SMO) are robust against

uncertainties and disturbance Edwards and Spurgeon (1998).

SMO has been widely applied as an effective method to

compensate for the uncertainty component in non-linear

systems Yan and Edwards (2007). Indeed, it will be capable

of preserving the error dynamics on a sliding surface in

spite of the existence of uncertainty or fault. Furthermore,

the exact estimation will exist and the equivalent output

error signal that it is injected to observer structure will

achieve an unwanted signal. In the fault estimation scheme,

an unwanted signal is a fault and the equivalent output

error signal will reach this after some transient time. Raoufi

et al. (2010) a H disturbance attenuation level proposed by

the sliding mode observer design using LMIs optimization.

The main contribution of this paper is using UIO for

exact state estimation since UIO can exactly remove the

dramatic effect of unknown inputs. Moreover, the equivalent

output error signal in sliding mode structure will attain

the unwanted signal. Ke Zhang and Cocquempot (2016)

proposed a less conservative UIO design method by using

a finite frequency range technique instead of an entire-

frequency method. In Valibeygi et al. (2016) estimation of

sensor faults in non-linear systems in the presence of process

disturbance was considered. The unknown input observer

for Lipschitz systems was applied for the fault diagnosis

in Witczak et al. (2016). Ziyabari and Shoorehdeli (2017a)

proposed a scheme that includes both component and sensor

fault with the non-linear system that transferred to non-

linear T-S model to generate a residual signal. Moreover,

Ziyabari and Shoorehdeli (2018) have designed the fault

estimation scheme for the component fault. In addition,

both studies have considered unknown inputs signals in a

dynamic equation. Moreover, in Ziyabari and Shoorehdeli

(2017b), the component fault was considered with the

unknown input signal in state and output equations, but it

was not included sensor and component fault estimation

simultaneously. The essential contribution of this paper is

a robust state and actuator fault estimator design procedure

together. Two sources of uncertainty, unknown input, and

exogenous external disturbance are present.

This paper is focused on the issue of robust fault

estimation for a disrupted Wind Turbines (WT) subject

to component and sensor faults and unknown inputs

simultaneously via two reduced-order unknown input and

sliding mode observers. It should also be pointed out

that the proposed description of non-linearity is Lipschitz

constraint. In this paper, the orthogonal transform has

been improved, and the procedure for the component and

sensor fault has been modified. This novelty does not

lead to an increase the computation and there is not any

restriction on time profile of faults, but faults should be norm

bounded. This paper is motivated by the development of

the Ziyabari and Shoorehdeli (2017b, 2018) by reforming

the strategy of fault estimation to have disturbance in

the measurements as well. The main contributions that

are worth emphasizing are summarized in the following

two aspects: (a) Through a coordinate transformation, the

original system is decomposed into two separate subsystems.

The first subsystem is affected only by faults and is free

from unknown inputs; the second subsystem is affected by

unknown inputs; (b) A UIO design is suggested to robustly

estimate states to reconstruct faults in SMO. In addition,

the analysis of the observers is formulated in terms of a

series of LMIs that can be conveniently solved using LMI

optimization technique such that a systematic calculation for

observer gain matrices can be readily obtained using Matlab

LMI toolbox. The effectiveness of the proposed method is

demonstrated through its application to numerical simulation

and compared to Ziyabari and Shoorehdeli (2017a). It

will be indicated that these results clearly recommend the

proposed approach for the purpose of AFTC. In contrast

to the present works, the main contributions of this paper

lie in the following aspects: (1) Robust fault estimation

with two estimation mechanisms for unknown inputs in

dynamic and measurement signals is designed; (2) To

make a streamlined unknown input sliding mode observer,

it is proved that the proposed controller guarantees that

the closed-loop is asymptotically stable in the presence of

faults and disturbances. (3) All possible faults (actuator,

component, sensor) may happen in a real non-linear MIMO

system simultaneously.

The rest of this paper is arranged as follows: First,

provides a review of WT systems. The benchmark model and

WTs faults and disturbances are presented to introduce the

essential concepts of the system under study. Next section

introduces the main ideas of the fault estimation scheme.

First, reduced unknown input and sliding mode observers,

second, fault estimation from previous observers has been

done. Finally, with simulating the proposed scheme on WT

benchmark system model, its ability for the industrial system

has been demonstrated. A conclusion completes the paper.

Wind turbine system description

The WT considered in this paper was proposed in the

benchmark described in Odgaard et al. (2009) that is a three-

blade horizontal-axis turbine with a full converter coupling.

The closed-loop system comprises five subsystems: aerody-

namics, blade and pitch system, drivetrain, generator unit,

controller and Figure 1 represents the relations between these

subsystems faults and disturbance. The variables of WT are

defined in Table 1.

Exact descriptions of the sub-blocks, the mathematical

models and the numerical values of the different parameters

are given in the following sections.

Prepared using sagej.cls



4 Journal Title XX(X)

Figure 1. Interconnection of sub-models describing the characteristics of the wind turbine in Odgaard et al. (2009) benchmark.

Table 1. Wind model variables used in the benchmark model

Odgaard et al. (2009)

Symbol Description

νω wind speed on the turbine

Tω torque from wind on the blades

Tr rotor torque

ωr rotational speed of the rotor

Tg generator torque

ωg rotational speed of the generator

βi,r reference to the pitch position

βi the pitch position i

FP fault in the pitch system

FDT fault in the drivetrain system

τg,r reference to generator torque

Pr power reference to the wind turbine

Pg power produced by the generator

Wind turbine model

The wind on the turbine blades forces the wind turbine rotor

to spin around. Then, a rotating shaft converts the kinetic

wind energy into mechanical energy. A generator, coupled to

a converter, performs the conversion from mechanical energy

to electrical energy. The system is operated by the wind

speed that affects the aerodynamic properties of the wind

turbine, together with the pitch angles of the blades and the

speed of the rotor. An aerodynamic torque is transferred from

the rotor to the generator through the drivetrain. Finally, the

generator and converter provide electric power.

Aerodynamic model: A wind model that describes

stochastic wind behaviour (speed variation and lateral effects

of wind) is presented in Odgaard et al. (2009). It consists

of the mean wind, a stochastic part, wind shear and tower

shadow. The torque acting on the blades are modelled by

aerodynamic Tr(t). This model is a combination of the

aerodynamic model and the wind and pitch model.

Tr(t) =
∑3

i=1

ρπR3Cq(λ(t), βi(t))ν
2
w,i(t)

6
(1)

where ρ is the air density, R is the radius of the blades,

νw is the wind speed and Cq is the torque coefficient (the

mapping used in this paper is in Odgaard et al. (2009)). This

parameter characterizes the efficiency of the energy transfer

from wind energy to mechanical energy, and it depends on

the tip speed ratio λ and the pitch angle β. This model for

small differences between the pitch angles is valid.

Pitch system model: The hydraulic pitch system is

modelled as a second-order system between the measured

pitch angle βi and its reference βi,r:

β̈i = −2ζiωn,iβ̇i − ω2
n,iβi + ω2

n,iβi,r (2)

ωn,i is the natural frequency and ζi is damping ratio with

i = 1, 2, 3. This is an individual blade pitch and the pitch

angles βi, i = 1, 2, 3 are measured. βi is available for the

wind turbine control system and for FDI and FTC schemes.

DriveTrain Model: The drivetrain model is an intercon-

nection of a low-speed and a high-speed shaft by a transmis-

sion that has a gear ratio Ng and an efficiency ηdt, combined

with a torsion stiffness Kdt, and a torsion damping Bdt. The

drivetrain transfers torque from the rotor to the generator. It

includes a gearbox that increases the rotational speed from

the low-speed rotor side to the high-speed generator side.

Thus, the drivetrain can be described by the following three

differential equations:

Jrω̇r = −(Bdt +Br)ωr +
Bdt

Ng

ωg −Kdtθδ + Tr (3)

Jgω̇g = ηdtBdt

Ng
ωr +

(

ηdtBdt

N2
g

+Bg

)

ωg+
ηdtKdt

Ng
θδ − Tg

(4)

θ̇δ = ωr −
ωg

Ng

(5)
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where Jr and Jg low-speed shaft and high-speed shaft

inertia, Br and Bg friction coefficients, ωr is the rotor

speed, ωg is the generator speed, θδ is the torsion angle of

the drivetrain, Tr is the aerodynamic torque and Tg is the

generator torque. Both the rotor speed ωr and the generator

speed ωg are measured.

Generator model: The generator torque Tg is controlled

by the reference Tg,r. The dynamics are approximated by a

first-order model:

Ṫg = −
Tg

τg
+

Tg,r

τg
(6)

where τg is the time parameter of the generator subsystem.

The power produced by the generator is given by:

Pg = −ηgωgTg (7)

and ηg is the efficiency of the generator and ωg is the

generator speed measurement. The values of the system

parameters used in this paper have been extracted from Table

2.

Table 2. System parameters values

R = 57.5 ρ = 1.225

ωn,1 = 11.11 ωn,2 = 5.73 ωn,3 = 3.42

ζ0 = 0.6 ζ2 = 0.45 ζ3 = 0.9

Bdt = 775.49 Br = 7.11 Bg = 45.6

Ng = 95 Kdt = 2.7e9 ηdt = 0.97

Jg = 390 Jr = 55e6

τg = 0.02 ηg = 0.98

Finally, the general profile parameters of the wind turbine

are presented in Table 3.

Table 3. General profile of wind turbine used in the benchmark

model Odgaard et al. (2009)

Parameter value

Wind regime stochastic wind

Rotor orientation Clockwise rotation -Upwind

Type of wind turbine horizontal-axis

Rated Power 4.8 MW

Rated wind speed 12.5 m/s
Number of blades 3

Converter coupling full

Rated wind speed 12.5 m/s
Cut in wind speed 3m/s
Cut out wind speed 25 m/s

Fault scenarios

In this paper, sensor, actuator, and process faults in different

parts of WT have been covered. Some of the faults are very

serious and must be detected in a fast and safe condition. The

rest is less critical, and the controller can accommodate these

faults while staying in operation.

First, fault in the pitch position measurements is common

sensor faults. The origin of these faults will be either

electrical or mechanical and can result in either a fixed value

or a changed gain factor on the measurements. The controller

handles the pitch positions based on measurements, if it is

not handled correctly, these faults will influence the system’s

performance.

Second, the deviations in rotor and generator speed

measurements denote faults. Both the rotor and generator

speed measurements are done using encoders and both

electrical and mechanical failures are possible, which result

in either a fixed value or a changed gain factor on the

measurements. In case of a fixed value fault, the output of

the encoder is not updated with new values. The gain factor

fault is introduced when the encoder reads more marks on

the rotating part than actually present, which can happen

as dirt or other false alarm on the rotating part. Converter

faults as a sample of actuator fault are denoted as an offset

or in changing dynamics of the converter. This fault can be

internal to the converter or because of electronics or an off-

set on the converter torque estimate.

Third, The pitch hydraulic system has the possibility

of faults on all three blades. It can result in changing

dynamics due to either a drop in pressure in the hydraulic

supply system or high air content in the oil. The former

represents faults like leakage in the hose, a blocked pump

or similar others. There will always be some air content

in the hydraulic oil used, the content level will vary, and

it is not possible to control it well. Air is much more

compressible than oil, so it alters the dynamics of the

hydraulic actuator. Where the friction coefficient in the

model changes slowly with time, the system fault will appear.

This change will result in two correlated fault signals: ωr

and ωg . These changes evolve slowly in reality; however, it

is expected to be extremely demanding in the benchmark

simulator from a computational point of view to simulate

such a fault realistically evolving over for months or even

years. Consequently, in this benchmark model Odgaard et al.

(2009), this fault is represented by a small change of the

friction coefficient within a few seconds. The main point

is that the change in the drivetrain friction is considerably

slower than the system dynamics and the system sample rate.

Typically, faults in wind turbine gearboxes are found using

condition monitoring methods relying on additional sensors

that measure accelerations and noise levels on the gearbox. It

would be more cost-efficient if such faults could be detected

and isolated using standard measurement in the wind turbine

control system. A fault occurring in the pitch system can

influence the closed-loop control system and the dynamics of

a wind turbine. Faults of the blade pitch system are mainly

categorized by the pitch sensor and actuator fault. The pitch

sensor fault occurs by dust on encoder disc, miss-adjustment

of the blade pitch bearing, beyond the acceptable range of

temperature and humidity or improper calibration. These

causes can result in the unbalanced rotation of the rotor from

the sensor bias and fixed outputs from last measurements.

In this paper, the pitch system and in the drivetrain

are considered for illustrating the proposed fault estimation

approach. Combining results of the previous equation (2),

together with sensor and actuator faults and disturbances, in

the following set of the first-order differential equations

ẋps = Apsxps +Bpsups + Ecfa(t) + Edd(t)
yps = Cpsxps + Fdd(t) + Fcfa(t)

(8)
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where

xps =
[

β̈1 β̇1 β̈2 β̇2 β̈3 β̇3

]T

ups = [β1,r β2,r β3,r]
T

Api
=

[

−2ζiωn,i −ω2

n,i

1 0

]

, Aps =

[

Ap1
0 0

0 Ap2
0

0 0 Ap3

]

Bpi
=

[

1

0

]

, Bps =

[

Bp1 0 0

0 Bp2 0

0 0 Bp3

]

Cpi
= [ 0 ω2

n,i ] , Cps =

[

Cp1 0 0

0 Cp2 0

0 0 Cp3

]

(9)

for i = 1, 2, 3 and the fault in the drivetrain consists of

actuator and sensors with disturbances. Similarly to the pitch

system case:

ẋdt = Adtxdt +Bdtudt + Ecfa(t) + Edd(t)
ydt = Cpsxdt + Fdd(t) + Fcfa(t)

(10)

where

xdt = [ωr ωg θδ]
T
, udt = [Tr Tg]

T

Adt =











−Bdt+Br

Jr

Bdt

NgJr

−Kdt

Jr

ηdtBdt

NgJg

(

ηdtBdt

N2
g

+Bg

)

Jg

ηdtKdt

NgJg

1 − 1
Ng

0











Bdt =





1
Jr

0

0 − 1
Jg

0 0



 , Cps =





1 0 0
0 1 0
0 0 1





(11)

d(t) and fa(t) are disturbance and fault for each subsystem

and Ec, Fc and Fd are corresponding fault and disturbance

distribution matrices with appropriate dimensions.

System transformation

Consider the following non-linear system:

ẋ(t) = Ax(t) +Bu(t) +Gf(x, u) + Edd(t) + Ecfa(t)
y(t) = Cx(t) + Fdd(t) + Fcfa(t)

(12)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny are the state vector,

the input vector and the output vector, respectively; the

known non-linear function f(x, u) is Lipschitz with respect

to x uniformly for u ∈ U ( U is an admissible control set)

with positive Lipschitz constant γ0

‖f(x1, u)− f(x2, u)‖ ≤ γ0‖x1 − x2‖ (13)

and Ec and Fc are distribution matrices of component fault

fc ∈ Rnc and fc(t) is norm bounded with positive constants

γ1 as follows :

‖fa(t)‖ ≤ γ1 (14)

d(t) ∈ Rnd contains the uncertainty and disturbance, in the

general case, it is commonly called unknown input signal.

The number of measurements is more than the number of

faults occur in the system (nc < ny) and this assumption

can be overcome by using more than one observer, each

observer for a subset of the faults that satisfy this assumption.

A,B,G,Ed, Ec, C, Fd and Fc are real constant known

matrices of appropriate dimensions.

Lemma 1. For any matrices X and Y with appropriate

dimensions, the following property holds for any positive

scalar ǫ Alessandri (2004):

XTY + Y TX ≤ ǫXTX + ǫ−1Y TY (15)

Lemma 2. There exists a coordinate system in which the set

(Ed, Ec, Fd, Fc) has the following structure:

([

ed
0(n−nd)×nd

]

,

[

0nd×nc

ec

]

[

fd
0(ny−nd)×nd

]

,

[

0nd×nc

fc

]) (16)

where ed ∈ Rnd×nd , ec ∈ R(n−nd)×nc , fd ∈ Rnd×nd , fc ∈
R(ny−nc)×nd and ed, fd should be full rank matrices.

Proof:

Without loss of generality, it can be assumed that there

exists a QR transformation T0 such that:

T0Ed =

[

ed
0

]

(17)

where ed ∈ Rnd×nd . By using T0, matrix Ec has been

following partitions:

T0Ec =

[

e1
ec

]

(18)

Now, introduce a non-singular transformation T1 as

T1 =

[

Ind
−e1e

−1
c

0(n−nd)×nd
In−nd

]

(19)

then

T1T0Ed =

[

ed
0

]

, T1T0Ec =

[

0
ec

]

(20)

Also, it can be assumed that there exists a QR transformation

S0 such that:

S0Fd =

[

fd
0

]

(21)

where fd ∈ Rnd×nd . By using S0, matrix Fc has been

following partitions:

T0Fc =

[

f1
fc

]

(22)

Now, introduce a non-singular transformation S1 as

S1 =

[

Ind
−f1f

−1
c

0(ny−nd)×nd
I(ny−nd)

]

(23)

then

S1S0Fd =

[

fd
0

]

, S1S0Fc =

[

0
fc

]

(24)

Now S1S0CT−1
0 T−1

1 partitions as

S1S0CT−1
0 T−1

1 =

[

c1 c2
c3 c4

]

(25)

TAT−1 =

[

a1 a2
a3 a4

]

(26)
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Then T = T1T0, S = S1S0.

Lipschitz systems are a very fundamental class and many

non-linearities are locally Lipschitz. Also, Lipschitz non-

linear systems have received much attention in a different

class of non-linear systems Valibeygi et al. (2016); Azmi and

Khosrowjerdi (2016); Witczak et al. (2016) Trigonometric

non-linearities are a suitable example for Lipschitz non-

linear that are common in robotics and non-linearities that

are square or cubic. Relation (14) is not a conservative

condition for fault estimation design because of having

bounded signals to measure for fault diagnosis system is a

healthy condition.

Robust fault estimation architecture

In this section, a robust fault estimation scheme will be

introduced using the structure characteristics shown in the

section ”System transformation.” Without loss of generality,

the transformations are introduced in Lemma (2) as key

to address the problem of robust fault estimation design

which are x̄ := [xT
1 , x

T
2 ]

T = Tx, ȳ := [yT1 , y
T
2 ]

T = Sy, the

original system (12) can be rewritten

ẋ1 = a1x1 + a2x2 + b1u+ g1f(T
−1x̄, u) + edd(t)

ẋ2 = a3x1 + a4x2 + b2u+ g2f(T
−1x̄, u) + ecfa(t)

y1 = c1x1 + c2x2 + fdd(t)
y2 = c3x1 + c4x2 + fcfa(t)

(27)

where x1 ∈ Rnd , x2 ∈ Rn−nd are partitioned transformed

state of the original system (12). g1, b1 and g2, b2 are the

first nd and the last n− nd components of transformed G,B
respectively. ed, ec, c1, c2, c3 and c4 are defined from Lemma

(2). Thus, the faulty state space and output equations have

been decoupled from the fault-free state space and output

equations. Given the above preliminaries and assumptions,

the objective of the subsequent part of this paper is to

provide a reduced-order unknown input estimation strategy

to attenuate unknown inputs and another RUIO to attenuate

faults separately for the class of non-linear systems (12).

The main advantage of the proposed approach is the fact

that apart from estimating the sensor and component fault

simultaneously, it is able to decouple the effect of unknown

inputs in measurements and dynamics of the system within

RUIOs.

Reduced unknown input observer

In this section, a theorem to design RUIO for the fault-free

and faulty part of system (27) is separately proposed. The

fault-free part will be rewritten as:

ẋ1 = a1x1 + b̄1ū1 + g1f(T
−1x̄, u) + edd(t)

y1 = c1x1 + d̄1ū1 + fdd(t),
(28)

where ū1 = [xT
2 u

T ]T , b̄1 = [a2, b1] d̄1 = [c2, 0] and the

RUIO is inferred as follows:

ż1 = H1z1 + J1ū2 +W1(y1 − d̄1ū) +Q1g1f(T
−1 ˆ̄x, u)

x̂1 = z1 −R1(y1 − d̄1ū)
(29)

where H1, J1, W1, Q1 and R1 for i = 1, . . . , r are constant

matrices with appropriate dimensions defined as:

H1 = Q1a1 −K1c1, J1 = Q1b̄1,
Q1ed −K1fd = 0, R1fd = 0.

(30)

Also, the faulty part is rewritten as follow:

ẋ2 = a4x2 + b̄2ū2 + g2f(T
−1x̄, u) + ecfa(t)

y2 = c4x2 + d̄2ū2 + fcfa(t),
(31)

where ū2 = [xT
1 u

T ]T , b̄2 = [a3, b2] d̄2 = [c3, 0] and the UIO

is inferred as follows:

ż2 = H2z2 + J2ū2 +W2(y2 − d̄2ū) +Q2g2f(T
−1 ˆ̄x, u)

x̂2 = z2 −R2(y2 − d̄2ū)
(32)

where H2, J2, W2, Q2 and R2 are constant matrices with

appropriate dimensions defined as:

H2 = Q2a4 −K2c4, J2 = Q2b̄2,
Q2ec −K2fc = 0, R2fc = 0.

(33)

And K1, R1 and K2, R2 are independent variables and

Proposition (1) will choose them. z1 ∈ ℜnc and z2 ∈ ℜn−nc

are the observer states that generate exact estimated states

x̂1 and x̂2. The necessary conditions to design observers

are observability of (a1, c1) and (a4, c4), then the gains of

the observer such that the state estimation error converges

towards zero will be calculated. Sufficient conditions for

each RUIO are given by (29)-(30) and (32)-(33), are

described in the following Proposition.

Proposition 1. Given the non-linear system (28) with

Lipschitz constant γ0, consider UIO structure (29)-(30). The

observer error dynamics is asymptotically stable such that

ǫ > 0, K1, R1, and a positive-definite symmetric matrix P1

will exist such that the following linear conditions hold:

(

X X12

XT
12 −ǫ−1I

)

< 0 (34)

where X and X12 are defined as:

X = ((P1 + R̄1c1)− K̄c1)
T + (P1 + R̄1c1)

−K̄c1 + γ2/ǫ
X12 = P1g1 + R̄1c1g1

(35)

with K1 = P−1
1 K̄1 and R1 = P−1

2 R̄1.

Proof During the decoupling of non-linear system the

transformed state error equation: e1 = x1 − x̂1

e1 = (I +R1c1)x1 − z1 +R1fdfa(t) (36)

The dynamics of state estimation error is given from (28) and

(29) becomes:

ė1 = H1e1 + (Q1a1 −H1Q1 −W1c1)x1

+(Q1b̄1 − J1)ū1 +Q1g1f̃+

(Q1ed −W1fd −H1R1fd)d(t) +R1fdḋ(t)

(37)

where Q1 = (I +R1c1), K1 = W1 +H1R1 and

f̃ = f(T−1 ˆ̄x, u)− f(T−1x, u). If the following conditions

hold true ∀i = 1, . . . , r,

H1 = Q1a1 +K1c1, J1 = QB̄2,
Q1ed −K1fd = 0, R1fd = 0

Then the equation of the observing error dynamics becomes:

ė2 = H1e1 +Q1g1f̃ (38)
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Let us consider the Lyapunov function V (e1(t)) =
eT1 (t)P1e1(t) , the derivative of the Lyapunov function is

given by

V̇ (e1(t)) = eT1 (H
iT

1 P1 + P1H1)e2 + 2eT1 P1Q1g1f̃
(39)

Using the Lemma (1) and Lipschitz constrain (13),

V̇ (e1(t)) ≤ eT1 (H
iT

1 P1 + P1H + ǫP1Q
iT

1 Q1P1+
ǫ−1γ2

0I)e1
(40)

Stability condition for the estimation error yields to that the

time derivative of the Lyapunov function should be negative

define.

HiT

1 P1 + P1H1 + ǫP1Q
T
1 Q1P1 + ǫ−1γ2

0I < −α. (41)

By replacing H1 and Q1, then using the variable change

R̄ = P1R1 and K̄1 = P1K1, the last inequality (41) can be

written as:

((P1 + R̄c1)− K̄1c1)
T + (P1 + R̄c1)− K̄1c1+

ǫP1Q1g1g
T
1 Q

T
1 P1 + ǫ−1γ2

0I
(42)

Inequality (42) is given by using the Schur complement

relation. Thus LMI (34) with parameters of (35) concludes.

Since V̇ in (41), a exponential function for upper bound of

e1(t) exists as

‖e1(t)‖ ≤ M‖e1(0)‖exp(−
αt

2
) (43)

where a choice is M =
√

λmax(P1)
λmin(P1)

; as a result, there exits a

dynamic system for upper bound of M‖e1(0)‖exp(−
αt
2 )

ẇ(t) = −
1

2
αw(t) (44)

then, it is easy to see that ‖e1(t)‖ ≤ w(t), ∀t ≥ 0.

A similar proof can be obtained for relations (31)-(33) for

the fault free subsystem.

Reduced sliding mode observer

It is assumed that UIOs have been designed, a proposition to

design SMO for faulty part of system (27) to estimate fault

is proposed and the faulty part is (31). The RSMO is inferred

as follows:

˙̂x2 = a4x̂2 + b̄2ū2 + g2f(T
−1 ˆ̄x, u) +N(ˆ̄x2 − x̂2)

+ν(x̂, ˆ̄x)
ŷ2 = c4x̂2 + d2ū2,

(45)

where ˆ̄x2 is estimated x̂2 from RUIO (32), N is constant

matrix with appropriate dimensions and the gain function

ν(.) is defined by

ν(x̂, ˆ̄x) := k(.)
ˆ̄x2 − x̂2

‖ˆ̄x2 − x̂2‖
(46)

where k(.) is a positive scalar function to be determined and

a sliding surface

S = {t ∈ R+ : s(t) = 0|s(t) = ˆ̄x2 − x̂2} (47)

is considered and x̂2 has affected by only fault signal; there-

fore, sufficient condition for guaranteeing the asymptotic

convergence of fault estimation error and output estimation

error system is described by the following Proposition.

Proposition 2. Given the non-linear system (31) with

Lipschitz constant γ0, consider RSMO structure (45)-(46).

The observer error dynamics is asymptotically stable such

that N for i = 1, . . . , r and a positive-definite symmetric

matrix P3 exist such that the following conditions hold:

a4P3 + P3a
T
4 − N̄ − N̄T < 0 (48)

with N = P−1
2 N̄ and to derive the sliding surface (47) in

finite time and remains on it if k(.) in (46) is chosen to satisfy

k(.) ≥ (‖a3‖+ ‖g2‖γ0)w(t) + ‖ec‖γ1 + η (49)

Proof. Let e3 = ˆ̄x2 − x̂2. Then from (45) and (32), the

state estimation error is described by

ė3 = (a4 −N)e3 − a3e1 + g2f̃ + ecfa(t)− ν (50)

let V (e3) = eT3 P3e3; therefore, the time derivative of V
along the trajectories of the system (50) is given by

V̇ (e3) = eT3 ((a4 −N)P3 + P3(a4 −N)T )e3+

2eT3 P3(a3e1 + g2f̃ + ecfa(t)− ν)
(51)

since by design symmetric negative definite first part of (51)

(a4 −N)P3 + P3(a4 −N)T < 0 (52)

first condition (48) is concluded. By applying (13), (14) and

(44) in (51)

V̇ ≤ 2‖e3‖λmax(P3)((‖a3‖+ ‖g2‖γ0)w(t)
+‖ec‖γ1 − ν

(53)

thus second condition (49) is concluded.

Fault estimation scheme

It is assumed that the UIO and SMO are given, have been

designed. In this part, the estimation of fault by using the

SMO’s output and output information is done. Basically the

following theory is the result of two prior Propositions.

Theorem 1. Consider subsystem (31) exists and assume

that the LMIs (34)-(48) are solvable and k(.) is chosen to

satisfy (49),

f̂a(t) = k(.)e−1
c

ˆ̄x2 − x̂2

‖ˆ̄x2 − x̂2‖+ σ1exp{−σ2t}
(54)

Proof. In finite time the error dynamics (50) will be taken

place on surface (47) and ė3 = e3 = 0; therefore, during the

sliding motion, the error dynamics for e3 is given by

0 = −a3e1 + g2f̃ + ecfa(t)− ν (55)

− a3e1 + g1f̃ + ecfa(t) = ν (56)

where ν denotes discontinuous signal (46) must take on

the average νeq , the equivalent output error injection signal

Edwards and Spurgeon (1998) to preserve the sliding motion.

From Lipschitz constrain (13) and upper bound (44),

‖ − a3e1 + g2f̃‖ ≤ (‖a3‖+ γ0)‖e1‖ → 0(t → 0) (57)
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Figure 2. Suggested robust fault estimation scheme for Wind

turbine with its interconnections.

thus estimation of fault f̂a(t) is recovered by the equivalent

output error injection signal νeq .

νeq ≃ k(.)
ˆ̄x2 − x̂2

‖ˆ̄x2 − x̂2‖+ σ1exp{−σ2t}
(58)

where σ1 and σ2 are both positive constants such that

f̂a(t) ≃ k(.)e−1
c

ˆ̄x2 − x̂2

‖ˆ̄x2 − x̂2‖+ σ1exp{−σ2t}
(59)

Hence the proof completes.

Each element of νeq corresponds to the same fault,

therefore we have accurate fault estimation. First set of RUIO

can remove all disturbances or uncertainties and second set

RSMO estimates exact fault; therefore, the estimated fault

can be used for fault accommodation control. In the Figure

2 to make it clear the proposed fault estimation scheme, its

subsystems and the signalling configuration has been shown.

Figure 1 next to Figure 2 shows a complete layout of faults,

disturbances in wind turbine and the robust fault diagnosis

scheme.

The disadvantage of the proposed approach may be offline

computation and apply the result to real-life experiments;

but, it will be an advantage when a real-time case is

considered for less computational volume.

Case study: Wind turbine

In this section, simulation results of the proposed fault

estimation scheme for the WT are presented. Simulations of

the WT subjected to a stochastic wind speed under fault in

pitch and drivetrain subsystems are conducted with respect

to the fault-free case. The results prove the performance of

the fault estimation technique under different fault scenarios.

Wind speed time series with a mean speed of 12m/s,

and over 44000(sec) of simulation time is illustrated in

Figure (3) with the wind elevation and four different wind

speeds at hub height and three speeds at the three-blade tips,

respectively, shown in Figure (4). In the following section,

to test normal condition, performance and effectiveness of

the controller presented. The wind profile is applied to the

wind turbine without any sensor and actuator faults and

disturbances. Then, in fault scenario sections, faults in the

drivetrain and pitch subsystems are considered and the time

increment is chosen 0.01(sec).
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Figure 3. Wind speed time series with a mean speed of

12m/s.
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Wind speed at hub

Wind speed at the blade 1

Wind speed at the blade 2

Wind speed at the blade 3

Figure 4. Wind speed time series at the hub (blue solid line),

blade 1 (green dashed line), 2 (magenta asterisk) and 3 (cyan

point) for WT.

Fault-free case

In this section, the wind turbine works in two specific

regions of the graph are shown in Figure 5. In zone 1,

the wind turbine will be awaiting higher wind speeds 0 -

3m/s. In zone 2, the generated power of the wind turbine

will be optimized and in zone 3, the wind turbine will be

controlled to keep a constant power generation. In zone

4, the wind turbine will be parked, preventing damage

due to the high wind speed. Zone 2 is denoted the power

optimization and zone 3 is denoted power reference and these

are corresponded to control modes 1 and 2. In this paper,

a simple control scheme Odgaard et al. (2009) has been

used and the focus is on the fault estimation of the wind

turbine. Figure 6 shows the control procedure for power and

pitch-regulated wind turbine algorithm. In Figure 6, ωnom

and ωδ are the nominal generator speed and small offset

subtracted from the nominal generator speed (to avoid the

control modes are switching all the time). In both control

modes, the generator torque reference and the pitch reference

Tg,r and βr are the control parameters and the same reference

is for all three pitch systems.
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Figure 5. Illustration of the reference power curve for the wind

turbine depending on the wind speed.
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Figure 6. Control procedure for a wind turbine.

In control mode 1, The optimal value of λ is denoted

λopt is the optimum point in the torque coefficient Cp. This

optimal value is achieved by setting the pitch reference to

zero βr = 0 and the reference torque to the converter Tg,r as

follows:

Tg,r = Kopt

(

ωg

Ng

)2

(60)

where

Kopt =
1

2
ρAR3Cpmax

λopt3
(61)

with ρ the air density, A the area swept by the turbine blades,

and Cpmax
the maximum value of the torque coefficient.

In control mode 2, the pitch system using a PI controller

trying to keep ωg at ωnom has been controlled.

β̇r = Kpe+Ki

∫

e (62)

where e = ωg - ωnom. In this case, the converter reference is

used to suppress fast disturbances by

Tg,r =
Pr

ηgcωg

(63)

The used controller parameters can be found in Table 4.

Table 4. Controller parameters used in the benchmark model

Odgaard et al. (2009)

ωnom = 162rad/s Kopt = 1.2171
ωδ = 15rad/s Ki = 1
Pr = 4.8× 106W Kp = 4

A series of simulation results are presented to investigate

the performance of the standard condition of the closed-loop

system. Rotor and generator speed simulation responses are

shown in Figure 7 for drivetrain and pitch positions in Figure

8 are shown for pitch subsystems. Figure 9 presents generator

torque time series and its reference. Figure 10 presents

power generated from the generator subsystem and power

generated reference is 4.8MW . The operating conditions are

normal, and the system has been capable to meet its control

objectives, the pitch angels and the generator torque. This is

absolutely seen in the Figures 8 , 9.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.5

1

1.5

2

ro
to

r 
s
p

e
e

d
 (

rp
m

)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
50

100

150

200

g
e

n
e

ra
to

r 
s
p

e
e

d
 (

rp
m

)

time (s)

 

 

ω
g

ω
r

ω
g

Figure 7. Rotor speed (blue dashed line) and generator speed

(green solid line) time series for drivetrain subsystem.

Fault scenario 1: faults in the drivetrain

subsystem

In this section the effectiveness of the proposed fault

estimation design is demonstrated by applying it to a wind
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Figure 8. Generator torque reference (blue solid line) and

generated by generator and converter subsystem (green

dot-dashed line) time series.

Figure 9. The pitch position (blue dashed line, black asterisk

and magenta point) and its reference (green solid line) for blade

1,2 and 3.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

time (s)

p
o

w
e

r 
p

ro
d

u
c
e

d
 b

y
 t

h
e

 g
e

n
e

ra
to

r

 

 

P
g

P
r

Figure 10. The power generated from the generator (green

dashed line) and power refer to the wind turbine (blue solid line).

turbine benchmark Odgaard et al. (2009). The generator

and rotor speed is simulated with a constant and ramp bias

fault during 200s− 400s, 1200s− 1400s, 2200s− 2400s
and 3200s− 3400s. Step or ramp signals are the usual test

signal that has used in this paper as the system is capable

of responding and estimating different types of fault with the

abrupt or incipient profile. The proposed method in this paper

is not dependent to signal domain or time occurrence. The

simulation results are shown in Figures 11-14.
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Figure 11. The drivetrain fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

0s− 1000s.
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Figure 12. The drivetrain fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

1000s− 2000s.

where it can be seen that the estimated faults follows the

real fault signals closely whether or not a disturbance has

occurred. Distribution matrices are:

Ed =





1
0
0



 , Ec =





0
1
0



 , Fd =





1
1
0



 , Fc =





0
1
0





(64)

and transformation matrices:

T =





1 0 0
0 1 0
0 0 1



 S =





−1.4142 0 0
−0.7071 0.7071 0
0 0 1





(65)
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Figure 13. The drivetrain fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

2000s− 3000s.

Figure 14. The drivetrain fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

3000s− 4400s.

The observer parameters are designed as follows:

RUIO: The RUIOs are proposed to disturbance and faults

rejection separately. The observer parameters are selected as

follow:

H1 =
[

−.9715
]

J1 =
[

0 −48.9135 0 0
]

W1 =
[

−0.6845
]

R1 =
[

0.0026
]

(66)

H2 =

[

−.0408 0.00151
0 −1.7169

]

J2 =

[

0.0042 0 −0.0026
0 0 0

]

W2 =

[

1.4152 7.0685e4
0 0

]

R2 =

[

0.0001 0.0042
0 −1

]

(67)

RSMO: The RSMO scheme is designed to generate

estimated faults in the pitch subsystem. The observer

parameters are selected as follow:

N =

[

0.9600 7e4
−0.0105 2

]

k(.) =
[

2
]

(68)

The estimated fault is shown in Figures 11 - 14 in different

duration, from which it is straightforward to determine

whether there is a fault or not and also the severity of the

fault. From the simulation results, there is an exact fault

estimation by using the RUIO and RSMO scheme. There

is different shape and domain for disturbance and fault

signal, but the fault estimator could detect the fault and

reject disturbance as early as possible. The high precision

in tracking fault signals occurred at different operating times

of the system indicates the effectiveness of the system. In

fault signals with an abrupt change, the estimated signal

has overshoot in their transient responses (Figure 11). But

in incipient fault signals, there is no trace of overshoot

(Figure 14). Although overshoot in transient response could

not affect the estimator and it has followed the changes in

the fault signals. The rapid reaction in this scheme shown in

all figures will be effective for starting each FTC scheme.

Another scenario that the fault and disturbance occurred in

different duration is carried out in the following section.

Fault scenario 2: faults in the pitch subsystem

Faults in the pitch system influence the structural dynamics

of the WT. Distribution matrices are:

Ed =

















0
0
1
0
0
0

















, Ec =

















1
0
0
0
1
0

















, Fd =





0
0
1



 , Fc =





1
1
0





(69)

and transformation matrices:

T =

















0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















S =





0 0 −1
0 1 0
−1 0 0





(70)

Faults in actuators and sensors can be estimated effectively

by RSMO. More information about observers schemes are

listed as:

RUIO:

H1 =
[

−5.1570
]

J1 =
[

0 0 32.8329 0 0 −1
]

W1 =
[

1.0083
]

R1 =
[

0.0016
]

(71)
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H2 =













−123.5012 −1.0006 −58.0869
246.7908 −13.3325 99.7430
0 0 −0.6481
−19.3941 −0.1557 12.6707
−115.8723 0.0606 −55.1028

0 0
0 0
0 0

−6.1560 −11.6964
1 0













J2 =













0 0
0 −1
0 0
0 −1
0 0













W2 =













0 −1.0011
0 1.0005
0 0
0 −0.1592
0 −0.9380













R2 =













0 0
0 0
−0.0305 0
0 −0.0013
0 0.0005













(72)

RSMO:

N =









0.1 −1 0 0 0

123.4321 −13.1320 0 0 0

0 0 0.3 0 0

0 0 0 −5.656 −11.6964

0 0 0 1 0.15









k(.) =
[

20
]

(73)

The pitch subsystem fault scenarios are presented in terms

of pitch angle variations in Figures 15-16. It is easy to

know whether or not a fault has occurred from the provided

estimation results. For example in Figure 15, it is clear

that a pitch sensor fault occurred during 200− 400 has

been estimated by the proposed fault estimation scheme

carefully. Moreover, the estimated signal is not affected by

the disturbance during 500− 700. The estimation of the fault

signal f̂a defined according to (54), is shown in Figures 15-

16. With the estimated fault signal, RSMO is carried out with

the strategy presented in ”Fault estimation scheme” section.

Faults in actuators and sensors can be detected effectively

by the fault estimator scheme. Figure 15 shows the effects of

a fault and disturbance in control mode. The fault has been

estimated, and the disturbance has been rejected accurately.

Figures 15 - 16 show effects the incipient fault in control

mode 2. The results show that faults will be estimated

accurately, and it is not dependent on the operating point of

the wind turbine. This section and previous section provide

some comparative results with respect to fault estimation

scheme with a fault in the process and measurement

with disturbance in the process and measurement of a

wind turbine model. It was assumed that the process

under investigation could be non-linear and its available

measurements were usually not absolutely reliable, due to

the wind speed uncertain nature. The simulation results are
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Figure 15. The pitch position fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

2000s− 3000s.
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Figure 16. The pitch position fault (blue solid line), disturbance

(green dashed line) and fault estimated (magenta dot line) f̂ in

3000s− 4400s.

completely accurate for estimated fault and without any

delay time that is shown in Figures 15 - 16 and also in Figures

11 - 14.

Conclusion and Future work

The wind power generation systems have great potential to

overcome the environmental problem of reducing carbon

emissions. WTs are complex that depends on many factors

on the cost associated with maintenance thus it is important

to continue operating in the presence of faults, minimizing

downtime and maximizing productivity. Each WT is

completely different with foundation properties as well as

environmental conditions like wind turbulence and waves.

This paper has presented on a benchmark onshore version of

a large WT for the simulations and analyzed to examine the

design of the fault estimation scheme. At first, faults in pitch

and drivetrain systems and disturbances in dynamic model

and measurements are considered. Then, with proposed

orthogonal transformations, faulty subsystems are separated

from the rest of the system. Two reduced order unknown
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input and sliding mode observers designed to estimate sensor

and actuators faults. Finally, sensor and actuators corrected

with estimated faults. The novelty is the strategy is not

depended to the current controller, but the result will be

effective on the quality of the closed-loop system. This

concept can also be applied in the different type of WTs

with a variety of control methodologies where describes the

complexity of the system, reference trajectories, memory

capabilities and other different design factors. This strategy

can be easily implemented in practice because of low data

storage and off-line systematic mathematical operations.

This method can easily expand to non-linear modelling of

the physical systems. The system behaviours in simulations

in healthy and faulty conditions are acceptable or close

together. The proposed fault estimation scheme detects in a

short time the shape and magnitude of the faults. This feature

is a novelty for development of other fault tolerant schemes

for WTs itself. The new scheme tracked the fault signal

in the presence of any disturbance and rejected it totally,

but SMO scheme could not achieve this. To compare old

methodology, the effectiveness of this scheme is completely

is shown by simulation results. Indeed, a robust scheme is

proposed in order to be sensitive to a fault and insensitive

to the disturbance or any unknown input signals. The

most significant contribution of this article is to propose

a novel and powerful scheme to remove disturbance in

measurements and estimate sensor and component faults.

The state observer, obtained via a Lyapunov function, and

all the procedure is formulated by LMIs. The results of

the application of these observers to sample models show

satisfactory identification properties in the existence of

output and input disturbances. We remark that the resulting

strategies in this paper can be easily implemented in the real-

time plant.

Some highlighted issue during the development of this

paper has been detected that could be investigated in future

work. The first is a different type of WTs structures,

especially types of floating can be used to analyze the

different environmental factors that belong to the systems.

The second is the different types of faults. In this paper,

faults in two subsystems of a WT were considered, but there

are many sources of faults in present and also the future.

The third is fault accommodation that has some limitation in

compensation of process faults. Although the proposed fault

estimation can conquer all types of faults, the control strategy

for fault accommodation is not suitable for component types

of faults.
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