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SUMMARY

General recent techniques in fault detection and isolation (FDI) are based on H∞ optimization methods
to address the issue of robustness in the presence of disturbances, uncertainties and modeling errors.
Recently developed linear matrix inequality (LMI) optimization methods are currently used to design
controllers and filters, which present several advantages over the Riccati equation-based design methods.
This article presents an LMI formulation to design full-order and reduced-order robust H∞ FDI filters
to estimate the faulty input signals in the presence of uncertainty and model errors. Several cases are
examined for nominal and uncertain plants, which consider a weight function for the disturbance and a
reference model for the faults. The FDI LMI synthesis conditions are obtained based on the bounded
real lemma for the nominal case and on a sufficient extension for the uncertain case. The conditions for
the existence of a feasible solution form a convex problem for the full-order filter, which may be solved
via recently developed LMI optimization techniques. For the reduced-order FDI filter, the inequalities
include a non-convex constraint, and an alternating projections method is presented to address this case.
The examples presented in this paper compare the simulated results of a structural model for the nominal
and uncertain cases and show that a degree of conservatism exists in the robust fault estimation; however,
more reliable solutions are achieved than the nominal design. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increasing complexity of engineering systems demands higher safety and reliability, leading
to the need for fault detection (FD) and fault tolerant control (FTC) methods. Monitoring and
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diagnosing faults in a system is an important objective in itself, but in an FTC system, the output
signals from fault detection and isolation (FDI) modules may also be used to reconfigure the
controller module in order to accommodate the fault. To develop FD methods, much effort has
been dedicated since the pioneer works of Beard [1] and Jones [2], but the number of real FTC or
FDI applications is very low till today. The functions of monitoring and diagnosing systems are
necessary to provide early warning of faulty sensors, actuators or system components, avoiding
economical loss or dangerous situations for operators or users. Some surveys of the FDI methods
[3–6] and books present the basics of the many different methods developed to detect faults [7, 8].

Early FDI methods were based on hardware redundancy to reveal malfunctions in sensors or
actuators. However, these methods are expensive and their use will be gradually reduced as the
analytical methods are becoming more reliable. For critical systems, e.g. aircrafts, satellites, deep-
space probes, etc., combinations of both approaches shall reduce the number of redundant hardware
components. Analytical redundancy methods for FDI are based on the comparison of the actual
measured and expected signals, the so-called residuals, generated through established relations
between input and output signals. These methods may be classified into two broad categories,
model-based or knowledge-based, which use, respectively, mathematical modeling of the monitored
system or some logical description of the measured signals and its components [4].

In general, two separate processes are necessary: residual generation and residual evaluation.
The residual signals must be small if no fault is present and must become significant if there is
a fault. The first process compares the redundant signals to generate the residuals. The second
process aims at evaluating the residual signals in order to achieve three different tasks: detection,
isolation and identification of possible faults [3], or, in other words, trigger an alarm when a fault
is present, localize it and determine its severity. During the first two decades, some aspects of
model-based methods have been the main research themes, such as unknown inputs estimation,
how to reduce the influence of disturbances on the residuals and how to maximize its sensitivity to
faults. The work turned during the 1990s to adapting control methods such as H2 and H∞ [9–14],
trying to make the residuals sensitive to faults but insensitive to disturbances and solving the
problem through Riccati equations. However, only a mathematical nominal model of the system
is usually available, not necessarily considering the presence of exogenous disturbance inputs and
noise, and also time-varying parameters and non-modeled plant dynamics. The focus has so been
addressed to the search of FDI methods applied to dynamic uncertain systems with modeling
errors and unknown inputs. The goals of a current FDI method are to make the residuals not
only sensitive to faults and insensitive to disturbances but also robust to dynamical uncertainties
and uncertain or time-varying parameters. It is obvious, though, that some frequency distribution
differences between the exogenous inputs and faults are necessary, in order to be possible to
discriminate the unknown input signals from the faults, through processing of the measured outputs
and the generated residuals. The present work intends to contribute to the robust design of model-
based FDI filters for systems presenting parameter and dynamic uncertainties, adopting a linear
matrix inequality (LMI)-based approach to solve the problem. Some commentaries about recent
developments are presented next.

Among the significant new topics that arose in the last years, the H−-index is concerned
with the performance ratio between unknown disturbance and residual sensitivity. The initial
approach [15] considered the relationship between the H− index (regarding that it is not a norm)
of the transfer function of the fault vector to the residual and the H∞-norm of the transfer
function of the disturbance vector to the residual, leading to a mixed index problem. Extending
this formulation, including the uncertain external loop, the work of Chen and Patton [13] presents

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:1657–1680
DOI: 10.1002/rnc



ROBUST FAULT ESTIMATION OF UNCERTAIN SYSTEMS 1659

a more complete development, with the solution for the observer based on the �-analysis method.
Adopting the same mixed index formulation, using an LMI approach, but not including the uncertain
loop, the configuration presented in Rambeaux et al. [16] makes use of extra dynamics through
filtering the output of the observer, leading to better sensitivity of the detector.

Some authors adopted parametric uncertain systems using a polytopic representation for the
uncertainties. Hamelin and Sauter [17] presented a frequency domain procedure based on interval-
type parameter uncertainties, leading to a polytopic unstructured uncertain model of the system.
Also using the frequency domain, Casavola et al. [18] formulated the FDI filter design problem
with two objectives for polytopic uncertain LTI systems, not needing to know a nominal plant
model. The objectives are to minimize the H∞-norm of the disturbance to residual map and the
maximization of the lowest singular value of the residual to faults map over a prescribed frequency
range. This renders a non-convex constraint, which may be recast into a convex one, through
the linearization of the corresponding feasibility region, resulting in a quasi-LMI problem. The
projection lemma and congruence transformations are used to solve the problem. Frisk and Nielsen
[19] address the problem of robust residual generation in the presence of parametric uncertainties
and deterministic disturbances that influence the process, focusing on the designing dealing with
parametric uncertainty in a structured residual framework.

Separating the formulation as different objectives has been another common approach. A mixed
H2 and H∞ residual generator is proposed by Khosrowjerdi et al. [20], assuming fixed spectral
densities for the unknown disturbances treated as an H2 objective and bounded energy for the
uncertain input formulated as an H∞ filtering problem. The authors justify their options considering
that the H2-norm cannot guarantee robustness, whereas the H∞-norm can reduce sensitivity to
faults but provides robustness to the uncertainties. The main advantage is the possibility of adjusting
the trade-off between detection performance and noise sensitivity through a single parameter. An
FDI filter for uncertain systems with modeling errors and disturbance inputs, using a two observers
approach, is presented by Zhong et al. [21], for a sub-divided state space. The first part of the
state variable is only affected by plant input and unknown disturbances, and the second part is
only affected by faults. A two-objective H∞ respective problem is formulated and solved using
an LMI technique.

Recently, presenting a more complete treatment of uncertain systems and also a multi-objective
design method, the approach of Henry and Zolghadri [22] imposes sensitivity to faults through an
H−-index over specified frequency ranges and H∞ performance to enforce robustness to model
uncertainty. It also included additional requirements of regional poles assignment for the FD filter,
searching to tune the transient response and a decay rate of the residual.

To enforce the frequency behavior of the FDI filter, Frisk and Nielsen [23] introduced the idea
of using a reference model in an FDI framework. Considering that the performance of the FDI
filter should be devised as a trade-off between robustness to modeling errors and insensitivity
to unknown inputs, Zhong et al. [24] reduced the design problem to a standard model-matching
one, through a reference system obtained from nominal design and the synthesis of the filter
minimizing the H∞-norm of the difference between the reference model and the residual generator
output. The unknown input vector includes disturbances, uninterested fault and some norm-bounded
unstructured model uncertainties. The authors consider the major difficulty to be the selection of
a reference model with physical meaning from the FDI viewpoint.

Another recent approach is to impose directly as the residuals, the estimation of the fault signals
themselves, instead of the differences produced in the output signals [25]. This has the advantage of
easily isolating the fault and can be accomplished through a slight change in the index, permitting
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the adoption of H∞ methods to design the filters. The problem easily fits in a standard H∞
optimization control setup, and the observer and the output filter are computed in a single step.

Robust estimation of the faulty input signals is the method adopted in the present work.
A thorough treatment of robustness involving parametric and dynamic uncertainties through input–
output signals representation is adopted, in the sense usually found in the robust controller design
area. The proposed method may also be used to design an output observer and achieve FD in a
more common type of residual. But considering that FD signals may be part of an FTC system,
it is reasonable to expect a better performance from the controller if the fault signals are esti-
mated, instead of a combination of signals without specific significance. An LMI solution of
the H∞ filter has been published [26, 27], and the general robust treatment for H∞ filter design
[28], and they were adapted to robust FDI filter design and formulated as a new set of LMIs.
A complete LMI-based approach to estimate the input fault vector using H∞ filtering is presented
for the continuous-time FDI nominal and robust problems. The proposed formulation allows the
development of necessary and sufficient solvability conditions for the fixed-order FDI filter design.
The full-order H∞ FDI filter design is characterized in terms of convex LMIs whose solution is
parameterized for all admissible filters, for nominal and uncertain plants. The reduced-order H∞
filter design is characterized by LMIs with additional coupling non-convex matrix rank constraints,
and for this case, an alternating projections method is presented that may be applied for both the
nominal and uncertain cases. Some simulation examples for a structural system are presented to
demonstrate the proposed methods.

The notation used in this work is standard. The transpose of a real matrix A is denoted by AT, and
the symbols >,� (<,�) are used to denote positive (negative) definite and semidefinite matrices.
The H∞ norm of a rational transfer function F(s) is defined as ‖F(s)‖∞ =max� �(F( j�)), where
�(·) denotes the maximum singular value of a matrix. The L2 norm of a vector-valued function
f (t), is defined as ‖ f (t)‖L2 ={∫∞

0 f T(t) f (t)dt}1/2. The induced matrix norm is given as ‖A‖=
�(A)={�max(AAT)}1/2. Given a real n×m matrix A with rank r , an orthogonal complement A⊥
is defined as the possibly non-unique matrix that satisfies A⊥A=0 and A⊥A⊥T>0. Hence, the
orthogonal complement may be computed from the singular-value decomposition of a matrix

A=[U1 U2]
[

�1 0

0 0

][
V T
1

V T
2

]

as A⊥ =TUT
2 where T is an arbitrary non-singular matrix. Linear fraction transformations (LFT)

are used to represent the plants to be monitored. Considering the matrices F and S=
[
S11
S21

S12
S22

]
,

the lower LFT is defined as Fl(S,F)= S11+S12F(I −S22F)−1S21, for appropriately dimensioned
matrices and admitting that the inverse exists.

2. NOMINAL PROBLEM FORMULATION

In this section, the nominal H∞ FDI filtering problem is formulated based on the LFT form.
The corresponding LMIs and their solutions for the full-order problem are presented. Also, an
algorithm is proposed to solve the reduced-order problem.
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2.1. LFT modeling

Consider a system plant P of order np with its state-space representation

ẋp = Apxp+Bpu+Epd+Fp f

yp = Cpxp+Dpu+Gpd+Hp f
(1)

where xp is the state vector, u is the control input, d is the disturbance vector, f is the fault vector
and Ap, Bp,Cp,Dp,Ep, Fp,Gp and Hp are real matrices of appropriate dimensions. Fp and Hp are
distribution matrices that model actuator, component and sensor additive faults. The block diagram
depicted in Figure 1 represents the proposed configuration.

In Figure 1, P represents the plant to be monitored and F is the unknown filter that is to be
determined. The estimation error is defined as e=r− f , where r is the residual-generated vector
of the FDI filter F . Our objective is to design a filter F such that r provides an estimate of the fault
vector f . By examining the patterns and properties of vector r , FTC or detection and isolation of
faults for monitoring purposes can be accomplished.

Based on the above formulation, the proposed H∞ optimal filtering problem is to find an FDI
dynamic filter F to minimize the worst-case estimation error energy ‖e‖L2 over all bounded energy
generalized disturbance wT=[uT dT f T], that is

min
F

sup
w∈L2−{0}

‖e‖L2

‖w‖L2

(2)

Adopting the index in (2) is equivalent to minimizing the H∞ norm of the transfer function Twe
between the generalized disturbance input and the error of the fault estimation. The �-suboptimal
H∞ FDI filtering problem is to find (if exists) a filter such that ‖Twe‖∞<�, where � is a given
positive scalar.

The block diagram in Figure 1 can be rearranged as presented in Figure 2. Weighting functions
can be used to shape appropriately the frequency content of the input signals for better FD and
disturbance rejection and can be easily taken into account in the formulation.

In Figure 3, the resultant LFT representation for the nominal plant is presented. Using these
figures and considering the state-space formulation as

ẋs = Asxs+Bww

e = Cexs+Deww+Derr

y = Cyxs+Dyww

(3)

P
F

f

d

e
y

+
-

u r

Figure 1. Proposed FDI filter scheme.
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Figure 2. Rearrangement of the FDI configuration.

w

Sp

F

e

yr

Figure 3. LFT nominal scheme for the filter.

where wT=[uT dT f T] represents the combined vector of inputs, control, disturbances and faults
and yT=[uT yTp ] is the combined output. The corresponding state-space representation in a matrix
form is given by

ẋs = Apxs+[Bp Ep Fp]w

e = [0n f ×nu 0n f ×nd −In f ]w+ In f r

y =
[
0nu×np

Cp

]
xs+

[
Inu 0nu×nd 0nu×n f

Dp Gp Hp

]
w

(4)

where Ce=0 and Der = In f .
Note that in this case the order of the system ns is equal to the order of the plant np, because

there are no weight functions or a reference model included.
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2.2. Continuous-time FDI filter design

To solve the nominal filter design problem using an LMI-based approach in the continuous-time
domain, some algebraic results are presented. Consider a stable nsth-order linear time-invariant
system with the following state-space representation:

ẋs = Asxs+Bww

e = Deww+r

y = Cyxs+Dyww

(5)

where xs is the state vector, y is the output vector, w is the generalized disturbance vector and
As, Bw, Dew,Cy and Dyw are real matrices of appropriate dimensions. It is our objective to design
a stable linear dynamic filter with the following state-space representation:

ẋf = Afxf+Bfy

r = Cfxf+Dfy
(6)

where the output r is the estimated fault vector. The vector xf is the filter state vector, and Af, Bf,Cf,
and Df are real matrices of appropriate dimensions to be computed. The order of the filter nf is
restricted to be less than or equal to the order of the system ns.

An LMI-based H∞ approach will be used to find filter F . The filter design is based on the
bounded real lemma [29], which is presented next.

Lemma 1
Consider a stable linear time-invariant system with state-space model

ẋ = Acx+Bcw

y = Ccx+Dcw
(7)

with transfer function Tc(s)=Cc(s I −Ac)
−1Bc+Dc and let � be a given positive scalar. Then

‖Tc‖∞<� if and only if there exists a matrix P>0 that satisfies

⎡
⎢⎢⎣
PAc+AT

c P PBc CT
c

BT
c P −�2 I DT

c

Cc DT
c −I

⎤
⎥⎥⎦<0 (8)

To find the solvability conditions of the LMI problem in inequality (8), the following lemma
may be applied [29].
Lemma 2
Let �, � and �=�T be given matrices. There exists a matrix F to solve the matrix inequality

�F�+�TFT�T+�<0 (9)
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if and only if the following conditions are satisfied:

�⊥��⊥T < 0 (10)

�T⊥��T⊥T < 0 (11)

These two lemmas may be applied for the case of nominal H∞ FDI filtering to provide the
necessary and sufficient conditions for the existence of such filters and the parameterization of all
solutions. The following theorem gives the solution to the �-suboptimal H∞ FDI filtering problem.

Theorem 1
There exists an nfth-order filter F to solve the �-suboptimal H∞ FDI filtering problem if and only
if there exist matrices X and Y with Y�X>0 such that the following conditions are satisfied:

[
X As+AT

s X XBw

BT
wX −�2 I

]
< 0 (12)

[
CT
y

DT
yw

]⊥[
Y As+AT

s Y Y Bw

BT
wY DT

ewDew −�2 I

][
CT
y

DT
yw

]⊥T

< 0 (13)

rank(X−Y ) � nf (14)

The proof of this theorem is presented in Appendix A.

For the full-order FDI filter design (nf=ns), the rank constraint represented by inequality (14)
is automatically satisfied and it is not necessary to be included in the formulation. However, the
plant order increases when a weighting function or a reference model is included, demanding a
reduced-order FDI filter design (nf<ns). This is also a common requirement for complex high-
order plants. In this case, the rank constraint renders a non-convex problem, demanding alternate
methods to solve the system.

To provide a parameterization of all feasible filters, consider the error system Fl(Sp,F) from
the LFT scheme of Figure 3. Defining the state-space vector as xT=[xTs xTf ], this error system is
described by the following state-space equations:

ẋ =
[

As 0

BfCy Af

]
x+

[
Bw

BfDyw

]
w

e = [DfCy Cf]x+[Dew +DfDyw]w

This system can be rewritten as

ẋ = (A0+BFM)x+(B0+BFE)w

e = (C0+HFM)x+(D0+HFE)w
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for the respective matrices

A0 =
[
As 0

0 0

]
, B0=

[
Bw

0

]
, C0=0, D0=Dew

B =
[
0 0

0 I

]
, M=

[
Cy 0

0 I

]
, E=

[
Dyw

0

]
, H =[I 0]

(15)

where the unknown filter matrix is defined as

F=
[
Df Cf

Bf Af

]

Applying Lemma 1, the inequality in (8) becomes⎡
⎢⎢⎣
P(A0+BFM)+(A0+BFM)TP P(B0+BFE) (HFM)T

(B0+BFE)TP −�2 I (D0+HFE)T

HFM D0+HFE −I

⎤
⎥⎥⎦<0

Using Lemma 2, it can be easily devised from (9) that

�=
⎡
⎢⎣
PB

0

H

⎤
⎥⎦ , �T=

⎡
⎢⎢⎣
MT

ET

0

⎤
⎥⎥⎦ and �=

⎡
⎢⎢⎣
PA0+AT

0 P PB0 0

BT
0 P −�2 I DT

0

0 D0 −I

⎤
⎥⎥⎦ (16)

Considering the definitions in (16), the following result provides a parameterization of all feasible
filters based on the solution (X,Y ) of the FDI solvability conditions (12)–(14).

Theorem 2
All the �-suboptimal H∞ FDI nth-order filters F that correspond to a feasible matrix pair (X,Y )

are given by

F=
[
Df Cf

Bf Af

]
=−R−1�T��T�+�1/2 J�1/2

where �, R and J are free matrix parameters subject to

�=(�R−1�T−�)−1>0, R>0, ‖J‖<1

� and � defined by

� = R−1−R−1�T(�−��T���)�R−1

� = (���)−1

The proof is not presented here but follows the same approach as in Grigoriadis and Watson
[26]. Theorem 2 provides a set of solutions that guarantees the H∞ norm bound for the system.
The free parameters may be used then to optimize other system properties.
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2.3. Reduced-order filter design via alternating projections

In the previous section, the continuous-time full-order FDI filter design has produced convex LMI
constraints, represented by inequalities (12) and (13). On the other hand, the reduced-order FDI
filter design requires the inclusion of the rank constraint, inequality (14), leading to a non-convex
problem. Recently proposed numerical techniques have been used to solve such reduced-order
feasibility and optimization problems [30, 31].

In this work, alternating projections are used to solve the �-suboptimal reduced-order FDI
filter problem. Alternating projections were used in the past in statistical estimation and image
reconstruction problems. The basic idea behind these techniques is the following: given a family
of convex sets, a sequence of alternating orthogonal projections onto these sets converges to a
point in the intersection of the family. Only local convergence is guaranteed for non-convex sets
with an initial starting point that is in the vicinity of a feasible solution.

The standard alternating orthogonal projection algorithm is summarized in the following result.

Theorem 3
Let {C1,C2, . . . ,Cn} be a family of closed, convex sets in a Hilbert space such that the intersection
C1∩C2∩·· ·∩Cn is non-empty and define by Pi the orthogonal projection operator onto the set
Ci . Then the sequence of alternating projections

x1= P1x0

x2= P2x1

...

xn = Pnxn−1

xn+1= P1xn

xn+2= P2xn+1

...

converges to a point in the intersection C1∩C2∩·· ·∩Cn for any initial vector x0. If the intersection
is empty, the sequence of alternating projections does not converge.

In order to use the alternating projections techniques, one needs to provide explicit expressions
for the orthogonal projections onto the LMI constraints. Expressions for these projections have
been derived in [30]. The rank constraint, in the reduced-order FDI design, is enforced using the
following iterative scheme.

Step 1: Choose an upper and a lower bound for � and initial values for the matrix pair (X,Y ).
Step 2: Solve the feasibility problem, excluding all the non-convex constraints (in this case, it

is the rank constraint), for X and Y .
Step 3: Use the success or the failure of the previous step in conjunction with the bisection

method to update the lower and the higher bounds of �.
Step 4: If step 2 is a success (feasible), then project on the non-convex constraints.
Step 5: If the difference of two consecutive �’s is greater than a tolerance, go to step 2. Otherwise,

the procedure ends.
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3. ROBUST FDI PROBLEM FORMULATION

The robust FDI filter problem will follow the same principles as in the nominal case in order to
obtain a parameterization of all possible solutions. To present a more general treatment, a reference
model is considered for the fault vector and a weighting function for the disturbance input. The
weighting function is used to obtain a desired frequency response for the system, i.e. to improve the
performance through a low-pass filter behavior attenuating high-frequency noise. This is basically
the same role as in a control system design. FD only demands a significant residual, that is the error
in the plant output estimation, but for fault estimation the system needs to be invertible, implying
the existence of the direct term between the fault input and the plant output. A strictly proper
system does not present this feature, and a non-proper weighting function may be used to provide
the necessary invertibility. A reference model can be used to shape the frequency response of the
filter, but it may also improve the performance index and assure filter stability for non-minimal
phase plants. A solution to include a reference model in the nominal filter design is presented in
Nobrega et al. [32].

3.1. LFT modeling with a reference model

Consider the following linear time-invariant plant P of order np with state-space representation

ẋp = Apxp+Bpu+Epyd +Fp f + Jxv

z = Czxp+Dzu+Gz yd +Hz f + Jzv

yp = Cpxp+Dpu+Gpyd +Hp f + Jyv

(17)

where xp is the state-space vector, yp is the output vector, z is the uncertainty output, u is the
control input vector, yd is the weighted disturbance of input vector d , f is the fault vector
and v is the uncertainty input, such that v=�(t)z, where �(t) is a block diagonal function
matrix, where each block element is a real diagonal matrix or a full complex matrix and subject
to ‖�(t)‖∞<1 [29]. This encompasses the most general description, including structured and
unstructured uncertainties. Ap, Bp,Cp,Dp,Ep,Fp,Gp,Hp,Cz,Dz,Gz,Hz, Jx , Jy and Jz represent
the distribution matrices of appropriate dimensions. The block diagram depicted in Figure 4
represents the proposed configuration, where P represents the plant to be monitored, F is the
unknown filter, M is the reference model, Wd is a weight function for the disturbance and � is
the feedback relation for the uncertainty. The estimation error is defined as e=r−m, where r
is the residual-generated vector of the FDI filter F and m is the output of the reference model.
The FDI filter must be designed in order to minimize the error in the presence of the control
input, disturbances and uncertainty. The design problem is to find a stable filter F , such that its
output must follow the fault vector filtered through a chosen reference model M , when the plant
is subjected to fault, control and disturbance inputs, and uncertainty. If the transfer matrix of the
reference model is diagonal, the output of the filter is the fault vector estimation. Otherwise, if
it is a rectangular matrix, the filter output is a vector of fault combinations, leading to a fault
detector, but with the convenience of filtering each fault signal with a different transfer function,
represented by the reference model matrix elements.

The robust filtering problem is to find an FDI dynamic filter F to minimize the worst-case esti-
mation error energy ‖e‖L2 over all bounded energy generalized disturbance input wT=[uT dT f T]
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Figure 4. Robust scheme including a reference model and a weight function.
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Figure 5. Rearrangement of the block diagram in Figure 4.

despite an uncertainty that is subjected to ‖�(t)‖∞<1 constraint. The optimization problem is cast
to find a filter that minimizes the following index:

min
F

sup
‖�‖∞<1,w∈L2−{0}

‖e‖L2

‖w‖L2

(18)

Again, adopting the index in (18) is equivalent to minimizing the H∞ norm of the transfer
function Twe between the generalized disturbance input and the error of the fault estimation in the
presence of uncertainty. The �-suboptimal H∞ robust FDI filtering problem is to find (if exists) a
filter such that sup‖�‖∞<1 ‖Twe‖∞<�, where � is a given positive scalar.
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The block diagram shown in Figure 4 is rearranged and represented in Figure 5. To provide good
FDI capability, appropriate weighting functions are used to penalize the disturbance, the fault and
the uncertainty vectors, in addition to using the reference model. For the sake of simplicity, only
the disturbance has been weighted here. The following state-space models represent the weight
function and the reference model

ẋd = Adxd +Bdd

yd = Cdxd +Ddd

ẋm = Amxm+Bm f

m = Cmxm+Dm f

The rearranged system in Figure 5 is grouped as depicted in Figure 6 in order to use the LFT
scheme, where Su represents the plant, reference model and disturbance weighting function all
integrated in one block. The state-space formulation for the system Su is

ẋs =
⎡
⎢⎣
Ap EpCd 0

0 Ad 0

0 0 Am

⎤
⎥⎦ xs+

⎡
⎢⎣
Jx

0

0

⎤
⎥⎦v+

⎡
⎢⎣
Bp EpDd Fp

0 Bd 0

0 0 Bm

⎤
⎥⎦w

z = [Cz GzCd 0]xs+ Jzv+[Dz GzDd Hz]w
e = [0 0 −Cm]xs+[0 0 −Dm]w+ In f r

y =
[
0 0 0

Cp GpCd 0

]
xs+

[
0

Jy

]
v+

[
Inu 0 0

Dp GpDd Hp

]
w

v = �z

(19)

w Su

F

e

yr

∆

zv

Figure 6. An LFT scheme for the robust filter.
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The following definitions will be adopted for the rest of the paper, where the corresponding
matrices are related to (19):

ẋs = Asxs+Bvv+Bww

z = Czxs+Dzvv+Dzww

e = Cexs+Deww+ In f r

y = Cyxs+Dyvv+Dyww

(20)

The order of the system ns is the sum of the order of the plant, the order of the weight function
and the order of the reference model. In consequence, the full-order FDI filter will have its order
higher than the order of the plant, justifying the need for the reduced-order filter solution.

3.2. Continuous-time robust FDI filter design

To solve the robust problem using an LMI-based approach in the continuous-time domain,
another lemma and theorem will be presented. Consider a stable nth-order linear time-invariant
system represented as in Equation (20) and the linear dynamic filter definition which is given in
Equation (6), whose output r is to estimate the fault vector, filtered through the reference model.
The order of the filter nf is again restricted to be less than or equal to the order of the system Su .

There is no necessary and sufficient condition for robust stability presently in the literature.
The following lemma is a sufficient condition extension for the bounded real lemma, including
the uncertainty relation [29]. This sufficient condition makes the solutions tend to be conservative.
Introducing a scaling matrix is prone to reduce this conservatism. Defining the scaling matrix S
as a block diagonal matrix, where each block is a complex positive-definite full matrix or a real
positive diagonal matrix, such that �= S−1/2�S1/2, the lemma may be presented as follows.

Lemma 3
Consider a stable linear time-invariant uncertain system

ẋ = Acx+Bc1v+Bc2w

z = Cczx+Dcz1v+Dcz2w

e = Ccex+Dce1v+Dce2w

v = �z

(21)

with ‖�(t)‖∞<1 and let � be a given positive scalar. Then the closed-loop transfer function
condition ‖Twy‖∞<� holds if there exists a matrix P>0 that satisfies⎡

⎢⎢⎣
PAc+AT

c P PBc1 PBc2

BT
c1P −S 0

BT
c2P 0 −�2 I

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

CT
cz CT

ce

DT
cz1 DT

ce1

DT
cz2 DT

ce2

⎤
⎥⎥⎦
[
S 0

0 I

][
Ccz Dcz1 Dcz2

Cce Dce1 Dce2

]
<0 (22)

The solvability condition of Lemma 2 also applies to the inequality of Lemma 3. Using these
two lemmas, the sufficient condition for the existence of the robust FDI filter is presented next.
The following theorem gives the solution to the �-suboptimal robust H∞ FDI filtering problem.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:1657–1680
DOI: 10.1002/rnc



ROBUST FAULT ESTIMATION OF UNCERTAIN SYSTEMS 1671

Theorem 4
There exists an nth-order filter F to solve the �-suboptimal H∞ FDI filtering problem if there exist
matrices X and Y with Y�X>0 such that the following conditions are satisfied:[

AsX+X AT
s +�2BvS

−1BT
v +BwBT

w XCT
z +�2BvS

−1DT
zv +BwDT

zw

CzX+�2DzvS
−1BT

v +DzwBT
w �2(DzvS

−1DT
zv −S−1)+DzwDT

zw

]
<0 (23)

⎡
⎢⎢⎣

CT
y

DT
yv

DT
yw

⎤
⎥⎥⎦

⊥⎡
⎢⎢⎣
Y As+AT

s Y +CT
z SCz+CT

e Ce Y Bv +CT
z SDzv Y Bw +CT

z SDzw +CT
e Dew

BT
v Y +DT

zvSCz DT
zvSDzv −S DT

zvSDzw

BT
wY +DT

zwSCz+DT
ewCe DT

zwSDzv DT
zwSDzw +DT

ewDew −�2 I

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

CT
y

DT
yv

DT
yw

⎤
⎥⎥⎦

⊥T

<0 (24)

[
Y �I

�I X

]
� 0

rank(X−Y ) � nf

(25)

The proof of this theorem is presented in Appendix B.

Conditions (23) and (24) of Theorem 3 are convex LMI constraints on the matrix parameters X
and Y . For the full-order FDI filtering problem, where nf=ns, the rank constraint (25) is redundant
and the computational problem is a convex LMI problem. To find the parameterization of all robust
filters, Theorem 2 may be applied again, but it is necessary to find the new matrices. Considering
the new state vector as a combination of the plant and filter states, xT=[xTs xTf ], the closed-loop
system Fl(S,F), from the LFT scheme of Figure 6, is described by the following state-space
equations:

ẋ =
[

As 0

BfCy Af

]
x+

[
Bv

BfDyv

]
v+

[
Bw

BfDyw

]
w

z = [Cz 0]x+Dzvv+Dzww

e = [Ce+DfCy Cf]x+(DfDyv)v+(Dew +DfDyw)w

Adopting the formulation

ẋ = (A0+BFM)x+(B01+BFE1)v+(B02+BFE2)w

z =C1x+D011v+D012w

e = (C2+H2FM)x+(H2FE1)v+(D022+H2FE2)w
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the new introduced matrices are given by

A0 =
[
As 0

0 0

]
, B01=

[
Bv

0

]
, B02=

[
Bw

0

]

D011 = Dzv, D012=Dzw, D022=Dew

C1 = [Cz 0], C2=[Ce 0]

B =
[
0 0

0 I

]
, M=

[
Cy 0

0 I

]
, E1=

[
Dyv

0

]
, E2=

[
Dyw

0

]
, H2=[I 0]

(26)

with the unknown filter defined as

F=
[
Df Cf

Bf Af

]

Applying Lemma 3, inequality (22) becomes

⎡
⎢⎢⎣
P(A+BFM)+(A+BFM)TP P(B01+BFE1) P(B02+BFE2)

(B01+BFE1)
TP −S 0

(B02+BFE2)
TP 0 −�2 I

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

CT
1 (C2+H2FM)T

DT
011 (H2FE1)

T

DT
012 (D022+H2FE2)

T

⎤
⎥⎥⎦
[
S 0

0 I

][
C1 D011 D012

C2+H2FM H2FE1 D022+H2FE2

]
<0

(27)

Applying Schur formula to (27), and using Lemma 2, it can be devised from (9) that

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

PB

0

0

0

H2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, �=[M E1 E2 0 0] and �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

PA+ATP PB01 PB02 CT
1 CT

2

BT
01P −S 0 DT

011 0

BT
02P 0 −�2 I DT

012 DT
022

C1 D011 D012 −S−1 0

C2 0 D022 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Using the new �, � and � as defined by (28), Theorem 2 may now be applied to find the
parameterization of all robust filters. For the reduced-order problem, the alternating projections
method presented in the previous section (nominal case) may be applied.
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Some comments are necessary to explain the use of the scaling matrix in Theorem 4 in the
proposed algorithm. This scaling matrix is an attempt to reduce the conservatism of the robust
solutions that result from the general representation of the uncertainties and the non-existence of
a necessary and sufficient theorem for the robust case. But its inclusion results in a non-convex
optimization problem corresponding to inequalities (23)–(25) depending on the representation
adopted. Recall that in Theorem 4 the scaling matrix S and also its inverse are present. To address
this non-convex problem, an iterative solution is adopted, beginning with an initial value for the
scaling matrix and after solving the LMIs of Theorem 4 in terms of X and Y and finding a filter,
optimizing the cost � with respect to the S matrix. This procedure is repeated till an acceptable
solution is found. The proposed iterative algorithm is guaranteed to converge, but convergence to a
global optimum for the � value is not guaranteed. The scaling matrix is similar to constant D-scales
from complex structured singular value theory [33] and the iterative approach corresponds to the
D–K iteration for structured value synthesis [34].

4. NUMERICAL EXAMPLES

The proposed method is applied to a simulated example in this section. Consider a second-order
mechanical system that consists of a mass, spring and damper system, with parameter uncertainties
(�1 and �2) in the stiffness and damping coefficients, respectively. The system is described by the
following state-space equations:

ẋ1 = x2

ẋ2 = −a0x1−a1x2+u+d+ f −v1−v2

z1 = �1a0x1

z2 = �2a1x2

y = (b0−b2a0)x1+(b1−b2a1)x2+b2u+b2d+b2 f −b2v1−b2v2

where a0=1,a1=1,b0=1,b1=0.3,b2=0.1. Assume that both the weight function and the refer-
ence model are a second-order low-pass filter with two poles at −3rad/s, chosen in order to achieve
noise rejection without affecting the plant dynamics in the low-frequency range. The uncertainties
are 10% for �1 and 40% for �2.

Considering first the plant without weight functions and reference model, the nominal optimal
value for the performance index � was found to be 0.7071 and for the robust case 0.8483. In
general, it must be expected that the nominal index should be less than the robust index.

To analyze the performance of these systems, the uncertain model is simulated using the two
differently designed filters. The singular value plots of the error transfer functions, i.e. the transfer
matrix between the disturbance input and the filtering errors, are presented in Figure 7, for both
cases. These graphs were obtained using the nominal and robust filters and the plant being subjected
to five pairs of stiffness and damping coefficient uncertainties, respectively (2,8%), (4,16%),
(6,24%), (8,32%) and (10,40%). This scheme of variation in uncertainties is followed in all
graphs presented here. For the nominal design, the horizontal line in the bottom corresponds to
the � optimal value in decibels. All the plots are above this value, implying that the performance
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Figure 7. Nominal (above) and robust (below) FDI filter design results.

when the design does not take into account the uncertainty is indeed unbounded. For the robust
design, the � value in decibels for the uncertain case now appears consistently in the top of the
graph, representing the limit for the singular value plots. However, it may be seen that the nominal
design curves are below the respective robust curve, showing a better performance for the given
constant uncertainties. This is an apparent contradiction, found also in the other presented designs.
It may be explained based on the difference in the � value for the two designs and on the small
sensitivity of the used plant related to the uncertainties. The robust design is necessarily conserva-
tive, and the scaling matrix is introduced in order to reduce this factor, but the proposed iterative
approach cannot guarantee the optimal global solution. However, the lack of an upper bound for
the nominal design renders it unreliable, unless an accurate mathematical model of the plant is
known.

In Figure 8, the filter designs including the disturbance weight function are presented. The
nominal � value is the same 0.7071 and the robust one is 0.8432, just a little less than the value
found before. However, it may be seen that the performance of both the designs are better than
in the previous cases, but some of the nominal curves still cross the horizontal bound line. This
confirms that the nominal design does not present a reliable upper limit. Again, the robust plots
are always below the optimal � value. The main difference, seen in both designs, is the low-pass
characteristic in all curves, caused by the introduction of the weight function.

Considering the inclusion of the reference model for the nominal and robust designs, the
respective singular value plots may be seen in Figure 9. The � values are, respectively, 0.7071
and 0.8477. The nominal design curves present the low-pass filter effect, but the high-frequency
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Figure 8. Nominal and robust FDI filter design results, including the disturbance weight function.

rejection is better now compared with the design with the weighting function. Again, some curves
are above the respective � value in the low-frequency region. For the robust case, the results are
similar to the previous cases. All curves are below the limit, but the high continuous roll-off in
the high-frequency region implies a better noise rejection.

5. CONCLUSIONS

An H∞ filter design for FDI, based on the estimation of the input fault vector, was presented for the
nominal and the uncertain representation of the plant, using an LMI-based approach. Two different
sets of LMIs were obtained for each case, whose solution, if the problem is feasible, represents
the parameterization of all H∞ FDI filters. For the full-order problem, the filter design constraints
are convex, but for the reduced-order filter, an additional rank constraint results in a non-convex
problem. An alternating projections algorithm for this case was presented. The robust filtering
formulation includes a scaling matrix to reduce the conservatism of this design. For this case, an
iterative algorithm is proposed that alternates between the solution of the filter and the scaling
parameters, but no global optimum convergence of the algorithm is guaranteed. The formulations
were used in a numerical simulated example with several different configurations showing that
including a reference model to filter the fault signals improves the performance. However, even
including the scaling matrix, the results for the examples are still conservative. The comparison
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Figure 9. Nominal and robust FDI filter design results, including the reference model.

between the nominal and robust design results, for all examined cases, demonstrates the necessity
of the robust design to guarantee a reliable upper bound of the error transfer functions.

APPENDIX A

A.1. Proof of Theorem 1

Considering the closed-loop system Fl(S,F) from the LFT scheme of Figure 3, and the definitions
in (15) and (16), and that the orthogonal complement of � is

�⊥ =

⎡
⎢⎢⎣
[
B

H

]⊥
0

0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
P−1 0 0

0 0 I

0 I 0

⎤
⎥⎥⎦

and defining

�=
[
B

H

]⊥
=[I 0 0], �=

[
A0P

−1+P−1AT
0 0

0 −I

]
and �=

[
B0

D0

]
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condition (10) of Lemma 2 leads to the inequality

���T+ 1

�2
���T�T<0

Partitioning P as

P−1=
[

Z Z12

ZT
12 Z22

]

making X = Z−1, and substituting for the LFT matrices in (15), it yields the following inequality:

X As+AT
s X+ 1

�2
XBwBT

wX<0

which corresponds to condition (12) of Theorem 1.
For condition (11) of Lemma 2, considering that

�T⊥ =

⎡
⎢⎢⎣
[
MT

ET

]⊥
0

0 I

⎤
⎥⎥⎦

and the following definitions

	=
[
MT

ET

]⊥
, �=

[
PA0+AT

0 P PB0

BT
0 P −�2 I

]
and �=[0 D0]

it can be easily shown that it becomes

	�	T+	�T�	T<0

Substituting, it yields[
MT

ET

]⊥([
PA0+AT

0 P PB0

BT
0 P −�2 I

]
+
[

0

DT
0

]
[0 D0]

)[
MT

ET

]⊥T

<0

Partitioning P as

P=
[

Y Y12

Y T
12 Y22

]

and considering that

	=
[
MT

ET

]⊥
=
⎡
⎣[ CT

y

DT
yw

]⊥
0

⎤
⎦
⎡
⎢⎣
I 0 0

0 0 I

0 I 0

⎤
⎥⎦

inequality (13) results after some simple algebraic manipulations.
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APPENDIX B

B.1. Proof of Theorem 4

Considering the closed-loop system Fl(Su,F), from the LFT scheme of Figure 6, the definitions
in (27) and (28), and that

�⊥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

B

0

H2

⎤
⎥⎦

⊥

0 0

0 I 0

0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P−1 0 0 0 0

0 0 0 I 0

0 0 0 0 I

0 I 0 0 0

0 0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and defining

� =
⎡
⎢⎣

B

0

H2

⎤
⎥⎦

⊥

, �=

⎡
⎢⎢⎣
AP−1+P−1AT P−1CT

1 P−1CT
2

C1P
−1 −S−1 0

C1P
−1 0 −I

⎤
⎥⎥⎦

�1 =
⎡
⎢⎣

B01

D011

0

⎤
⎥⎦ and �2=

⎡
⎢⎣

B02

D012

D022

⎤
⎥⎦

condition (10) of Lemma 2 yields the inequality⎡
⎢⎢⎣

���T ��1 ��2

�T1�T −S 0

�T2�T 0 −�2 I

⎤
⎥⎥⎦<0

Applying the Schur complement formula, it becomes

���T+��1S
−1�T1�T+ 1

�2
��2�

T
2�T<0 (B1)

Partitioning P as P−1=(1/�2)
[

X
X12

XT
12

X22

]
, substituting for the LFT matrices in (28), and considering

that

�=

⎡
⎢⎢⎢⎢⎣
0 0

0 I

0 0

I 0

⎤
⎥⎥⎥⎥⎦

⊥

=
[
I 0 0 0

0 0 I 0

]

substitution of these terms in (B1) multiplied by �2 leads easily to condition (23) of Theorem 4.
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For the second part of Theorem 3, considering that

�T⊥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

M

ET
1

ET
2

⎤
⎥⎥⎦

⊥

0 0

0 I 0

0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the definitions

	 =

⎡
⎢⎢⎣

M

ET
1

ET
2

⎤
⎥⎥⎦

⊥

, �=

⎡
⎢⎢⎣
PA+ATP PB01 PB02

BT
01P −S 0

BT
02P 0 −�2 I

⎤
⎥⎥⎦

�1 = [C1 D011 D012] and �2=[C2 0 D022]
it can be easily shown that condition (11) of Lemma 2 becomes⎡

⎢⎢⎣
	�	T 	�T1 	�T2

�1	
T −S−1 0

�2	
T 0 −I

⎤
⎥⎥⎦<0

Applying the Schur complement formula, it leads to the following inequality:

	�	T+	�T1 S�1	
T+	�T2�2	

T<0 (B2)

Partitioning P as P=
[
Y Y12

Y T
12 Y22

]
and substituting the respective matrices in (28), it leads to

inequality (24).
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