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Robust Fault Reconstruction for LPV Systems Using Sliding Mode
Observers

Halim Alwi and Christopher Edwards

Abstract

This paper presents a robust FDI scheme using a sliding mode observer based on an LPV system, with fault
reconstruction capability. Both actuator and sensor fault reconstruction schemes are considered which possess
robustness against a certain class of uncertainty and corrupted measurements. For actuator fault reconstruction,
the input distribution matrix (associated with the actuators being monitored) is factorized into fixed and varying
components. LMIs are used to design the key observer parameters in order to minimize the effect of uncertainty
and measurement corruption on the fault reconstruction signal. The faults are reconstructed using the output error
injection signal associated with the nonlinear term of the sliding mode observer. For sensor fault reconstruction,
the idea is to re-formulate the problem into an actuator fault reconstruction scenario so that the same design
procedure can be applied. This is achieved by augmenting the original system with the filtered sensors being
monitored. Simulations using a full nonlinear model of a large transport aircraft are presented, and show good fault
reconstruction performance.

I. INTRODUCTION

Fault detection and isolation (FDI) is an important feature, for timely detection of faults. It provides awareness
to the operator of any faults present in the system and allows appropriate action to be taken quickly. Also, in active
fault tolerant control [40], fast FDI is crucial in providing fast controller reconfiguration to attempt to maintain the
level of performance.

FDI using linear based observers is a mature field of study. For practical implementation, one of the challenges of
linear observer design is to ensure performance over wide operating conditions. Linear FDI designs usually perform
well close to the design point, but the performance might degrade as the system moves away. This may lead to poor
fault detection performance, and result in false alarms or missed detection. To overcome this issue, a popular and
widely used method in industry, especially in aerospace applications, is to use gain scheduling. However, typically
these schemes are based on ad-hoc methods. Although it is a convenient form of scheduling (where the gains
designed at multiple trim points are scheduled), as argued in [8], these ad-hoc methods lack proofs and guarantees
of performance and even stability (other than at the designed points). Furthermore, from a practical point of view,
having to implement families of observers designed about many points to cover a wide range of operating conditions
is both time consuming to design, and can be complicated to implement. A more formal way to extend linear time
invariant (LTI) based designs is to consider a Linear Parameter Varying (LPV) approach. In LPV based designs the
gains are automatically scheduled during the design process through the plant varying parameters. There has been
significant research in these areas in the last decade in order to exploit the convenience of extending LTI design
methods to achieve performance and stability guarantees. A significant portion of this research has been directed
towards FDI (see for examples [7], [9], [10], [11], [21], [22], [34], [41], [37]).

One obvious benefit of LPV based design is the formal stability proofs and guarantees of robustness over a
wide set of operating conditions. The applicability of the underlying linear design strategies with extension to
LPV systems, means there is no requirement for a total redevelopment of new FDI design. The simplicity and
the convenience of exploiting already widely used linear design methodologies means conversion into an LPV
framework allows simpler transition when applied to the actual system. Although there are direct nonlinear model
based FDI approaches for nonlinear systems (see for example [5], [12], [1]), most of them require radically new FDI
design approaches. However in aircraft systems and other safety critical application, this leads to implementation
and certification issues.

H. Alwi and C. Edwards are currently with the College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4
4QF, UK. h.alwi@exeter.ac.uk, C.Edwards@exeter.ac.uk
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In some cases it is much easier and more convenient to use an LPV based design due to model availability. For
example, in aircraft systems, a nonlinear FDI observer design often requires information about the aerodynamic
coefficients, which is hard to obtain in the required form. However an LPV representation can easily be built
from available families of linear systems over the entire flight envelope (see [8], [29] for examples of LPV system
development and [32] for a recent generalized LPV model generation scheme). Through polynomial fitting, the LPV
models may explicitly contain information about the aerodynamic coefficient variations over the flight envelope.
This is convenient and readily available information, which can be used to retain a good fidelity level compared to
the actual system. Therefore LPV based design seems to provide a good compromise between local LTI methods
and a full blown nonlinear design.

For practical implementation of FDI schemes, robustness issues with regard to plant model-mismatch, uncertainty
and sensor measurement corruption have to be taken into consideration. Despite the potential benefit of employing
an LPV based design, the LPV model used as the basis of the observer will be imperfect, and this might cause
false alarms or missed detections. For a LPV model generated using an interpolation of families of localized linear
models (which is a commonly used approach), plant-model mismatch is present (especially) in the interpolated
region where the model is not well defined (see for example [25], [29] for validation tests of an LPV plant
comparing the actual plant states and LPV states). Other LPV generating methods will contain imperfect plant
information due to simplifications and assumptions. Therefore robustness issues have to be considered during the
FDI design process in order to minimize the risk of missed detections or false alarms. This motivates the work
which will be presented in this paper.

Another emerging technique in the field of FDI is the sliding mode approach. The early work (see for example
[24], [43]) uses traditional residual ideas for the output estimation error in order to detect faults. In [24], [43] the
sliding motion is allowed to break in the presence of faults/failures in the system. More recent work [44], [26]
and especially [14], [38], [16] uses the robustness property of sliding modes to provide not only the detection of
faults, but also more information about the ‘size’ and ‘shape’ of the faults. This is achieved through reconstruction
of the faults by analyzing the ‘output error injection’ signals which are required to maintain sliding even in the
presence of faults. In systems where redundancy is not available, the reconstruction of faults can be beneficial –
especially for sensor fault tolerant control problems (see for example [2]). However, most of the work in this area
is developed based on LTI or quasi linear systems (see for example [42]) and is therefore restricted to near trim
conditions.

There has been relatively little previous work in the area of sliding modes applied to LPV systems. That said,
notable exceptions in the area of control are described in [36], [31]), and recent work [15] has applied higher order
sliding mode ideas to LPV systems for so-called interval observers. Recently, the work in [3] explored the potential
of using sliding mode techniques for LPV systems, specifically for FDI with fault reconstruction. The design in
[3] employs a simple pole placement method to exploit the design freedom but does not consider uncertainty in
the system or measurement disturbances. In this paper, a more advanced design approach compared to [3] will be
considered, and a Linear Matrix Inequality (LMI) synthesis approach will be applied to ensure robustness. Similar
to the LTI based design proposed in [38], the idea is to minimize the effect of uncertainty and sensor measurement
corruption on the quality of the fault reconstruction signals.

This paper proposes a fault reconstruction scheme based on a LPV system representation for both actuator and
sensor faults which is robust against sensor measurement corruption and a certain class of model uncertainty.

The observer is designed using a ‘virtual’ system associated with the fixed distribution matrix and the other system
matrices. The observer gains comprise varying linear and fixed nonlinear components (associated with the nonlinear
term). The ‘virtual fault’ is reconstructed through appropriate scaling of the equivalent output error injection signal,
and this is mapped back to actual actuator faults by rearranging the factorized input distribution matrix. For sensor
faults, the idea is to re-formulate the problem into an actuator fault reconstruction scenario so that the same design
procedure can be used. This problem re-formulation is achieved by augmenting the original system with filtered
versions of the sensors being monitored. This augmentation is of lower order compared to the one proposed in
[38], where the original system is augmented with the filtered version of all the outputs. This is advantageous
as a much lower (augmented) system order will be considered in the LMI analysis during the observer design.
Second order sliding mode methods (which require no smoothing) will be considered for the equivalent output
error injection signal. This scheme still allows an ideal sliding motion to be achieved (without any smoothing) and
therefore preserves the robustness property of sliding modes.
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Simulation results from an established nonlinear aircraft benchmark model (associated with the European FP7
‘Advanced Fault Diagnosis for Sustainable Flight Guidance and Control’ (ADDSAFE) project1) will be used to
demonstrate the proposed scheme for reconstructing a sensor fault. This constitutes one of the benchmark problems
which is being investigated in the ADDSAFE project.

The notation employed is reasonably standard. The expression In represents an identity matrix of order n, the
symbol IR represents the field of real numbers and R(·) represents the range space of the matrix. Finally ∥ · ∥
represents the Euclidean norm of vectors or the induced spectral norm for matrices.

II. LPV SYSTEM DESCRIPTION

Consider an uncertain (affine) LPV plant subject to actuator faults represented by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +H(ρ)fi(t) +Mξ(t, y, u) (1)

y(t) = Cx(t) + d(t) (2)

where A(ρ) ∈ IRn×n, B(ρ) ∈ IRn×m,H(ρ) ∈ IRn×q are parameter varying matrices, while C ∈ IRp×n and
M ∈ IRn×k are fixed matrices. It is assumed that C has full row rank. It is assumed n > p ≥ q and that the
inputs u(t) and the output measurements y(t) are available for the FDI scheme. The signal d(t) ∈ IRp represents
a corruption of the true outputs and results in imperfect sensor measurements.

The unknown signal fi(t) : IR+ → IRq and represents the effect of the actuator faults: when fi ̸= 0 a fault exists
in the system, and fi ≡ 0 represents nominal fault–free conditions. The signals ξ(t, y, u) : IR+× IRp× IRm → IRk

encapsulate the uncertainty in the system. It is assumed that ξ(·) is unknown but has a bounded derivative, and
∥ξ̇(t, y, u)∥ < b where the scalar b is known. The varying parameters, ρ ∈ Ω ⊂ IRr (where Ω is a compact set),
are assumed to be available and perfectly measurable.
Assumption 1: The signal d(t) is low frequency in nature so that from a frequency domain perspective

d(s) = Gd(s)ϕ(s) (3)

for some stable low pass transfer function matrix Gd(s) and unknown input ϕ(s) : IR+ 7→ IRp. In this paper the
simplest possible filter structure is considered given by

ḋ(t) = −afd(t) + afϕ(t) (4)

where af ∈ IR+ is a positive scalar. This is equivalent to Gd(s) = diag( af

s+af
, . . . , af

s+af
). In (4), the unknown

signal ϕ(t) is assumed to be bounded by ∥ϕ∥ < bϕ where bϕ is a positive scalar.
Assumption 2: It will be assumed that R(H(ρ)) ⊂ R(B(ρ)) and that the varying matrix H(ρ) can be perfectly
factorized into

H(ρ) = FE(ρ) (5)

where F ∈ IRn×q is fixed, and E(ρ) ∈ IRq×q is a varying matrix which is assumed to be invertible for all ρ ∈ Ω.
The assumption that E(ρ) is invertible will assist in the reconstruction of the faults, and will be discussed later in
the paper.

This factorization is quite common for over actuated systems or for fault tolerant systems with built–in redundancy
e.g. large civil aircraft [28]. Using (5), the system in (1) can be rewritten as

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) + F E(ρ)fi(t)︸ ︷︷ ︸
fν(t,ρ)

+Mξ(t, y, u) (6)

where the signal fν(t, ρ) : IR+× IRr → IRq represents the unknown ‘virtual faults’. The observer design strategy
will initially estimate fν(t, ρ) instead of fi(t). The estimation of the actual fault fi(t) can then be derived from the
estimates of fν(t, ρ). Assume that

∥fν(t, ρ)∥ < a(t, ρ, u) (7)

where a(t, ρ, u) : IR+× IRr × IRm → IR+ is a known bounded function.

1http://addsafe.deimos-space.com
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III. LPV SLIDING MODE OBSERVER

A. Observer Structure

The proposed observer has the structure

˙̂x(t) = A(ρ)x̂(t) +B(ρ)u(t)−Gl(ρ)ey(t) +Gnν(t) (8)

ŷ(t) = Cx̂(t) (9)

where Gl(ρ), Gn ∈ IRn×p are the observer gain matrices and ν(t) represents a nonlinear function of the output
estimation error to induce a sliding motion [14] (which will be discussed later). The output estimation error

ey(t) := ŷ(t)− y(t) = Ce(t)− d(t) (10)

where e(t) = x̂(t)− x(t). Subtracting (6) from (8) yields the state estimation error system

ė(t) = A(ρ)e(t)−Gl(ρ)ey(t) +Gnν(t)− Ffν(t)−Mξ(t) (11)

The objective is to force the output estimation error ey(t) to zero in finite time, and induce a sliding mode on the
sliding surface

S = {e(t) ∈ IRn : ey(t) = 0} (12)

In the ideal case when the measurement corruption term d(t) = 0, S in (12) corresponds to a surface on which
the output of the observer exactly follows the plant output. The idea is that, during sliding, the signal fν(t, ρ) will
be estimated using the ‘equivalent output injection’ [13], [14], [38] (i.e. the signal ν(t) must take on average to
maintain sliding). The design freedom associated with the observer in (8) are the design gains Gl(ρ) and Gn. In
sliding mode observers, it is the gain associated with the nonlinear injection terms which is important (in this case
Gn), since during sliding ey = 0, and the effect of Gl(ρ) is diminished. However, the choice of Gl(ρ) can be
exploited to ensure global state estimation error convergence.
Assumption 3: rank(CF ) = q

Since F in (5) is a fixed matrix and CF is full rank, there exists a coordinate transformation x(t) 7→ Tox(t) (where
To ∈ IRn×n), similar to the one proposed in [14], which gives a coordinate system in which the output distribution
matrix has the structure

y(t) =
[
0 T

]
︸ ︷︷ ︸

C

[
x1(t)
x2(t)

]
+ d(t) (13)

where T ∈ IRp×p is orthogonal, and the fault distribution matrix

F =

[
0(n−p)×q

F2

]
=

 0(n−p)×q

0
Fo

 (14)

where F2 ∈ IRp×q and Fo ∈ IRq×q and is nonsingular. In these coordinates the system matrix A(ρ) is not assumed
to have any special structure. At this juncture, no special structure will be imposed on Gl(ρ) from (8), but it will
be assumed

Gn =

[
−LT T

T T

]
(15)

where the design matrix L ∈ IR(n−p)×p is assumed to have a special structure

L =
[
L1 0

]
(16)
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with L1 ∈ IR(n−p)×(p−q). Whilst (15) appears to have a restricted structure, it is shown in earlier work ([14])
that L1 is in fact a parametrization of the available freedom to influence the reduced order sliding motion. In this
observer regular form, the error system (11) can be written in detail as[

ė1(t)
ė2(t)

]
=

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

]
︸ ︷︷ ︸

A(ρ)

[
e1(t)
e2(t)

]
−
[

0
F2

]
︸ ︷︷ ︸

F

fν(t, ρ)−
[
M1

M2

]
︸ ︷︷ ︸

M

ξ−
[
Gl1(ρ)
Gl2(ρ)

]
︸ ︷︷ ︸

Gl(ρ)

ey(t)+

[
−LT T

T T

]
︸ ︷︷ ︸

Gn

ν(t) (17)

where e1(t) ∈ IRn−p and e2(t) ∈ IRp. The gain sub–matrices Gl1(ρ) ∈ IR(n−p)×p, Gl2(ρ) ∈ IRp×p. The objective
is to design the matrix L (in the definition of Gn) in (15) since this matrix affects the sliding motion dynamics. A
design methodology for L and Gl for LTI systems appears in [38]. This paper will propose a different strategy for
designing L and Gl(ρ) based on the problem formulation discussed earlier.

B. Observer Design

Notice from (13) and (10) that

ey(t) = Te2(t)− d(t) (18)

During an ideal sliding motion, ėy(t) = ey(t) = 0, therefore from (18), Te2(t) = d(t) and T ė2(t) = ḋ(t). During
sliding, substituting for these quantities in (17) yields

ė1(t) = A11(ρ)e1(t) +A12(ρ)T
Td(t)− LT Tνeq(t)−M1ξ(t) (19)

0 = TA21(ρ)e1(t) + TA22(ρ)T
Td(t) + νeq(t)− TF2fν(t)− TM2ξ(t)− ḋ(t) (20)

where the signal νeq(t) is the so-called ‘equivalent output injection’ signal [14] which is required to maintain a
sliding motion. Let d̂(t) := T Td(t) and solve for νeq(t) from equation (20) to give

νeq(t) = −TA21(ρ)e1(t)− TA22(ρ)d̂(t) + TF2fν(t) + TM2ξ(t) + ḋ(t) (21)

Substituting (21) into (19) and using the fact that LF2 = 0 and ˙̂
d(t) = T Tḋ(t) yields

ė1(t) = (A11(ρ) + LA21(ρ))e1(t) + (A12(ρ) + LA22(ρ))d̂(t)− (M1 + LM2)ξ(t)− L
˙̂
d(t) (22)

Define a reconstruction signal as

f̂ν(t) = WT Tνeq(t) (23)

where W has a structure

W =
[
W1 F−1

o

]
(24)

and W1 ∈ IRq×(p−q) is design freedom. The square invertible matrix Fo is from (14), and thus W has only partial
design freedom. Multiplying (21) with WT T and rearranging yields

f̂ν(t)− fν(t) = −WA21(ρ)e1(t)−WA22(ρ)d̂(t) +WM2ξ(t) +W
˙̂
d(t) (25)

since WF2 = Ip for any choice of W1.
Substituting (4) into (22) and (25) and augmenting e1(t) with d(t) to create ea(t) = col(d̂(t), e1(t)), yields the

system

ėa(t) = Aa(ρ)ea(t) +Baξa(t) (26)

f̂ν(t)− fν(t) = Caea(t) + Faξa(t) (27)

where the augmented disturbance signals ξa(t) = col(ξ(t), ϕ̂(t)) and ϕ̂(t) := T Tϕ(t). It follows from (4) that

˙̂
d(t) = −af d̂(t) + af ϕ̂(t) (28)
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and the state space matrices from (26)-(27) are given by

Aa(ρ) =

[
−afIp 0

A12(ρ) + LA22(ρ) + afL A11(ρ) + LA21(ρ)

]
(29)

Ba =

[
0 afIp

−(M1 + LM2) −afL

]
(30)

Ca(ρ) =
[
−WA22(ρ)− afW −WA21(ρ)

]
(31)

Fa =
[
WM2 afW

]
(32)

To introduce extra degrees of design freedom, define a weighting matrix

∆ = diag(δ1Ik, δ2Ip) (33)

to scale Ba and Fa in (30) and (32). This extra freedom will be used to introduce a design penalty, trading-off
performance against uncertainty in the plant ξ(t, y, u) and corruption to the measurements from ϕ̂(t).

The objective now is to design L in (29) and (30) with the structure in (16), which stabilizes A11(ρ) +LA21(ρ)
while minimizing the effect of ξa(t) on the reconstruction error f̂ν(t)− fν(t) in (26) and (27). Using the Bounded
Real Lemma [17], if there exist symmetric matrices Paf

∈ IRp×p and P11 ∈ IR(n−p)×(n−p) such that AT
a(ρ)P1 + P1Aa(ρ) P1(Ba∆) CT

a

(Ba∆)TP1 −γI (Fa∆)T

Ca (Fa∆) −γI

 < 0 (34)

P1 =

[
Paf

0
0 P11

]
> 0 (35)

then ∥f̂ν − fν∥ < γ∥ξa∥. Note that the structure of P1 in (35) introduces conservatism but will be shown to aid
tractability.

Using arguments similar to those in [41], it will be assumed that the system in (26) and (27) can be represented
as a polytopic system where the range of admissible ρ corresponds to a polytope R with vertices ω1, ω2, . . . ωnω

where nω = 2r. Therefore using the vertex property discussed in [41], [6], the affine LPV system matrices
(Aa(ρ), Ba, Ca(ρ), Fa) in (34) and (35) can be replaced by (Aa(ωi), Ba, Ca(ωi), Fa) and the LMIs in (34) can be
solved for all the vertices of the polytopic system.

Once the gain L has been synthesized, apply a further state transformation to the system in (13)-(17) of the form[
ẽ1(t)
ẽ2(t)

]
:= TL

[
e1(t)
e2(t)

]
(36)

where TL ∈ IRn×n is given by

TL :=

[
I L
0 T

]
(37)

and L (defined in (16)) is the design matrix obtained from solving the LMIs associated with (34) and (35).
In the new coordinates the error system from (17) can be written as[
˙̃e1(t)
˙̃e2(t)

]
=

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

]
︸ ︷︷ ︸

Ã(ρ)=TLA(ρ)T−1
L

[
ẽ1(t)
ẽ2(t)

]
−

[
0

F̃2

]
︸ ︷︷ ︸
F̃=TLF

fν(t, ρ)−
[
M̃1

M̃2

]
︸ ︷︷ ︸
M̃=TLM

ξ(t)−
[
G̃l1(ρ)

G̃l2(ρ)

]
︸ ︷︷ ︸
G̃l(ρ)=TLGl

ey(t) +

[
0
I

]
︸ ︷︷ ︸

G̃n=TLGn

ν(t) (38)

where the fact that LF2 = 0 (because of the structures of F and L in (14) and (16)) has been used to obtain the
expression for F̃ . The matrix Ã(ρ) is given as

Ã(ρ) =

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

]
=

[
A11(ρ) + LA21(ρ) A12(ρ)T

T + LA22(ρ)T
T − Ã11(ρ)T

TL
TA21(ρ) TA22(ρ)T

T − TA21(ρ)T
TL

]
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By definition, F̃2 = TF2 and

C̃ = CT−1
L =

[
0 I

]
(39)

Due to the special structure of L from (16), further partition A21(ρ) from (17) as

A21(ρ) =

[
A211(ρ)
A212(ρ)

]
(40)

where A211(ρ) represents the top (p− q) rows of A21(ρ). Then, Ã11(ρ) from (38) can be written as

Ã11(ρ) = A11(ρ) + L1A211(ρ) (41)

By construction, if the LMI in (34) is satisfied, L (and L1) have been designed such that Ã11(ρ) is quadratically
stable. This follows because

Ã11(ρ)
TP11 + P11Ã11(ρ) < 0 (42)

for all ρ ∈ Ω since the expression in (42) represents the top left sub-block of Aa(ρ)
TP1 +P1Aa(ρ) < 0 exploiting

the block diagonal form of P1 in (35). From (10) and (39), ey(t) = ẽ2(t) − d(t), and the set of equations from
(38) and (4) yield an augmented system ḋ

˙̃e1
ėy


︸ ︷︷ ︸
ėa(t)

=

 −afIp 0 0

Ã12(ρ) Ã11(ρ) Ã12(ρ)

Ã22(ρ) + af Ã21(ρ) Ã22(ρ)


︸ ︷︷ ︸

Ãa(ρ)

 d
ẽ1
ey


︸ ︷︷ ︸
ea(t)

−

 0
0

F̃2


︸ ︷︷ ︸
F̃a

fν(t, ρ)+

 0 afT

−M̃1 0

−M̃2 −afT


︸ ︷︷ ︸

M̃a

ξa(t)−

 0

G̃l1

G̃l2


︸ ︷︷ ︸
Gla (ρ)

ey(t)+

 0
0

Ip


︸ ︷︷ ︸
G̃na

ν(t) (43)

Define [
Ãa11

(ρ) Ãa12
(ρ)

Ãa21
(ρ) Ã22(ρ)

]
:=

 −afIp 0 0

Ã12(ρ) Ã11(ρ) Ã12(ρ)

Ã22(ρ) + afIp Ã21(ρ) Ã22(ρ)

 (44)

and [
M̃a1

M̃a2

]
:=

 0 afT

−M̃1 0

−M̃2 −afT

 (45)

Consider a choice of observer gain G̃l(ρ) of the form

G̃l(ρ) :=

[
G̃l1(ρ)

G̃l2(ρ)

]
:=

[
Ã12(ρ)

Ã22(ρ) + k2Ip

]
(46)

where k2 is a fixed positive scalar. Substituting (46) into (43) and defining ẽa1
(t) := col(d(t), ẽ1(t)) yields[

˙̃ea1
(t)

ėy(t)

]
︸ ︷︷ ︸

ėa(t)

=

[
Ãa11

(ρ) 0

Ãa21
(ρ) −k2Ip

]
︸ ︷︷ ︸

Ão(ρ)

[
ẽa1

(t)
ey(t)

]
︸ ︷︷ ︸

ea(t)

−
[

0

F̃2

]
︸ ︷︷ ︸

F̃a

fν(t, ρ) +

[
M̃a1

M̃a2

]
︸ ︷︷ ︸

M̃a

ξa(t) +

[
0
I

]
︸ ︷︷ ︸
G̃na

ν(t) (47)

For the injection term ν(t) ∈ IRp, define the jth component as

νj(t) = −k1sign(ey,j(t))|ey,j(t)|1/2 + zj(t) (48)

żj(t) = −k3sign(ey,j(t))− k4ey,j(t) (49)

for j = 1, 2, . . . p where ey(t) = col(ey,1(t), ey,2(t) . . . ey,p(t)). The variables k1, k3, k4 (and k2) are design scalars
to be chosen. The lower equations from (47) together with (48) can be written component-wise as

ėy,j(t) = ξ̃j(t)− k2ey,j(t)− F̃2,jfν(t, ρ) + νj(t) (50)
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where F̃2,j is the jth row of F̃2 and

ξ̃j(t) := Ãa21,j
(ρ)ẽa1

(t) + M̃a2,jξa(t) (51)

where Ãa21,j
(ρ) and M̃a2

the jth row of the matrices Ãa21
(ρ) and M̃a2

respectively. Consequently combining
(48)-(50) yields

ėy,j(t) = −k1 sign(ey,j(t))|ey,j(t)|1/2 − k2 ey,j(t) + zj(t) + ξ̃j(t)− F̃2,jfν(t, ρ) (52)

żj(t) = −k3 sign(ey,j(t))− k4 ey,j(t) (53)

for j = 1, 2, . . . p. Making the change of variable

z̃j(t) := zj(t) + ξ̃j(t)− F̃2,jfν(t, ρ) (54)

Equations (52)-(53) can be re-written as

ėy,j(t) = −k1 sign(ey,j(t))|ey,j(t)|1/2 − k2 ey,j(t) + z̃j(t) (55)
˙̃zj(t) = −k3 sign(ey,j(t))− k4 ey,j(t) + ϕi(t) (56)

where ϕi(t) =
˙̃
ξj(t)− F̃2,j ḟν(t, ρ), and furthermore

|ϕi(t)| < | ˙̃ξj(t)|+ ∥F̃2,j∥ ∥ḟν(t, ρ)∥

≤ ∥∂Ã21,j

∂ρ
∥ ∥ρ̇∥ ∥ẽa1

(t)∥+ ∥Ã21,j∥ ∥ ˙̃ea1
(t)∥+ ∥M̃a2,j∥ ∥ξ̇a∥+ ∥F̃2,j∥ ∥ḟν(t, ρ)∥ (57)

Since by assumption ∥ξa(t)∥ is bounded and the autonomous system associated with the states ẽa1
(t) in (47) is

stable, both ∥ẽa1
(t)∥ and ∥ ˙̃ea1

(t)∥ are bounded. Provided ∥ρ̇∥ and ∥ḟν(t, ρ)∥ are bounded, it follows |ϕi(t)| < ε
for some sufficiently large scalar ε. Note that (55)-(56) is a special case of the super-twisting structure from [30].
As in [30] the gains from (55) and (56) are chosen as

k1 > 2
√
ε (58)

k2 > 0 (59)

k3 > ε (60)

k4 >
(k2)

2
(
(k1)

3 + 5
4(k1)

2 + 5
2(k3 − ε)

)
k1(k3 − ε)

(61)

Consequently from the results in [30], it follows that ey,j(t) = ėy,j(t) = 0 in finite time. Therefore from (55),
z̃j(t) = 0 in finite time, and from the definition of the observer state z̃j(t) in (54) and the definition of νj(t) in
(48)

νj(t) := zj(t) = F̃2,jfν(t, ρ)− ξ̃j(t) (62)

in finite time where ξ̃j(t) is defined in (51) and f̂ν(t, ρ) = WT Tνj(t) = fν(t, ρ)−WT Tξ̃j(t) = fν(t, ρ)−G(s)ξa(t).
The virtual output fault fν(t, ρ) can be reconstructed online using (23) and ν(t) from (48). By assumption E(ρ)

is invertible, and therefore using the definition of fν(t, ρ) from (6), the real actuator fault can be estimated as

f̂i(t) = E(ρ)−1f̂ν(t, ρ) = E(ρ)−1WT Tν(t) (63)

C. Design summary

This section will provide an over-view of the design process based on the exposition and developments in the
previous section.

1) Recall, the objective is to synthesize the gains Gl(ρ), Gn ∈ IRn×p for (8), and a scaling gain Ŵ ∈ IRq×p to
create an observer of the form

˙̂x(t) = A(ρ)x̂(t) +B(ρ)u(t)−Gl(ρ)ey(t) +Gnν(t) (64)

where in (64) the output error estimation signal is given by

ey(t) = Cx̂(t)− y(t)
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and the injection signal ν(t) ∈ IRp is given componentwise by

νj(t) = −k1sign(ey,j(t))|ey,j(t)|1/2 −
∫ t

0
(k3sign(ey,j(s)) + k4ey,j(s)) ds (65)

where ey(t) = col(ey,1(t), ey,2(t) . . . ey,p(t)). In (65) the variables k1, k3, k4 are design scalars to be chosen.
The fault reconstruction signal is then given by

f̂(t) = Ŵν(t) (66)

2) The fixed gain matrix Gn is parameterized by a matrix L ∈ IR(n−p)×p in (15)-(16). The gain L is synthesized
by solving an LMI optimization problem which minimizes the effect of uncertainty on the reconstruction
signals given in (66). The user inputs to ‘tune’ the LMI solution are the design parameters

∆ = diag(δ1, δ2) (67)

where
δ1=diag(δ1,1 . . . δ1,k), δ2=diag(δ2,1 . . . δ2,p)

which are used to trade-off the requirement for the fault estimation to be insensitive to uncertainty ξ(t, y, u)
in the plant in (1), and be insensitive to the imperfect measurements resulting from ϕ(t) in (4). The outputs
of the LMI optimization associated with (34)-(35) are the gain matrix L and the reconstruction weighting
matrix Ŵ ∈ IRq×p which is used in (66) to form the fault estimate.

3) Once L has been obtained, the gain Gn can be computed from (15).
4) Choose a design matrix of the form −k2Ip where k2 is a positive design scalar. This together with L

parameterizes the varying gain Gl(ρ) given in (46).
5) The scalar gains k1, k2, k3, k4 must be chosen to satisfy

k1 > 2
√
ε, k2 > 0, k3 > ε, k4 >

k22

(
k31 +

5
4k

2
1 +

5
2(k3 − ε)

)
k1(k3 − ε)

(68)

where ε is sufficiently large design scalar. This choice of scalars k1 . . . k4 will ensure a 2nd order sliding
mode will take place in finite time, and be preserved in the face of faults, provide |ḟ(t)| ≤ ε.

IV. SENSOR FAULT RECONSTRUCTION

For a sensor fault reconstruction problem, consider an LPV plant represented by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +Mξ(t, y, u) (69)

y(t) = Cx(t) +Nfo(t) + d(t) (70)

The signal fo(t) ∈ IRq is the (unknown) vector of sensor faults. Again fo ≡ 0 represents fault–free conditions,
while fo ̸= 0 indicates a fault exists in the sensors. Assume that

∥fo(t)∥ < a(t) (71)

where a(t) : IR+ 7→ IR+ is a known function. It is assumed that the columns of N are from the standard basis
for IRp, and the matrix N has full column rank. Again only the inputs u(t) and the output measurements y(t)
are available for the FDI scheme. As before, the signal d(t) ∈ IRp represents a corruption of the true outputs and
results in imperfect sensor measurements even in the fault free case where fo ≡ 0. A clear distinction is therefore
to be made between ever present (minor) corruption represented by d(t) (noise perhaps) and infrequent but serious
corruptions/biases/drifts etc represented by fo(t). Again it will be assumed that the signal d(t) is low pass in terms
of its frequency characteristics and satisfies (3).

By permutating the order of the outputs, without loss of generality, assume that the plant representation is in a
form where the outputs which are prone to faults are in the lower half of the output equations, i.e.

y(t) =

[
y1(t)

y2(t)

]
}fault free
}prone to fault

=

[
C1

C2

]
︸ ︷︷ ︸

C

x(t) +

[
0

Iq

]
︸ ︷︷ ︸

N

fo(t) +

[
d1(t)

d2(t)

]
︸ ︷︷ ︸

d

(72)
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where C1 ∈ IR(p−q)×n and C2 ∈ IRq×n.
The idea is to re-formulate the sensor fault reconstruction problem as an actuator fault reconstruction scenario.

This can be done by filtering the measured output y2(t) and augmenting it with the actual plant state x(t). Consider
the filtered output of y2(t) given by the state zf (t) ∈ IRq: specifically

żf (t) = −Afzf (t) +Afy2(t) (73)

where −Af is a stable matrix belonging to IRq×q. Substituting y2(t) from (72) into (73) yields

żf (t) = −Afzf (t) +AfC2x(t) +Affo(t) +Afd2(t) (74)

Next, augment system (69) and (74) to create a system of order (n+ q) of the form[
ẋ(t)
żf (t)

]
︸ ︷︷ ︸

ẋs(t)

=

[
A(ρ) 0
AfC2 −Af

]
︸ ︷︷ ︸

As(ρ)

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xs(t)

+

[
B(ρ)
0

]
︸ ︷︷ ︸

Bs(ρ)

u(t) +

[
0
Af

]
︸ ︷︷ ︸

Fs

fo(t) +

[
M 0
0 Af

]
︸ ︷︷ ︸

Ms

[
ξ(t)
d2(t)

]
︸ ︷︷ ︸

ξs(t)

(75)

Replacing the system output y2(t) from (72), with the filtered version in (74), new ‘outputs’ (for the augmented
system) can be represented by [

y1(t)
zf (t)

]
︸ ︷︷ ︸

ys(t)

=

[
C1 0
0 Iq

]
︸ ︷︷ ︸

Cs

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xs(t)

+

[
d1(t)
0

]
︸ ︷︷ ︸

ds(t)

(76)

Note that system (75) is in the form of an actuator fault reconstruction problem discussed in Section III and by
construction rank(CsFs) = q where Cs and Fs are defined in (76) and (75). The method described in the previous
section can now be applied to the formulation in (75)-(76) to robustly estimate fo(t).

Remark: Note that augmenting the system in (69) with only the filtered faulty senors in (74) is different from
the approach in [38] where the system is augmented with a filtered version of all the outputs of the plant2 This
is advantageous since the observer proposed here is lower order compared to the one in [38]. The choice of Af

does have a significant impact on the performance which can be achieved – particularly in terms of the L2 gain
γ which is achieved. Here the emphasis is on achieving accuracy in terms of reconstructing the faults rather than
accuracy of state estimation. The trade-off is explored and discussed in Section 8.5 of [4].

V. SENSOR FAULT RECONSTRUCTION EXAMPLE

A. ADDSAFE Benchmark Design

The Advanced Fault Diagnosis for Sustainable Flight Guidance and Control (ADDSAFE) project is a European
FP7 funded consortium which involves 8 partners (from 6 countries in Europe). The aim of ADDSAFE is to
demonstrate the applicability of advanced fault detection and diagnosis (FDD) methods for aircraft, to support the
development of sustainable aircraft. It addresses challenges to improve the FDD systems which support new ‘green’
technologies allowing optimization of the aircraft structural design, improving aircraft performance and reducing
the environmental footprint [19].

One of the benchmark problems considered in ADDSAFE is a scenario involving a faulty yaw rate measurement.
The sensor in the nonlinear ADDSAFE model has triple redundancy, and the actual measurement used for the
controller calculations is decided by a consistency check (vote) between the three sensors measurements [18]. The
detection and isolation of a faulty yaw rate sensor is one scenario which will be investigated in the ADDSAFE
project and constitutes one of the benchmark problems to be tackled by the consortia.

The LPV plant used in the design presented in this paper is a lateral model obtained from [39], [23]. The model is
derived from the ADDSAFE benchmark model using an LPV generation procedure described in [32]. The method
involves the generation of a set of linearized models at equilibrium/trim points which are enclosed within the range
of the LPV parameters. The elements of all the state space matrices are generated from a polynomial fit using least
squares. The resulting polynomials can be used to create a single LPV model which approximates the whole set of

2It should be noted that the conceit of ‘converting’ a sensor fault problem into an actuator fault scenario for the purpose of developing an
FDI scheme is not uncommon in the literature – see for example [35], [27].
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number axis control surface
1− 2 longitudinal engine(PLA) [pi1 pi2]
3− 4 longitudinal elevators [profD ProfG]
5 longitudinal stabilizer [ih]
6 lateral rudder
7− 10 lateral ailerons [AilIntG AilIntD AilExtG AilExtD]
11− 18 lateral spoilers [Sp1G Sp1D Sp23G Sp23D Sp45G Sp45D Sp6G Sp6D ]

TABLE I
CONTROL SURFACES

LTI equilibrium models [39], [23]. Further details of the LPV model and its generation are available in [39], [23],
[32].

In [39], [23] the LPV parameters ρ, chosen to describe the variation of the aircraft dynamics, are mass (m),
center of gravity in the x-direction (Xcg), altitude (h), and conventional airspeed (Vcas). The LPV model is valid for
variations of ±10% for mass (m) and position of center of gravity (Xcg) as a percentage of the mean aerodynamic
chord (mac), ±25% for altitude (h) and ±19% for conventional airspeed (Vcas) from the trim point

[m(0) Xcg(0) h(0) Vcas(0)]
T = [200, 000(kg) 30%(mac) 20, 000(ft) 290(kt)]T

The states, outputs and control surface deflections for the LPV model are given in (77), (78) and Table I.

xLPV = [θ(rad), Vx(m/s), Vz(m/s), q(rad/s), h (m), ϕ(rad), Vy(m/s), p(rad/s), r(rad/s)]T (77)

yLPV = [θ(deg), ϕ(deg), αair(deg), β(deg), p(deg/s), q(deg/s), r(deg/s), nz, Vtas(kt)]
T (78)

For the design which will be presented in this paper, only the lateral model will be considered consisting of the
states

x = [ϕ Vy p r]T

The lateral control surfaces are rudder, ailerons and spoilers (13 surfaces). Note that since Vy(t) is not one of the
measured outputs of the aircraft and in order to obtain a fixed output distribution matrix C (as in equation (70)),
Vy(t) is approximated in real-time from the measurements of β(t) and Vtas(t) via the equation

Vy(t) = Vtas(t) sin (β(t)) (79)

This approximation is achieved through the transformation from flight path axis to body axis [33].
The LPV system matrices are given by

A(ρ) = A0 +A1ρ1 +A2ρ2 +A2ρ2 +A3ρ3 +A4ρ4 (80)

B(ρ) = B0 +B1ρ1 +B2ρ2 +B2ρ2 +B3ρ3 +B4ρ4 (81)

where

[ρ1, ρ2, ρ3, ρ4] := [m̄, X̄cg, h̄, V̄cas] (82)

represent normalized parameters varying in the interval [−1 1]. The normalized parameters are given by

m̄ =
m− 200000

20000
, X̄cg =

Xcg − 0.3

0.03
, h̄ =

h− 20000

5000
, V̄cas =

Vcas − 290

30
(83)

where m, Xcg, h, Vcas vary in the range of m(kg) ∈ [180, 000 220, 000], Xcg ∈ [0.27 0.33], h(ft) ∈ [15, 000 25, 000]
and Vcas(kt) ∈ [260 320] respectively.

One of the scenarios considered in the ADDSAFE benchmark problem involves a faulty yaw rate r(t) sensor.
Therefore the original lateral states of the LPV model x = [ϕ Vy p r]T are already in the canonical form in (72)
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where the sensor prone to faults r(t) is at the bottom of the output vector: specifically

x(t) = y(t) =

[
y1(t)

y2(t)

]
=


ϕ(t)
Vy(t)
p(t)

r(t)


}

fault free

}prone to fault

= C1

{
C2{


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C

x(t) +


0
0
0

1


︸ ︷︷ ︸

N

Fo(t) + d1

{
d2{


d11(t)
d12(t)
d13(t)

d2(t)


︸ ︷︷ ︸

d(t)

Here n = 4, p = 4, q = 1. The scalar variable Af (in this case) which defines the output filter in (73), has been
chosen as Af = 1. The fixed component of the augmented system in (75) is AfC2 =

[
0 0 0 1

]
. The new

augmented system output in (76) is

[
y1(t)
zf (t)

]
︸ ︷︷ ︸

ys

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 0 1


︸ ︷︷ ︸

Cs

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xs

(84)

where ys and xs are in the coordinates defined in (75). Permutating the states xs(t) from (84) into[
r(t) ϕ(t) Vy(t) p(t) zf (t)

]T
=

[
x1(t)
x2(t)

]
(85)

bring about the canonical form in (13)-(14) where C =
[
0 I4

]
and F =

[
01×4 1

]T
. It is assumed that the

uncertainty is dominant in the roll rate and yaw rate channels and therefore the uncertainty matrix from (69) is
given by

M =

[
1 0 0 0 0
0 0 0 1 0

]T

(86)

The design scalar af from (4) has been chosen as af = 25. It is assumed that the effect of uncertainty is small
compared to the effect of ‘sensor noise’. In this particular design δ1 = 0.0001I2. Here, other than the fault fo,
it is assumed that there is no corruption to the state zf i.e. d2(t) = 0 in ξ(t) from (75) and the parameter δ2
has been chosen as δ2 = diag(1, 60, 1, 0). Note that the second parameter in δ2 corresponds to Vy which has
magnitude (unit kt) larger than the rest of the states (unit rad) and is therefore weighted more heavily. The last
parameter in δ2 corresponds to the zero in d(t) from (76). Using the above parameters in the LMIs in (34)-(35),
yields L = [0.1848 0.0048 − 0.0000 0] from (16). The gains for the ‘output injection signal’ in (52)-(53) have
been chosen as k1 = 2.1, k2 = 0.32, k3 = 2, k4 = 0.9853.

B. ADDSAFE Simulation Results

Several flight conditions and manoeuvres have been tested to assess the performance of the proposed scheme.
The results presented below show some of the simulation results which have been obtained. A few initial conditions
will be considered to cover all the extremes of the LPV parameter range to highlight the potential of the proposed
scheme to cover a wide range of operating conditions.

Note that although the observer design is based on an LPV system, the results presented in this paper are based
on the full nonlinear model of the aircraft. Realistic sensor and actuator dynamics as well as noise have been
included in the simulation [20], [19]. Also note that during the simulation, the mass and center of gravity do not
change significantly and therefore are not plotted.

Remark: Due to industrial confidentiality constraints, the results in the subsequent figures are expressed in terms
of percentage of the admissible range.
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Fig. 1. At Trim - Straight and Level Flight: Fault Free

1) At Trim - Straight and Level Flight: This simulation was conducted using an initial condition [m, Xcg, h, Vcas] =
[200000kg, 30%, 20000ft, 290kt]. The aircraft is initially on a straight and level flight path.

Fault Free: Figure 1 shows the results from a fault free condition. Here the unmeasured state Vy(t) has been
estimated as in (79) which enables Vy(t) to be used by the observer scheme. Figure 1(a) shows the magnitude of
the observer error signals combined and represented as a norm. This signal is small and therefore indicates that a
sliding motion is occurring. Figure 1(a) also shows the reconstructed sensor fault signals, where as expected, for a
fault free case, are close to zero.

Additive Fault: Figure 2 shows the result of an additive fault on the yaw rate sensor. Figure 2(a) shows the effect
of a sensor fault on the closed loop aircraft behaviour. Here the aircraft roll becomes nonzero causing a nonzero
yaw and generating a side force. Figure 2(b) shows the additive fault appears at 10sec and the faulty measurement
causes degradation in the closed loop performance as shown in Figure 2(a). Figure 2(c) shows the changes to the
LPV parameters Vcas and h. Figure 2(d) shows that sliding still occurs as ∥ey∥ is close to zero. This figure also
shows that the fault occurs at 10sec and the reconstruction of the fault provides a good estimate of the actual
additive fault (both lines overlap).

Figure 3 shows the performance of the reconstruction scheme on both the full nonlinear plant, and also when
applied to the plant when represented by the LPV model (about which the observer is designed). As expected
the reconstruction is perfect when used with the LPV plant subject to the additive fault, whereas, whilst the
reconstruction obtained for the nonlinear plant is excellent, it is no longer perfect because of the plant/model
mismatch.

2) Low End of the LPV Range - Straight and Level Flight: This simulation was conducted using an initial
condition [m, Xcg, h, Vcas] = [185000kg, 28%, 17000ft, 267kt] based on a straight and level flight. This initial
condition is at the low end of the LPV parameter range.

NRZ: Figure 4 shows the results for the case when the sensor output is subjected to a no-return-to-zero (NRZ)
fault. Again for this fault case, a ‘zoomed in plot’ is considered. Figure 4(b) shows the fault in comparison with
the actual yaw rate (which has become nonzero due to the degradation in performance resulting from the faulty
measurement used by the controller). Figure 4(d) shows that sliding occurs and the faults have been reconstructed
with satisfactory accuracy.

3) High End of the LPV Range - Coordinated Turn: This simulation was conducted using an initial condition
[m, Xcg, h, Vcas] = [210000kg, 32%, 23000ft, 300kt] with a coordinated turn which starts at 10sec and ends
at 30 sec. This choice of initial condition is at the high end of the LPV parameter range.

Fast Runaway: Figure 5 shows the results when the yaw rate sensors have a fast runaway. Figure 5(a) shows
that after 10sec a roll to the left starts to allow for a left turn and at 20sec the fast runaway starts to develop (Figure
5(b)). Once the faults have occurred, the controller performance degrades (as shown in 5(a)) and the aircraft does
not return to level flight after 30sec. Figure 5(c) shows a large variation in speed and altitude due to the degradation
in the controller performance resulting from the faulty measurement. These changes also highlight the ability of
the observer model to handle variations in the operating condition and allows a sliding motion to be maintained.
Accurate fault reconstruction is achieved as shown in 5(d).
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Fig. 2. At Trim - Straight and Level Flight: Additive Fault
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Fig. 3. Comparison of the reconstruction from the nonlinear plant and the approximate LPV plant model

VI. CONCLUSIONS

This paper has presented a robust fault reconstruction method for LPV systems based on sliding mode observers
where both actuator and sensor faults have been considered. The observer is designed using LMIs to minimize the
effect of uncertainty and measurement corruptions on the fault reconstruction. For actuator fault reconstruction, the
varying input distribution matrix (associated with the monitored channels) is factorized into fixed and varying parts.
The observer is then designed based on the resulting virtual system. In the observer, the gain associated with the
nonlinear injection term is fixed, while the gain associated with the linear injection is varying. The faults associated
with the virtual system are reconstructed using the equivalent output error injection signal and are mapped back into
actual faults by considering the factorization of the input distribution matrix. The output error injection signal is
supplied by a second order sliding mode scheme which does not require any ‘smoothing’ and therefore provides an
ideal sliding motion. A rigorous stability analysis and the existence of a sliding motion has also been presented. For
sensor fault reconstruction, the idea is to convert the sensor fault reconstruction problem into an actuator scenario
so that the same design procedure applies. This conversion is achieved by augmenting the plant states with the
filtered output measurements which are prone to faults. This augmentation is different compared to other schemes
previously considered in the literature (where the plant states are augmented with the filtered output of all the output
measurements). Simulations using a full nonlinear model of a large transport aircraft associated with the ADDSAFE
project have been presented. The sensor fault reconstructions presented here are from a benchmark problem under
investigation in the ADDSAFE project and represent a realistic industrial problem. The results consider several
manoeuvres and flight conditions to highlight the ability of the proposed scheme to reconstruct faults for a wide
range of operating conditions. All the results have shown good reconstruction performance highlighting the potential
of the proposed scheme.
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Fig. 5. High End of LPV Range - coordinated turn: fast runaway fault
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