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Abstract—The capture of a tumbling free-floating object in 

orbit using an autonomous vehicle is a key technology for many 
future orbital missions. Spacecraft proximity operations will play 
an important role in the success of such missions. This paper 
technically presents a control approach for proximity operations 
between a target and a pursuer spacecraft that ensures accurate 
relative position tracking as well as attitude synchronization. 
Specifically, an integrated six degrees of freedom dynamics model 
is first established to describe the coupled relative motion of the 
pursuer with respect to the target. Then, a robust fault-tolerant 
tracking control scheme is proposed by combining the sliding 
mode control with the adaptive technique. It is proved that the 
control algorithm developed is not only robust against unexpected 
disturbances and adaptive to unknown and uncertain mass/inertia 
properties of the pursuer, but also able to accommodate a large 
class of actuator faults. In particular, by introducing a novel time- 
varying forcing function into the sliding dynamics, the designed 
controller is shown to guarantee the finite-time convergence of the 
translational and rotational tracking errors, and the convergence 
time as an explicit parameter can be assigned a priori by the 
designer. Furthermore, a rigorous theoretical analysis is also 
presented in order to assess the fault-tolerance ability of the 
designed controller. Finally, numerous examples are carried out 
to evaluate the effectiveness and demonstrate the benefits of the 
overall control approach. 
 

Index Terms—Finite-time convergence, time-varying sliding 
mode, fault-tolerant control, spacecraft proximity operations.  
 

I. INTRODUCTION 
ecent years have witnessed a tremendous research interest 
in the capture of a tumbling free-flying object in orbit 

using an autonomous vehicle, since this concept has been 
identified as an enabling technology for many near-future 
missions such as removing space debris, inspecting and 
repairing a malfunctioning satellite, refueling a powerless 
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satellite, and other space missions [1-3]. In 1998, the 
Engineering Test Satellite-VII (ETS-VII) successfully 
achieved the autonomous rendezvous and docking between two 
unmanned satellites under the funding and direction of Japan’s 
National Space Development Agency, indicating that the 
autonomous technology is indeed feasible [4]. The use of 
autonomous system without ground or crew intervention would 
decrease the mission cost, and improve the mission frequency 
at the same time [5]; however, it poses great challenges for the 
guidance, navigation, and control subsystem onboard the 
maneuverable spacecraft. The latter primarily lies in the fact 
that accurate onboard sensing, dynamics models and control 
algorithms are needed for the rendezvous and docking mission. 
This paper seeks to present a control scheme for proximity 
operations between two spacecraft (namely a target and a 
pursuer) to provide a prerequisite for the successful capture of a 
tumbling target. 

The research on spacecraft relative motion dynamics 
modeling begins with the linearized equations of relative 
translation proposed by Clohessy and Wiltshire for circular 
reference orbits [6]. Following the work of Clohessy and 
Wiltshire, many variants on the nonlinear models that are 
applicable to arbitrary orbital eccentricity were presented in 
[7]-[11] (to name just a few). However, most previous works 
have tended to focus on modeling the relative translation 
independently of relative rotational motion. In fact, for the 
proximity phase of the capture mission, the pursuer is required 
to track both time-varying relative position and reference 
attitude trajectories accurately and synchronously; on the other 
hand, it is widely-known that the coupling exists between the 
translational and rotational motions [12-15]; and as such it is 
favorable for proximity operations to describe the relative 
motion dynamics as the integrated six degrees-of-freedom 
(DOF) model. In recent years, the area of controller design for 
6-DOF coupled relative motion of spacecraft has received a 
great deal of attention in the literature. Pan and Kapila [14] 
proposed a Lyapunov-based adaptive tracking control scheme 
for spacecraft formation flying. In their work, the mutual 
coupling in each spacecraft’s translation and rotational motion 
induced by gravity torques was considered. Subbarao and 
Welsh [1] developed a nonlinear proportional-integral- 
derivative (PID) type control law for motion synchronization of 
maneuverable spacecraft with respect to free-tumbling objects. 
Later, an extension of the work in [1] was presented in [15], 
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wherein a robust sliding mode control strategy was synthesized 
and the dynamical coupling induced by the configuration of 
orbit-control thrusters was considered. A recent solution to the 
control problem of satellite proximity operations with a 
dual-quaternions-based description was founded in [16], where 
an adaptive tracking control strategy was derived. More 
recently, by combing the integral backstepping approach with 
the adaptive control technique, Sun and Huo [17] proposed a 
state feedback controller that guarantees the uniformly bounded 
convergence of the relative tracking errors. In [18], an adaptive 
integrated finite-time control scheme was presented for 
spacecraft translational and rotational motions subject to 
parametric uncertainties, external disturbances, and thruster 
misalignments. A similar result was also presented in [19]. The 
distinguishing feature residing in [18,19] is that the controllers 
enable the spacecraft to track desired position and attitude in a 
pre-determined time. However, it is noteworthy that the benefit 
of this finite-time control architecture comes at a cost of heavy 
online computations. 

Safety plays an important role in the success of autonomous 
rendezvous and docking missions. If anomalies, especially 
actuator faults, occur during the tracking process, it may result 
in aborting the mission or a series of potential problems such as 
excess fuel consumption, on-orbit collision [20], etc. Hence 
how to obtain a safe and reliable control in the event of actuator 
faults has been an active research topic that is of great practical 
significance. Related works on this problem include, but not 
limited to, [21]-[23] and the references therein. Cai et al. [21] 
proposed an indirect fault-tolerant control approach for 
spacecraft attitude tracking. By using the similar fault-tolerant 
control framework as that in [21], a finite-time fault-tolerant 
control scheme was introduced in [22] to achieve high precision 
attitude tracking of rigid spacecraft. A method for online 
generation of safe, fuel-optimized rendezvous trajectories was 
reported in [23], and the generated approach path guarantees 
collision avoidance for a large class of anomalous system 
behaviors. As far as we understand, however, there are a very 
limited number of available results were presented in the 
context of 6-DOF spacecraft relative motion. With regard to 
spacecraft autonomous rendezvous and docking, Jayaram [24] 
presented a robust fault-tolerant control strategy incorporating 
the fault detection, identification and recovery mechanism, but 
only the attitude actuator faults were considered in this work. 
Recently, a fault-tolerant control scheme with finite-time 
convergence was presented in [25] to address the spacecraft 
formation proximity operations.  

To ensure a successful capture, accurate relative position 
tracking as well as attitude synchronization should be achieved 
within a finite time in the proximity phase of the mission, 
despite the presence of parametric uncertainties, external 
disturbances, and actuator faults. However, up to now, the 
controller design for spacecraft proximity operations with 
explicit consideration of these three issues and the finite-time 
convergence still remains open. In this paper, we present a 
robust finite-time fault-tolerant control scheme that provides a 
promising solution to this problem. The main contributions of 
this paper are summarized as follows:  

1) The relative motion dynamics of spacecraft proximity 
operations is described as an Euler-Lagrange equation, in 
which the coupling effect between the translational and 
rotational motions is considered. The benefits of deriving this 
form of description are two-fold: first, the expression shares 
some well-known properties of Euler-Lagrange systems that 
can be exploited for control synthesis and stability analysis; 
secondly, it also helps to generalize the theoretical results of 
this work to a significant class of nonlinear systems whose 
dynamics can be expressed by Euler-Lagrange equations. 

2) The control algorithm developed achieves accurate 
tracking control for spacecraft proximity operations in the 
event of parametric uncertainties, external disturbances and 
actuator faults. In particular, by introducing a novel 
time-varying forcing function into the sliding dynamics, the 
tracking errors are guaranteed to converge to zero within a 
prescribed time. The novelty of the forcing function mainly lies 
in its significantly different structure, which makes the sliding 
dynamics applicable to the faulty cases, and its design 
parameters less dependence on the initial condition. 

3) A rigorous theoretical analysis is presented to evaluate the 
fault-tolerance ability of the proposed control scheme, where a 
key lemma is established that plays an important role in the 
analysis. The analysis results can provide a guideline for the 
designers to design a more comprehensive control strategy that 
ensures safety. 

4) As opposed to most previous works, the proposed control 
scheme achieves robustness against external disturbances and 
parametric uncertainties with inexpensive online computations. 
This primarily benefits from the utilization of a norm-wise 
adaptive mechanism, in which only two parameters are 
required to be updated on-line. 

The rest of this paper is organized as follows. Section II 
presents the problem description that involves the relevant 
coordinate frames, relative motion modeling, and control 
problem formulation. The controller design and the stability 
analysis, together with the analysis of the controller’s 
fault-tolerance ability are given in Section III and followed by 
Section IV in which numerical simulations are performed to 
demonstrate the effectiveness of the proposed control scheme. 
Finally, we conclude this paper in Section V. 

II. PROBLEM DESCRIPTION 
In this paper, we aim at providing an integrated control law 

for spacecraft proximity operations that ensures the success of 
the capture mission. Of the two involved spacecraft, termed as 
the target and the pursuer, only the pursuer is maneuverable. 
Although the target is uncontrollable, it is assumed that its state 
information including position, velocity, attitude and angular 
velocity is available to the pursuer in real time either estimated 
by the pursuer’s onboard sensors or provided by the target or 
other sources. In the following subsection, the Cartesian 
coordinate frames, relative motion modeling, and control 
problem formulation are in order. Most definitions and 
descriptions are similar to the ones given in previous literature, 
they are still given here to make the paper self-contained. 
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Fig. 1. Cartesian coordinate frames. 

A. Cartesian coordinate frames and notations 
To formulate the relative motion dynamics of the pursuer 

with respect to the target, four main coordinate frames are 
considered in this paper, as shown in Fig. 1. 

1) Earth-centered inertial (ECI) frame: This frame is denoted 
as { , , , }i i i i iO= x y zF , and its origin is located at the center of 
the Earth with ix  in the direction of the vernal equinox, iz  is 
directed along the celestial north pole, and iy  completes a 
right-handed orthogonal frame. 

2) Local-vertical-local-horizontal (LVLH) frame: This frame 
defined as { , , , }l l l l lO= x y zF is attached to the mass center of 
the target spacecraft. lx  points radially outward from the 
Earth’s center, lz  is in the direction along the angular 
momentum of the orbit, and l l l= ×y z x  completes the 
right-handed reference frame. 

3) Body-fixed frames: The frames { , , , }t t t t tO= x y zF  and 
{ , , , }p p p p pO= x y zF  are defined for the target and the 

pursuer, respectively. The origin of each frame is located at the 
mass center of the corresponding spacecraft. For analysis 
purposes, without loss of generality, we assume that docking 
axis of the pursuer is in the direction along px , and the outward 

normal at the receiving port on the target is aligned with t−x .  
For notational compactness, the following notations are 

given. 
1) Cab refers to the direction cosine matrix describing the 

rotation from the coordinate frame bF  to the frame aF , then a 
transformation of a vector from frame bF  to frame aF  can be 
conducted by a ab b=v C v . 

2) The angular velocity vector of the frame bF  with respect 
to aF  is represented by abω , and its components expressed in 

either one of the coordinate frames are described as a
abω  or 

b
abω .  
3) 3I  is a 3×3 identity matrix, and || ||�  and || ||F�  denote the 

standard Euclidean norm of a vector and the Frobenius norm of 
a matrix, respectively. The notation blkdiag{ , }X Y  denotes a 
block matrix with the matrices X and Y on its main diagonal, 
whereas 3( )× ∈� �  denotes the matrix representation of the 

linear cross-product operation such that × = ×a b a b  for any 
two vectors 3, ∈�a b . 

B. Relative translational dynamics 
The relative translational dynamics are derived based on the 

fundamental equations of the two-body problem. Let 
[ , , ]T

x y zρρρ  =ρ  denote the relative position vector, then the 
relative translation can be governed by (cf. [10]) 
 

+ ( ) + ( , , ) ( , )t t t p t t p t tv v v r r r+ = +   M C D n f dr r r        (1) 

 
where 3t pm=M I , 1( ) (3)t pv m SS×= ∈C n  with 1 [0,0, 2 ]Tv= n  
is a Coriolis-like matrix, 1( , , ) ( , , )t p p pv v r m v v r=   D a  can be 

viewed as a time-varying potential force, and 2t pm=n n  is a 
nonlinear term. The undefined terms appearing in the preceding 
descriptions are given by 
 

2

2
1 33

0
( , , ) 0

0 0 0
p

p

v v
v v r v v

r
µ

 − −
 = + − 
  

 

   a I , 2 3 2

1 ,0,0
T

t

p t

r
r r

µ
 

= − 
  

n  

(2) 
 
In Eq. (1), tf  refers to the control force vector acting on the 
pursuer with its components expressed in the LVLH frame, and 

td  is the disturbance force arising from J2 perturbation, 
atmospheric drag, solar radiation pressure, thruster 
misalignment and so on. In addition, mp is the mass of the 
pursuer, µ  is the gravitational constant of the Earth, tr  
denotes the distance between the mass center of the target and 
the Earth’s center, and 2 2 2 1 2[( ) ]p t x y zr r r r r= + + +  represents 
the distance from the centroid of the pursuer to the Earth’s 
center. The evolutions of the true anomaly of the target and its 
rate are evaluated by 
 

2

2 3 2

(1 cos ( ))
(1 )

n e v tv
e

+
=

−
 , 

2 3

2 3

2 (1 cos ( )) sin ( )
(1 )

n e e v t v tv
e

− +
=

−
   (3) 

 

where 3n aµ=  is the mean angular velocity of the target 
orbit, a is the semimajor axis of the elliptical orbit, and e is the 
orbital eccentricity. 

C. Relative rotational dynamics 
The governing equations for attitude motion of a freely 

tumbling target in terms of kinematics and dynamics are 
described by 
 

4 3
1 ( )
2

t
tv tv t itq×= +q q I ω , 4

1
2

T t
t tv itq = − q ω               (4) 
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0t t t
t it it t it+ × =ω ω ωJ J                            (5) 

 
where 4

4: col( , )t tv tq= ∈�q q  and 3t
it ∈�ω  denote the attitude 

quaternion and angular velocity of the target relative to the ECI 
frame respectively, and tJ  is the inertia matrix defining the 
mass moment of inertia of the target. 

Similarly, the governing equations for the pursuer’s attitude 
dynamics can be expressed as (cf. [26]): 
 

4 3
1 ( )
2

p
pv pv p ip

×= +q q q I ω , 4
1
2

T p
p pv ipq = − ωq             (6) 

 
p p p

p ip ip p ip r r= − × + +J J u dω ω ω                      (7) 
 

 
where 4

4: col( , )p pv pq= ∈�q q  is the unit quaternion parame- 

terzing the attitude orientation of the pursuer; 3p
ip ∈�ω  is the 

angular velocity of the pursuer with respect to the ECI frame 
expressed in the pursuer’s body-fixed frame; pJ  is the mass 

moment of inertia of the pursuer; and ru  and rd  denote the 
control torque and the disturbance torque acting on the pursuer, 
respectively. 

To address the attitude tracking issue for spacecraft 
proximity operations, we define 3

4[ , ]T T
e ev eq= ∈ ×� �q q  as the 

attitude tracking error that describes the relative orientation 
between the pursuer’s body-fixed frame and the target’s 
body-fixed frame, which is computed as [27] 
 

4 4

4 4

t pv p tv pv tv
e p t T

t p tv pv

q q
q q

×
∗  − +

= ⊗ =  +  

q q q q
q q q

q q
             (8) 

 
where t

∗q  and ⊗  denote the conjugate quaternion of the unit 

quaternion tq  and the quaternion multiplication operator, 
respectively. The corresponding rotation matrix from the 
coordinate frame tF  to pF  is given by 
 

2
4 3 4( ) 2 2T T

pt e ev ev ev ev e evq q ×= − + −C q q I q q q              (9) 
 

Then, the relative angular velocity vector between the frames 
pF  and tF  is defined as 

 
p t

e ip pt it= −ω ω ωC                              (10) 
 

Hence, the tracking error dynamics for relative rotational 
motion can be derived that (cf. [21]) 
 

4 3
1 ( )
2ev ev e eq×= +q q I ω , 4

1
2

T
e ev eq = − ωq            (11) 

 

( ) ( )p p t t
p e ip p ip p e pt it pt it r r

× ×= − + − + + J J J C C u dω ω ω ω ω ω   (12) 
 

Let 4 30.5( )ev eq×= +Q q I  and 1−P = Q . Then, after some 
algebraic manipulations, the above tracking error dynamics can 
be transformed to a more convenient representation with the 
form of (cf. [22]) 
 

2 ( )T T
r ev r ev r r+ + = + M q C q P H P u d              (13) 

 
where T

r p=M P J P , ( )T T
r p p ev

×= − C P J P P J Pq P , 2 =H  

( ) ( ) ( ) ( ) (t t t t
ev p pt it pt it p ev pt it p e pt it

× × ×+ + − ω ω ω ω ωPq J C C J Pq C J C

)t
pt it− ωC . 

Remark 1: To ensure that Q  defined in Eq. (13) is invertible 
so as to guarantee the validity of Eq. (13), the following 
condition must remain valid, 0t∀ ≥  
 

4det(2 ) ( ) 0eq t= ≠Q , 0t∀ ≥                    (14) 
 
To this aim, we require that the initial condition be restricted 
such that 4 (0) 0eq ≠ , and the subsequent control scheme be 
designed to guarantee 4 ( ) 0eq t ≠  holds for all time. As stated in 
[28], the restriction on the initial conditions is in fact very mild. 

D. 6-DOF coupled relative motion dynamics 
For the proximity phase of the capture mission, accurate 

relative position and attitude tracking are required to align the 
relative position vector along the receiving port of the target 
while maintaining a constant relative distance between the 
target and the pursuer, and to reorient the pursuer in the desired 
orientation such that its docking port is always facing the 
receiving component of the target. To implement this, first, a 
virtual desired relative position vector [ ,0,0]T

d dr= −r  is 
introduced, and its components are expressed in the target’s 
body-fixed frame. Then the translational position error can be 
defined as [1] 
 

e d= −ρρρ   , d lt d= C rr                         (15) 
 
where T

lt li ti=C C C . Apparently, dρ  is a time-varying vector 
and its direction in space depends directly upon the attitude 
orientation of the target. In addition, the orbit-control thrusters 
are fixed in the pursuer’s body-fixed frame so that the control 
force vector in the LVLH frame is represented as 
 

t lp t=f C u                                   (16) 
 
where tu  denotes the control force vector expressed in the 

pursuer’s body-fixed frame, and T T
lp li ti pt=C C C C  in which 

2
4 3 4( ) 2 2T T

ti t tv tv tv tv t tvq q ×= − + −C q q I q q q , ptC  is given by Eq. (9), 
and 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

cos( ) sin( ) 0 1 0 0
sin( ) cos( ) 0 0 cos sin

0 0 1 0 sin cos

cos sin 0
sin cos 0
0 0 1

li

v v
v v i i

i i

ω ω
ω ω

+ +   
   = − + +   
   −   

Ω Ω 
 × − Ω Ω 
  

C

  (17) 

 
where ω , Ω  and i  are the target orbital elements and denote 
the argument of perigee, the right ascension of ascending node 
and the inclination, respectively. 

Then, the translational tracking error dynamics can now be 
rendered 
 

1+ ( ) +t e t e lp lp t tv = + M C C H C u dρρ                 (18) 
 
where 1 ( ( , , ) ( , ) ( ) )T

lp t p t t p t d t dv v r r r v+ + +   H = C D n M Cr r r , 

and the vectors dρ  and dρ  appearing in 1H  are given by [15], 
 

( )t
d lt lt d= × C rr ω , ( )t t t

d lt lt d lt lt d= × + × × C r rr ω ω ω     (19) 
 
where t t T l

lt it lt il= −ω ω ωC  and ( )t t T l t T l
lt it lt il lt lt il= − +  C Cω ω ω ω ω  

with [0,0, ]l T
il = vω  and [0,0, ]l T

il = vω . 
To construct the integrated dynamics model for proximity 

operations, we define the state vector 6[ , ]T T T
e ev ∈�e = qρ . 

Then, by combing the translational tracking error dynamics in 
Eq. (18) with the relative rotational dynamics in Eq. (13), the 
6-DOF relative motion dynamics is described as an 
Euler-Lagrange equation of the form 
 

( )+ Me + Ce + G = B u d                        (20) 
 
where blkdiag{ , }t r=M M M , blkdiag{ , }t r=C C C , =G  

1 2[( ) , ( ) ]T T T T
lpC H P H , blkdiag{ , }T

lp=B C P , [ , ]T T T
t r=u u u  

and [( ) , ]T T T T
lp t r=d C d d . 

From a practical viewpoint, the actuators mounted on the 
pursuer are always subject to actuator faults, and each of them 
might fail in the following four fault modes: Partial loss of 
energy (F1): Actuator can only respond partially to the 
expected control command; Continuous float (F2): Actuator 
cannot output the expected actuating power accurately, and 
there exists a small DC offset; Complete loss of energy (F3): 
Actuator completely fails to work; Locking (F4): Actuator has a 
fixed and uncontrolled output. With explicit consideration of 
the actuator faults F1-F4, the control input can then be 
mathematically modeled as 
 

( )c= +u D Eu F                               (21) 
 
where 6

1 2blkdiag{ , } n×= ∈�D D D  denotes the control 
allocation matrix with 13

1
n×∈�D  and 23

2
n×∈�D , 1n  and 2n  

are the numbers of the orbital actuators and attitude actuators, 
respectively; 1 2blkdiag{ , } n n×= ∈�E E E  is the actuation 
effectiveness matrix characterizing the health condition of the 
actuators with 1 2diag( , , , ) i i

i

n n
i i i ind d d ×= ∈2 �E , i=1,2, each 

element of which satisfies 0 1ijδ≤ ≤ ; 6 n×∈�F  represents the 
float or locking values of the actuators; and uc is the control 
signal commanded by the control law to be designed later. 

The dynamics model in Eq. (20) has the following useful 
properties [19]: 

Property 1: The matrix ( 2 )−M C  is skew-symmetric, that 

is ( 2 ) 0T − =x M C x  for any vector 6∈�x . 
Property 2: The inertial-like matrix M is symmetric and 

positive definite. Moreover, according to the theorem of 
Rayleigh-Ritz, it is straightforward to show that for all 6∈�x  
 

2 2
min max( ) ( )Tλ λ≤ ≤M x x Mx M x  

where min ( )λ M  and max ( )λ M  are the minimum and maximum 
eigenvalues of M, respectively. 

Remark 2: An implicit assumption in Property 1 is that the 
time derivative of the mass of the pursuer is close to zero. The 
fully details regarding the assumption will appear hereafter (see 
Assumption 1). 

Remark 3: In fact, the relative translational motion is 
affected by the rotational one due to the dependence of the 
thrust force vector for translational motion control on the 
pursuer’s attitude and the thruster configuration, as witnessed 
by Eqs. (16)-(21). It is just the dynamic coupling that this paper 
is mainly concerned with. Therefore, it can be claimed that the 
formula (20) is a 6-DOF coupled dynamics equation in which 
the coupling effect between the translational and rotational 
motions is included. 

Remark 4: The relative motion dynamics of spacecraft 
proximity operations is formulated as a 6-DOF Lagrange-like 
model as given by Eq. (20), in which the coupling effect 
between the translational and rotational motions is explicitly 
considered. In particular, the derived dynamics model with the 
typical form of the Euler-Lagrange equation has two main 
advantages. First, this expression has some well-known 
properties of the Euler-Lagrange systems as summarized in 
Properties 1-2 that will be employed in control synthesis and 
stability analysis (see Sec. III.B for more details). Secondly, it 
can be utilized to describe a wide range of dynamic systems in 
practice, such as spacecraft system, robotic system, etc. As 
such, the theoretical results of this work can be readily extended 
to more general systems whose dynamics can be expressed as 
Euler-Lagrange equations. 

Assumption 1: Assume that the mass mp and mass moment of 
inertia Jp of the pursuer are constant (or slowly varying over 
time), but otherwise unknown due to fuel consumption and 
payload variations. 

Assumption 2: The composite disturbance d and the additive 
actuator fault F are assumed to be unknown but bounded, and 
satisfy md+ ≤DF d , where dm is a positive constant.  
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Remark 5: Assumption 1 primarily indicates that the changes 
of the mass and inertial of the pursuer are very slow for close 
proximity operations, which is reasonable in practice. In 
addition, it should be noted that the additive actuator faults are 
bounded due to the physical structure features of the actuators, 
and thus Assumption 2 is reasonable as well. 

E. Control objective 
The control objective is to develop a robust fault-tolerant 

tracking control scheme for spacecraft proximity operations to 
nullify the translational and rotational tracking errors in a finite 
time T, i.e., lim

t T→
= 0e  and lim

t T→
= 0e , in the presence of external 

disturbances, parametric uncertainties and possible actuator 
faults. 

III. CONTROL LAW DESIGN AND STABILITY ANALYSIS 

A. A novel time-varying sliding mode manifold: design and 
convergence analysis 

By following the approach outlined in [29], a novel 
time-varying sliding mode manifold is defined here as follows 
 

( ) ( ) ( )t k t t= + −s e e f                          (22) 
 
where k is a positive scalar, and 1 2 6( ) [ ( ), ( ), , ( )]Tt f t f t f t= 2f  
is referred to as the forcing function in sliding dynamics with 

( )if t , i=1,2,…,6 given by 
 

( )
(0) (0), 0

( )
( (0) (0)) 1 1 cos ,

( )

( )1 ( (0) (0))(1 2 ) 1 cos ,
2 ( )

0,

i

i i k

k
i i i k m

m k

m
i i i m f

f m

f

f t
e ke t t

t t
e ke t t t

t t

t t
e ke t t t

t t

t t

π
t

π
t

+ ≤ ≤


   − + − − < ≤     −    = 
  −  + − + < ≤    −  

 >







 

(23) 
 
where (0)ie  and (0)ie  refer to the initial values of ( )ie t  and 

( )ie t  respectively, tf is the terminal time specified a priori by 
the designer according to mission requirement, tk and tm are the 
constant time parameters with tk < tm < tf , and iτ  is a constant 
parameter to be determined (see Eq. (29) shown later). The 
forcing function ( )tf  has the following three properties: 

P1) (0) ( ) (0) (0)kt k= = +f f e e . With the satisfaction of 
this condition, it is not difficult to check that the system states 
originate from the sliding regime, i.e., s(0)=0, and that 

( ) ( ) ( ) (0) (0)k k kt k t t k+ = = + e e f e e  if an appropriate control 
law is derived that ensures the state trajectories return to the 
sliding regime within tk and stays on it thereafter. The latter is 
useful in conducting the finite-time convergence analysis, 
which will become clear later. 

P2) For t ≥ tf , ( )t ≡ 0f . This implies that the asymptotic 
stability of the closed-loop system. 

P3) The forcing function is continuous and differentiable 
throughout the entire response although it is piecewise defined, 
and its first time derivative is bounded. This property is one of 
the basic requirements for the existence of a sliding control. 

Lemma 1: Consider the time-varying sliding dynamics 
defined by Eq. (22). If an appropriate control law is derived that 
ensures the state trajectories reach the sliding regime within tk 
and stay on it thereafter, then the relative errors will converge to 
zero at the terminal time tf , that is, ≡ 0e  and ≡ 0e  for all t ≥ tf 

. 
Proof: If the system states reach the sliding regime within tk, 

and remain on it thereafter, i.e., ( )t ≡ 0s  for all t ≥ tk , then we 
have 
 

( ) ( ) ( )i i ie t ke t f t+ = , i=1,2,…,6 kt t∀ ≥            (24) 
 

It is apparent from Eqs. (23) and (24) that ( ) ( )i k i ke t ke t+ =  
(0) (0)i ie ke+ . Note that the forcing function ( )if t  is a piece- 

wise function, and thus the subsequent error response has to be 
analyzed separately in three different periods corresponding to 
the three time intervals over which ( )if t  has been described in 
detail by Eq. (23). 

For k mt t t< ≤ , solving Eq. (24) with lim ( ) (0)
k

i i
t t

e t e
+→

=  yields 

 

( )1 1 1

2

1 1

2 2

(1 ) (1 )
( ) (0)

( ) ( )
sin cos

( ) ( ) ( )

kk t ti i i i i i
i i

i i k i i k

m k m k m k

p p p k
e t e e

k k p

p t t p k t t
p t t t t p t t

t t t

t p t
pp

− − − −
= + − − 

 
   − −

+ +   − − −   

 

(25) 
 
where 1 (0) (0)i i ip e ke= +  and 2 2

2 ( ( ))m kp k t tp= + − . 
In view of Eq. (25), the value of ( )ie t  at mt t=  can then be 

obtained by direct calculation 
 

1

( )1 1 1

2 2

(1 )
( )

(1 )
(0) m k

i i
i m

k t ti i i i i i
i

p
e t

k
p p k p k

e e
k p p

t

t t t− −

−
=

 −
+ − − − 

 

  (26) 

 
Regarding the time interval m ft t t< ≤ , solving Eq. (24) and 

using the preceding, we have 
 

1 1 1

3

1 1

3 3

(1 2 ) (1 2 ) (1 2 )
( ) ( )

2 2 2

(1 2 ) ( ) (1 2 ) ( )
sin cos

2 ( ) ( ) 2 ( )

i i i i i i
i i m

i i m i i m

f m f m f m

p p p k
e t e t

k k p

p t t p k t t
p t t t t p t t

t t t

p t t
pp

 − − −
= + − − 

 
   − − − −

+ +      − − −   

 

(27) 
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where 2 2
3 ( ( ))f mp k t tp= + − .  

Substituting t = tf into Eq. (27), we can get 
 

1 1 1 1

2 3

( ) ( )1 1

2

1 1

3

(1 ) (1 2 ) (1 2 )
( )

2 2

(1 )
(0)

(1 2 ) (1 2 )
2 2

f m f k

i i i i i i i i
i f

k t t k t ti i i i
i

i i i i

p p k p p k
e t

k p k p

p p k
e e e

k p
p p k

k p

t t t t

t t

t t

− − − −

 − − −
= − − − 

 
 −

× + − − 
 

− −
+ −

 

(28) 
 

Let us further take ( ) 0i fe t = , then the constant iτ  residing 
in the forcing function can be deduced as 
 

( ) ( )

1 3 3

( ) ( )

2 2 3 3

(0) 1 1 1
2 2 2 2

1 1 1 1

f k f m

f k f m

k t t k t ti

i
i

k t t k t t

e k ke e
p k k p k p

k ke ke
p k p p k p

t

− − − −

− − − −

   
− + − + −   

   =
  

− + − + −  
   

 

(29) 
 

Obviously, with the choice of the constant parameters iτ , 
i=1,2,…,6 described by Eq. (29), the sliding dynamics leads to 

( )ft = 0e . As an immediate result, it can be trivially shown that 

( )ft = 0e  due to ( ) ( ) ( )f f ft k t t+ = = 0e e f . Further, by 

solving Eq. (24) with lim ( )
ft t

t
+→

= 0e , we can obtain ( )t = 0e  and 

( )t = 0e  for all t > tf . Based on the above argument, we can 
finally conclude the finite-time convergence of the relative 
errors, i.e., ≡ 0e  and ≡ 0e  for all t ≥ tf . This completes the 
proof. 

Looking at the expression in Eq. (29), the value of iτ  can be 
determined by assigning two positive values satisfying tk < tm < 
tf to tk and tm . It is notable that tk has to be chosen large enough 
to ensure the system states reach the sliding regime within tk 
under an appropriate controller. Generally speaking, there is no 
unique choice for tm , and decreasing tm renders a faster 
convergence rate but an increased control effort during the time 
interval tk < t ≤ tm and vice versa. Note however that typical 
actuators used for spacecraft control are always subject to 
magnitude constraints, thus one should select appropriate 
values for tk and tm so as to ensure that the control input signals 
will not exceed such constraints. 

In the following, we will discuss the time responses of the 
sliding motion with various choices of the time parameters tm 
and tf under the assumption that 0kt = . For example, similar to 
[29], given k =10, (0) 1ie = −  and (0) 0ie = , the error responses 
with the novel time-varying sliding dynamics in terms of 
various values of tm and tf are shown in Fig. 2, and the 
corresponding forcing functions are shown in Fig. 3. It is seen 
that the tracking error converges invariably to zero at the 
specified terminal time tf , although different tm are chosen. 

Additionally, it can also be seen that decreasing the value of tm 
contributes to a faster convergence rate during the initial 
period. 
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Fig. 2. Time responses of the sliding motion with different tm (top subplot: tf 
=0.8s; bottom subplot: tf =1.8s). 
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Fig. 3. The forcing functions with different tm (top subplot: tf =0.8s; bottom 
subplot: tf =1.8s). 
 

Remark 6: From a practical viewpoint, guaranteeing the 
tracking errors converge to zero within a pre-specified time is a 
practical design aspect that is involved less in previous 
researches but is nonetheless crucial to the successful 
achievement of spacecraft proximity operations. Inspired by 
[29], we artfully introduce a novel time-varying forcing 
function into the sliding dynamics to guarantee that the 
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translational and rotational tracking errors converge to zero 
within a fixed finite time, which can be assigned a priori by the 
designer according to mission requirement. The novelty of the 
forcing function (23), compared to the one used in [29], mainly 
lies in two aspects: a) it has a significantly different structure 
such that the sliding dynamics developed in this paper can be 
used to the case in which actuator faults are considered; b) the 
parameters iτ , i=1,2,…,6 have less dependence on the initial 
condition (see Eq. (29)). 

B. Tracking controller design and stability analysis 
To facilitate the control law derivation, an auxiliary error 

vector is defined as 
 

1 2[ , ] ( )T T T
r r r t= − e = e e s e                         (30) 

 
where 3

1r ∈�e  and 3
2r ∈�e . 

Taking the time derivative of s defined by Eq. (22) along the 
relative motion dynamics (20), and using the definition of er, 
the open-loop system can be rewritten as 
 

( ) r r+ = + + + − Ms Cs B u d Me Ce G              (31) 
 

For the sake of simplicity, the term ( )r r+ −Me Ce G  on the 

right-hand side of Eq. (31) is denoted as 1 2[ , ]T T T=R R R , with 

1 1 1 1t r t r lp+ −�R M e C e C H  and 2 2 2 2
T

r r r r+ −�R M e C e P H . 
It is evident from the structure of the matrices M, C and G that a 
linear parameterization of the unknown parameters pm  as well 

as pJ  for R is possible. To this end, the linear 
parameterizations are performed separately for R1 and R2, and 
the separate derivations are merely to facilitate the illustration. 

With regard to R1, it is a straightforward matter to have 
 

1 1 1 1t r t r lp lp t pm+ − =�R M e C e C H C Y              (32) 
 
where 1 1 1 1 2 1[ ( )]T

t lp r r d d
× ×= + − + + +  Y C e n e a n nr r r . To linearly 

parameterize R2, a linear operator 3 3 6( ) : ×→� � �L  is first 

introduced, and for any 1 2 3[ , , ]Tx x xx = , there always has 

( )p =J x L x J , where 11 12 13 22 23 33[ , , , , , ]p p p p p p TJ J J J J J=J  with p
ijJ  

being the elements of pJ . Based on this manipulation, 2R  can 
then be linearly parameterized as 
 

2 2 2 2
T T

r r r r r−�R M e + C e P H = P Y ϑ             (33) 
 
where rY  is a known regression matrix that is described by 

2 2 2( ) ( ) ( ) ( ) ( ) ( )t t
r r r r e pt it e pt it

× ×= + + − + ω ω ω ωY L Pe L Pe Pe L C L C

( ) ( )t t t
e pt it e pt it pt it
× ×− + − ω ω ω ω ωL C L C C  with P  given by 

= − P PQP . 
In view of Eqs. (32) and (33), it follows that 

r r+ − =�R Me Ce G BYθ                      (34) 
 
where blkdiag{ , }t r=Y Y Y  and [ , ]T T

pm=θ ϑ . According to 

Assumption 1, it is clear that = 0θ , which implies that the 
adaptive control technique can be employed to synthesize an 
online estimate of the unknown vector θ . However, there are 
seven unknown variables to be estimated when traditional 
adaptive technique is employed. This will inevitably result in 
expensive online computations. To remedy this, a norm-wise 
adaptive algorithm is derived for control design. 

Theorem 1: Consider the coupled 6-DOF relative motion 
dynamics described by Eqs. (20) and (21) under Assumptions 
1-2. Assume that the actuators are suitably mounted along the 
pursuer’s body-fixed frame, and that the matrix TDED  
remains positive definite for all fault scenarios under 
consideration. The control law and adaptive law are 
synthesized as 
 

1 2
ˆ

T T
T T

c TT
k

 
 = − −
 
 

B s B su D s b
B sB s

Φ             (35) 

 

( )ˆ ˆTη κ−b = B s bΦ                           (36) 

 
where s denotes the sliding dynamics defined by Eq. (22), 1k , 

η  and κ  are positive design parameters, b̂  is the estimation 

of b  which is defined as ,
T

md  b = θ , and ,1
T

F
  YF = . 

If 1k , η  and κ  are appropriately chosen such that the system 
states reach the sliding regime within tk, then based on Lemma 
1 the finite-time convergence of the relative errors is achieved, 
that is, ≡ 0e  for all time ft t≥ . 

Proof: Consider the following Lyapunov function candidate 
 

( ) ( )
1 21 1 ˆ ˆ

2 2 8
TT TV κ βσ σ

ησ ησ

−

= − − +σ Mσ + ββββββ        (38) 

 
where ( )min

Tσ λ= DED  is the minimum eigenvalue of 
TDED . 

Taking the time derivative of V leads to 
 

1 1 ˆ ˆ( ) ( )
2 2

T TV σ σ
ησ

= − −σ Mσ + b b b b              (37) 

 
where min ( )Tσ λ= DED  is the minimum eigenvalue of 

TDED . 
Taking the time derivative of V leads to 

 
1 1 ˆ ˆ( )
2

T T TV σ
η

= + − −  σ Mσσ  Mσ b b b               (38) 
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In terms of Eq. (31), it follows that  
 

1 1 ˆ ˆ( ) ( )
2

T T T T T
cV σ

η
= + + − + − −  σ B DEu DF d σ Cσσ  Mσ + σ R b b b  

(39) 
 

According to Property 1, it is straightforward to obtain 
 

( 2 ) 0T − =s M C s                              (40) 
 

Then, according to Assumption 2 and using the above 
relationship, Eq. (39) reduces to 
 

1 ˆ ˆ( ) ( )

1 ˆ ˆ( )

T T T T
c

T T T T
c m

V

d

σ
η

σ
η

= + + − −

≤ + + − −





σ BDEu σ B DF d + σ BY b b b

σ BDEu B σ B σ Y b b b

θ

θ
  (41) 

Owing to the fact that the vector norm || ||�  is compatible with 

the induced matrix norm || ||F� , it follows that 
F

≤Y Yθ θ . 
Thus Eq. (41) can be further expressed as 
 

1 ˆ ˆ( )T T T T
cV σ

η
≤ + − −  σ BDEu B σ b b b bΦ          (42) 

 
Inserting the control law (35) and the adaptive law (36) into 

Eq. (42) and simplifying the resulting equation yield 
 

1
ˆ ˆ( )TV k σ k σ≤ − + − σ b b b                      (43) 

 
By resorting to the properties of square sum, we have the 

following inequality for any positive scalar l > 0.5: 
 

ˆ ˆ ˆ ˆ( ) ( ) ( )

(2 1) ˆ ˆ( ) ( )
2 2

T T

T Tl l
l

κκ σ σ σ
σ
κ κσ σ

σ σ

− = − − − −

−
≤ − − − +

b b b b b b b b

b b b b b b
    (44) 

 
Then, with the consideration of the above inequality and by 

virtue of Property 2, Eq. (43) becomes 
 

1

1
1 22

(2 1) ˆ ˆ( ) ( )
2 2

(2 1) ˆ ˆ(( ) ( ))
2
ˆ ˆ( ) ( )

2

T T

T

T T

l lV k
l

lcV
l

l

kk σ σ σ
σ σ

k σ σ
σ

kσ σ
σ

−
≤ − − − − +

− ≤ − + − −

− − − +

 σ b b b b b b

b b b b

b b b b b b

  (45) 

 
where 1 2

1 max: min{ (2 ( )) , ( (2 1) 2 ) 2 }c k l lσ lk  σ ησ= −M .  
For further analysis, the following two cases are considered. 
Case A: If ˆ ˆ( ) ( ) 1Tσ σ− − ≥b b b b , then we have 

 

1 2ˆ ˆ ˆ ˆ(( ) ( )) ( ) ( ) 0T Tσ σ σ σ− − − − − ≤b b b b b b b b       (46) 
 

Case B: If ˆ ˆ( ) ( ) 1Tσ σ− − <b b b b , then by completing the 
square we obtain 
 

1 2ˆ ˆ ˆ ˆ(( ) ( )) ( ) ( ) 0.25T Tσ σ σ σ− − − − − ≤b b b b b b b b     (47) 
 

Based on the above arguments, it can be concluded from Eq. 
(45) that 
 

1 2V cV β≤ − +                                (48) 
 
where ( (2 1) 8 ) ( 2 ) Tl l lβ κ σ κ σ= − + ββ  . 

Note that Eq. (48) can be further changed into the form 
1 2 1 2( )V V c Vβ −≤ − − , which indicates that if 1 2 0c Vβ −− > , 

the region 2( )V cβ≤  can be reached in finite time. On the 

other hand, it is evident that 2( )V cβ≤  is in fact an invariable 

set, since 0V ≤  on the level set 2( )V cβ= . Therefore, no 

matter whether 2(0) ( )V cβ≤  or not, we can claim that V and 

hence ˆ( 2 )σ−b b  are bounded for all 0t ≥ . Then, owing to the 

boundedness of ˆ( 2 )σ−b b  and b , it is not difficult to verify 

that b̂  is bounded. In what follows, we will explore fully the 
finite-time stability of the closed- loop system. To this aim, we 
shall introduce a key lemma that is useful for subsequent 
analysis. 

Lemma 2 [34]: Consider a system ( , )f=x x u  and a 
Lyapunov function candidate ( )sV x . Suppose that there exist 
scalars a > 0, 0 1γ< <  and 0 φ< < ∞  such that 
 

( )s sV aV γ φ≤ − + x                             (49) 
 

Then, the system state can converge to the residual set given 
by 
 

1

( (1 ))sV a γφ θ≤ − , t T∀ ≥                     (50) 
 
where 1

0( ) ( (1 ))sT V aγ θ γ−≤ −x  is a finite time, 0( )sV x  is the 
initial value of ( )sV x , and 0 1θ< < . 

Then, according to Lemma 2, we can conclude from Eq. (48) 
that 
 

2
0( ) ( (1 ))V t cβ θ≤ − , Tt t∀ ≥                  (51) 

 
where 1 2

02 (0) ( )Tt V cθ= , V(0) is the initial value of V, and 

00 1θ< < . It is noteworthy that the size of the residual set 
2

0( ) ( (1 ))V t cβ θ≤ −  can be made arbitrarily small by 

appropriately choosing k1, η  and κ , so that we have ( )t 0�s  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

for all Tt t≥ , which implies that the sliding condition holds. 
Then, based on Lemma 1, we finally draw the conclusion that 
the relative errors can converge to zero within the specified 
terminal time tf, i.e., lim

ft t→
= 0e , lim

ft t→
= 0e . Henceforth, the 

proof of Theorem 1 has been completed. 
Remark 7: In practice, an infinite switching frequency cannot 

be obtained due to limited actuator bandwidth, thus the 
proposed control scheme suffers from the chattering problem. 
Furthermore, careful inspection of Eq. (35) shows that a 
potential singularity exists in the designed controller. Hence, to 
attenuate the chattering phenomenon and overcome the 
singularity problem, by following the approach outlined in 
[30], the control law (35) is modified as 
 

1 2
ˆ

T T
T T

c TT
k

εε

 
 = − −
 ++ 

B s B su D s b
B sB s

Φ        (52) 

 
where ε  is a small positive scalar. 

Remark 8: A systematic procedure for selecting the design 
parameters is summarized below. 

Step 1: Select a positive scalar k for the time-varying sliding 
dynamics.  

Step 2: Assign tf according to mission requirement, and 
choose time parameters tk and tm in accordance with tk < tm < tf . 
As discussed in Sec. III.A, a compromise between convergence 
rate and magnitude constraints should be reached by 
appropriate choice of tk and tm, which is of practical engineering 
significance. 

Step 3: Choose sufficient large k1 and η  for the control law 
(52) and adaptive law (36), respectively, such that 

1 2
02 ( ) ( )k Tt t V cθ≥ = 0  is strictly guaranteed. One caveat here 

is that although the residual set of V can be made arbitrarily 
small by choosing proper control parameters, it requires the 
increase of k1 and η , together with the extension of Tt . Thus, 
designer should face a tradeoff between control accuracy and 
energy efficiency, and meanwhile choose a sufficient large tk in 
Step 2 so as to ensure the condition k Tt t≥  holds. 

Step 4: Choose a small positive ε . Note that if a smaller ε  
is selected for a higher accuracy, more serious chattering will 
be resulted. Thus, one should balance the control performance 
and chattering problem through a suitable choice of ε . 
Besides, the designer should take a small and nonzero κ  in 
order to ensure the boundedness of b̂ . 

C. Analysis of the controller’s fault-tolerance ability 
As stated in Theorem 1, the ability of the proposed control 

scheme to account for actuator faults requires that TDED  
remains positive definite (i.e. min ( ) 0Tσ λ= >DED ) for all 
fault scenarios under consideration. This naturally leads to the 
question of which fault cases can make this requirement hold 
true. At first glance, it looks like a trivial problem since some 
discussions have been made in the literature, such as [21,22]. 

However, in that respect, most of the conclusions are empirical 
and not all-inclusive due to the lack of rigorous theoretical 
support. In this subsection, we will answer this question from a 
mathematical viewpoint. 

To proceed the subsequent analysis, we establish a key 
Lemma as follows. 

Lemma 3: Suppose that D is of full-row rank (by proper 
placement of the actuators on the pursuer). Then, for the given 
fault cases, TDED  remains positive definite if and only if the 
following relationship holds true 
 

( )rank 6=DE  
 

Proof: The detailed proof is presented in Appendix. 
It follows from Lemma 3 that the sufficient and necessary 

condition for 0σ >  is 
 

rank( ) 6=DE                                (53) 
 

From Eq. (21), we have 1 1 2 2blkdiag{ , }=DE D E D E . Then, 
it is clear that the condition described by Eq. (53) is equivalent 
to the fact that 1 1rank( ) 3=D E  and 2 2rank( ) 3=D E  hold 
simultaneously. Since the distribution matrices iD , i=1,2 can 
be made full-row rank by proper placement of the actuators on 
the pursuer, rank( ) 3i =D  can be readily guaranteed. 
Additionally, note that given Di and Ei, there always has 
rank( ) min{rank( ), rank( )}i i i i≤D E D E . Thus, to guarantee the 
condition (53), the following two conditions must be 
simultaneously guaranteed 
 

1rank( ) 3≥E , 2rank( ) 3≥E                      (54) 
 
which means that the numbers of orbit actuators and attitude 
actuators suffering from F3 or F4 are no more than 1 3n −  and 

2 3n − , respectively. However, care must be taken that the 
conditions as in Eq. (54) is a necessary but not sufficient 
condition for rank( ) 6=DE ; in other words, rank( ) 3i i =D E  
may not hold even if rank( ) 3i ≥E  is satisfied, this will be 
verified by the detailed examples shown later. 

Based on the above arguments, we finally conclude that the 
proposed control scheme can accommodate such fault cases in 
which at most 1 3n −  orbit actuators and 2 3n −  attitude 
actuators suffer from F3 or F4, and rank( ) 6=DE  holds. Of 
course, the crucial premise of this is that the remaining active 
actuators are still able to provide a sufficient actuating power 
for the pursuer to perform given manipulations. For the other 
cases in which the condition 0σ >  is not satisfied, the system 
becomes under-actuated; this situation is out of the main scope 
of this paper. 

The following numerical examples are presented to illustrate 
the fault-tolerance ability of the proposed controller. For 
illustration, we take only the attitude control subsystem as 
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example, and assume that the attitude maneuver of the pursuer 
is actuated by six thrusters distributed on the pursuer in such a 
way [21] 
 

2

0.8 0.8 0 0 0 0
0 0 0.7 0.7 0 0
0 0 0 0 0.7 0.7

− 
 = − 
 − 

D  

 
and that the maximum available thrust force of each thruster is 
1N. Then, given four actuation effectiveness matrices 

1
2 diag([0.5,0.7,0.7,0.2,0.3,0.5])=E , 2

2 diag([0,0.5,0.7,0,=E

0.7,0]) , 3
2 diag([0,0.5,0.7,0,0,0])=E  and 4

2 =E diag([0,0,  
0.5,0.7,0.7,0]) , and the superscript i is used here to denote 
different fault cases. The ranks of D2 and D2E2 under different 
fault cases specified by the four effectiveness matrices are 
given in Table I, and the corresponding attainable sets of 
control torques are apparent by inspecting the 3-D geometric 
figures shown in Fig. 4. 
 

TABLE I 
RANKS OF MATRICES D2 AND D2E2 

Fault cases rank(E2) rank(D2E2) 
Case 1 6 3 
Case 2 3 3 
Case 3 2 2 
Case 4 3 2 
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Fig. 4. Attainable sets of control torques under different fault cases (all sets are 
in a sphere whose radius is 1.5). 

 
As can be seen the remaining active thrusters are able to 

produce a sufficient actuating power (to some extent at least) 
for the pursuer to perform some given maneuvers when the 
attitude control system suffers from the fault cases 1 and 2. This 
is a straightforward result owing to 1

2 2rank( ) 3=D E  and 
2

2 2rank( ) 3=D E  (see Table I). For the third case, 
3
2rank( ) 2 3= <E  is such that 3

2 2rank( ) 2 3= <D E , the attitude 

control subsystem then becomes under-actuated as discussed 
earlier. It is evident by inspecting the bottom left subplot of Fig. 
4 that the attainable set of control torques is a plane paralleling 
to xy-plane, and thus the attitude motion in z direction cannot be 
achieved. For case 4, it is interesting to note that 

3
2 2rank( ) 2 3= <D E , although 4

2rank( ) 3=E  is such that 

2rank( ) 3≥E  holds. Similar to case 3, this case also leads to an 
under-actuated system, and the attitude motion in x direction is 
uncontrollable. 

IV. SIMULATION EXAMPLES 
In this section, numerical simulations performed on the 

6-DOF coupled relative motion dynamics model with control 
law (52) and adaptive law (36) to validate the effectiveness of 
the proposed control scheme are implemented in the 
MATLAB/Simulink software environment. A freely tumbling 
satellite in an eccentric reference orbit with inertia matrix 
 

22 0.2 0.5
0.2 20 0.3
0.5 0.3 23

t

 
 =  
  

J  

 
is referred to as the target spacecraft, and its orbit elements are 
shown in Table II. The target starts with initial attitude 

[0,0,0,1]T
t =q  and angularity velocity [0.01,0, 0.01]t T

it = −ω . 
The main control parameters as well as other simulation 
parameters are shown in Table III.  
 

TABLE II 
TARGET ORBIT ELEMENTS 

Orbit elements Value Units 
e 0.1375 -- 
i 30 deg 
ω  45 deg 
Ω  50 deg 
a 6920 km 

v(0) 15 deg 
 

TABLE III  
OTHER SIMULATION PARAMETERS FOR THE PURSUER 
Parameters Value 

mp 200kg 
Jp  [55,0.3,0.5;0.3,65,0.2;0.5,0.2,58] kg·m2 

qp(0) [-0.1,0.5,-0.2,sqrt(0.7)]T 
p

ipω (0) [-0.02,0.01,0.02] T rad/s 
ρ (0) [100,-50,80] T m 
ρ (0) [-0.05,0.05,-0.05] T m/s 
k 0.1 
k1 10 
ε   0.01 
η   100 
κ   2 

β (0) 1 

 
The external disturbances simulated are of the forms: 
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[ ] [ ]5
3sin 2π10 1.025,6.248, 2 N.415 10, 15,10t
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ω ω

−
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d  

 
where 0.1dω =  and 5 3 23.986 10 km sm = × . 

The desired relative distance is 5m, so the virtual desired 
relative position vector is specified as rd=[-5,0,0]T. Initially, 
the pursuer has a position error [101.5794, 54.5634,e = −ρ  

81.2961]T  with respect to dρ , and a relative attitude of 
[ 0.1,0.5, 0.2,sqrt(0.7)]T

e = − −q  relative to the target. The orbit 
actuators and attitude actuators are thrusters and reaction 
wheels respectively, and the control force of each thruster and 
control torque of each reaction wheel are saturated at 1N and 
0.5N·m. The four pairs of thrusters are assumed to be 
distributed symmetrically on the pursuer, as illustrated in Fig. 
5, and each pair of thrusters can provide bidirectional force. 
The positions and installation directions of all thruster pairs are 
summarized in Table IV. Hence, the distribution matrix of orbit 
thrusters is 
 

1

1 1 0 0
2 1 1 1 1

2
0 0 1 1

− − 
 = − − 
 − − 

D  

 
TABLE IV 

POSITIONS AND INSTALLATION DIRECTIONS OF THE THRUSTER PAIRS 
Thruster pair Direction Position(m) 

T1 [ 2 2, 2 2,0]− −  [-0.4,-0.4,0],[0.4,0.4,0] 

T2 [ 2 2, 2 2,0]−  [-0.4,0.4,0],[0.4,-0.4,0] 

T3 [0, 2 2, 2 2]−  [0,0.4,-0.4],[0,-0.4,0.4] 

T4 [0, 2 2, 2 2]− −  [0,-0.4,-0.4],[0,0.4,0.4] 
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Fig. 5. The configuration structure of thrusters. 

 
In addition, the attitude maneuvers are performed by four 

reaction wheels with classical configuration as shown in Fig. 6 
(see Ref. [31]), and the corresponding distribution matrix is 
 

2

1 0 0 3 3

0 1 0 3 3

0 0 1 3 3

 
 

=  
 
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Fig. 6. The configuration of the flywheels. 

A. Simulation scenario without actuator faults 
In this scenario, all the actuators are assumed to work 

healthily. According to mission requirement, we set tk=50s, 
tm=375s and tf=500s. Figure 7 shows that the relative 
orientation of the pursuer with respect to the target and the 
translational position error (expressed in the LVLH frame) 
between the relative position and fictitious desired relative 
position. The relative attitude has been transformed to attitude 
angles φ , θ  and ψ , which represent roll, pitch and yaw 
angles, respectively. As can be seen, the attitude tracking errors 
decay to a much smaller level of steady error less than 410 rad−  
within the prescribed terminal time tf=500s, and the pursuer is 
actuated by the thrusters to the desired position with steady 
accuracy better than 33 10 m−× . The time responses of the 
relative angular velocity and velocity error are depicted in Fig. 
8. As is evident in Figs. 7 and 8, the proximity mission is 
achieved within 500s, and hereafter the translational and 
rotational motions of the two spacecraft keep synchronous. 
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Fig. 7. Time responses of relative orientation and position error. 
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Fig. 8. Time responses of relation angular velocity and velocity error. 

 
Moreover, polar curves are introduced to facilitate 

illustration of the trajectories of the relative position and 
attitude. Let ||ρ|| denote the relative distance of the pursuer 
relative to the target; αx, αy and αz denote the direction angles 
that relative position vector ρ makes with the x-, y- and z-axes 
of the target’s body frame, respectively; and Θ=2arccos(qe4) 
denote the rotation angle between the body-fixed frames of the 
pursuer and target. As such, the integrated position state (||ρ||, 
αx, αy, αz) in the polar coordinate describes the trajectory of the 
relative position vector ρ, whereas ||ρ|| and Θ shows the 
tracking process of the relative translational and rotational 
motions, respectively. Figure 9 depicts the polar curves of the 
states (||ρ||, αx, αy, αz) and (||ρ||, Θ). It can be seen that the 
relative position state (||ρ||, αx, αy, αz) ultimately converges to 
(5,180 ,0 ,0 )° ° ° , which means that the pursuer indeed reaches 
the desired position rd =[-5,0,0]T as expected. Moreover, from 
the convergence process of the state (||ρ||, Θ), we know that the 
attitude tracking is achieved synchronously with the position 
maneuver, thus the control objective is achieved. 
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Fig. 9. Trajectories of relative position and orientation in polar coordinate. 
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Fig. 10. Control torque outputs of the flywheels. 
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Fig. 11. Control force outputs of the thrusters. 

 
The control histories of the rotational and translational 

motions are given in Figs. 10 and 11. It is shown that all the 
reaction wheels and thrusters work effectively to provide 
sufficient actuating torques and forces for the pursuer, thus 
guaranteeing the success of the capture mission. In addition, it 
is clear that all the actuators meet the magnitude limits. 

Furthermore, to evaluate the impact of the different choices 
of tm on the required control effort pertaining to the initial 
period, a performance index function which stems from the 
optimal control problem is introduced and defined as 
 

( ) ( )0

t T
c cE dt t t= ∫ u u  

 
where t is the simulation time that is specified as 800s. Fig.12 
shows the bar graphic visualizations of the control effort 
comparisons (here the actuator magnitude limits are not 
considered). It is obvious that reducing tm leads to a larger 
control effort at the initial period. Thus, the designer should 
trade off the control effort and the convergence rate through an 
appropriate choice of tm; otherwise, the actuator outputs may 
exceed the magnitude limits, which may lead to a potential 
performance degradation and even instability. 
 

 
Fig. 12. Bar graphic visualizations of the control effort comparisons with 
different tm. 

B. Simulation scenario with actuator faults 
In this scenario, the fault-tolerance ability of the proposed 

control scheme will be evaluated, and a severe case in which 
the thrusters and reaction wheels suffer from multiple faults is 
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considered. The scenarios of the actuator faults simulated are 
outlined in Fig. 13, in which iτ  and iF  respectively denote the 
commanded control signals of the reaction wheels and 
thrusters, riτ  and tiF  respectively denote the actual outputs of 
the reaction wheels and thrusters, and the health level of each 
actuator is specified by [21] 
 

( )0.7 0.15rand 0.1sin(0.5 4), 1, 2, ,8j jt t j jd π= + + + =   
 
where rand(t) is a random number generator whose triggering 
condition is t=0, and the generated random number will be held 
until the next triggering condition occurs; mod( ,j jt t t= + ∆  

)T∆  with 0.4( 1)sjt j∆ = −  and 3.2sT∆ =  which denote the 
time delay and generation interval, respectively. 

From Fig. 13, we know that TDED  remains positive definite 
all the time, which implies that the proposed controller can deal 
with this fault case effectively. With the same parameters as the 
previous simulation scenario, the time responses of the system 
states are shown in Fig. 14. The relative angular velocity and 
velocity errors are shown in Fig. 15. It can be seen that the 
tracking mission can be achieved within the prescribed time tf, 
with steady errors of relative attitude and position less than 

41.5 10 rad−×  and 33 10 m−× . 
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Fig. 13. Fault scenarios of flywheels and thrusters. 

 

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

R
ot

at
io

n 
A

ng
le

 (r
ad

)

 

 

φe

θe

ψe

0 100 200 300 400 500 600 700 800

-50

0

50

100

Time(s)

P
os

iti
on

 E
rro

r (
m

)

 

 

rex rey rez y=0m

 
Fig. 14. Time responses of system states for the faulty case. 
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Fig. 15. Time responses of relative angular velocity and velocity error. 

 
To demonstrate the approaching process, the 3-D trajectory 

of the relative position expressed in the target’s body-fixed 
frame is shown in Fig. 16. It clearly illustrates that the relative 
position vector converges to the desired position rd=[-5,0,0]T, 
which indicates that the docking port of the target indeed points 
towards the mass center of the pursuer. Furthermore, to 
illustrate the attitude tracking motion, a series of snapshots of 
the actual attitude orientation of the pursuer (see from the target 
reference frame) are given in Fig. 17. It is intuitively shown that 
the attitude synchronization is achieved within 500s, and 
hereafter the docking port of pursuer is aligned with the 
receiving component of the target. As a consequence, the 
control objective is achieved. 
 

 
Fig. 16. Trajectory of the relative position in the target body-fixed frame. 
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Fig. 17. Snapshots of the attitude orientation history. 

 
Figures 18 and 19 show the actual outputs of the reaction 

wheels and thrusters, respectively. As can be seen, the 
remaining active reaction wheels and thrusters are still able to 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

15 

guarantee the success of the proximity mission, although some 
actuators suffer from server faults. Additionally, the burrs 
appearing in the actual outputs of the actuators are mainly 
caused by the random actuator faults.  
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Fig. 18. Control torque outputs of the flywheels for the faulty case. 
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Fig. 19. Control force outputs of the thrusters for the faulty case. 

 
To further demonstrate the fault-tolerance ability, we 

compare the proposed control scheme (noted as FFTC) with the 
adaptive backstepping control (noted as ABSC) developed in 
[17] and the widely used proportional-derivative control (noted 
as PD) in [32]. For fair comparison, the control parameters of 
the ABSC and PD are determined by trial and error such that 
these three control schemes have nearly identical convergence 
rates for the healthy case. For the healthy case, the detailed 
control performance comparisons in terms of steady-state 
accuracy are provided in Table V, and the 3-D trajectories of 
relative attitude and position error are given in Figs. 20 and 21. 
It is shown that all three controllers can finally accomplish the 
close-proximity mission. For the faulty case, the 3-D 
trajectories of relative attitude and position error are shown in 
Figs. 22 and 23, respectively. Together with the performance 
comparisons as in Table V, it is apparent that the ABSC and the 
PD controllers have a limited fault-tolerance ability to the given 
fault case, and cannot guarantee the safe and effective 
proximity operations due to the poor performance in terms of 
tracking accuracy. In contrast, the proposed control scheme can 
still obtain high control precision and good tracking 
performance even in the event of the actuator faults as 
described above. 
 

TABLE IV 
 CONTROL PERFORMANCE COMPARISONS 

Control scheme Control performance 

Steady error of 
ρe (m) 

Steady error of 
rotation angle (rad) 

Healthy 
Case 

FFTC 33 10−×  57 10−×  
ABSC 11 10−×  38 10−×  

PD 11.5 10−×  21.5 10−×  

Faulty 
Case 

FFTC 33 10−×  41.5 10−×  
ABSC -- 32.5 10−×  

PD 17 10−×  11.6 10−×  
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Fig. 20. Trajectories of relative orientation for the healthy case. 
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Fig. 21. Trajectories of position error for the healthy case. 
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Fig. 22. Trajectories of relative orientation for the faulty case. 
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Fig. 23. Trajectories of position error for the faulty case. 

 
Summarizing all the simulation scenarios, the proposed 

controller shows superiority in control performance for the 
spacecraft proximity operations, despite the presence of 
actuator faults, external disturbances, and uncertain mass and 
inertia properties of the pursuer. In addition, an outstanding 
feature residing in the proposed control scheme is that the 
tracking mission can be accomplished in a prescribed time. 
Moreover, the flexibility in the parameter selection can be 
utilized to obtain the desired performance. 

V. CONCLUSION 
In this paper, a novel solution to the tracking control problem 

of proximity operations between a maneuverable pursuer and a 
tumbling free-flying object in orbit has been presented. A 
robust fault-tolerant control strategy was developed that seeks 
to align the relative position vector along the docking port of 
the target while maintaining a safe relative distance, and 
synchronously to reorient the pursuer such that its docking port 
is always facing the docking component of the target. The 
control scheme was shown to achieve accurate relative position 
tracking as well as attitude synchronization, despite the 
presence of external disturbances, parametric uncertainties and 
actuator faults. Moreover, the translational and rotational 
tracking errors were guaranteed to converge to zero within a 
prescribed time. Furthermore, a rigorous theoretical analysis 
for the fault-tolerance ability of the designed controller was 
also presented, which shows that the control scheme can ensure 
the success of proximity operations for a large class of actuator 
faults. Numerical simulations have been presented to illustrate 
the performance of the developed control algorithm in terms of 
disturbance suppression, finite-time convergence and fault- 
tolerance ability. However, how to guarantee collision avoid- 
ance in the event of those kinds of possible actuator faults that 
beyond the controller’s fault-tolerance ability (a design aspect 
of practical significance in decreasing the likelihood of huge 
economic losses) is not considered in this paper. This is thought 
to be a field where further study is called for. 

APPENDIX                                                                                                                   
PROOF OF LEMMA 3 

Suppose that rank(DE)=6 remains valid all the time for the 

given fault cases. Let 1 2 1 2=E E E , which is a reasonable 
manipulation due to each element of Ei satisfies 0 1ijδ≤ ≤ . 

According to 1 2 1 2rank( ) min{rank( ), rank( )}≤DE DE E , it is 
then straightforward to obtain that 
 

1 2rank( ) 6=DE                             (A1) 
 

Notice that, by using the preceding manipulation, the matrix 
TDED  can be transformed to 

 
1 2 1 2 1 2 1 2( )T T T T= = =DED DE E D DE DE AA     (A2) 

 
where 6 n×∈�A  is used here to denote 1 2DE . 

We now know directly from Eq. (A1) that TA  is a full 
column rank matrix, that is, rank( ) 6T =A . Then, consider the 
following homogeneous linear equations 
 

T = 0A x                                    (A3) 
 

It is apparent that the homogeneous system in Eq. (A3) 
possesses a unique solution, that is, the trivial solution 0x = , 
since rank( ) 6T =A  is such that there are no free variables (See 

Ref. [33]). In other words, for any 6 1×∈ ≠ 0�x , T ≠ 0A x  
always holds true. 

As indicated above, given any vector 6 1×∈ ≠ 0�y , it 
follows that 
 

( ) 0T T T T T T T= = >y DED y y AA y A y A y          (A4) 

 
Thus, we conclude that the matrix TDED  is positive 

definite. 
Now suppose that all the fault cases are such that TDED  

remains positive definite, it is a straightforward matter to show 
that rank( ) 6T =DED . Then, by making use of the relationship 

rank( ) min{rank( ), rank( )}T T≤DED DE D , and noting that D  
is a full-row rank matrix, that is, rank( ) 6=D , we present the 

necessary condition to obtain the condition rank( ) 6T =DED  is 
that 
 

rank( ) 6≥DE                                (A5) 

 
With regard to Eq. (A5), it is evident that rank(DE)=6 due to 

the fact that 6 n×∈�DE  with 6n > . This completes the proof. 
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