
Robust feature matching in 2.3µs

Simon Taylor Edward Rosten Tom Drummond

Department of Engineering, University of Cambridge

Trumpington Street, Cambridge, CB2 1PZ, UK

{sjt59, er258, twd20}@cam.ac.uk

Abstract

In this paper we present a robust feature matching

scheme in which features can be matched in 2.3µs. For

a typical task involving 150 features per image, this re-

sults in a processing time of 500µs for feature extraction

and matching. In order to achieve very fast matching we

use simple features based on histograms of pixel intensities

and an indexing scheme based on their joint distribution.

The features are stored with a novel bit mask representation

which requires only 44 bytes of memory per feature and al-

lows computation of a dissimilarity score in 20ns. A train-

ing phase gives the patch-based features invariance to small

viewpoint variations. Larger viewpoint variations are han-

dled by training entirely independent sets of features from

different viewpoints.

A complete system is presented where a database of

around 13,000 features is used to robustly localise a single

planar target in just over a millisecond, including all steps

from feature detection to model fitting. The resulting system

shows comparable robustness to SIFT [8] and Ferns [14]

while using a tiny fraction of the processing time, and in the

latter case a fraction of the memory as well.

1. Introduction

Matching the same real world points in different images

is a fundamental problem in computer vision, and a vi-

tal component of applications such as automated panorama

stitching (e.g. [2]), image retrieval (e.g. [16]) and object lo-

calisation (e.g. [8]).

Matching schemes must define a measure of similarity

between parts of images, which in the ideal case is high

if the image locations correspond to the same real-world

point and low otherwise. The most basic description of a

region of an image is a patch of pixel values. Patch matches

can be found by searching for a pair of patches with a high

cross-correlation score or a low sum-of-squared-differences

(SSD) score. However patch matching with SSD provides

no invariance to common image transformations such as

Figure 1. Two frames from a sequence including partial occlusion

and significant viewpoint variation. The average total processing

time per 640x480 frame for the sequence is 1.37ms using one core

of a 2.4GHz processor. Extracting runtime patch descriptors and

finding matches in the database accounts for 520µs of this time.

viewpoint change, and performing exhaustive patch match-

ing between all possible pairs of patches is infeasible.

Moravec proposed an interest point detector [13] to in-

troduce some invariance to translation and hence reduce the

number of patch matches to be considered. Interest point

detection is now well-established as the first stage of state-

of-the art matching schemes. There are many other trans-

formations between the images, such as rotation and scale,

which an ideal matching scheme should cope with. There

are generally two approaches possible for each category of

transformation; either factor out the effect of the transfor-

mation, or make the representation of the area of interest

invariant to it. Detecting interest points falls into the first

category in that it factors out coarse changes in position.

Schmid and Mohr [16] presented the first interest point

approach to offer invariance to many image transforma-

tions. A number of rotationally invariant features were com-

puted around interest points in images. During matching

the same features were computed at multiple scales to give

the method invariance to both scale and rotation changes

around the interest point.

Instead of computing features invariant to rotation, a

canonical orientation can be computed from the region

around an interest point and used to factor out the effect

of rotation. A variety of methods for finding orientation

have been proposed including the orientation of the largest



eigenvector in Harris [4] corner detection, the maxima in

an edge orientation histogram [8] or gradient direction at a

very coarse scale [2].

The interest point detection stage can also factor out

more than just translation changes. Scale changes can be

accounted for by a searching for interest regions over scale

space [8, 10]. The space of affine orientation has too many

dimensions to be searched directly, so schemes have been

proposed to perform local searches for affine orientation

starting from scale-space interest regions [11]. Alterna-

tively, interest regions can be found and affine orientation

deduced from the shape of the region [9].

Schemes such as those above can factor out large

changes due to many common imaging transformations, but

differences between matching patches will remain due to

errors in the assignment of the canonical parameters and

unmodelled distortions. To give robustness to these errors

the patches extracted from the canonical frames undergo

a further stage of processing. Lowe’s SIFT (scale invari-

ant feature transform) method [8] typifies this approach and

uses soft binning of edge orientation histograms which vary

weakly with the position of edges.

Other systems in this category include GLOH (Gradi-

ent Location and Orientation Histogram) [12] and MOPS

(Multi-scale Oriented Patches) [2] which extracts patches

from a different scale image to the interest region detec-

tion. Winder and Brown applied a learning approach to find

optimal parameters for these types of descriptor [18]. The

CS-LBP descriptor [5] uses a SIFT-style histogram of local

information from the canonical patches but the local infor-

mation used is a binary pattern rather than the local gradient

used in SIFT.

All of the above approaches aim to compute a single de-

scriptor for a real-world feature which is as invariant as pos-

sible to all likely image transformations. Correspondences

between images are determined by extracting descriptors

from both images and finding those that are close neigh-

bours in feature space.

An interesting alternative approach recasts the match-

ing problem as one of classification. This approach uses

a training stage to train classifiers for the database features,

which allows matching to be performed with less expensive

computation at run-time than required by descriptor-based

methods. Lepetit et al. demonstrated real-time matching us-

ing randomised trees to classify patches extracted from lo-

cation, scale and orientation-normalised interest regions [7].

Only around 300 bits are computed from the query images

for each interest region to be classified. Later work from

Oyuzal et al. introduced the Ferns method [14] which im-

proved classification performance to the point where the

orientation normalisation of interest regions was no longer

necessary. These methods only perform simple computa-

tions on the runtime image, however the classifiers need

to represent complicated joint distributions for each feature

and so a large amount of memory is required. This limits

the approach to a few hundred features on standard desktop

PCs.

Runtime performance is of key importance for many

applications. The template tracking system of Jurie and

Dhome [6] performs well but in common with any tracking

scheme relies on small frame-to-frame motion and requires

another method for initialisation. Recent work on adapting

the SIFT and Fern approaches to mobile phones [17] made

trade-offs to both approaches to increase speed whilst main-

taining usable matching accuracy. Our method is around

4 times faster than these optimised implementations and

acheives more robust localisation.

Existing state-of-the-art matching approaches based on

descriptor computation or patch classification attempt to

match any possible view of a target to a small set of key

features. Descriptor-based approaches such as SIFT factor

out image transformations with computationally expensive

image processing. Classification methods such as Ferns of-

fer reduced runtime computation but have a high memory

cost to represent the complex joint distributions involved.

Our method avoids the complexity inherent to matching

areas of images subject to large transformations. Instead we

employ a training phase to learn independent sets of features

for different views of the target, and insert them all into the

database for the target. The individual features are only in-

variant to small changes of viewpoint. This simplifies the

matching problem so neither the computationally expensive

normalisation over transformations of SIFT-style methods

or the complex classifier of the Fern-like approach are re-

quired.

As we only require features to be invariant to small view-

point changes we need far less invariance from our interest

point detector than other matching schemes. The FAST-9

(Features from Accelerated Segment Test) detector [15] is a

perfect fit for our application as it shows good repeatability

over small viewpoint variations and is extremely efficient as

it requires no convolutions or searches over scale space.

A potential problem with using features with less invari-

ance than those of other approaches is that more database

features will be required to allow robust matching over

equivalent ranges of views at runtime. Therefore to make

our new approach feasible we require features that have a

low memory footprint and which permit rapid computation

of a matching score. Our novel bit-mask patch feature ful-

fils these criteria.

As runtime performance is our primary concern we

would like to avoid too much processing on the pixels

around the detected interest points. Using pixel patches

would be one of the simplest possible matching schemes

but SSD-based patch matching would not even provide the

small amount of viewpoint invariance we desire. One of the



reasons SSD is very sensitive to registration errors is that

it assigns equal weight to errors from all the pixels in the

patch. Berg and Malik [1] state that registration errors, at

least for scale and rotation, will have more effect on samples

further from the centre of the patch. The authors reduce the

weight of errors in those samples by employing a variable

blur which is stronger further from the centre of the patch.

We use the idea that not all pixels in a patch are equally im-

portant for matching, but further note that the weights which

should be assigned to pixels also depend on the individual

feature: samples in the centre of large regions of constant

intensity will be robust to small variations in viewpoint.

We employ a training phase to learn a model for the

range of patches expected for each feature. This model al-

lows runtime matching to use simple pixel patches whilst

providing sufficient viewpoint invariance for our frame-

work. For fast localisation the memory and computational

cost of matching is reduced by heavily quantising the model

to a small binary representation that can be very efficiently

matched at runtime.

1.1. Our Contributions

• We show fast and robust localisation of a target using

simple features which only match under small view-

point variations.

• A large set of features from different views of a target

are combined to allow matching under large transfor-

mations.

• We introduce a simple quantised-patch feature with a

bit mask representation which enables very fast match-

ing at runtime. The features represent the patch varia-

tions observed in a training phase.

2. Learning Features for a Target

We use a large set of training images covering the entire

range of viewpoints where localisation is required. The set

of images could be captured for real, but we instead artifi-

cially generate the set by warping a single reference image.

Different scales, rotations and affine warps are included in

the training set. Additionally random pixel noise and a blur

of a small random size are added to each generated view

so the trained features have more robustness to poor quality

images.

The training views for a target are grouped into sev-

eral hundred viewpoint bins so that each bin covers a small

range of viewpoints. The interest point detector is run on

each image in the bin in sequence and patches are extracted

from around the detected corners. The interest point loca-

tions can be converted to a position in the reference frame

as the warp between the reference and training image is

known. If the database for the viewpoint already contains a

Figure 2. Left: The sparse 8×8 sampling grid used by the features.

Right: The 13 samples selected to form the index.

feature nearby the detected point in the new training image,

then the patch model for that feature is updated with the new

patch. Otherwise a new feature is created and added to the

database. When all of the images in a viewpoint bin have

been processed we select the n features (typically 50-100)

which were most repeatably detected by the FAST detec-

tor and quantise their patch models to the binary feature

descriptions used at runtime as described in the following

section.

2.1. Database Feature Representation

The features in our system are based on an 8 × 8 pixel

patch extracted from a sparsely sampled grid around an in-

terest point, as shown in Figure 2. The extracted samples

are firstly normalised such that they have zero mean and

unity standard deviation to give robustness to affine lighting

variations. During training we build a model of the feature

which consists of 64 independent empirical distributions of

normalised intensity, one per pixel of the sampling grid.

This model can be used to calculate the likelihood that

a runtime patch is from a trained feature, assuming each

pixel is independent. However computing this likelihood

estimate would require too much memory and computation

time to be used in real-time on a large database of fea-

tures. Since features only need to match over small view-

point ranges we are able to heavily quantise the model for a

feature and still obtain excellent matching performance.

We quantise the per-pixel distribution in two ways.

Firstly the empirical intensity distributions are represented

as histograms with 5 intensity bins. Secondly when train-

ing is complete we replace the probability in each bin with

a single bit which is 1 if pixels rarely fell into the bin (less

than 5% of the time). The quantisation is illustrated in Fig-

ure 3.

A feature in the database D can be written as:

D0,0 D0,1 D0,2 D0,3 D0,4

D1,0 D1,1 D1,2 D1,3 D1,4

...
...

...
...

...

D63,0 D63,1 D63,2 D63,3 D63,4,

(1)

where a row Di,... corresponds to the quantised histogram



Figure 3. The independent per-pixel empirical distributions are

quantised into 5 intensity bins, and then further quantised into a

bit mask identifying bins rarely observed during the training phase.

This process is shown for: (left) a constant intensity region, (cen-

tre) a step change in intensity, (right) an intensity ramp. The data

was created by taking the image (top) and adding random blur,

noise and translation errors.

for a single pixel of the patch, and

Di,j =

{

1 if P(Bj < I(xi, yi) < Bj+1) < 0.05

0 otherwise.
(2)

where Bj is the minimum intensity value of histogram bin

j and I(xi, yi) is the normalised value of pixel i.

The resulting descriptor requires 5 bits for each of the 64

samples giving a total of 40 bytes of memory per feature. 4

additional bytes are used to store the position of the feature

in the reference image.

3. Runtime Matching

After the quantisation to bits the patch descriptions no

longer represent probability distributions and so we cannot

compute the likelihood of a feature giving rise to a patch.

However the bit mask does identify the intensity bins that

samples rarely fell into at training time and so good matches

should only have a small number of samples which fall into

these bins in the runtime patch. Hence we use a count of

the number of samples which fall into bins marked with

a 1 in the database patch description as our dissimilarity

score. The best matching feature in the database is the one

that gives the lowest dissimilarity score when compared to

the query patch, as that represents the match with fewest

“errors” (runtime pixels in unexpected bins). The major

advantage of the simple error count measure is that it can

be computed with bitwise operations, which allows a large

number of potential matches to be scored very quickly.

The bitwise representation of a runtime patch R is

slightly different to the database feature of equation 1. It

is also represented by a 320-bit value but has exactly 1 bit

set for each pixel, corresponding to the intensity bin which

the sample from the runtime patch is in:

Ri,j =

{

1 if Bj < RP(xi, yi) < Bj+1

0 otherwise.
(3)

where RP(xi, yi) is the value of pixel i in the normalised

runtime patch extracted from around an interest point de-

tected in a runtime image.

With the preceeding definitions of the database and run-

time patch representations the dissimilarity score can be

simply computed by counting the number of bits where both

Di,j and Ri,j are equal to 1:

e =
∑

i,j

Di,j ⊗ Ri,j , (4)

where ⊗ is a logical AND. Since each row of R always has

one single bit set, this can be rewritten as:

e =
∑

i

((Di,0 ⊗ Ri,0) ⊕ ... ⊕ (Di,4 ⊗ Ri,4)) (5)

where ⊕ denotes logical OR. By packing each column of

D and R into a 64 bit integer (Dj and Rj) the necessary

logical operations can be performed for all rows in parallel.

The dissimilarity score can thus be obtained from a bitcount

of a 64-bit integer:

e = bitcount ((D0 ⊗ R0) ⊕ ... ⊕ (D4 ⊗ R4)) (6)

Computing the error measure therefore requires 5 ANDs,

4 ORs and a bit count of a 64 bit integer. Some architectures

(including recent x86 CPUs with SSE4.2) support a single-

instruction bitcount. For other architectures, including our

test machine, the bitcount can be performed in 16 instruc-

tions using an 11 bit lookup table to count chunks of 11 bits

at a time. The total time to compute an error measure using

the lookup table bitcount is about 20ns.

The first stage of finding matches from a runtime image

is to run the FAST-9 interest point detector. As the training

phase has selected the most repeatable FAST features from

each viewpoint it is not necessary to obtain too many inter-

est points from the input image. We typically find no more

than 200 are needed for robust localisation. The 8×8 patch

of Figure 2 is extracted, and the mean and standard devi-

ation of the samples are calculated to enable quantisation

into the 320-bits Ri,j of equation 3. The dissimilarity score

between the patch and each database feature is computed

using the fast method of equation 6.

The database feature with the lowest dissimilarity score

for a runtime patch is treated as a match if the error count

is below a threshold (typically 5). The matches from all the

runtime patches can be sorted by error count to order them

in terms of quality.



3.1. Indexing

The dissimilarity score between a runtime patch and a

database feature can be computed very quickly using equa-

tion 6, however as we use larger numbers of features than

alternative approaches it is desirable to combine the basic

method above with an indexing scheme to reduce the num-

ber of scores which must be computed and to prevent the

search time growing linearly with the database size.

The indexing approach we use is inspired by the Ferns

work[14] which uses joint distributions of simple binary

tests from training images. Our current implementation

uses the 13 samples shown on the right of Figure 2 to com-

pute an index number. The samples have been selected rea-

sonably close to the patch centre as they are expected to

be more consistent under rotation and scale, but somewhat

spaced apart so that they are reasonably uncorrelated.

Each of the samples selected for the index is quantised

to a single bit: 1 if the pixel value is above the mean of the

patch and 0 otherwise. The 13 samples are then concate-

nated to form a 13-bit integer. Thus the index in our cur-

rent implementation can take values between 0 and 8192.

The index value is used to index a lookup table of sets of

database features. At runtime the dissimilarity score is only

computed against the set of features in the entry of the table

with the matching index.

The training phase is used to determine the set of index

values which will account for most possible runtime views

of a particular feature. Every patch from the training set that

contributes to the model for a particular feature also con-

tributes a vote for the index value computed from the patch.

After training is complete we select the most-common in-

dices until together the selected set of indices account for at

least 80% of the training patches used in building the fea-

ture. This set of indices is saved with the feature, and the

feature is inserted into all of the corresponding sets of fea-

tures in the lookup table at runtime.

3.2. Improving Robustness to Blur

FAST is not an inherently multi-scale detector and fails

to detect good features when the image is significantly

blurred. Although our training set includes some random

blur so the features are trained to be robust to this we still

rely on the repeatability of the detector to find the features

in the first place. The few frames where blur is a problem in

typical image sequences do not justify switching to a multi-

scale detector, so we take a different approach.

To perform detection in blurred images, we create an im-

age pyramid with a factor of 2 in scale between images, and

run FAST on each layer of the pyramid. In order to avoid

incurring the cost of building the pyramid at each frame, we

use a data driven approach to decide when to stop building

the pyramid.

Initially features are extracted and matched on the full-

sized image. The features are then fed to the next stage of

processing, such as estimating the camera pose. If the later

stages of processing determine that there are too few good

matches, then another set of features are extracted from the

next layer of the image pyramid. These are aggregated with

the first set of features, but the new features are assumed to

have a better score. If again insufficient matches are found,

the next layer of the pyramid is used and so on until either

enough good matches or a minimum image size has been

reached.

We choose a factor of 2 between images in the pyra-

mid, as this allows for a particularly efficient implementa-

tion such that around 200µs are required to half-sample a

640 × 480 frame. We build a pyramid with a maximum of

3 layers. The resulting system obtains considerable robust-

ness to blur, since the blur in the smallest layer is reduced by

a factor of 4. Furthermore, it allows for matches to be made

over a greater range of scales as the automatic fallback to

sub-sampled images allows matching on frames when the

camera is closer to the target than any training images.

4. Results and Discussion

In order to validate our method, we apply it to the task of

matching points in frames of a video sequence to a known

planar object, and finding the corresponding homography.

After finding matches the homography is estimated using

PROSAC [3] and refined using the inliers. The inlier set is

reestimated and refined for several iterations. The result-

ing homography allows us to determine which points were

matched correctly.

The database for the frames shown in Figure 1 was gen-

erated from a training set of 21672 images, generated by

warping a single source image of the target. 7 different

scale ranges and 36 different camera axis rotation ranges

were used, giving a total of 252 viewpoint bins. Each bin

covers a reduction in scale by a factor of 0.8, 10 degrees of

camera axis rotation, and out-of-plane viewpoints in all di-

rections of up to 30 degrees. We extract around 50 features

from each viewpoint bin (more from larger scale images),

giving a total of 13372 features in the database.

4.1. Validating the Bit Count Dissimilarity Score

Two short video sequences of the planar target of Figure

1 were captured using a cheap VGA webcam. The first se-

quence was captured from viewpoints which were known to

have been covered by our training phase whereas the second

sequence was viewed with a larger out-of-plane rotation,

known to be outside the range of training. The database fea-

tures were trained from the source image, whereas the test

sequences were poor-quality webcam images of a printed

version of the file. Thus both sequences test the method’s



FAST interest point detection 0.55ms

Building query bit masks 0.12ms

Matching into database 0.35ms

Robust pose estimation 0.1ms

Total frame time 1.12ms

Table 1. Timings for the stages of our approach on a dataset with

images taken from within the range of trained viewpoints.

Figure 4. The bit error count provides a reasonable way to deter-

mine good matches. Left: matches from viewpoints contained in

training set. Right: matches on viewpoints from outside training

set.

robustness to different imaging devices.

Matching on the first test sequence was very good, cor-

rectly localising the target in all 754 frames of the test se-

quence. There was little blur in the sequence so the full

frame provided enough matches in all but 7 frames of the

sequence, when the half-sampled image fallback was used

to obtain enough matches for a confident pose estimate. The

average total frame time on the sequence was 1.12ms on a

2.4GHz processor. The time attributed to each stage of the

process is shown in Table 1.

Somewhat surprisingly our method also performed rea-

sonably well on the second sequence, even though it was

known the frames were taken from views that were not cov-

ered by our training set. On this sequence the target was lo-

calised in 635 frames of the 675 in the sequence (94%). As

expected the pose estimate using only the full-frame image

was generally less confident so the fallbacks to sub-sampled

images were used more often: 377 frames used the half-

image and 63 also used the quarter-scale image. Because

of this additional workload the per-frame average time in-

creased to 1.52ms.

The matching performance on these test sequences sug-

Figure 5. Increasing the range of viewpoint bins in the training set

allows more viewpoint invariance to be added in a straightforward

manner.

gests that the bit count dissimilarity score provides a reason-

able way of scoring matches. To confirm this we computed

the average number of inlier and outlier matches over all of

the frames in the two sequences, and plotted these against

the dissimilarity score obtained for the match in Figure 4.

For the sequence on the left where the viewpoints are in-

cluded in the training set many good matches are found in

each frame, with on average 9.7 zero-error inliers obtained.

The inlier percentage for matches with low dissimilarity

scores is also good at over 82% in the zero error case. The

result that both the number of inliers and the inlier fraction

drop off with increasing dissimilarity score demonstrates

that the simple bit error count is a reasonable measure of

the quality of a match. The figure provides strong support

for a PROSAC-like robust estimation procedure once the

matches have been sorted by dissimilarity score as the low

error matches are very likely to be correct.

Even when the viewpoint of the query image is outside

the range for which features have been trained, as in the data

on the right of Figure 4, the dissimilarity score still provides

a reasonable way to sort the matches, as the inlier fraction

can be seen to drop off with increasing dissimilarity. The

inlier rate of the first matches when sorted by dissimilarity

score is still sufficient in most frames to obtain a pose with

a robust estimation stage such as PROSAC.

4.2. Controllable Viewpoint Invariance

As our framework uses independent features for different

viewpoint bins it is possible to trade-off between robustness

to viewpoint variations and computation required for local-

isation by simply adding or removing more bins.

For applications where viewpoints are restricted (for ex-

ample if the camera has a roughly constant orientation) the

number of database features can be drastically reduced lead-

ing to even higher performance. Alternatively if more com-

putational power is available it is possible to increase the



Figure 6. Targets lacking in texture can be localised successfully

over a large viewpoint range and in the presence of background

clutter and partial occlusion.

viewpoint invariance of the method by adding features from

more viewpoint bins. Figure 5 shows the same database as

before, with some additional viewpoint bins trained with

more extreme out-of-plane rotations. However the number

of bins required to cover the full space of affine variations is

large. We find in practice a single top-down-centred bin at

each scale and rotation which includes small affine changes

results in a runtime system which is able to localise the

target successfully in a range of viewpoints comparable to

other methods without the specifically trained extreme out-

of-plane features in the database shown in Figure 5.

4.3. Targets Lacking Detailed Texture

As we only require a small number of interest points to

be found from each viewpoint our method also works well

on scenes lacking detailed texture, as shown in Figure 6.

The database for this target contained 10800 features. Our

method found a pose for the object in 512 of the 517 frames

in the sequence (99%). The average frame time was 1.85ms,

which is increased from the other sequences as the lack of

texture means many features fall in the same index bins re-

sulting in more comparisons at runtime.

4.4. Comparisons with Other Methods

We compared the performance of our method against

the widely used SIFT technique on the sequences shown

in Figures 1 and 6. SIFT keypoints were extracted from

every frame of the two sequences using David Lowe’s bi-

nary. Keypoints were also extracted from the same ref-

erence image used to generate the training sets for our

method. Around 3500 SIFT keypoints are found in the

poster image, and 500 for the logo.

We exhaustively search through all of the reference SIFT

descriptors to find the nearest neighbour to every descriptor

extracted from each frame of the test sequence. We do not

use any threshold to reject mismatches but instead sort the

matches and apply PROSAC which automatically favours

the best-scoring matches. We use two different scores to

sort the matches; one is the distance to the nearest reference

keypoint in SIFT space, and the second is the ratio of the

distances to the two nearest neighbours, as commonly used

Poster Logo

Our Method 625 512

Our Method, 5000 iterations 632 517

SIFT, Distance 590 517

SIFT, Ratio 629 517

SIFT, Ratio, 5000 iterations 630 517

Table 2. Comparison of the number of frames where the target was

localised in two sequences. The Poster dataset is as in Figure 1 and

consists of 637 frames and the Logo dataset is shown in 6 and has

517 frames.

in practice. We firstly allow 150 prosac iterations to match

the parameters used by our runtime method (which uses a

maximum of 50 PROSAC iterations on each image from the

pyramid). Secondly we run both SIFT and our method with

5000 PROSAC iterations to see if this is able to correctly

localise the target in more frames.

The number of frames matched successfully for each se-

quence is shown in Table 2. The results show that we man-

age to successfully localise the targets in a similar number

of frames to SIFT. They also validate the ratio of distance

measure as being the best indication of the quality of a SIFT

match. The parameters in our method are tuned towards

speed rather than accuracy but we still demonstrate excel-

lent performance on these representative real-world data

sets. Interestingly when we use more iterations of PROSAC

on our approach we manage to localise more of the frames,

and in the Poster sequence we localise more frames than the

exhaustive SIFT implementation which is a promising re-

sult. The improvement in performance with more PROSAC

iterations suggests the error count dissimilarity score alone

may not be good enough to sort matches in challenging im-

ages. We could apply additional higher level checks (for

example, viewpoint consistency) to identify the matches

which are likely to be the best so they can be promoted to

the start of the list for the PROSAC procedure.

The SIFT binary requires around 1 second per frame to

extract the keypoints. N-to-N matching would not be used

in practice with large databases, but it is clear the amount

of computation required both for keypoint extraction and

matching is far lower with our approach and we expect even

with optimised SIFT code our method would be hundreds

of times faster in practice. Even so it should be noted that

we require a training phase of around 1 hour per target to

achieve the high performance at runtime so our method is

not suitable for all applications.

The Ferns approach is similarly targeted at real-time lo-

calisation applications. The authors report a total per-frame

time of around 20ms on similar hardware to our testing PC.

Our approach is around ten times faster, and as we do not

represent joint distributions we require around 100 times

less memory than used by a Fern implementation with typ-



ical parameters.

Wagner et al. report an average total frame time of

around 5ms on 320 × 240 sequences for their speed-

optimised SIFT and Fern implementations[17]. The authors

use a test sequence with the same target as Figure 1 and re-

port both methods localise the target in around 96% of the

frames. Our method applied to the same sequence localises

99.6% of the frames with an average frame time of 1.04ms,

so is over 4 times faster than both approaches in [17] and

provides more robust localisation on this sequence.

5. Conclusions and Future Work

We have proposed a novel solution to the feature match-

ing problem using independent features from many differ-

ent viewpoint bins which are only required to be invariant

to small viewpoint changes. This means simple features can

be used with very low memory and computational require-

ments but can still provide matching performance compa-

rable to other state-of-art schemes requiring many orders of

magnitude more computation at runtime.

Our novel binary feature representation for a pixel patch

is trained offline to give the local invariance required within

the viewpoint bin. The binary feature requires just 44 bytes

of memory, and can compute a dissimilarity score against

a query patch in just 20ns. This allows our entire target

localisation (including feature detection, query patch ex-

traction, matching, and robust pose estimation) to run in

around 1.5ms per frame on average, ten times faster than

the Ferns approach and hundreds of times faster than ap-

proaches based on computationally expensive image pro-

cessing such as standard SIFT matching.

The parameter space of our features has not been ex-

plored so we would like to apply a learning approach to

discover the optimal number of quantisation bins and the

best number of samples and their layout for the binary fea-

tures.

The FAST detector offers good repeatability with

camera-axis rotation and so we could try and normalise for

rotation at training time. As we currently use 36 separate

viewpoint bins to cover the range of camera rotation this

has the potential to hugely reduce the number of features

we require for a single target.

6. Acknowledgements

This research is supported by the Boeing Company.

References

[1] A. C. Berg and J. Malik. Geometric blur for template match-

ing. In Computer Vision and Pattern Recognition, volume 1,

pages 607–614, 2001. 3

[2] M. Brown, R. Szeliski, and S. Winder. Multi-image match-

ing using multi-scale oriented patches. Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer So-

ciety Conference on, 1:510–517 vol. 1, June 2005. 1, 2

[3] O. Chum and J. Matas. Matching with PROSAC - pro-

gressive sample consensus. In C. Schmid, S. Soatto, and

C. Tomasi, editors, Proc. of Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 220–226,

Los Alamitos, USA, June 2005. IEEE Computer Society. 5

[4] C. Harris and M. Stephens. A combined corner and edge

detector. In Alvey Vision Conference, pages 147–151, 1988.

2

[5] M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of

interest regions with local binary patterns. Pattern Recogn.,

42(3):425–436, 2009. 2

[6] F. Jurie and M. Dhome. Hyperplane approximation for tem-

plate matching. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 24(7):996–1000, Jul 2002. 2

[7] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-

time keypoint recognition. In 18th IEEE Conference on Com-

puter Vision and Pattern Recognition, San Deigo, California,

USA, June 2005. Springer. 2

[8] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 2:91–

110, 2004. 1, 2

[9] J. Matas, O. Chum, M. Urbana, and T. Pajdlaa. Robust wide-

baseline stereo from maximally stable extremal regions. Im-

age and Vision Computing, 22(10):761–767, Sept. 2004. 2

[10] K. Mikolajczyk and C. Schmid. Indexing based on scale in-

variant interest points. In 8th IEEE International Conference

on Computer Vision, volume 1, pages 525–531, Vancouver,

Canada, 2001. Springer. 2

[11] K. Mikolajczyk and C. Schmid. An affine invariant inter-

est point detector. In Proceedings of the 7th European Con-

ference on Computer Vision, Copenhagen, Denmark, pages

128–142. Springer, 2002. Copenhagen. 2

[12] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell.,

27(10):1615–1630, 2005. 2

[13] H. Moravec. Rover visual obstacle avoidance. In proceed-

ings of the seventh International Joint Conference on Artifi-

cial Intelligence, pages 785–790, August 1981. 1

[14] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition

in ten lines of code. Computer Vision and Pattern Recog-

nition, 2007. CVPR ’07. IEEE Conference on, 1:1–8, June

2007. 1, 2, 5

[15] E. Rosten and T. Drummond. Machine learning for high

speed corner detection. In 9th Euproean Conference on Com-

puter Vision, volume 1, pages 430–443. Springer, Apr. 2006.

2

[16] C. Schmid and R. Mohr. Local greyvalue invariants for im-

age retrieval. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19:530–535, 1997. 1

[17] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and

D. Schmalstieg. Pose tracking from natural features on mo-

bile phones. In Proc. ISMAR 2008, Cambridge, UK, Sept.

15–18 2008. 2, 8

[18] S. A. Winder and M. Brown. Learning local image descrip-

tors. In Computer Vision and Pattern Recognition, 2007.

CVPR ’07. IEEE Conference on, pages 1–8, 2007. 2


