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Abstract. Robustness or stability of feature selection techniques is a
topic of recent interest, and is an important issue when selected feature
subsets are subsequently analysed by domain experts to gain more in-
sight into the problem modelled. In this work, we investigate the use
of ensemble feature selection techniques, where multiple feature selec-
tion methods are combined to yield more robust results. We show that
these techniques show great promise for high-dimensional domains with
small sample sizes, and provide more robust feature subsets than a sin-
gle feature selection technique. In addition, we also investigate the effect
of ensemble feature selection techniques on classification performance,
giving rise to a new model selection strategy.

1 Introduction

Feature selection is an important preprocessing step in many machine learning
applications, where it is often used to find the smallest subset of features that
maximally increases the performance of the model. Besides maximizing model
performance, other benefits of applying feature selection include the ability to
build simpler and faster models using only a subset of all features, as well as gain-
ing a better understanding of the processes described by the data, by focusing
on a selected subset of features [1].

Feature selection techniques can be divided into three categories, depending
on how they interact with the classifier. Filter methods directly operate on the
dataset, and provide a feature weighting, ranking or subset as output. These
methods have the advantage of being fast and independent of the classification
model, but at the cost of inferior results. Wrapper methods perform a search in
the space of feature subsets, guided by the outcome of the model (e.g. classifi-
cation performance on a cross-validation of the training set). They often report
better results than filter methods, but at the price of an increased computational
cost [2]. Finally, embedded methods use internal information of the classifica-
tion model to perform feature selection (e.g. use of the weight vector in support
vector machines). They often provide a good trade-off between performance and
computational cost [1,3].

During the past decade, the use of feature selection for knowledge discovery
has become increasingly important in many domains that are characterized by
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a large number of features, but a small number of samples. Typical examples of
such domains include text mining, computational chemistry and the bioinformat-
ics and biomedical field, where the number of features (problem dimensionality)
often exceeds the number of samples by orders of magnitude [3]. When using fea-
ture selection in these domains, not only model performance but also robustness
of the feature selection process is important, as domain experts would prefer a
stable feature selection algorithm over an unstable one when only small changes
are made to the dataset. Robust feature selection techniques would allow do-
main experts to have more confidence in the selected features, as in most cases
these features are subsequently analyzed further, requiring much time and effort,
especially in biomedical applications.

Surprisingly, the robustness (stability) of feature selection techniques is an im-
portant aspect that received only relatively little attention during the past. Re-
cent work in this area mainly focuses on the stability indices to be used for feature
selection, introducing measures based on Hamming distance [4], correlation coef-
ficients [5], consistency [6] and information theory [7]. Kalousis and coworkers also
present an extensive comparative evaluation of feature selection stability over a
number of high-dimensional datasets [5]. However, most of this work only focuses
on the stability of single feature selection techniques, an exception being the work
of [4] which describes an example combining multiple feature selection runs.

In this work, we investigate whether the use of ensemble feature selection
techniques can be used to yield more robust feature selection techniques, and
whether combining multiple methods has any effect on the classification perfor-
mance. The rationale for this idea stems from the field of ensemble learning,
where multiple (unstable) classifiers are combined to yield a more stable, and
better performing ensemble classifier. Similarly, one could think of more robust
feature selection techniques by combining single, less stable feature selectors. As
this issue is especially critical in large feature/small sample size domains, the
current work focuses on ensemble feature selection techniques in this area.

The rest of this paper is structured as follows. Section 2 introduces the
methodology used to assess robustness of the algorithms we evaluated. Sub-
sequently, we introduce ensemble feature selection techniques in section 3 and
present the results of our experiments in section 4. We conclude with some final
remarks and ideas for future work.

2 Robustness of Feature Selection Techniques

The robustness of feature selection techniques can be defined as the variation in
feature selection results due to small changes in the dataset. When applying fea-
ture selection for knowledge discovery, robustness of the feature selection result
is a desirable characteristic, especially if subsequent analyses or validations of se-
lected feature subsets are costly. Modification of the dataset can be considered
at different levels: perturbation at the instance level (e.g. by removing or adding
samples), at the feature level (e.g. by adding noise to features), or a combination
of both. In the current work, we focus on perturbations at the instance level.
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2.1 Estimating Stability with Instance Perturbation

To measure the effect of instance perturbation on the feature selection results,
we adopt a subsampling based strategy. Consider a dataset X = {x1, . . . , xM}
with M instances and N features. Then k subsamples of size �xM� (0 < x < 1)
are drawn randomly from X , where the parameters k and x can be varied.
Subsequently, feature selection is performed on each of the k subsamples, and
a measure of stability or robustness is calculated. Here, following [5], we take
a similarity based approach where feature stability is measured by comparing
the outputs of the feature selectors on the k subsamples. The more similar all
outputs are, the higher the stability measure will be. The overall stability can
then be defined as the average over all pairwise similarity comparisons between
the different feature selectors:

Stot =
2

∑k
i=1

∑k
j=i+1 S(fi, fj)

k(k − 1)

where fi represents the outcome of the feature selection method applied to sub-
sample i (1 ≤ i ≤ k), and S(fi, fj) represents a similarity measure between fi
and fj .

To generalize this approach to all feature selection methods, it has to be noted
that not all feature selection techniques report their result in the same form, and
we can distinguish between feature weighting, feature ranking and feature subset
selection. Evidently, a feature weighting can be converted to a feature ranking
by sorting the weights, and a ranking can be converted to a feature subset by
choosing an appropriate threshold. For the remainder of the paper, we choose
the similarity function S(. , .) to compare only results of the same type. Thus, fi
can be considered a vector of length N , where f j

i represents (a) the weight for
feature j in the case of comparing feature weightings, (b) the rank of feature j
in the case of feature ranking (the worst feature is assigned rank 1, the best one
rank N) and (c) f j

i = 1 if the feature is present in the subset, and zero otherwise
in the case of feature subset selection.

2.2 Similarity Measures

Appropriate similarity measures for feature weighting, ranking and subset selec-
tion can be derived from different correlation coefficients. For feature weighting,
the Pearson correlation coefficient can be used:

S(fi, fj) =

∑
l(f

l
i − μfi)(f l

j − μfj )
√∑

l(f
l
i − μfi)2

∑
l(f

l
j − μfj )2

For feature ranking, the Spearman rank correlation coefficient can be used:

S(fi, fj) = 1 − 6
∑

l

(f l
i − f l

j)
2

N(N2 − 1)
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For feature subsets, we use the Jaccard index:

S(fi, fj) =
|fi ∩ fj |
|fi ∪ fj |

=

∑
l I(f l

i = f l
j = 1))

∑
l I(f l

i + f l
j > 0)

where the indicator function I(.) returns 1 if its argument is true, and zero
otherwise.

Finally, it is important to note that robustness of feature selection results
should not be considered per se, but always in combination with classification
performance, as domain experts are not interested in a strategy that yields very
robust feature sets, but returns a badly performing model. Hence, these two
aspects need always be investigated together.

3 Ensemble Feature Selection Techniques

In ensemble learning, a collection of single classification or regression models
is trained, and the output of the ensemble is obtained by aggregating the out-
puts of the single models, e.g. by majority voting in the case of classification,
or averaging in the case of regression. Dietterich [8] shows that the result of the
ensemble might outperform the single models when weak (unstable) models are
combined, mainly because of three reasons: a) several different but equally opti-
mal hypotheses can exist and the ensemble reduces the risk of choosing a wrong
hypothesis, b) learning algorithms may end up in different local optima, and
the ensemble may give a better approximation of the true function, and c) the
true function cannot be represented by any of the hypotheses in the hypothesis
space of the learner and by aggregating the outputs of the single models, the
hypothesis space may be expanded.

3.1 The Ensemble Idea for Feature Selection

Similar to the case of supervised learning, ensemble techniques might be used
to improve the robustness of feature selection techniques. Indeed, in large fea-
ture/small sample size domains it is often reported that several different feature
subsets may yield equally optimal results [3], and ensemble feature selection may
reduce the risk of choosing an unstable subset. Furthermore, different feature se-
lection algorithms may yield feature subsets that can be considered local optima
in the space of feature subsets, and ensemble feature selection might give a better
approximation to the optimal subset or ranking of features. Finally, the repre-
sentational power of a particular feature selector might constrain its search space
such that optimal subsets cannot be reached. Ensemble feature selection could
help in alleviating this problem by aggregating the outputs of several feature
selectors.

3.2 Components of Ensemble Feature Selection

Similar to the construction of ensemble models for supervised learning, there
are two essential steps in creating a feature selection ensemble. The first step
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involves creating a set of different feature selectors, each providing their output,
while the second step aggregates the results of the single models. Variation in
the feature selectors can be achieved by various methods: choosing different fea-
ture selection techniques, instance level perturbation, feature level perturbation,
stochasticity in the feature selector, Bayesian model averaging, or combinations
of these techniques [8,9]. Aggregating the different feature selection results can
be done by weighted voting, e.g. in the case of deriving a consensus feature rank-
ing, or by counting the most frequently selected features in the case of deriving
a consensus feature subset.

In this work, we focus on ensemble feature selection techniques that work by
aggregating the feature rankings provided by the single feature selectors into a
final consensus ranking. Consider an ensemble E consisting of s feature selec-
tors, E = {F1, F2, . . . , Fs}, then we assume each Fi provides a feature ranking
fi = (f1

i , . . . , fN
i ), which are aggregated into a consensus feature ranking f by

weighted voting:

f l =
s∑

i=1

w(f l
i )

where w(.) denotes a weighting function. If a linear aggregation is performed
using w(f l

i ) = f l
i , this results in a sum where features contribute in a linear way

with respect to their rank. By modifying w(f l
i ), more or less weight can be put

to the rank of each feature. This can be e.g. used to accommodate for rankings
where top features can be forced to influence the ranking significantly more than
lower ranked features.

4 Experiments

In this section, we present the results of our analysis of ensemble feature selec-
tion techniques on large feature/small sample size domains. First, the data sets
and the feature selection techniques used in this analysis are briefly described.
Subsequently, we analyze two aspects of ensemble feature selection techniques:
robustness and classification performance. All experiments were run using Java-
ML1, an open source machine learning library.

4.1 Data Sets

Datasets were taken from the bioinformatics and biomedical domain, and can
be divided into two parts: microarray datasets (MA) and mass spectrometry
(MS) datasets (Table 1). For each domain, three datasets were included, typ-
ically consisting of several thousands of features and tens of instances in the
case of microarray datasets, and up to about 15,000 features and a few hun-
dred of instances in the case of mass spectrometry datasets. Due to their high
dimensionality and low sample size, these datasets pose a great challenge for
both classification and feature selection algorithms. Another important aspect
1 Available at http://java-ml.sourceforge.net

http://java-ml.sourceforge.net
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Table 1. Data set characteristics. Sample to dimension rate (SDR) is calculated as
100M/N .

Name # Class 1 # Class 2 # Features SDR Reference
M

A

Colon 40 22 2000 3.1 [15]
Leukemia 47 25 7129 1.0 [16]
Lymphoma 22 23 4026 1.1 [17]

M
S

Ovarian 162 91 15154 1.7 [18]
Prostate 69 253 15154 2.1 [19]
Pancreatic 80 101 6771 2.7 [20]

of this data is the fact that the outcome of feature selection techniques is an
essential prerequisite for further validation, such as verifying links between par-
ticular genes and diseases. Therefore, domain experts require the combination
of feature selection and classification algorithm to yield both a high accuracy as
well as robustness of the selected features.

4.2 Feature Selection Techniques

In this work, we focus on the application of filter and embedded feature selection
techniques. We discarded wrapper approaches because they commonly require
on the order of N2 classification models being built if a complete ranking of N
features is desired. Filter methods require no model being built, and embedded
models only build a small amount of models. Thus, the wrapper approach, cer-
tainly when used in the ensemble setting is computationally not feasible for the
large feature sizes we are dealing with. We choose a benchmark of four feature
selection techniques: two filter methods and two embedded methods. For the fil-
ter methods, we selected one univariate and one multivariate method. Univariate
methods consider each feature separately, while multivariate methods take into
account feature dependencies, which might yield better results. The univariate
method we choose was the Symmetrical Uncertainty (SU, [10]):

SU(F, C) = 2
H(F ) − H(F |C)
H(F ) + H(C)

where F and C are random variables representing a feature and the class re-
spectively, and the function H calculates the entropy. As a multivariate method,
we choose the RELIEF algorithm [11], which estimates the relevance of features
according to how well their values distinguish between the instances of the same
and different classes that are near each other. Furthermore, the computational
complexity of RELIEF O(MN) scales well to large feature/small sample size
data sets, compared to other multivariate methods which are often quadratic
in the number of features. In our experiments, five neighboring instances were
chosen. When using real-valued features, equal frequency binning was used to
discretize the features.
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As embedded methods we used the feature importance measures of Random
Forests [12] and linear support vector machines (SVM). In a Random Forest
(RF), feature importance is measured by randomly permuting the feature in
the out-of-bag samples and calculating the percent increase in misclassification
rate as compared to the out-of-bag rate with all variables intact. In our feature
selection experiments we used forests consisting of 10 trees.

For a linear SVM, the feature importance can be derived from the weight
vector of the hyperplane [13], a procedure known as recursive feature elimination
(SVM RFE). In this work, we use SVM RFE as a feature ranker: first a linear
SVM is trained on the full feature set, and the C-parameter is tuned using an
internal cross-validation of the training set. Next, features are ranked according
to the absolute value of their weight in the weight vector of the hyperplane, and
the 10% worst performing features are discarded. The above procedure is then
repeated until the empty feature set is reached.

4.3 Ensemble Feature Selection Techniques

For each of the four feature selection techniques described above, an ensemble
version was created by instance perturbation. We used bootstrap aggregation
(bagging, [14]) to generate 40 bags from the data. For each of the bags, a separate
feature ranking was performed, and the ensemble was formed by aggregating the
single rankings by weighted voting, using linear aggregation.

4.4 Robustness of Feature Selection

To assess the robustness of feature selection techniques, we focus here on com-
paring feature rankings and feature subsets, as these are most often used by
domain experts. Feature weightings are almost never used, and instead con-
verted to a ranking or subset. Furthermore, directly comparing feature weights
may be problematic as different methods may use different scales and intervals
for the weights.

To compare feature rankings, the Spearman rank correlation coefficient was
used, while for feature subsets the Jaccard index was used. The last one was
analyzed for different subset sizes: the top 1% and top 5% best features of the
rankings were chosen.

To estimate the robustness of feature selection techniques, the strategy ex-
plained in section 2.1 was used with k = 10 subsamples of size 0.9M (i.e. each
subsample contains 90% of the data). This percentage was chosen because we
use small sample datasets and thus cannot discard too much data when build-
ing models, and further because we want to assess robustness with respect to
relatively small changes in the dataset. Then, each feature selection algorithm
(both the single and the ensemble version) was run on each subsample, and the
results were averaged over all pairwise comparisons.

Table 2 summarizes the results of the robustness analysis across the different
datasets, using the linear aggregation method for ensemble feature selection.
For each feature selection algorithm, the Spearman correlation coefficient (Sp)
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Table 2. Robustness of the different feature selectors across the different datasets.
Spearman correlation coefficient, Jaccard index on the subset of 1% and 5% best fea-
tures are denoted respectively by Sp, JC1 and JC5.

Dataset SU Relief SVM RFE RF

Colon
Single Ensemble Single Ensemble Single Ensemble Single Ensemble

Sp 0.61 0.76 0.62 0.85 0.7 0.81 0.91 0.99
JC5 0.33 0.49 0.44 0.64 0.47 0.45 0.44 0.79
JC1 0.3 0.55 0.45 0.56 0.44 0.5 0.01 0.64

Leukemia
Sp 0.68 0.76 0.58 0.79 0.73 0.79 0.97 0.99
JC5 0.48 0.57 0.39 0.54 0.53 0.58 0.8 0.91
JC1 0.54 0.6 0.44 0.55 0.49 0.57 0.36 0.8

Lymphoma
Sp 0.59 0.74 0.49 0.76 0.77 0.81 0.96 0.99
JC5 0.31 0.49 0.35 0.53 0.54 0.54 0.74 0.9
JC1 0.37 0.55 0.42 0.56 0.43 0.46 0.22 0.73

Ovarian
Sp 0.93 0.95 0.91 0.97 0.91 0.95 0.96 0.99
JC5 0.76 0.79 0.66 0.78 0.75 0.79 0.7 0.93
JC1 0.84 0.85 0.85 0.88 0.8 0.84 0.1 0.83

Pancreatic
Sp 0.57 0.65 0.46 0.73 0.69 0.77 0.9 0.99
JC5 0.2 0.24 0.16 0.3 0.43 0.41 0.52 0.76
JC1 0.13 0.15 0.09 0.19 0.41 0.36 0.01 0.48

Prostate
Sp 0.88 0.91 0.9 0.96 0.81 0.92 0.96 0.99
JC5 0.68 0.7 0.61 0.71 0.6 0.63 0.72 0.88
JC1 0.67 0.7 0.52 0.64 0.6 0.6 0.13 0.78

Average
Sp 0.71 0.8 0.66 0.84 0.77 0.84 0.94 0.99
JC5 0.46 0.55 0.44 0.58 0.55 0.57 0.65 0.86
JC1 0.47 0.57 0.46 0.57 0.53 0.56 0.14 0.71

and Jaccard index on the subset of 1% (JC1) and 5% best features (JC5) are
shown. In general, it can be observed that ensemble feature selection provides
more robust results than a single feature selection algorithm, the difference in
robustness being dependent on the dataset and the algorithm.

RELIEF is one of the less stable algorithms, but clearly benefits from an en-
semble version, as well as the Symmetrical Uncertainty filter method. SVM RFE
on the other hand proves to be a more stable feature selection method, and cre-
ating an ensemble version of this method only slightly improves robustness. For
Random Forests, the picture is a bit more complicated. While for Sp and JC5, a
single Random Forest seems to outperform the other methods, results are much
worse on the JC1 measure. This means that the very top performing features
vary a lot with regard to different data subsamples. Especially for knowledge
discovery, the high variance in the top selected features by Random Forests may
be a problem. However, also Random Forests clearly benefit from an ensemble
version, the most drastic improvement being made on the JC1 measure. Thus,
it seems that ensembles of Random Forests clearly outperform other feature
selection methods regarding robustness.

The effect of the number of feature selectors on the robustness of the ensemble
is shown in Figure 1. In general, robustness is mostly increased in the first steps,
and slows down after about 20 selectors in the ensemble, an exception being
the Random Forest. In essence, a single Random Forest can already be seen
as an ensemble feature selection technique, averaging over the different trees in
the forest, which can explain the earlier convergence of ensembles of Random
Forests.
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Fig. 1. Robustness in function of the ensemble size. Robustness is measured using the
Jaccard index on the 1% top ranked features.

One could wonder to what extent an ensemble of Random Forests would be
comparable to just one single Random Forest consisting of more trees. Prelim-
inary experiments on the datasets analysed in this work suggest that larger
Random Forests often lead to less robust results than smaller ones. Hence, if
robust feature selection results are desired, it would be computationally cheaper
to average over a number of small Random Forests in an ensemble way, rather
than creating one larger Random Forest.

4.5 Robustness Versus Classification Performance

Considering only robustness of a feature selection technique is not an appropriate
strategy to find good feature rankings or subsets, and also model performance
should be taken into account to decide which features to select. Therefore, fea-
ture selection needs to be combined with a classification model in order to get
an estimate of the performance of the feature selector-classifier combination.
Embedded feature selection methods like Random Forests and SVM RFE have
an important computational advantage in this respect, as they combine model
construction with feature selection.

To analyze the effect on classification performance using single versus ensem-
ble feature selection, we thus set up a benchmark on the same datasets as used
to assess robustness. Due to their capacity to provide a feature ranking, as well
as their state-of-the-art performance, Random Forests and linear SVMs were
included as classifiers, as well as the distance based k-nearest neighbor algo-
rithm (KNN). The number of trees in the Random Forest classifier was set to
50, and the number of nearest neighbors for KNN was set to 5.
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Table 3. Performance comparison for the different feature selector-classifier combi-
nations. Each entry in the table represents the average accuracy using 10-fold cross-
validation.

Dataset SU RELIEF SVM RFE RF All

Colon

Single Ensemble Single Ensemble Single Ensemble Single Ensemble features
SVM 0.87 0.89 0.91 0.91 0.93 0.96 0.87 0.74 0.87
RF 0.89 0.91 0.86 0.89 0.8 0.86 0.79 0.67 0.79
KNN 0.81 0.87 0.87 0.87 0.87 0.94 0.83 0.7 0.79

Leukemia
SVM 0.98 0.96 0.98 0.99 1.0 0.99 0.91 0.88 1.0
RF 1.0 0.99 1.0 1.0 0.98 0.98 0.94 0.94 0.85
KNN 0.99 0.98 0.98 0.96 1.0 0.99 0.88 0.83 0.86

Lymphoma
SVM 0.96 1.0 0.94 1.0 1.0 1.0 0.9 0.78 0.94
RF 0.94 0.94 0.94 0.94 0.94 0.94 0.84 0.72 0.74
KNN 0.98 0.98 0.92 0.98 1.0 1.0 0.84 0.74 0.68

Ovarian
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.82 1.0
RF 0.99 0.98 0.98 0.98 1.0 0.99 0.95 0.73 0.92
KNN 0.97 0.97 0.97 0.97 0.99 0.99 0.96 0.66 0.92

Pancreatic
SVM 0.54 0.56 0.59 0.62 0.75 0.81 0.58 0.57 0.64
RF 0.66 0.66 0.63 0.64 0.6 0.68 0.53 0.52 0.55
KNN 0.57 0.57 0.64 0.63 0.6 0.61 0.53 0.48 0.55

Prostate
SVM 0.94 0.94 0.95 0.96 0.96 0.98 0.93 0.8 0.96
RF 0.94 0.95 0.94 0.95 0.92 0.95 0.9 0.82 0.89
KNN 0.96 0.95 0.94 0.94 0.97 0.97 0.87 0.82 0.89

Average
SVM 0.88 0.89 0.90 0.91 0.94 0.96 0.86 0.77 0.90
RF 0.90 0.91 0.89 0.9 0.87 0.9 0.83 0.73 0.79
KNN 0.88 0.89 0.89 0.89 0.91 0.92 0.82 0.71 0.78

For each classifier, we analyzed all combinations with the four feature selec-
tion algorithms explained in section 4.4. Classification performance was assessed
using a 10-fold cross-validation setting, using accuracy as the performance mea-
sure. For each fold, feature selection was performed using only the training part
of the data, and a classifier was built using the 1% best features returned by the
feature selector, as it was often observed in these domains that only such a small
amount of features was relevant [3]. For this experiment, k = 40 bootstraps of
each training part of the fold were used to create the ensemble versions of the
feature selectors. This model was then evaluated on the test part of the data
for each fold, and results were averaged over all 10 folds. The results of this
experiment are displayed in Table 3.

Averaged over all datasets, we can see that the best classification results
are obtained using the SVM classifier, using the ensemble version of RFE as
feature selection mechanism. Also for the other classifiers, the combination with
the ensemble version of RFE performs well over all datasets. Given that the
ensemble version of RFE was also more robust than the single version (Table 2,
JC1 rows), this method can thus be used to achieve both robust feature subsets
and good classification performance.

In general, it can be observed that the performance of ensemble feature selec-
tion techniques is about the same (or slightly better) than the version using a
single feature selector, an exception being the Random Forest feature selection
technique. Comparing the performance of the Random Forest ensemble feature
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selection version to the single version, it is clear that the substantial increase
in robustness (see Table 2, JC1 rows) comes at a price, and results in lower
accuracies for all datasets.

Comparing the results of ensemble feature selection to a classifier using the
full feature set (last column in Table 3), it can be observed that in most cases
performance is increased, an exception again being the Random Forest feature
selector. However, this performance is now obtained at the great advantage of
using only 1% of the features. Furthermore, the selected features are robust,
greatly improving knowledge discovery and giving more confidence to domain
experts, who generally work by iteratively investigating the ranked features in a
top-down fashion.

If robustness of the feature selection results is of high importance, then a
combined analysis of classification performance and robustness, like the one
we presented here, would be advisable. In the case of single and ensemble
methods performing equally well, the generally more robust ensemble method
can then be chosen to yield both good performance and robustness. In other
cases, an appropriate trade-off between robustness and classification perfor-
mance should be chosen, possibly taking into account the preference of domain
experts.

4.6 Automatically Balancing Robustness and Classification
Performance

In order to provide a formal and automatic way of jointly evaluating the trade-
off between robustness and classification performance, we use an adaptation of
the F-measure [21]. The F-measure is a well known evaluation performance in
data mining, and represents the harmonic mean of precision and recall.

In a similar way, we propose the robustness-performance trade-off (RPT) as
being the harmonic mean of the robustness and classification performance.

RPTβ =
(β2 + 1) robustness performance
β2 robustness + performance

The parameter β controls the relative importance of robustness versus classifi-
cation performance, and can be used to either put more influence on robustness
or on classification performance. A value of β = 1 is the standard formulation,
treating robustness and classification performance equally important.

Table 4 summarizes the results for the different feature selector-classifier com-
binations when only 1% of the features is used (RPT1). For the robustness
measure, the Jaccard index was used, while for classification performance the
accuracy was used. It can be observed that in almost all cases, the ensem-
ble feature selection version results in a better RPT measure. The best RPT
values were obtained using the ensemble version of the Random Forest feature
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Table 4. Harmonic mean of robustness and classification performance (RPT1) for the
different feature selector-classifier combinations using 1% of the features

Dataset SU RELIEF SVM RFE RF

Colon

Single Ensemble Single Ensemble Single Ensemble Single Ensemble
SVM 0.45 0.68 0.6 0.69 0.6 0.66 0.02 0.69
RF 0.45 0.69 0.59 0.69 0.57 0.63 0.02 0.65
KNN 0.44 0.67 0.59 0.68 0.58 0.65 0.02 0.67

Leukemia
SVM 0.7 0.74 0.61 0.71 0.66 0.72 0.52 0.84
RF 0.7 0.75 0.61 0.71 0.65 0.72 0.52 0.86
KNN 0.7 0.74 0.61 0.7 0.66 0.72 0.51 0.81

Lymphoma
SVM 0.53 0.71 0.58 0.72 0.6 0.63 0.35 0.75
RF 0.53 0.69 0.58 0.7 0.6 0.62 0.35 0.72
KNN 0.54 0.7 0.58 0.71 0.6 0.63 0.35 0.73

Ovarian
SVM 0.91 0.92 0.92 0.94 0.89 0.91 0.18 0.82
RF 0.91 0.91 0.91 0.93 0.89 0.91 0.18 0.78
KNN 0.9 0.91 0.91 0.92 0.88 0.91 0.18 0.74

Pancreatic
SVM 0.21 0.24 0.16 0.29 0.53 0.5 0.02 0.52
RF 0.22 0.24 0.16 0.29 0.49 0.47 0.02 0.5
KNN 0.21 0.24 0.16 0.29 0.49 0.45 0.02 0.48

Prostate
SVM 0.78 0.8 0.67 0.77 0.74 0.74 0.23 0.79
RF 0.78 0.81 0.67 0.76 0.73 0.74 0.23 0.8
KNN 0.79 0.81 0.67 0.76 0.74 0.74 0.23 0.8

Average
SVM 0.6 0.68 0.59 0.69 0.67 0.69 0.22 0.74
RF 0.6 0.68 0.59 0.68 0.65 0.68 0.22 0.72
KNN 0.6 0.68 0.59 0.68 0.66 0.68 0.22 0.71

selector, which can be explained by the very high robustness values (see Table 2),
compared to the other feature selectors.

5 Conclusions and Future Work

In this work we introduced the use of ensemble methods for feature selection.
We showed that by constructing ensemble feature selection techniques, robust-
ness of feature ranking and feature subset selection could be improved, using
similar techniques as in ensemble methods for supervised learning. When an-
alyzing robustness versus classification performance, ensemble methods show
great promise for large feature/small sample size domains. It turns out that the
best trade-off between robustness and classification performance depends on the
dataset at hand, giving rise to a new model selection strategy, incorporating
both classification performance as well as robustness in the evaluation strategy.
We believe that robustness of feature selection techniques will gain importance
in the future, and the topic of ensemble feature selection techniques might open
many new avenues for further research. Important questions to be addressed
include the development of stability measures for feature ranking and feature
subset selection, methods for generating diversity in feature selection ensembles,
aggregation methods to find a consensus ranking or subset from single feature
selection models and the design of classifiers that jointly optimize model perfor-
mance and feature robustness.
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