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Abstract—In this paper we describe algorithms to classify
environmental sounds with the aim of providing contextual
information to devices such as hearing aids for optimum
performance. We use signal sub-band energy to construct
signal-dependent dictionary and matching pursuit algo-
rithms to obtain a sparse representation of a signal. The
coefficients of the sparse vector are used as weights to
compute weighted features. These features, along with mel
frequency cepstral coefficients (MFCC) are used as feature
vectors for classification. Experimental results show that
the proposed method gives a maximum accuracy of 95.6
% while classifying 14 categories of environmental sound
using a gaussian mixture model (GMM).

I. INTRODUCTION

To a careful listener, an audio recording is a rich source

of information giving clues such as location, direction of

vehicular movement, environmental information, speed

of wind and so on. It is, therefore, only natural to

ask if we could make machines imitate human listening

capabilities. One step in this direction is to train a

machine to automatically classify the environment based

on a set of features extracted from an audio sample.

Environmental sound classification has a variety of

applications. Modern hearing aids [1] consists of several

programs which account for the reverberation model

of environments such as meeting rooms, auditoriums

and other noisy environments. Automatic recognition of

the surrounding environment allows these machines to

switch between programs and work with minimum user

interference. Other applications include video scene anal-

ysis which is generally achieved using computationally

heavy video processing techniques. Liu et al [2] have

proposed a set of low level features such as frequency

centroid, frequency bandwidth, energy ratio of sub-band

to characterize the audio clip of a video scene and were

shown to have good scene discrimination capabilities.

Another interesting application of the environmental

classification problem is in creating automatic diary [3]

by processing the audio recorded over a certain period.

Users are automatically given locations they have visited

based on classifying the environments using features

extracted from the audio samples.

The problem of environment classification is a sub-

problem of a bigger area of research called computational

auditory scene recognition (CASR) [4], where the focus

is on recognizing the context. Application of CASR

include providing context to devices such as hearing aids

and mobile phones, enabling it to provide better service.

Previous attempts to classify environment have given

rise to a new set of features. Peltonen et al [4] have used

mel frequency cepstral coefficient (MFCC) as features

and gaussian mixture models (GMM) and neural network

as classifiers. They report an average recognition rate

of only 68.4 % using MFCC as features and GMM as

classifier, while classifying 17 natural sounds. Chu et al

[5] have proposed to use a combination of MFCC and

a set of features extracted using matching pursuit (MP)

algorithm, to classify a set of 14 natural sounds. Using

GMM as a preferred classifier, they have reported an

accuracy of about 83.9 %. Adiloğlu et al [6] have de-

veloped a dissimilarity function to compute the distance

between sounds and used support vector machine (SVM)

for classification purposes.

In this paper we extend the work reported in [5]

and classify the environment recording using the MP

algorithm. We develop different frequency scaling meth-

ods for constructing a dictionary with an objective to

capture information which are not captured by MFCC.

We achieve a maximum accuracy of about 95.6 %

while classifying 14 classes using a GMM classifier. The

proposed algorithm constructs a dictionary using prior

knowledge of the signal with a small increase in the

computational cost.

The rest of the paper is organized as follows. Section II

explains the feature extraction methods including the MP

based feature. Section III introduces the linear piecewise

model for constructing better dictionary using sub-band

energy of the signal and Section IV discusses procedure

to obtain weights for computing weighted features. Sec-

tion V explains the experimental setup used. Results are

analysed in Section VI while Section VII concludes the

paper.

II. FEATURE EXTRACTION

A varied set of features such as zero crossing rate,

MFCC, band energy ratio, spectral flux, statistical mo-

ments ([2],[4]) and features obtained using the MP algo-

rithm and their combinations have been used to classify

natural audio sounds. The best reported accuracy [5]

was obtained using a combination of MFCC and MP

features. MFCC is obtained by first computing the short

time Fourier transform of the signal. The spectrum values

of each frame are then grouped into bands using a set

of triangular filters [7]. The bandwidth of the triangular

filters are constant for center frequencies below 1 kHz



and increases exponentially upto 4 kHz. 13 mel fre-

quency cepstral coefficients for each frame are obtained

by taking the discrete cosine transform (DCT) of the

log of the magnitude of filter outputs. Since the filter

bandwidths of the filterbank are narrow below 1 kHz,

MFCC can represent low frequency content of the signal

adequately well.

A. Matching Pursuit for feature extraction

There are many algorithms [8] to obtain a sparse

representation of a signal, given a dictionary. Commonly

used algorithms are the basis pursuit (BP), orthogo-

nal matching pursuit (OMP), iterative hard threshold-

ing (IHT) and compressive sampling matching pursuit

(CoSaMP). Sounds containing harmonic sections such as

sound from an ambulance siren can also be decomposed

using harmonic matching pursuit [9]. Owing to the

simplicity of orthogonal matching pursuit (OMP), we use

the technique to compute MP features.

Given a dictionary D of size m× n and an observed

signal y, MP algorithm gives a sparse vector, x, using an

iterative approach. Each iteration captures the maximum

possible residual energy. The number of iteration is either

fixed by predetermining the sparsity, ||x||0 = K or by

thresholding the residual energy, ||Dx− y||2 ≤ ǫ. In this

paper we predetermine the value of K. Chu et al [5] have

reported no significant improvement in the classification

performance for K ≥ 5 because of which we fix the

value of K to five.

1) Building the dictionary : A detailed review of

dictionary building techniques for matching pursuit al-

gorithms has been described in [10]. Approaches include

learned dictionaries such as K-SVD [11] which is known

to represent signals better, but it is computationally inten-

sive and data dependent. On the other hand, analytical

dictionaries such as the Fourier and wavelet have fast

implementations and analytic formulation with support-

ing proofs and error rate bounds. One such dictionary

is the Gabor dictionary whose atoms are constructed

using a Gabor filter which are known to have a good

representation for audio signals. Gammatone filter based

dictionaries which are modelled on human psychoacous-

tics, have also been reported to have a good audio

representation [12]. We, however, use Gabor atoms to

construct our dictionary since the principles developed in

this paper can easily be extended to other time-frequency

atoms as well.

A real discrete Gabor time-frequency atom can be rep-

resented by

g[k] =
kg√
s
e−π(k−u)2/s2 cos (2πω(k − u) + θ), (1)

where, the constants s, u, kg, ω are the scale, shift, nor-

malization factor and frequency values. Scale and shift

values were set to s = 2p(1 ≤ p ≤ 8) and u =
{0, 64, 128, 192} respectively, to construct the dictionary.

A logarithmic scale for ω = Ci2.62 (with 1 ≤ i ≤
35, C = 0.5 × 35−2.6) was used to accommodate finer

granularity below 1000 Hz [5]. This gave a dictionary

with n = 8 × 4 × 35 = 1120 atoms. Phase θ was set

to zero since it has been reported to have no significant

impact on the classification result.

Dictionary constructed using Gabor atoms were used by

the OMP algorithm to choose five atoms which best

correlate with the signal. The mean (µ) and the standard

deviation (σ) of the frequency (ωs) and scale (ss) of the

selected atoms was used as MP features. The feature set

for classification is as follows:

[MFCC, µ(ωs), σ(ωs), µ(ss), σ(ss)].

We refer to the above mentioned set of features as

unweighted features.

MP features depend on dictionary D, whose atoms are

constructed using Gabor function. The following section

describes a method to construct relevant dictionaries

using energy distribution of the signal.

III. LINEAR PIECEWISE SCALING

In this section we introduce the piecewise method

of frequency scaling to build a dictionary using apriori

knowledge of the signal. Here, the sub-band energy

ratio, which is the normalized energy distribution in sub-

bands, is used to determine the number of atoms to be

allocated per frequency band. Since MFCC has a good

representation of the signal in low frequency region (≤ 1
kHz), we pass the signal through a high pass filter having

a cut-off frequency of 1 kHz. This is done to ensure that

the MP features do not capture the information which is

already been captured by the MFCC. Now the jth sub-

band energy, Esb(j), is obtained by,

Esb(j) =
∑

P∈sb(j)

|X(P )|2 j = 1, 2, . . . , N,

where X(P ) is the discrete Fourier transform (DFT) of

the signal and N is the total number of sub-bands.

We then normalize the energy to obtain a distribution

function as follows:

Esbn(j) =
Esb(j)∑N
i=1Esb(i)

, j = 1, 2, . . . , N.

The product Esbn(j) × nf , rounded off to the nearest

integer, decides the number of frequency elements to be

allocated to the jth sub-band and is denoted by nsb(j).

nsb(j) = round(Esbn(j)×nf ), j = 1, 2, . . . , N. (2)

here round(.) denotes the rounding off operator, nf is

the total number of frequency elements. In our experi-

ment, we set nf = 35.

A linear piecewise model for the jth sub-band is then

constructed by dividing the straight line joining the

frequency boundaries of the sub-band into nsb(j) equi-

spaced points. The corresponding frequency points are

used to construct the dictionary D using Gabor atoms (1)

for OMP. Fig. 1 shows the frequency allocation for ocean

and casino sounds using the algorithm. An ocean sound

has higher energy in the low frequency region because

of which the algorithm adaptively allocates more atoms

in the lower frequency band. Similarly, higher number of

atoms were allocated to high frequency region in case of



a casino sound due to higher energy in the high frequency

band. In one such example, 19 atoms were allocated for

an ocean sound in the frequency range, ω < 0.1π as

compared to 6 for a casino sound (Fig. 1).

IV. COMPUTING WEIGHTED FEATURES

After obtaining the dictionary D, OMP algorithm is

used to find atoms which correlate well with the signal.

Each of the selected atoms has a different value of

correlation coefficient with respect to the signal. To

capture this variation, we propose to use weighted mean

and deviation.
If ds are the atoms selected by orthogonal matching

pursuit and ri is the residue after ith iteration of the
algorithm, the inner product xs(i) = ds(i)

T ri, for i =
1, 2, . . . ,K, are the non zero components of the sparse
vector x and are used as weights while computing the
weighted mean (µw),

µw(ws) =

∑
K

i=1
abs(xs(i))× ws(i)

∑
K

i=1
abs(xs(i))

. (3)

The unbiased estimator for weighted standard deviation
is computed by,

σw(ws) =

√

√

√

√

V1

V 2

1
− V2

K
∑

i=1

abs(xs(i))× (ws(i)− µw(ws))2,

(4)

where, V1 =
∑K

i=1 abs(xs(i)) and V2 =
∑K

i=1 x
2
s(i).

We similarly compute the weighted mean and standard

deviation of the scale parameter. The new set of features

are:

[MFCC, µw(ωs), σw(ωs), µw(ss), σw(ss)].

The summary of the algorithm is detailed below:

Algorithm (Feature Extraction)

INPUT: Audio segment y[n], number of Sub-bands(N ),

total number of frequency elements (nf ), scale

range({s}), shift range ({u})

step 1: Find the support ω.

→ Pass the signal y[n] through a high pass filter having

a cut-off of 1 kHz.

→ Divide the spectrum Y (ejω) into N sub-bands.

→ Compute the energy in each sub-band Esb(j) =∑
P∈sb(j) |Y (P )|2.

→ Find the number of atoms to be allocated to each sub-

band, nsb (Eqn.(2)).

→ Find the plausible set of frequency elements ω =
{ω1, ω2, . . . ωN}.

step 2: Extract feature vectors using OMP.

→ Construct a Gabor dictionary D using ω as frequency

elements.

→ Do an OMP using D as dictionary.

→ Init: ωs = ∅, ss = ∅, xs = ∅,Ω = ∅, residual ro = y

and counter c = 1.

WHILE: c ≤ 5
→ Find the column dk of D which correlates the most

with the residue:

k ∈ argmax
j

|〈rc−1, dj〉|

Ωk = Ωk−1 ∪ {dk}
ωs = ωs ∪ freq{dk}
ss = ss ∪ scale{dk}

→ Find the best coefficients

xs = argmin
θ

||y −DΩk
θ||2

→ update the residual:

rc = y −DΩk
xs.

→ c:=c+1

END WHILE:

→ Find the weighted mean (3) and standard deviation

(4) of ω and scale s.

OUTPUT: Weighted features -

[µω(ωs), σw(ωs), µw(ss), σw(ss)]
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Fig. 1. Frequency allocation using the piece-wise model for casino
and ocean sounds and its comparison with low and high frequency
emphasized scaling model (Section VI)

V. EXPERIMENTS

A. Dataset

The results presented in this paper are based on a

set of data collected from an online sound repository

at freesound.org [13]. The collection method is similar

to that mentioned in [5]. In order to compare our results

with those presented in [5], we have used the data set

collected from [13] and applied them to our algorithm

and those presented in [5]. A total of 14 audio recordings,

namely, Nature in daytime, Inside Vehicle, Restaurant,

Casino, Nature at Night, Bell, Playgrounds, Street Traffic,

Thundering, Train, Rain, Stream, Ocean and Street with

Ambulance, representing different environments were

collected. Each one of these environments are now

referred to as a class. However, no preprocessing was

done on the collected data.



B. Method

For each of the 14 classes, a minimum of 4 unique

recordings were collected. All collected data had a two

channel recording (stereo) out of which only one channel

was used. This is to avoid duplication. All the files were

collected as uncompressed wav file and had a sampling

rate of 44.1 kHz, but of varying time durations (from 30

secs to 8 mins). We divide each recording into segments

of 4 seconds. 75 % of all the collected segments were

used for training and 25% for testing. Features for both

training and testing were computed on these segments.

MFCC was computed by dividing the 4 sec segments

into blocks of 20ms using a Hamming window with 50

% overlap. The same blocks were used to compute MP

features.

To classify the segments, we build Gaussian mixture

model (GMM) for each class, which is described by,

p =

Ng∑

k=1

αkN (µk,Σk),

where N (.) is the normal distribution function. αk is

the weight, µk and Σk are the mean and variance of the

kth mixture. Ng is the number of mixtures in the GMM.

αk, µk and Σk are obtained from the features extracted

from the training data, using the standard expectation

maximization (EM) algorithm.

To classify a segment s, the posterior probability

p(s|µi,Σi) is computed for each frame of the segment. A

segment is assigned to kth class, if the sum of posterior

probabilities of all frames for the kth class is maximum.

If there are Ns frame in a segment, the segment is

allocated to class ck, if

k = argmax
i

Ns∑

j=1

log{p(sj |µi,Σi)}.

Different values of Ng were tried in [5]. Best results were

obtained using a GMM having 5 mixture components.

Henceforth, we construct 5 mixture GMM for all classes

in our experiment. Confusion matrix was constructed

and accuracy values were computed as the ratio of sum

of diagonal values to the total sum of all elements in

the matrix. All results reported in this paper are the

average of accuracy values obtained using ten fold cross

validation.

VI. RESULTS AND ANALYSIS

We implement the algorithm detailed in [5] on our

dataset and obtain an accuracy of 83.2 % while clas-

sifying the audio segments without preprocessing them.

We use this as a base to compare the performance of

our algorithm. On studying the periodogram of environ-

mental sounds (Fig. 2), it was found that certain signals

such as audio recordings from casino have substantial

energy in the higher frequency region. To understand

the impact of high frequency on the classification, we

construct a dictionary using a high frequency emphasized

scaling function ω = 0.5a−1/i, as against the low

frequency emphasized scaling function ω = C × i2.6

advocated in [5]. A value of a = 1000 was chosen

for a smoother ascend towards high frequency while

still distributing enough atoms in the higher part of the

frequency spectrum. The variation of ω as a function of i

for a = 1000 is shown in Fig. 1. We obtain an accuracy

of 84.5 % using weighted features and high frequency

emphasized scaling function, an improvement of 1.56

% over the low frequency emphasized scaling function.

The increase in accuracy is due to better representation

of the high frequency region in the MP features. We

would like to reiterate the fact that, the low frequency

region is adequately represented with MFCC. Class-wise

accuracy comparison for low frequency and high fre-

quency emphasised scaling functions using unweighted

features are shown in Fig. 3. We observe that the high

frequency emphasised dictionary outperforms its low

frequency counterpart, while classifying sounds from

nature at day time, inside vehicle, casino and nature at

night time whose periodogram showed high energy in the

high frequency region, while low frequency emphasised

dictionary performed better in classifying sounds from

ocean, rain and train which has higher energy content in

the lower frequency range.
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Fig. 2. Variation in periodograms of environmental sounds

A. Effect of using sub-band information

The results obtained using high frequency emphasised

dictionary showed the need to construct signal specific



dictionaries based on energy distribution across frequen-

cies. To do so, we divide the spectrum into N equispaced

sub-bands and construct Gabor dictionaries from scaling

functions obtained using sub-band energy distribution, as

outlined in Section III. The results obtained are shown

in Fig. 4. A weighted 4 sub-band dictionary has given an

accuracy of 83.79 %. As the value of N was increased,

we observe an increase in the accuracy with an exception

for N = 6 and N = 14 where a dip was seen. Accuracy

peaked at N = 15 and further increase in N showed no

improvement. The class wise accuracy comparison for

N = 6, 14 and 15 sub-band weighted dictionaries are

summarised in Table I.

B. Weighted vs Unweighted

As a rule, weighted features performed better than

their unweighted counterparts with notable exceptions

for N = 4 and N = 14. Fig. 5 shows two such accuracy

comparison for high frequency emphasized dictionary

and 15 sub-band piecewise dictionary .

Our algorithm gives the best performance for N = 15
with an accuracy of 95.6%, an overall improvement of

about 13.95 % compared to the work reported in [5] and

13.14 % over the high frequency emphasized dictionary.
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TABLE I
CLASS-WISE ACCURACY (IN PERCENTAGE) FOR WEIGHTED SUB

BAND DICTIONARIES

Sub-band 6 Sub-band 14 Sub-band 15

Nature-Day 83.8 82.4 83.8

Inside Vehicle 90.9 90.9 100.0

Restaurant 95.3 95.3 100.0

Casino 100.0 100.0 100.0

Nature-Night 80.8 100.0 100.0

Bell 100.0 100.0 100.0

Playground 82.2 80.0 86.7

Street Traffic 100.0 100.0 100.0

Thunder 100.0 96.2 100.0

Train 81.2 93.8 100.0

Rain 74.1 66.7 100.0

Stream 32.1 100.0 79.2

Ocean 96.2 50.9 100.0

Ambulance 100.0 100.0 100.0
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VII. CONCLUSION

In this paper, we have proposed an algorithm to

compute features for classifying environmental sounds.

Features were obtained using a frequency scaling func-

tion which utilizes apriori knowledge of the signal to

construct a Gabor dictionary. The sparse coefficients

obtained using the OMP technique was used as weights

to calculate the weighted mean and deviation. These

were used as features to classify environmental sounds.

Compared to [5], the proposed algorithm has a small

increase in computational cost of the order of O(n log n).
This is incurred while computing the DFT of the signal.

Results show the proposed algorithm outperforms the

state of the art in environmental sound classification with

a significant improvement in accuracy rate.
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